1.知识点汇总-细胞骨架
细胞生物学之细胞骨架
细胞骨架之微丝一.细胞骨架概念及分类细胞骨架(cytoskeleton)是指真核细胞中的蛋白纤维网架体系.广义上包括细胞质骨架,细胞核骨架,细胞膜骨架,细胞外基质;狭义上指细胞质骨架包括:微丝,微管,中间纤维.细胞骨架存在于各类真核细胞中,但直到1963年,采用戊二醛常温固定方法,在细胞中发现微管后,才逐渐认识到细胞骨架的存在。
细胞骨架不仅对维持细胞的形态、保持细胞内部结构的有序性起重要作用,而且还与细胞运动、物质运输、能量转换、信息传递、细胞分裂、免疫行为、细胞分化等生命活动密切相关。
破坏纤维或干扰相关蛋白都会严重影响信号传导、细胞生长和代谢,而且可能直接影响疾病的病理生理过程.微丝核基质细胞质骨架微管细胞核骨架染色体骨架中等纤维核纤层二.微丝微丝(microfilament,MF),又称肌动蛋白纤维(actin filament),或纤维型肌动蛋白,是指真核细胞中由肌动蛋白(actin)组成,直径为7 nm的骨架纤维。
㈠成分肌动蛋白(actin)是微丝的结构成分,肌动蛋白单体外观呈哑铃状。
肌动蛋白在真核细胞进化过程中高度保守。
不同来源的肌动蛋白其氨基酸顺序差别很小,仅差4~6个氨基酸。
在哺乳动物细胞中至少分离出6种肌动蛋白,按其等电点的不同,可集中分为α、β、γ三类。
α肌动蛋白包括3种亚型:骨骼肌型肌动蛋白、心肌型肌动蛋白、血管型肌动蛋白。
β肌动蛋白为胞质型肌动蛋白,主要存在于非肌肉细胞。
γ肌动蛋白有两种亚型:胞质肌动蛋白(主要存在于非骨骼肌)、肠型肌动蛋白(内脏平滑肌)同一种细胞中可以有2种或2种以上的肌动蛋白亚型存在,且不能互相替代,这种现象可能与不同亚型有不同功能和不同调节机制有关。
㈡微丝的组装是由肌动蛋白亚单位(globular actin, G-actin)组成螺旋状纤维(filamentous actin, F-action)的过程。
每37nm拧成一圈(14个球形肌动蛋白分子线形聚合的长度),每个肌动蛋白分子是接近球形的,它具有极性。
第九章细胞骨架知识点
第十章 细胞质骨架和细胞运动一.微管MT-微管-26nm由微管蛋白tubulin 组成的中空圆柱体 长、直、坚硬与微管组织中心 (中心体)相连 1. 微管的装配>微管由微管蛋白亚基组装而成(球蛋白亚基) α-微管蛋白 β-微管蛋白>αβ-微管蛋白二聚体是细胞质内游离态微管蛋白的主要存在形式,微管组装的基本结构单位微管蛋白αβ αβ的排列方式构成了微管的极性;异二聚体头尾相连形成原纤维;13根原纤维侧向连接形成中空的微管。
踏车行为微管(+)极的装配速度快于(—)极的装配速度;或微管一端发生装配使微管延长,而另一端发生去装配使微管缩短,这种现象称为踏车行为。
微管装配的条件:微管蛋白浓度、GTP cap 和温度当二聚体浓度低于临界浓度(Cc ), 则微管解聚 当二聚体浓度高于临界浓度, 则组装微管GTP 结合位点——不可交换位点 GTP 结合位点——可交换位点(可与GTP 交换)二价阳离子结合位点——秋水仙素结合位点&长春花碱结合位点原纤维因为Cc(负极) > Cc (正极),所以正极装配快于负极当Cc (正极) < C < Cc (负极)时,则正极装配, 负极解聚, 即踏车现象。
>微管体外装配影响因素聚合: 微管蛋白浓度≥1mg/mL(二聚体蛋白浓度大于纤维状蛋白浓度)、 370C 、有Mg2+、有GTP 供应、低Ca2+ 解聚: 低温、高压、高Ca2+2.微管组织中心(MTOC-microtubule organizing center )微管在生理状态以及实验处理解聚后重新装配的发生处称为微管组织中心。
多数微管的一端固着MTOC ,如基体或中心体。
MTOC 决定微管的极性,负极指向MTOC ,正极背向MTOC 。
单管、双联管(鞭毛、纤毛)和三联管(中心粒、基体)中心粒(桶状结构)每个中心体含有一对中心粒(彼此垂直分布)微管基体3.微管结合蛋白(MAPs和τ蛋白)作用(1)稳定微管的空间结构(2)促使微管蛋白/微管的动态平衡趋于装配4.微管特异性药物秋水仙素、长春花碱:阻止装配紫杉醇:阻止解聚5.功能(1)维持细胞形态(2)细胞内物质运输--------颗粒和囊泡细胞内的物质运输需要马达蛋白的带动;马达蛋白:驱动蛋白或动力蛋白(正极或负极指向,ATP)与微管结合的马达蛋白:利用ATP水解酶释放的能量驱动自身沿微管定向运动的蛋白。
第九章_细胞骨架习题及答案
第九章细胞骨架本章要点:本章阐述了细胞骨架的基本涵义、细胞中存在的几种骨架体系的结构、功能及生物学意义。
要求重点掌握细胞质骨架的结构及功能。
一、名词解释1、细胞骨架:细胞骨架(Cytoskeleton)是指存在于真核细胞质内的中的蛋白纤维网架体系。
包括狭义和广义的细胞骨架两种概念。
广义的细胞骨架包括:细胞核骨架、细胞质骨架、细胞膜骨架和细胞外基质。
狭义的细胞骨架指细胞质骨架,包括微丝、微管和中间纤维。
2、应力纤维:应力纤维是真核细胞中广泛存在的微丝束结构,由大量平行排列的微丝组成,与细胞间或细胞与基质表面的粘着有密切关系,可能在细胞形态发生、细胞分化和组织的形成等方面具有重要作用。
3、微管:在真核细胞质中,由微管蛋白构成的,可形成纺锤体、中心体及细胞特化结构鞭毛和纤毛的结构。
4、微丝:在真核细胞的细胞质中,由肌动蛋白和肌球蛋白构成的,可在细胞形态的支持及细胞肌性收缩和非肌性运动等方面起重要作用的结构。
5、中间纤维:存在于真核细胞质中的,由蛋白质构成的,其直径介于微管和微丝之间,在支持细胞形态、参与物质运输等方面起重要作用的纤维状结构。
6、踏车现象:在一定条件下,细胞骨架在装配过程中,一端发生装配使微管或微丝延长,而另一端发生去装配而使微管或微丝缩短,实际上是正极的装配速度快于负极的装配速度,这种现象称为踏车现象。
7、微管组织中心(MTOC):微管在生理状态及实验处理解聚后重新装配的发生处称为微管组织中心。
动物细胞的MTOC为中心体。
MTOC决定了细胞中微管的极性,微管的(-)极指向MTOC,(+)极背向MTOC。
8、胞质分裂环:在有丝分裂末期,两个即将分裂的子细胞之间产生一个收缩环。
收缩环是由大量平行排列的微丝组成,由分裂末期胞质中的肌动蛋白装配而成,随着收缩环的收缩,两个子细胞被分开。
胞质分裂后,收缩环即消失。
二、填空题1细胞质骨架__是一种复杂的蛋白质纤维网络状结构,能使真核细胞适应多种形状和协调的运动。
细生——细胞骨架知识点
第五章细胞骨架1、掌握细胞骨架的概念及其主要的生物学作用。
细胞骨架:指存在于真核细胞中的蛋白纤维网架体系。
包括微丝(MF)、微管(MT)、中间丝(IF)。
微丝主要分布在细胞膜的内侧,负责维持细胞形态;微管主要分布在细胞核周围,呈放射状向细胞质四周扩散‘中间丝分布在整个细胞中。
2、掌握微丝、微管的分子组成、结构特征、组装特点及生物学功能。
微管:细胞质内的中空的管状结构,存在于所有真核细胞中,脑组织中含量最为丰富。
组成:由微管蛋白装配成的具有一定刚性的中空管状结构。
微管蛋白:α微管蛋白+β微管蛋白=异二聚体=微管的基本组装单位。
细胞中仅有游离的异二聚体形式,多余的α微管蛋白和β微管蛋白很快被降解掉。
微管带有较强负电荷。
α微管蛋白和β微管蛋白均含有一个GTP结合位点。
结合于α微管蛋白的GTP结合位点位于异二聚体的内部,不能被水解或者替换,称为不可交换位点(N位点);结合于β微管蛋白的内的GTP在组装成微管后能够被水解成GDP,在去组装后GDP又能被GTP替换掉,这个GTP结合位点被称为可交换位点(E位点)。
E位点对于微管的组装和去组装具有十分重要的作用。
此外,微管蛋白异二聚体上还存在二价阳离子、药物(秋水仙碱、紫杉醇)等结合位点。
¿γ 微管蛋白:位于中心体周围的基质中,环形结构,结构稳定,为ab微管蛋白二聚体提供起始装配位点,所以又叫成核位点。
对于微管的成核发挥着巨大的作用。
只能与α微管蛋白结合。
形态:是三种细胞骨架中最为粗大者。
基本组成单位是α、β微管蛋白异二聚体。
两者交替排列,成为一条链,形成原纤维。
13根原纤维汇聚在一个平面时,会相互合拢并围成一个中空管状结构——微管。
微管蛋白沿微管圆周呈螺旋状排列,在原纤维合拢的位置,微管蛋白停止聚合。
微管有极性。
α微管蛋白端为负极,β微管蛋白端为正极。
异二聚体在正负两极添加速度不同,正极添加的速度快,负极添加的速度慢。
有可能正负极同时组装、去组装。
细胞生物学-细胞骨架
29
6 形成应力纤维(stress fiber)
应力纤维是由微丝与肌球蛋白-II组装的一种不稳定性收 缩束,结构类似肌原纤维,使细胞具有抗剪切力。
30
培养的上皮细胞中的应力纤维(微丝红色、微管绿色)
31
7 参与肌肉收缩
基本结构:肌纤维是圆柱形的肌细胞(长度可达40mm, 宽为10100μm), 并且含有许多核(可多达100个核)。
性,既正极与负极之别。
微丝纤维的负染电镜照片
10
三、微丝的装配过程
微丝(F-actin)由G-actin聚合而成,单体具有极性,装配时 首尾相接。在适宜的条件下,肌动蛋白单体可自组装为纤维。 微丝的组装过程分三个步骤:即成核期、延长期、平衡期。
11
影响装配的因素
微丝的装配同样受肌动蛋白临界浓度的影响,还受一些 离子浓度的影响:在含有ATP和Mg2+, 以及很低的Na+、K+ 等阳离子的溶液中,微丝趋向于解聚成G-肌动蛋白。
32
33
骨骼肌收缩的基本结构单位——肌小节
肌小节的主要成分是肌原纤维,电镜下可见肌原纤维是由两种 类型的长纤维构成, 一种是细肌丝,直径为6nm;另一种是粗 肌丝,直径为15nm。
34
粗肌丝: 组成肌节的肌球蛋白丝。 细肌丝: 组成肌节的肌动蛋白丝。
35
粗肌丝的构成---肌球蛋白(myosin)
12
踏车现象(treadmilling)
在微丝装配时,若G-肌动蛋白分子添加到F-肌动蛋白丝 上的速率正好等于G-肌动蛋白分子从F-肌动蛋白上失去的速 率时, 微丝净长度没有改变, 这种过程称为肌动蛋白的踏车 现象.
13
永久性微丝结构
在体内, 有些微丝是永久性结构, 如肌肉中的细丝及上皮 细胞微绒毛中的轴心微丝等。有些微丝是暂时性结构, 如 胞质分裂环中的微丝。
细胞生物学3-细胞骨架知识点
细胞生物学3-细胞骨架知识点●广泛存在于真核细胞中的蛋白纤维网架系统●微管●微管的组装●微管的组装●三时期●成核期●缓慢、限速过程。
●寡聚体核心→扩展成片状带→微管●聚合期●微管蛋白聚合>解聚●稳定期●微管蛋白聚合=解聚●体外组装(有踏车现象)●原纤维形成→片层形成→微管延长●体内组装●时间控制●细胞生命活动的特殊时刻。
(纺锤丝微管的聚合与解聚发生在细胞分裂期)●空间控制●微管聚合从特异性的核心形成位点开始,主要是中心体、(鞭毛和纤毛的)基体等微管组织中心(MTOC)。
●影响因素●温度:温度超过20℃有利于组装,低于4℃引起分解。
●药物:秋水仙素和长春花碱引起分解,紫杉酚促进组装。
●离子:Ca2+低时促进组装,高时解聚. Mg2+存在时促进组装。
●存在形式●单管(13根)●微管主要存在形式●分散或者成束●不稳定●二联管(23根)●主要分布在纤毛鞭毛杆状部分●A(13根原丝)+B(10根原丝)●三联管(33根)●中心粒,纤毛,鞭毛基体●较稳定●A(13根原丝)+B(10根原丝)+C(10根原丝)AB公用3根原丝●形态结构●中空的圆柱状●13原纤维纵向、螺旋排列●有极性●化学组成●微管蛋白(tubulin):●α微管蛋白(450aa)●GTP不可交换位点(gtp不会被水解N位点)●β微管蛋白(455aa)●GTP可交换位点●去组装水解E位点●二价阳离子结合位点(镁离子,钙离子)●秋水仙素结合位点(抑制微管组装)●长春新碱结合位点(抑制微管组装)●γ微管蛋白(455aa)●γ微管蛋白环状复合物(γ-TuRC)●由γ微管蛋白和一些其他相关蛋白构成,是微管的一种高效的集结结构,在中心体中是微管装配的起始结构。
●微管相关蛋白(MAP)(前三种主要存在于神经元中)●碱性微管结合区●结合到微管蛋白的侧面●酸性微管结合区●从微管蛋白表面向外延伸成丝状●主要通过蛋白激酶和磷酸酶控制●分类●MAP1●神经元轴突和树突●控制微管延长●不能使微管成束●有三种亚型●在微管间及微管与中间丝间形成横桥,●能使微管成束●Tau(微管聚合蛋白)●位于神经元轴突增加微管组装的起始点●磷酸化失活●MAP4●广泛存在于各种细胞中,具有高度进化保守性●热稳定性●主要功能●(1)网架:构成细胞支架并维持细胞的形态;●(2)参与细胞内物质运输●马达蛋白(Motor protein)一种特殊酶类,能水解ATP获能而沿着微丝或微管移动,又称为分子发动机●肌球蛋白(myosins)家族:微丝作为运行的轨道●驱动蛋白(kinesins)家族:微管作为运行的轨道向微管正极移动●动力蛋白 (dyneins)家族:微管作为运行的轨道向微管负极移动●物质运输●(6)参与细胞内信号传递●(5)参与染色体的运动,调节细胞分裂●(4)维持细胞内细胞器空间定位和分布●(5)参与细胞运动:中心粒、纤毛、鞭毛●中心粒●结构:9组,三联微管●中心粒是微管组织中心,可形成微管结构;●中心粒与纺锤体的形成有关,并与星体、纺锤体和染色体共同组成有丝分裂器;●中心粒也能产生纤毛和鞭毛,它们从中心粒的一端长出。
高一细胞骨架知识点
高一细胞骨架知识点细胞骨架是由细胞内的微丝、中间纤维和微管所组成的一种细胞内结构,具有维持细胞形态、细胞运动以及细胞内物质输送等重要功能。
在高中生物中,学生们需要学习细胞骨架的组成、功能以及相关的知识点。
本文将为您介绍高一细胞骨架的相关知识点。
一、细胞骨架的组成细胞骨架主要由三种细胞骨架纤维组成:微丝、中间纤维和微管。
微丝由蛋白质丝球聚合而成,直径约为7纳米。
中间纤维由中间纤维原纤与中间纤维纤维组装而成,直径约为10纳米。
微管则是由α-和β-管蛋白组成的管状结构,直径约为25纳米。
二、微丝的功能及相关知识点微丝具有以下功能:1. 细胞形态维持:微丝通过与细胞膜的连接和收缩,参与细胞的形态变化和细胞外基质的排列。
2. 细胞运动:微丝参与细胞肌动蛋白的收缩作用,从而使细胞产生伸展、收缩等运动。
3. 内质网及细胞器的移动:微丝作为细胞膜的支架,参与内质网以及细胞器的运动和定位。
与微丝相关的知识点:1. 肌动蛋白:微丝主要由肌动蛋白组成,肌动蛋白是一种杂多肽,在细胞骨架中起着重要的作用。
2. 微丝缩合蛋白:微丝缩合蛋白能与微丝结合,促使微丝快速聚合和解聚,参与细胞的运动和形态变化。
三、中间纤维的功能及相关知识点中间纤维具有以下功能:1. 细胞结构支持:中间纤维能够维持细胞的形状和机械强度,使细胞具有良好的稳定性。
2. 细胞动力学调控:中间纤维参与细胞的运动、收缩和力学传递等过程。
与中间纤维相关的知识点:1. 中间纤维蛋白:中间纤维主要由中间纤维蛋白组成,其中包括角蛋白、碱性中间纤维蛋白等,它们的组合形成了中间纤维。
四、微管的功能及相关知识点微管具有以下功能:1. 细胞形态维持:微管参与维持细胞形态,形成细胞骨架的支架结构。
2. 分裂小管形成与分裂:在细胞有丝分裂过程中,微管形成纺锤体,引导染色体的分离和细胞核的分裂。
3. 细胞运输:微管参与细胞内物质的运输,如细胞器的定位和分布。
与微管相关的知识点:1. α-和β-管蛋白:微管由α-和β-管蛋白组成,其中β-管蛋白是微管的重要组成部分。
细胞骨架名词解释细胞生物学
细胞骨架名词解释细胞生物学1. 什么是细胞骨架?说到细胞骨架,大家可能会想,这玩意儿听起来好像是细胞的“钢筋混凝土”吧?没错,细胞骨架就像是细胞里的“支柱”,帮忙维持细胞的形状、结构,甚至还负责细胞内部的运输工作呢!想象一下,一个城市的交通网络,如果没有那些马路、桥梁,交通肯定会乱成一锅粥。
细胞骨架就是细胞内部的这种“交通网络”,没它可不行啊。
2. 细胞骨架的成分2.1 微管细胞骨架里有三种主要的成分,其中微管就像是那些高楼大厦,挺拔而坚固。
微管主要由一种叫“微管蛋白”的小家伙构成,像是细胞的“电梯”,负责运输各种小物件。
细胞内的“货物”从这里出发,经过微管,送到需要的地方,就像快递小哥送快递一样,效率杠杠的!不过,如果微管出问题,细胞的运输系统就会瘫痪,真是一团糟。
2.2 中间纤维再来说说中间纤维,它们的存在就像是细胞的“护身符”。
这些纤维比微管稍微柔韧一些,像是细胞的“支架”,帮忙抵御外界的压力。
想象一下,如果没有它们,细胞就像在风中摇摆的小树,根本不靠谱!中间纤维让细胞更有韧性,稳稳地扎根在组织中,不容易被外界的冲击弄得七零八落。
2.3 微丝最后是微丝,这家伙简直就是细胞的“多面手”。
微丝主要由一种叫“肌动蛋白”的蛋白质组成,负责细胞的运动。
可以说,微丝就是细胞的“腿”,让细胞能够移动、收缩,甚至在需要的时候发起“进攻”!想象一下,细胞如同一位灵活的武林高手,微丝就是它的“内力”,让它在各种挑战中游刃有余。
3. 细胞骨架的功能细胞骨架的功能可真不少,简直就是细胞的“万事通”!3.1 维持形状首先,细胞骨架帮助细胞保持形状。
没有了细胞骨架,细胞就像一颗没有铅笔的橡皮球,软绵绵的,没个谱!而且,细胞形状的变化还可以影响细胞的功能,比如白细胞的变化让它们更容易“追捕”细菌,真是一举两得。
3.2 运输和运动其次,细胞骨架还承担了运输和运动的重任。
细胞里那些小小的“器官”,比如线粒体、内质网等,都要依靠微管来搬运,真是“车水马龙”啊。
细胞骨架整好
2、聚合期:二聚体在关键两端和侧面不断增长并扩展成为片 层构造,直至13条原纤维形成管状微管。
微管旳极性:添加速度快(+极),添加速度慢(-极)。
3、稳定时:两端速度到达动态平衡。
形成聚合体旳关键部位
中间丝结合蛋白
• 目前发觉15种。(自学)
三、中间(丝)纤维旳组装
两个平行排列旳中间丝蛋白(杆状区)螺旋 形成二聚体。
三、中间(丝)纤维旳组装
•两个二聚体反向平行排列成一种四聚体—— 无极性(最小单位)。
三、中间(丝)纤维旳组装 •两个四聚体组装成一种原纤维。
三、中间(丝)纤维旳组装 •8条原纤维 中间纤维。
微管形成旳关键 位点,微管旳组装由 此开始。
常见旳微管组织 中心为中心体、鞭毛 或纤毛旳基体 。
影响微管稳定性旳药物
秋水仙素
克制微管组装 长春花碱 克制微管解聚(稳定) 紫杉醇
紫杉醇
秋水仙素 长春花碱
五、微管旳主要功能
㈠支持和维持 细胞旳形态
秋水仙素
微管
㈡参加细胞内物质运送
细胞内旳许多物质旳运送都是在微管—— 马达蛋白旳帮助下完毕旳。
9x2+2
9x3+0
2
1
3
13
4
12
5
11
10 9
6 7 8
单管
A
B
二联管
A
B
C
三联管
微管有关蛋白(MAP)
维持微管旳 稳定,参加微管 与其他细胞器旳 连接。
MAPs旳构造中具有 两个构造域:一种是碱性 旳微管蛋白结合区, 另一 种是酸性旳外伸(突出) 旳构造域。
细胞骨架总结
第九章:细胞骨架概述:1. 细胞骨架:细胞内以蛋白质纤维为主要成分的网络结构,主要包括微丝(MF),微管(MT),中间纤维(IF)2. 微丝:分布在细胞质膜的内侧,确定细胞表面特征,使细胞能够运动和收缩;微管:主要分布在核周围,并呈放射状向胞质四周扩散,确定膜性细胞器的位置和作为膜泡运输的轨道;中间纤维:分布在整个细胞,使细胞具有张力和抗剪切力3. 广义的细胞骨架还包括:核骨架,核纤层,细胞外基质。
形成贯穿细胞核,细胞质,细胞外的一体化网络结构第一节:微丝微丝:由肌动蛋白组成的直径约为7nm的骨架纤维,又称肌动蛋白纤维微丝和结合蛋白,肌球蛋白构成化学机械系统,利用化学能产生机械运动一. 微丝的组成及其组装1. 肌动蛋白分类(根据等电点):α:分布于各种肌肉细胞β、γ:分布于肌细胞和非肌细胞2. 肌动蛋白存在形式:单体:球状肌动蛋白(G-actin)多聚体:纤维状肌动蛋白(F-actin)3. 形态结构:actin单体外观呈哑铃形,其上有3个结合位点:1个为ATP结合位点,2个为结合蛋白结合位点F-actin是由两条线形排列的肌动蛋白链形成的螺旋,有极性4. 组装与去组装:(1)通常只有结合ATP的肌动蛋白单体才能参与微丝的组装(2)Ca2+浓度适当,Na+、K+浓度低时:微丝趋于解聚含有ATP、Mg2+以及高浓度Na+、K+时:微丝趋于组装(3)微丝正极组装速率快于复极(4)细胞松弛素:与微丝结合后切段微丝,并结合在末端,抑制聚合,但不影响解聚鬼笔环肽:抑制解聚二. 肌球蛋白1. 分子马达:指依赖于微管的驱动蛋白、动力蛋白和依赖于微丝的肌动蛋白这三类蛋白质家族成员。
他们既能与微丝或微管结合,又能与一些细胞器或膜状小泡特异性结合,并利用水解ATP所产生的能量有规律地沿微管或微丝等细胞骨架纤维运输“货物”2. 肌动蛋白的马达结合域包括:1个微丝结合位点;1个具有ATP酶活性的ATP结合位点3. 由1个重链和几个轻链组成,有三个结构域:①头部结构域:最为保守,为马达结构域,负责产生力②颈部结构域:为α-螺旋,通过同钙调素或类似钙调素来调节轻链亚基结合,来调节头部的活性③尾部结合域:决定同膜结合还是同其他尾部结合4. 分类:肌球蛋白Ⅱ:为肌肉收缩和胞质分裂提供力肌球蛋白Ⅰ、Ⅴ:涉及细胞骨架和膜之间的相互作用5. 滑动模型:单个ATP分子水解同肌球蛋白运动的一次循环相偶联。
细胞骨架名词解释
细胞骨架名词解释细胞骨架是细胞内网络结构的一个重要组成部分,由多种类型的蛋白质构成,负责维持细胞形状、细胞器位置和细胞运动,以及参与细胞内物质的运输和细胞信号传导等功能。
细胞骨架主要包括微丝、中间丝和微管三种主要类型的蛋白质纤维。
微丝是细胞骨架的重要组成部分,由肌动蛋白组成。
它们是细胞运动和细胞皱缩的主要驱动力,可以通过与肌球蛋白的相互作用缩短和延长。
微丝还在细胞分裂和细胞外基质附着等过程中发挥重要作用。
中间丝是一种相对比较稳定、粗且形状较均匀的纤维,由多种类型的中间丝蛋白组成。
中间丝提供了细胞骨架的稳定性,主要存在于细胞核周围和细胞间连接等区域,并在细胞分裂和细胞力学支撑等过程中发挥重要作用。
微管是一种管状结构的蛋白质纤维,在直径和长度上较其他两种骨架纤维更大。
微管的主要成分是α-、β-和γ-微管蛋白,它们通过聚合和解聚的方式调控微管的形成和稳定。
微管在细胞分裂、细胞运输和细胞运动等方面发挥重要作用。
除了以上三种主要类型的细胞骨架,细胞骨架还包括与其他蛋白质交互作用的辅助蛋白质,如肌凝蛋白、交联蛋白和动力蛋白等。
这些蛋白质通过与细胞骨架纤维的相互作用,调节细胞骨架的形成、重塑和动力学行为。
细胞骨架的功能主要包括:维持细胞形状和结构稳定性、细胞运动和细胞内外物质的运输以及参与细胞信号传导等。
细胞骨架通过对细胞内分子的定向排列和有序运动,使细胞能够完成各种形态和运动变化。
此外,细胞骨架还参与细胞内信号的传递和调控,从而调节细胞增殖、分化和凋亡等生命活动。
总之,细胞骨架是维持细胞形态和结构稳定性的重要结构,通过调节细胞的形态和运动,参与细胞内物质的运输和细胞信号传导,对细胞的功能和生命活动起着重要的调控作用。
细胞生物知识点总结(2)
一、细胞骨架的概念、类型和功能(一)概念指存在于真核细胞内的蛋白纤维网架体系,主要包括三类蛋白纤维即微管、微丝和中间纤维。
(二)类型:分为细胞质骨架和核骨架(三)细胞骨架的分布与功能微管主要分布在核周围, 并呈放射状向胞质四周扩散。
微丝主要分布在细胞质膜的内侧。
而中间纤维则分布在整个细胞中细胞骨架对于维持细胞的形态结构及内部结构的有序性,以及在细胞运动、物质运输、能量转换、信息传递和细胞分化等一系列方面起重要作用PS:注意细胞骨架结构的高度动态性(1)微管组成——由微管蛋白(tubulin)组成的中空管状结构,直径24-26nm分布——主要分布在核周围, 并呈放射状向胞质四周扩散并能与其他蛋白共同组装成纺锤体、基粒、中心粒、纤毛、鞭毛、轴突、神经管等结构。
分类——动态微管;稳定微管功能——维持细胞形态细胞内物质运输的轨道细胞器的定位鞭毛和纤毛运动纺锤体与染色体运动1.微管的结构和组分Ⅰ——a。
微管可装配成单管、二联管(纤毛和鞭毛中)、三联管(中心粒和基体中)。
b。
单管由13条原纤维(protofilament)构成。
主要由微管蛋白和微管结合蛋白两种成分组成c。
每一条原纤维由微管蛋白异二聚体线性排列而成。
d.微管蛋白异二聚体由结构相似的α-tubulin和β-tubulin构成。
PS:纤毛与鞭毛(稳定微管,长度不变,很少组装解聚)是结构相似的与运动有关的特化结构,本质是微管。
由基体和轴丝两部分构成。
轴丝微管为9+2结构,基体微管组成为9+0。
微管的3种类型(单管、二联管、三联管)Ⅱ—— 微管组装的结构单位——αβ微管蛋白异二聚体两亚基结构相似,为直径4nm 的球形分子,有35-40%的序列同源性每个异二聚体有2个GTP 结合位点,其中α-tubulin 上的结合位点为不可交换位点,而β-tubulin 的位点为可交换位点,可发生GTP 与GDP 的交换2..微管的组装与解聚Ⅰ。
微管的体外组装A.成核(Nucleation):α-tubulin和β-tubulin形成异二聚体,先形成片状或环状核心,经过侧面增加异二聚体而扩展为螺旋带,当螺旋带加宽至13根原纤维时,即合拢形成一段微管。
13-14细胞骨架-PPT课件
• 化学组成:
•ቤተ መጻሕፍቲ ባይዱ
球形肌动蛋白(G-actin):哑
铃状
• α肌动蛋白:横纹肌,心肌与
血管
及肠壁平滑肌细
胞特有
• β肌动蛋白
• γ肌动蛋白 非肌细胞中
所有肌细胞与
•
微丝(microfilaments .MF)
• 组装(ATP供能)
几个聚合 核心结构 球形单体肌动蛋白
分子逐一地加到核心的二端
延长(有
极性)
B 微丝
(microfilament,MF)
C 中间纤维
(intermediate filament,IF)
A fluorescently stained image of cultured epithelial cells showing the nucleus (yellow) and microtubules (red)
真核细胞(80S): 四种rRNA: 5SrRNA,5.8SrRNA,18SrRNA,28SrRNA 约82种蛋白质
不同核糖体在大小和化学成分上是不同的:
起解聚(结合到位点,改变构象不能聚合)。
微管组装的过程
• 成核期(延迟期):和微管蛋白聚 合成短的寡聚体,核心形成。
微管组装的过程
• 成核期(延迟期):和微管蛋白聚 合成短的寡聚体,核心形成。
• 聚合期(延长期):微管蛋白聚合速度 大于解聚速度,为微管延长。
微管组装的过程
• 成核期(延迟期):和微管蛋白聚 合成短的寡聚体,核心形成。
微丝组装的过程
• 成核期(延迟期):G肌动蛋白先形成 核心,再形成F肌动蛋白。
• 生长期: F肌动蛋白聚合速度大于解聚 速度,为微丝延长。
高中生物细胞骨架知识点
高中生物细胞骨架知识点
细胞骨架是细胞构成的重要组成部分,在细胞生命活动中发挥着不可替代的作用。
它
是细胞结构中最复杂和最重要的组分,可以帮助细胞保持形状,参与有丝分裂,细胞运动
等众多活动。
细胞骨架是一种典型的高分子结构,它主要由蛋白质和醣类多糖组成。
其中蛋白质主
要有组蛋白、微管蛋白和衬底蛋白;醣类多糖主要有细胞外基质和细胞膜多糖等。
(1)组蛋白:细胞骨架中的一种构成部分,主要包括:微丝蛋白、微丝-微管蛋白复
合物、突起蛋白和肌动蛋白等。
(2)微管蛋白:细胞骨架中的另一种组分,主要有直径25-30纳米的微管、节段微
管和微管节肌动蛋白等。
其形成和消失受到环境因素和一系列调节因子的调控。
(3)衬底蛋白:细胞骨架中的一种聚合物,主要有白蛋白、乙酰胆碱受体蛋白、粘
附分子等多种结构的蛋白质组成。
可以帮助细胞胞壁保持稳定,也可以与细胞膜多糖一起
参与紧缩过程和细胞运动等活动。
(4)细胞外基质:由葡聚糖、聚糖氨基酸和多酶分解物组成,有助于细胞膜的稳定,同时也可以促进细胞细胞间的接触,参与细胞的分裂等重要活动。
(5)细胞膜多糖:细胞膜的一种重要组分,主要由糖链、糖蛋白和多糖等构成,可
抵抗细菌毒素的侵袭,并参与细胞的信号传导和营养物质的转运等功能。
细胞骨架对细胞生命活动保持形状及参与各种活动起到重要作用,是细胞活动机制理
解不可缺少的一部分基础内容。
1.知识点汇总-细胞骨架
细胞生物学知识点汇总I说明:本文档是王飞老师细胞生物学课上内容的精炼和总结,也是考试出题的主要依据。
内容过于精炼则必有若干舍弃之处,希望同学不要为了考试而学习,将这份文字资料为你节省的复习时间用于阅读中英文教材和查找感兴趣的细胞生物学领域的前沿资料,这样才能对这门课程有一个更加全面的了解。
本文档中出现的英文不要求掌握(名词解释部分除外),只是对复杂中文名词或重点内容的一个辅助的英文注解。
由于某些中文名称的翻译过于繁琐且不合理,不如英文名称容易记忆,因此中英文只要掌握一种即可,在考试过程中无论是中文、英文还是英文缩写,只要写对任何一种即可得分。
内容编写过程中缺乏足够的审核步骤,如发现错别字或内容明显错误之处请及时联系老师确认内容的正确性。
II 细胞骨架知识点汇总:核心知识点(约占考试总分值的60%):1 7 20 25 29 32 41 44 45 49 51普通知识点(约占考试总分值的30%):3 9 11 12 14 16 17 18 19 23 26 28 30 31 35 37 38 39 43 47 48 50 54扩展知识点(约占考试总分值的10%):2 4 5 6 8 10 13 15 21 22 24 27 33 34 36 40 42 46 52 53 551 细胞骨架(cytoskeleton)的定义与种类:定义:细胞骨架是贯穿整个细胞的复杂的纤维状蛋白网络结构细胞内有三种类型的细胞骨架,分别是微丝(microfilament,MF),微管(microtubule,MT)和中间丝(intermediate filament,IF)。
2 肌动蛋白(actin)的种类及分布真核细胞内的肌动蛋白主要分为三大类,名称及分布情况如下:α 肌动蛋白主要存在于肌肉细胞的收缩性结构中,目前已发现的四种α 肌动蛋白分别属于横纹肌、心肌、血管平滑肌和肠道平滑肌。
β 肌动蛋白存在于所有种类的细胞内,是细胞内绝大部分微丝骨架的基本组分。
细胞骨架知识点总结
细胞骨架知识点总结1. 微丝微丝是细胞骨架的一种主要组成部分,由肌动蛋白构成。
肌动蛋白分为肌动蛋白Ⅰ(actinⅠ)和肌动蛋白Ⅱ(actinⅡ)两种类型。
肌动蛋白Ⅰ主要存在于非肌肉组织中,肌动蛋白Ⅱ主要存在于肌肉组织中。
微丝的主要功能是支持和维持细胞形态,参与细胞的运动和分裂。
微丝还参与细胞内物质的运输和分布,调节细胞内环境等生理活动。
2. 微管微管是由α-β异二聚体蛋白构成的细胞骨架结构,微管的主要功能是支持和维持细胞形态,参与细胞的分裂和运动,以及细胞器的定位和运输。
微管还是细胞内物质的运输通道,通过载体蛋白将物质运输到细胞各个部位。
微管还参与细胞内信号传导和细胞极性的形成。
3. 中间丝中间丝是由角蛋白构成的细胞骨架结构,主要分布在细胞核周围,细胞骨架的主要功能是支持和维持细胞形态,参与细胞的分裂和运动,并且参与细胞器的定位和运输。
中间丝还参与细胞的信号传导和细胞内物质的运输和分布。
4. 细胞骨架的动力学细胞骨架是动态的结构,它可以根据细胞外界环境的变化进行重塑和重组。
细胞骨架的动力学过程主要包括血小板收缩、细胞运动和细胞分裂等。
5. 细胞骨架与细胞运动细胞骨架参与细胞的运动,包括细胞的伸展、收缩、迁移和分裂等。
微丝支持和维持细胞的形状,参与细胞的黏附和蠕动。
微管参与细胞的分裂和细胞器的运输。
中间丝支持和维持细胞核的形状,参与细胞核的运输和分裂。
6. 细胞骨架与细胞黏附细胞骨架参与细胞的黏附,包括细胞与细胞之间的黏附和细胞与基质之间的黏附。
微丝参与细胞的贴壁运动和膜的变形。
微管参与细胞的移动和定位。
中间丝支持和维持细胞形态。
7. 细胞骨架与细胞分裂细胞骨架参与细胞的分裂,包括有丝分裂和无丝分裂。
微丝参与有丝分裂的纺锤体形成和染色体的分离。
微管参与有丝分裂的纺锤体形成和染色体的运动。
中间丝参与无丝分裂的细胞核的裂解和重建。
8. 细胞骨架与细胞器的定位和运输细胞骨架参与细胞器的定位和运输。
微丝参与内质网和高尔基体的定位和运输。
细胞骨架
细胞骨架(cytoskeleton):真核细胞中的蛋白纤维网架体系狭义:细胞质骨架(微丝,微管,中间纤维)广义:细胞核骨架(核基质,核纤层,染色体支架),细胞质骨架,细胞膜骨架,胞外基质作用:维持细胞形态,保持胞内结构有序性,与细胞运动,物质运输,能量交换,信息传递细胞分裂,分化,基因表达有关系。
一)细胞质骨架一、微丝(microfilament / MF)1.定义:又称肌动蛋白纤维(actin filament)/纤维状肌动蛋白(F-actin),是真核细胞中由肌动蛋白组成,直径7nm的骨架纤维。
2.装配:1)MF是G-actin 单体组成的多聚体,具有极性,对其行使功能必需。
2)MF一条actin单体链形成的螺旋,每个actin单体周围有4个亚单位(上下两侧)。
3)G-actin 可装配到MF两端,装配速度(+)>(-),也可体外装配(聚合-解聚纯化MF)ATP + Ca2+低浓度Na+、K+阳离子溶液中MF→ G-actin (解聚)Mg2+高浓度Na+、K+阳离子溶液中G-actin →MF (诱导装配)踏车现象(tread milling):MF表现出一端因加亚单位而延长,另一端因亚单位脱落而减短。
4)装配在两个水平上受到MF结合蛋白调节:①游离G-actin单体的浓度;②MF横向连接成束/网的程度5)非肌肉细胞中,MF是动态结构,持续解离和装配,维持细胞形态/运动。
永久性结构:肌肉细丝和小肠上表皮微绒毛中轴心微丝。
暂时性结构:胞质分裂环微丝(血小板激活,无脊椎动物精子顶体反应的MF)3.成分:1)肌动蛋白主要结构成分,M=43K,哑铃状(A TP + Ca2+结合于中间核苷结合槽),存在于所有真核细胞,在进化上高度保守。
已分离6种:4种α肌动蛋白(横纹肌,心肌,血管/肠道平滑肌)+β、γ肌动蛋白(肌肉/非肌肉细胞质)。
2)微丝结合蛋白(microfilament-associated protein)MF结合蛋白参与MF高级结构形成,对肌动蛋白动态装配有调节作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
细胞生物学知识点汇总I说明:本文档是王飞老师细胞生物学课上内容的精炼和总结,也是考试出题的主要依据。
内容过于精炼则必有若干舍弃之处,希望同学不要为了考试而学习,将这份文字资料为你节省的复习时间用于阅读中英文教材和查找感兴趣的细胞生物学领域的前沿资料,这样才能对这门课程有一个更加全面的了解。
本文档中出现的英文不要求掌握(名词解释部分除外),只是对复杂中文名词或重点内容的一个辅助的英文注解。
由于某些中文名称的翻译过于繁琐且不合理,不如英文名称容易记忆,因此中英文只要掌握一种即可,在考试过程中无论是中文、英文还是英文缩写,只要写对任何一种即可得分。
内容编写过程中缺乏足够的审核步骤,如发现错别字或内容明显错误之处请及时联系老师确认内容的正确性。
II 细胞骨架知识点汇总:核心知识点(约占考试总分值的60%):1 7 20 25 29 32 41 44 45 49 51普通知识点(约占考试总分值的30%):3 9 11 12 14 16 17 18 19 23 26 28 30 31 35 37 38 39 43 47 48 50 54扩展知识点(约占考试总分值的10%):2 4 5 6 8 10 13 15 21 22 24 27 33 34 36 40 42 46 52 53 551 细胞骨架(cytoskeleton)的定义与种类:定义:细胞骨架是贯穿整个细胞的复杂的纤维状蛋白网络结构细胞内有三种类型的细胞骨架,分别是微丝(microfilament,MF),微管(microtubule,MT)和中间丝(intermediate filament,IF)。
2 肌动蛋白(actin)的种类及分布真核细胞内的肌动蛋白主要分为三大类,名称及分布情况如下:α肌动蛋白主要存在于肌肉细胞的收缩性结构中,目前已发现的四种α肌动蛋白分别属于横纹肌、心肌、血管平滑肌和肠道平滑肌。
β肌动蛋白存在于所有种类的细胞内,是细胞内绝大部分微丝骨架的基本组分。
γ肌动蛋白在所有细胞内都有分布,主要存在于与应力纤维相关的结构中。
3微丝的组成与极性A微丝由肌动蛋白单体聚合而成。
B肌动蛋白是一种球状蛋白,其三维构象具有一道很深的裂缝,在裂缝内部有一个核苷酸结合位点(可与ATP或ADP结合)和一个二价阳离子结合位点(可与Mg2+或Ca2+结合)。
C 肌动蛋白单体聚合形成螺距为36nm(7个单体分子)的双股螺旋状微丝纤维。
每个肌动蛋白单体都与四个其他肌动蛋白单体紧密相邻。
D 微丝中的所有肌动蛋白单体分子的缝隙开口端或缝隙底部都朝着同一方向排列,因此整个微丝纤维具有极性。
缝隙开口端指向的是微丝的负极(minus end),缝隙底部指向的是微丝的正极(plus end)。
4 微丝和微管的正负极的定义对于微丝和微管的极性,人们习惯性的以同等条件下蛋白单体分子在纤维末端组装和去组装的速度大小来定义。
速度快的是正极,速度慢的是负极。
5 胞外微丝组装反应的动力学过程A 试管中的微丝组装需要的反应组分包括:G-actin,ATP,Mg2+,K+,Na+B 微丝的组装和去组装是一对可逆反应。
反应平衡点受外部反应环境影响。
C 在存在Mg2+且K+、Na+较高的环境里,微丝趋向于聚合。
在存在Ca2+且K+、Na+较低的环境里微丝趋向于解聚。
D 单体肌动蛋白以G-actin表示(G for global),结合在微丝中的肌动蛋白以F-actin表示(F for fibrous)。
F 反应过程中CG-actin 不断减小,CF-actin不断增加,直到达到平衡点。
平衡点处的CG-actin 定义为整个反应的临界浓度Cc(critical concentration)。
G 反应共分三个阶段:延迟期,是发生成核反应的时期,在此时期内数个肌动蛋白单体分子自发聚合成为可供进一步延伸的“核”,是整个反应的限速步骤;延长期,是微丝快速组装的时期,CG-actin >Cc,聚合反应速度>解聚反应速度;稳定期,是反应达到平衡点之后的时期,CG-actin =Cc,聚合反应速度=解聚反应速度;6 核苷酸ATP/ADP在微丝组装中的作用A 肌动蛋白本身也是一种ATP酶,能够水解与之结合的ATP分子使之转变为ADP,肌动蛋白的ATP酶活性只有在其组装到微丝末端之后才开始生效。
B在游离状态下肌动蛋白分子与ATP的亲和力远高于ADP,与肌动蛋白结合的ADP 分子很容易被ATP分子所替换,因此游离状态下的肌动蛋白携带的核苷酸分子以ATP为主。
C 带有ATP的肌动蛋白更容易发生聚合反应,带有ADP的肌动蛋白更容易发生解聚反应。
D细胞中的微丝组装时新组装上去的肌动蛋白总是携带ATP分子的,该ATP分子在停留一段很短的时间后即被水解为ADP,在水解发生前新的携带ATP分子的肌动蛋白单体已经在末端聚合,使得整根微丝最前端的几个肌动蛋白总是携带ATP 的,这样的末端定义为T型末端。
E 细胞中微丝的去组装总是发生在末端肌动蛋白携带ADP的时候,这样的末端定义为D型末端。
F 细胞内的D型微丝末端主要是由于负极端成核蛋白的脱落形成的。
7 微丝组装的踏车行为(treadmilling)A理论上如果没有ATP水解为ADP的过程,那么微丝组装时正极和负极的Cc是相等的。
在实际反应过程中由于有ATP水解过程的存在,正负极反应的Cc不再相等,Cc+<Cc-。
< Cc-的时候,正极端发生的是聚合反应,负极端发生B 当反应环境里Cc+<CG-actin的是解聚反应,这种反应形式称为踏车行为。
C 在试管内的微丝组装反应的总Cc介于正负极Cc之间,因此试管内聚合反应达到平衡期之后实际上发生的是踏车反应。
正极端的聚合速度等于负极端的解聚速度。
D 踏车行为是细胞内微丝动态组装和去组装的主要形式之一。
8 影响微丝组装的药物A 细胞松弛素(cytochalasin):能够切割微丝并与游离的末端结合,结合后能够阻止新的肌动蛋白单体分子在末端的组装,同时并不影响末端肌动蛋白分子的解离。
因此细胞松弛素的总体效果是促进微丝解聚。
B 鬼笔环肽(phalloidin):与微丝中的肌动蛋白(F-actin)结合,阻止其解离。
总体效果是阻断微丝解聚,稳定微丝。
9 微丝网络结构的调节方式细胞内微丝网络结构的调节主要是通过各种微丝结合蛋白的共同作用来实现的。
10 细胞内微丝结合蛋白的种类有六大类,分别是肌动蛋白单体结合蛋白,成核蛋白与加帽蛋白,延伸保护蛋白,交联蛋白,割断及解聚蛋白,马达蛋白。
11 肌动蛋白单体结合蛋白的种类及作用A 胸腺素β4(thymosin β4):与肌动蛋白单体结合并封闭其发生聚合反应的位点,其作用是维持细胞内游离态肌动蛋白库的总容量远大于微丝组装反应的临界浓度,有利于细胞大规模组装微丝的快速启动。
B 前纤维蛋白(profilin):只与肌动蛋白单体的正极端(底部)结合,抑制其在微丝负极端的聚合,不影响其在微丝正极端的聚合。
因此前纤维蛋白的作用是增加微丝组装反应的极性,促进正极端的生长。
12 成核蛋白与加帽蛋白A 成核蛋白:成核蛋白包括Arp2 Arp3和与之相关的其他几种蛋白质,这些蛋白共同组成Arp2/3复合物。
Arp2和Arp3在结构上与肌动蛋白单体分子极其相似,在复合物中形成异源二聚体,肌动蛋白单体以Arp2/3异源二聚体为基点开始新微丝的组装。
Arp2/3复合物的组装受到胞内信号转导系统的控制。
可以凭空出现,诱发新的微丝的组装。
也可以在微丝快速生长的T型末端处组装,诱导微丝的分叉生长。
Arp2/3复合物的存在具有稳定微丝负极的作用,一但Arp2/3从微丝末端脱落,暴露出来的负极D型末端会迅速降解。
B 加帽蛋白:在微丝停止生长之后,与正极端结合并使其稳定的一类蛋白质。
被加帽蛋白稳定的微丝正极端由于ATP的水解作用,属于D型末端,但加帽蛋白的存在保护其不发生解聚反应。
加帽蛋白的代表:CapZ。
C 成核蛋白和加帽蛋白都是对微丝末端进行调节的蛋白,其中成核蛋白作用于负极,加帽蛋白作用于正极。
二者在微丝相应末端的结合与解离是造成微丝网络结构动态性的主要原因之一。
13 延伸保护蛋白主要指的是形成蛋白(formin),形成蛋白能在微丝正极端形成二聚体环状结构,二聚体环中的两个单体分子交错向正极端移动并募集新的肌动蛋白单体分子在正极端组装,同时保护正极端新形成的微丝不被降解或者是被Arp2/3复合物接近。
通过这种方式,形成蛋白能够维持微丝在正极端的稳定生长,形成长的、无分叉的微丝结构。
14 交联蛋白A 交联蛋白根据微丝的排列方式可分为两类:成束蛋白和凝胶形成蛋白。
B 交联蛋白能够单独或以二聚体的形式将相邻的微丝交联起来。
C 起到交联作用的蛋白单体或二聚体都携带有两个肌动蛋白结合位点,两个位点间的距离决定了所形成的微丝束或网的松紧程度。
D 成束蛋白包括丝束蛋白(fimbrin)、绒毛蛋白(villin)和α-辅肌动蛋白(α-actinin),其两个肌动蛋白结合位点间的区域是僵直的,能够将多根微丝平行交联成束。
E 成束蛋白中的丝束蛋白和绒毛蛋白以单体形式起作用,两个肌动蛋白结合位点间的距离较小,形成的微丝束比较紧密,内部很难进入其他功能性蛋白分子。
F 成束蛋白中的α-辅肌动蛋白以二聚体的形式起作用,两个肌动蛋白结合位点间的距离较大,形成的微丝束比较松散,内部能够进入其他功能性蛋白分子如肌球蛋白。
G 凝胶形成蛋白包括细丝蛋白(filamin)和血影蛋白(spectrin),其两个肌动蛋白结合位点间的区域是柔软的,能以一定角度将两根相邻的微丝交联,最终形成二维网状结构或三维凝胶样结构。
15 割断及解聚蛋白A主要包括凝溶胶蛋白(gelsolin)和肌动蛋白解聚因子/丝切蛋白(ADF/cofilin)。
B 凝溶胶蛋白能够结合在微丝表面并切断微丝。
在某些条件下,微丝切断后凝溶胶蛋白可以与暴露出来的正极末端结合,促进其进一步解聚。
相反,在另一些条件下,微丝切断后产生的正极末端可以成为新的微丝生长点,从而加速微丝网络的形成。
C 丝切蛋白能与含有ADP的微丝表面结合并加速其解聚速度,主要在脱离了加帽蛋白的微丝负极端起到促进微丝解聚的作用。
16 肌球蛋白(myosin)的结构及种类A 肌球蛋白是依赖于微丝的马达蛋白。
B 肌球蛋白的主要结构分为三部分,分别是马达结构域、调控结构域(或杠杆臂结构域)、尾部结构域。
C 马达结构域是肌球蛋白沿微丝运动的主要结构元件;尾部结构域是肌球蛋白与货物分子、其他细胞结构或自身形成多聚体时相连的部位;D 细胞内肌球蛋白的种类有很多,每种肌球蛋白的结构和功能都不相同。
E II型肌球蛋白(myosin-II)因最先发现并研究被称为传统类型的肌球蛋白,其他肌球蛋白都是非传统类型的肌球蛋白。