常数项级数的敛散性判别法

合集下载

112常数项级数的敛散性

112常数项级数的敛散性

uN m r m1uN 1,
而级数 r m1uN 1收敛,
m1
uNm uu收敛, 收敛
m1
n N 1
当 1时, 取 1, 使r 1,
当n N时, un1 run un ,
lim
n
un
0.
发散
比值审敛法的优点: 不必找参考级数.
两点注意:
1.当 1时比值审敛法失效;
敛还是条件收敛?
1、 (1)n1
n;
n1
3 n1
2、 1 1 1 1 ; ln 2 ln 3 ln 4 ln 5
3、
(1)n .
n2 n ln n
七、若
lim
n
n
2
un
存在,证明:级数
un 收敛 .
n1
b3n
八、证明:
lim
n
n!
a
n
0.
练习题答案
一、1、 p 1, p 1;
2、 1, 1(或 lim un1 ), 1.
u n n
二、1、发散;
2、发散.
三、1、发散;
2、收敛.
四、1、收敛;
2、收敛.
五、1、发散;
2、收敛;
a 1,收敛; 3、0 a 1,发散;
a 1,发散.
六、1、绝对收敛; 2、条件收敛; 3、条件收敛.
n1 10
(n ),
故级数
n! n1 10n
发散.
(3) lim un1 lim (2n 1) 2n 1, n un n (2n 1) (2n 2)
比值审敛法失效, 改用比较审敛法
(2n
1 1)
2n
1 n2
,
级数

第十一章 第2节常数项级数审敛法

第十一章 第2节常数项级数审敛法

例 2 证明级数

n =1

1 ∴ 级数 ∑ n 收敛 n =1 n 2

1 是发散的. 是发散的 n( n + 1)
1 1 , > 证明 ∵ n( n + 1) n + 1 ∞ ∞ ∞ 1 1 1 发散. 而级数 ∑ = ∑ 发散∴ 级数 ∑ , n( n + 1) n =1 n =1 n + 1 k =2 k
n=1

(1) 当 ρ < 1 时 , 级数收敛 ; (2) 当 ρ > 1 时 , 级数发散 .
22
说明 :
ρ = 1时 , 级数可能收敛也可能发散 .
例如 p - 级数
∑np
n= 1
nu n

1
1 un = p , n

1 = n →1 (n →∞) n
p
p >1 级数收敛 p ≤1 级数发散

∴ un+1 < (ρ +ε ) un < (ρ + ε )2 un−1 < ⋯< (ρ + ε )n−N uN+1
k
∞ n=1 n
∑(ρ +ε ) 收敛 , 由比较审敛法可知, 级数 ∑u
收敛 . 17
un+1 lim =ρ n→∞ un
un+1 当 n ≥ N 时, >1 un ∴ un+1 > un > un−1 >⋯> uN
∑u
n=1

n和
正项级数 ∑v 是两个正项级数 , u
n=1 n

n
≤ k vn ( 常数 k > 0 )

高数第十单元无穷级数

高数第十单元无穷级数

第十单元 无穷级数10-1 常数项级数的概念与审敛法[教学基本要求]高等数学 1. 理解无穷级数收敛、发散以及收敛级数和的概念,了解无穷级数的基本性质及收敛的必要条件;2.了解正项级数的比较审敛法以及几何级数与p -级数的敛散性,掌握正项级数的比较审敛法;3.了解交错级数的莱布尼茨定理;4.了解绝对收敛与条件收敛的概念及二者的关系.微积分 1。

理解无穷级数收敛、发散以及收敛级数和的概念,了解无穷级数的基本性质及收敛的必要条件;2.了解正项级数的比较审敛法,掌握几何级数与p -级数的敛散性结果,掌握正项级数的比较审敛法;3.了解交错级数的莱布尼茨定理;4.了解绝对收敛与条件收敛的概念及二者的关系.[知识要点]一、常数项级数的敛散性判别法及其说明除开因lim n n u →∞≠0,而判定n n u ∞=1∑发散外,常用以下方法判别级数的收敛性.),(2)limn≤,其且其和S u1几何级数(等比级数)n n aq ∞=1∑:当|q |<1时级数收敛;当|q |≥1时级数发散。

p -级数p n n ∞=11∑:当p >1时级数收敛,当p 0<≤1时级数发散。

级数ln pn n n∞=21∑,当p >1时级数收敛,当p 0<≤1时级数发散. 二、正项级数判敛的一般程序:nu∞=1∑ ρ=1 n u n n u ∞=1∑发散 n n u ∞=1∑发散,n n u ∞=1∑收敛三、任意项级数的判敛程序:收敛 n n u ∞=1∑条件收敛nn u∞=1∑发散nn u∞=1∑绝对收敛nn u∞=1∑发散[错误诊断]例1 判别下列级数的敛散性:(1)n ∞=1 (2)()nn n ∞=14+-12∑. (1)[错解]因为n =0,故该级数收敛.[错误分析] lim n n u →∞=0是级数n n u ∞=1∑收敛的必要条件,不是充分条件.因此不能用一般项的极限为零判别级数收敛,但如果lim n n u →∞≠0,级数n n u ∞=1∑一定发散.[正确解法]因n n ==1,由n n ∞=11∑发散,知该级数发散. (2)[错解]因为()()()lim lim lim[()]n n n n n nn n n n nu u +1+1+1+1→∞→∞→∞4+-14+-14+-1==2224+-1不存在,所以该级数发散. [错误分析]正项级数的比值判别法只是正项级数收敛的充分条件,不是必要条件.也就是说,正项级数n n u ∞=1∑收敛,并不一定有limn n nu u ρ+1→∞=<1.[正确解法]因为该级数是正项级数,且当n ≥1时,()n n n n u 4+-15=≤22.由于等比级数nn ∞=152∑收敛,由比较判别法知所给级数收敛.例2 若n n u ∞=1∑与n n v ∞=1∑皆收敛,且对于一切自然数n 有n n n u c v ≤≤,证明n n c ∞=1∑也收敛.[错误证明]由于n n c v ≤,且n n v ∞=1∑收敛,故由比较判别法可知n n c ∞=1∑收敛.[错误分析]上述证明的依据是级数的比较判别法,但是这个判别法只适用于正项级数.而题中并没有指明n n u ∞=1∑与n n v ∞=1∑为正项级数,因此上述证明方法不正确.[正确证法]由于n n n u c v ≤≤,因此n n n n c u v u 0≤-≤-,即()n n n c u ∞=1-∑与()n n n v u ∞=1-∑皆为正项级数.由于n n u ∞=1∑与n n v ∞=1∑都收敛,因此()n n n v u ∞=1-∑收敛.由正项级数的比较判别法可知()n n n c u ∞=1-∑收敛.又()n n n n c u c u =+-,由级数的性质可知n n c ∞=1∑收敛.[典型例题补充]例1 选择题 下列命题中正确的是( ).A . 若nn u∞=1∑与n n v ∞=1∑都收敛,则()n n n u v ∞=1+∑可能发散.B . 若nn u∞=1∑收敛,n n v ∞=1∑发散,则()n n n u v ∞=1+∑必定发散.C . 若nn u∞=1∑与n n v ∞=1∑都发散,则()n n n u v ∞=1+∑必定发散.D . 若()nn n uv ∞=1+∑收敛,则n n u ∞=1∑与n n v ∞=1∑必定收敛.解 正确答案是B .由级数的性质知命题A 错误.由反正法知命题B 正确.事实上,假设()n n n u v ∞=1+∑收敛,由n n u ∞=1∑收敛及()n n n n v u v u =+-知,n n v ∞=1∑也收敛,这与已知矛盾.故()n n n u v ∞=1+∑必定发散.若设n n n u ∞∞=1=1=1∑∑发散,()n n n v ∞∞=1=1=-1∑∑也发散,但是()()n n n n u v ∞∞=1=1+=1-1=0∑∑收敛.可知命题C 与D 都不正确.说明 若n n u ∞=1∑收敛,n n v ∞=1∑发散,则()n n n u v ∞=1±∑必定发散可以作为判定级数()n n n u v ∞=1±∑发散的充分条件使用.例1表明有限项相加的性质不能随意使用到无穷多项相加之中. 例2 判别下列级数的敛散性:(1)()n nn n n ∞=131+∑;(2) (cos )n n ∞=111-∑;(3)nn n n ∞=1⎛⎫⎪2+1⎝⎭∑;(4) !()n n n a n a n ∞=1>0∑. 解 (1)因为lim lim()n n n n u e n→∞→∞13=3=≠011+,所以n n u ∞=1∑发散. (2)分析:由于lim(cos )n n →∞11-=0,而cos sin n u n n211=1-=2>02 注意:sin ()lim lim lim ()sinn n n n nu n u n n n222+1→∞→∞→∞212⎡⎤112+1⎛⎫===1 ⎪⎢⎥12+12⎝⎭⎣⎦22 可知所给级数不能利用比值判别法判定.解法1 注意 cossin n u n n211=1-=2>02 由于当x >0时,sin x x <,可知sin n n 11<22,sin n n 2211<24 正项级数n n ∞2=114∑为收敛级数,由比较判别法可知(cos )n n ∞=111-∑收敛.解法2 由于当x →0时,sin x ~x .可知当n →∞时sin n u n 21=22~n v n21=2则 sin lim lim n n n nu n u n 2+1→∞→∞2122==112,由于n n ∞2=11∑收敛,可知(cos )n n ∞=111-∑收敛. (3)因为n n 1==<12,所以nn n n ∞=1⎛⎫ ⎪2+1⎝⎭∑收敛. (4)分析:题中的a 没有限制其值,因此应该对a 加以讨论.解 因为()!!lim limlim ()n n n n n n n n n nu a n a n a au e n n n +1+1+1→∞→∞→∞+1===+11⎛⎫1+ ⎪⎝⎭故当a e >时,原级数发散;当a e <时,原级数收敛;当a e =时,不能用比值判别法判定所给级数的收敛性.但注意到数列nn ⎧⎫1⎪⎪⎛⎫1+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭为单调增加且有上界,由于n n u u +1≥,又lim n n nu u +1→∞=1,由极限的性质可知当n 充分大时,必有n n u u +1>>0,因此lim n n u →∞≠0.故!n n n a n n ∞=1∑发散.例3 讨论级数ln ()pn np n∞=3>1∑的敛散性. 分析:通项中有ln n 因子,可考虑用积分判别法.解 令ln ()p x f x x =,当x ≥3时()f x ≥0,又ln ()()p p xf x p x +11-'=<0>1,故()f x 在[,)3+∞是正的单调递减函数,且ln ()p nf n n=,ln ()ln pp px x x f x dx dx xdx p p xx +∞1-1-+∞+∞+∞33331==-⋅1-1-⎰⎰⎰ln ()p ppp 1-1-233=-3<+∞1-1- 故由积分判别法知级数收敛.例4 设()ln nn n u n +1=-1,试判定n n u ∞=1∑与n n u ∞2=1∑的收敛性,并指出是绝对收敛,还是条件收敛?分析:n n u ∞=1∑是交错级数,n n u ∞2=1∑是正项级数.由于||ln ln()n n u n n+11==1+,注意到x →0时,ln()x x1+等价.解 因为ln()()n nn 111+→∞,所以lim ln ()n n n →∞111+=1,由于n n∞=11∑为发散的调和级数,因此lnn n n∞=1+1∑为发散级数. 因为ln()ln()n n 111+>1++1,且lim ln()lim n n n n →∞→∞111+==0,则由莱布尼兹定理知()ln n n n n ∞=1+1-1∑收敛.从而知其条件收敛.因ln ()nu n 221=1+,且lim ln ()lim()n n n n nn 2222→∞→∞11111+==1 由于级数n n ∞2=11∑为收敛级数,故由极限形式的比较判别法可知n n u ∞2=1∑收敛.[课堂练习]一、填空题1.若正项级数n n u ∞=1∑收敛,则n ∞=1是 级数.2.已知lim ()n n nu k →∞=≠0,则n n u ∞=1∑是 级数.3.已知lim n n a a b →∞=>>0,则nn n b a ∞=1⎛⎫⎪⎝⎭∑是 级数.4.级数(ln )nnn ∞=153∑的和为 . 5.级数()()()n n n n n n 3∞=1-2+52-12+12+3∑是 级数.二、选择题1.下列命题中正确的是( ).A .若n n u ∞=1∑收敛,则必有lim n n u →∞=0; B.若n n u ∞=1∑发散,则必有lim n n u →∞≠0;C.若lim n n u →∞=0,则n n u ∞=1∑必定收敛; D.若lim n n u →∞=0,则n n u ∞=1∑必定发散.2.下列命题中正确的是( ).A .若||n n u ∞=1∑收敛,则n n u ∞=1∑必条件收敛;B.若n n u ∞=1∑发散,则||n n u ∞=1∑必定发散;C.若||n n u ∞=1∑发散,则n n u ∞=1∑必定发散; D.若n n u ∞=1∑收敛,则||n n u ∞=1∑必定收敛.3.若级数n n u ∞=1∑收敛于S ,则级数()n n n u u ∞+1=1+∑( ).A .收敛于S 2; B.收敛于S u 12+; C.收敛于S u 12-; D.发散.4.若级数nn a ∞2=1∑和nn b ∞2=1∑都收敛,则级数n n n a b ∞=1∑( )A .一定条件收敛;B.一定绝对收敛;C.一定发散;D.可能收敛可能发散. 5.设a为常数,则sin ()n na n ∞2=1-∑为( ). A .绝对收敛; B.条件收敛; C.发散;D.收敛性与a 有关.三、判别下列级数的敛散性1.n n 1∞3=11⎛⎫ ⎪⎝⎭∑; 2.nn n 1∞=11⎛⎫⎪⎝⎭∑; 3.n ∞=1.四、判别下列级数的敛散性,若收敛,是绝对收敛,还是条件收敛? 1.ln()()nn n n ∞=11+-11+∑; 2. ()(cos )n n n α∞=1-11-∑ (α>0为常数).答案 一、1.收敛;2.发散;3.收敛;4.ln 33-5;5.发散.二、1.A ; 2.B ; 3.C; 4.B; 5.C三、1.发散,p 级数;→1; 3.收敛. 四、1.条件收敛; 2.绝对收敛.10-2 幂级数[教学基本要求]高等数学 1。

数项级数及审敛法

数项级数及审敛法

级数收敛 ;
级数发散 .
从而
例5. 讨论级数
的敛散性 .
解:
根据定理4可知:
级数收敛 ;
级数发散 ;
对任意给定的正数
*定理5. 根值审敛法 ( Cauchy判别法)

为正项

证明提示:

分别利用上述不等式的左,右部分, 可推出结论正确.
级数, 且
时 , 级数可能收敛也可能发散 .
例如 , p – 级数
(2) 当 且 收敛时,
(3) 当 且 发散时,
也收敛 ;
也发散 .
注:
1) un , vn均为无穷小时, l 的值反映了它们不同阶的比较.
的敛散性.

例3. 判别级数
的敛散性 .
解:
根据比较审敛法的极限形式知
例4. 判别级数
备用题
1. 判别级数的敛散性:
解: (1)
发散 ,
故原级数发散 .
不是 p–级数
(2)
发散 ,
故原级数发散 .
2.
则级数
(A) 发散 ; (B) 绝对收敛;
(C) 条件收敛 ; (D) 收敛性根据条件不能确定.
分析:
∴ (B) 错 ;

C
胞体的直径相差很大,4-150μm, 细胞体是神经元营养、代谢的中心。
则级数
收敛 , 且其和
其余项满足
证:
是单调递增有界数列,

故级数收敛于S, 且

收敛
收敛
用Leibnitz 判别法判别下列级数的敛散性:
收敛
上述级数各项取绝对值后所成的级数是否收敛 ?

常数项级数的敛散性判别

常数项级数的敛散性判别
首先,将正项级数的审敛准则的内容列出:
定理1.1正项级数 收敛的充要条件是它的部分和数列有上界.
定理1.2(比较准则I)设 和 是两个正项级数,并且
(1)若 收敛,则 收敛; (2)若 发散,则 发散.
定理1.3 (比较准则II)设 和 是两个正项级数,并且
(1)若 ,则两个数列同时收敛或同时发散;
例7.判别级数 的敛散性.
解:
而 收敛;而对于 ,当 时收敛,当 时发散.综上可知,原级数当当 时收敛,当 时发散.
例8.判断级数 的敛散性,若收敛,是条件收敛还是绝对收敛?
解:
,得到一个交错级数
则易知级数收敛,但其绝对值级数发散.故原级数条件收敛.
6.Cauchy积分法
即定理1.4(积分准则),利用的就是级数 与无穷积分 同时收敛或同时发散.就此举一例如下:
结束语
本文主要是通过归纳总结将常数项级数的审敛准则与方法及例题放在一起,希望会对同学们关于级数敛散性的入门学习起到辅助作用.其实方法还不止上述所列出的几种,文中未包含的还有高斯判别法、拉贝判别法等,如感兴趣,可在利用网络自行查找相关文献.
参考文献
[1]工科数学分析基础.上册/王绵森,马知恩主编,2版.—北京:高等教育出版社,2006.2
且 .
定理2.2(绝对收敛准则)若级数 收敛,则级数 收敛.
若绝对值级数 收敛,则称级数 绝对收敛;若级数 收敛,但其绝对值级数 发散,则称 条件收敛.
有了这些基础知识作为铺垫,现在我们进入对一些方法的探讨.
1.不等式的利用
在此我们常用到的不等式有以下几种:
(1) ;(2) ;(3) ;(4)
个人认为,前三个不等式大家都用得比较熟练,最后一个不等式不太能在做题时想到.对于些题目看似很复杂,但利用不等式后就会豁然开朗.此处是将原数放大,主要运用比较准则.

考研数学知识:柯西积分不等式及其分析证明

考研数学知识:柯西积分不等式及其分析证明

考研数学知识:柯西积分不等式及其分析证明在考研数学中,不等式的证明是一个常考点,它包括函数不等式和积分不等式的证明。

在积分不等式的证明中,有一些问题需要用到柯西积分不等式,大家可能对这个不等式不太熟悉,为了使大家了解和学会运用这个不等式,提高自己分析问题和证明问题的能力,下面中公考研老师对柯西积分不等式作些介绍说明,并运用它来证明一些例题,供各位考生参考。

考研数学复习需掌握的四大技能考研是比较煎熬但也是至关重要的时期。

各位考生如果能充分利用好这段时间,成绩是会有所提升的。

下面凯程教育对该期间的复习提供一些建议,以帮助广大考生学会这四大技能。

一、梳理基本知识点,理顺知识点间的联系经历了大量题型的练习,同学们在做题方法和技巧上都有所提高,但是却忽略一些基本概念、定义、公式等,在这些基本题目上丢分。

这期间同学们一定把基本知识点掌握牢固,并且梳理好知识点,理顺知识点间的联系。

这样做基本题和综合题目时,才能立马想到用到的知识点和方法,做起题来才能得心应手。

二、按时按计划完成真题,总结常考题型的方法和技巧真题是最有价值的练习题。

同学们做每套题时,尽量按照考试的要求,在规定的时间内完成题目,然后核对答案,估算分数。

务必把不会做的题目单独拿出来弄懂,并把没掌握好的一类题目重点复习一下,对应地再做几道题目加深记忆。

做完每套题,一定要总结常考题型的方法和技巧,这样才能在遇到类似题目时泰然自若。

三、巩固重点题型,做好最后的查缺补漏工作数学三天不做题,就会没有手感。

后期,同学们每天一定要定量做一些题目保持手感,可以把之前没有掌握牢固的重点题型拿出来巩固,一旦发现薄弱环节,马上弥补,不要因为觉得困难而放弃。

保持稳定的情绪和良好的心态,做好最后的查缺补漏工作。

四、注意饮食,合理休息,将生物钟调整到考试的状态考研这段时间身体和心理上都会忍受极大的折磨,同学们一定要注意饮食,合理休息,不要搞疲劳战,尤其是考前几天熬夜突击,这样往往会适得其反。

判别数项级数敛散性的常用方法与技巧

判别数项级数敛散性的常用方法与技巧

判别数项级数敛散性的常用方法与技巧判断数项级数的敛散性是数学分析中的一个重要问题。

对于数项级数a₁+a₂+a₃+⋯,判断它的敛散性可以使用多种方法和技巧。

以下是判别数项级数敛散性的常用方法和技巧:1.部分和序列法(也称柯西收敛准则):数项级数收敛的必要条件是它的部分和序列收敛。

即,如果部分和序列Sₙ=a₁+a₂+⋯+aₙ收敛,则数项级数也收敛。

这个方法常用于证明一些级数的发散。

2.比较判别法:将待判别的级数与已知级数进行比较,从而确定待判别级数的敛散性。

-比较判别法一:如果对于所有n,都有0≤bₙ≤aₙ,且∑aₙ收敛,则∑bₙ也收敛。

如果∑aₙ发散,则∑bₙ也发散。

-比较判别法二:如果对于所有n,都有aₙ≤bₙ≥0,且∑aₙ发散,则∑bₙ也发散。

如果∑aₙ收敛,则∑bₙ也收敛。

比较判别法常见的应用有比较无穷大级数、比较一致收敛级数和比较正项级数等。

3. 极限判别法(拉阿贝尔判别法):对于正项级数(非负数列构成的级数),如果存在极限lim(n→∞)(aₙ/aₙ₊₁),则:-若极限存在且大于1,则级数发散;-若极限存在且小于1,则级数绝对收敛;-若极限等于1,则不能确定级数的敛散性。

极限判别法适用于有常数项的级数以及指数函数和幂函数构成的级数。

4. 积分判别法:对于正项级数∑aₙ,如果存在连续函数f(x),满足aₙ = f(n)且f(x)在x≥1上单调递减,则∑aₙ和∫f(x)dx同敛散。

即,级数与积分的敛散性相同。

积分判别法适用于正项级数,特别适用于有幂函数构成的级数。

5.序列收敛法:将待判别级数的项化为序列的形式,然后判断这个序列是否收敛。

如果序列收敛,则级数收敛;如果序列发散或趋于正无穷,则级数发散。

序列收敛法适用于特定结构的级数,如差分级数。

以上是常用的判别数项级数敛散性的方法和技巧。

在具体问题中,可以结合使用不同的方法确定级数的敛散性。

需要注意的是,判别数项级数敛散性的方法与技巧是基于数学分析中的定理和推理的,需要熟练掌握并灵活运用。

10.3数项级数的收敛性判别法(1)

10.3数项级数的收敛性判别法(1)
∞ 1 1 由于级数∑ 和∑ 具有相同的敛散性, n =1 n + 1 n =1 n ∞ ∞ 1 1 调和级数∑ 发散,从而∑ 也发散. n =1 n n =1 n + 1 ∞
1+ n 由比较判别法知,级数∑ un = ∑ 发散. 2 n =1 n =1 1 + n
12


n! 例5 判断级数 ∑ n 的敛散性. n =1 n

p ≤ 1, 级数发散 .
21

例12 讨论级数
∑n x
n =1
n −1
( x > 0 ) 的敛散性 .
u n +1 (n + 1) x n = lim =x 解: ∵ lim n − 1 n →∞ u n n →∞ n x
根据定理4可知:
当0 < x < 1 时, 级数收 敛 ; 当 x > 1时, 级数发散 ;
n− N
u N +1
k ( ρ + ε ) 收敛 , 由比较判别法可知 ∑
∑ un 收敛 .
20
(2) 当ρ > 1 或 ρ = ∞ 时,必存在 N ∈ Z + , u N ≠ 0, 当n ≥ N
u n +1 > 1, 从而 时 un u n +1 > u n > u n −1 > ⋯ > u N
(1) 当0 < l <∞时, 取 ε < l , 由定理 2 可知
∑ u n 与 ∑ vn
n =1 n =1


(2) 当l = 0时, 利用 u n < ( l + ε ) vn (n > N ), 由定理2 知 若 ∑ vn 收敛 , 则 ∑ u n 也收敛 ;

6-2 常数项级数的审敛法

6-2 常数项级数的审敛法

即 s ≤ s1 = a1 .其余项
上一页 下一页 返回
rn = (−1) an+1 + (−1) an+2 +L= (−1) (an+1 − an+2 + L)
n n
n= ( −1) a n +1 − a n + 2 + L ≤ a n +1 ;
n
因为an+1 ≥ 0, 所以 rn ≤ an+1 上述交错级数的审敛法也称为莱布尼兹审敛法 上述交错级数的审敛法也称为莱布尼兹审敛法
因此, 级数 ∑ ( −1)
n =1

n −1
1 收敛. n
返回
上一页
下一页
三、绝对收敛与条件收敛
以上讨论了正项级数与交错级数的敛散性, 以上讨论了正项级数与交错级数的敛散性 下面简单地讨论一下任意项级数的敛散性. 下面简单地讨论一下任意项级数的敛散性 形如
上一页 下一页 返回
类似地还可得到: 类似地还可得到: 一个正项级数(6-1), 如果对每一个 都有 如果对每一个n都有 一个正项级数
an+1 ≥ g > 1, an
那么这个正项级数是发散的. 那么这个正项级数是发散的
an+1 如果在正项级数(6-1)中,比值 a 的极限存 如果在正项级数 中 比值 n
上一页
下一页
返回
1 1 1 n−1 1 +L 例6-13 判别级数 1 − + − +L+ (−1) 2 3 4 n
的敛散性. 的敛散性.
1 1 1 解 因为 a n = , 所以a n + 1 = n + 1 < n = a n , 且有 n

(竞赛)级数-新 - 副本

(竞赛)级数-新 - 副本

条件收敛,
求 的值的范围.
解:
(1)n
n1
1 n sin n
绝对收敛,
n1
1 n sin n
收敛,
1
n1
1
n2
收敛,
1 1
2
(1)n1
n1 n2 条件收敛,
0 2 1
3 2
2
例3 设 an (an 0) , (bn bn1) 都收敛,
n1
n1
证明: anbn 收敛。
n1
证: 由 (bn bn1)
n1
n1
n1
解: xn yn zn
0 yn xn zn xn
由已知得 (zn xn ) 收敛,
n1
( yn xn ) 收敛,
n1
yn ( yn xn ) xn 收敛。
n1
n1
例4 设 an 0 (n 1,2, ……) , sn a1 a2 … an
讨论级数

是两个正项级数, 且
有界。
(1) 若大级数
收敛 , 则小级数
也收敛 ;
(2) 若小级数
发散 , 则大级数
也发散 .
注: 小正项级数收敛,大正项级数不一定收敛; 大正项级数发散,小正项级数不一定发散。
定理3 ( 比较判别法——极限形式 )
设两正项级数
满足 lim un l, 则有 n vn
(1) 当 0 < l <∞ 时, 两个级数同敛散 ;
a 1q
;
q 1 时发散 .
2. 调和级数
发散 .
3. p — 级数
1
n1 n p
, 当 p > 1 时收敛,当 p 1
发散。

7.2正项级数敛散性的判别

7.2正项级数敛散性的判别


1 lim ln n = ∞ 而∑ 2 收敛, n →∞ n =1 n


ln n ∴ ∑ 2 的敛散性依据该定理无法判别. n =1 n
1 ln n n2 = lim ln n = lim ln x = lim x = lim 2 1 = 0 lim 1 n →∞ x →+∞ x →+∞ n →∞ 1 x x x →+∞ 1 2 n 3 2 x 2 n
3 2
n2 1 = lim 2 = n →∞ 3n − 1 3
而级 数 ∑
n =1 ∞
1 n
3 2
n 收敛 , ∴ 级 数 ∑ 2 收敛. n =1 3n − 1

1 的敛散性 . 例 判定级数 ∑ n n =1 3 − n 1

3 n = lim 1 ∵ lim 3 − n = lim = 1, 解 n n→ ∞ n→ ∞ 1 n n→ ∞ 3 − n 1−
当q < 1时, 收敛 n 1 ∑aq 敛散性 、 当q ≥ 1时, 发散 n=0

1 2、调和级数 、 ∑n发散. n=1

§7.2 正项级数敛散性的判别
• • • • 一、正项级数的概念 二、比较判别法 三、比值判别法 四、*根值判别法 根值判别法
一、正项级数
称为正项级数 正项级数. 定义 如果级数 ∑ un中各项均有 un ≥ 0, 这种级数 称为正项级数.
n=1 n =1 n =1 ∞ n=1 ∞


判 断 ∑ u n的 敛 散 性 .
n=1

对欲求级数进行 缩小应缩小为发 发 散级数. 散级数
c n ≤ un ≤ v n
放大, 放大,缩小的方向

数项级数敛散性判别法。(总结)

数项级数敛散性判别法。(总结)

n 1
u
n
绝对
收敛;若级数 n1 un
收敛,而级数 n1
un
发散,则称级数
n 1
u
n
条件收敛.易
(1)n1 1
(1) n1 1
知 n1
n2 是绝对收敛级数,而 n1
n 是条件收敛级数.
定理八、 若 n1 un 收敛,则 n1 un 必收敛.
对于有些特殊级数,既不是正项级数也不是交错级数,可以通过
an a1 a2 a3 a4 ...............
常见的几类重要的常数项级数 正项级数:级数中所有项均大于等于零。 交错级数:级数中的项正负相间的级数。 等比级数
a aq aq2 aq3 ....... aqn ...... aqn
调和级数
1 1 1 1
23
n
1
n1 ,则对任何正数 A, f (x) 在
[1,A]上可积,从而有
n
f (n)
f (x)dx
n1
f (n 1) , n 2,3,
依次相加,得
m
m
m
m1
f (n) f (x)dx f (n 1) f (n)
1
n2
n2
n1
若反常积分收敛,则对m ,有
关键词:数项级数,敛散性,判断,方法。
英文题目 Abstract:Single out examples to learn a number of series, we all know which
way to go. But wait until all of the methods after completing their studies are given topics, everyone seems confused and do not know what kind of way. Some students even one by one swab of each method, although it is also feasible. But for one series, using different methods to determine the convergence and divergence of the degree of difficulty, if the appropriate choice of the way to a multiplier effect, but if the hanging has chosen the wrong way, may have spent nine cattle tigers after the power, the result is wrong. So we need to sum up to determine the convergence and divergence, and to understand their characteristics, in order to make better use of them.

常数项无穷级数的概念和性质

常数项无穷级数的概念和性质

常数项无穷级数的概念和性质
1、比值判别法由于是正项级数,根据收敛的基本定理,级数收敛[公式]其部分和数
列收敛,因此对于正项级数,如果其部分和有上界,则可判别其收敛,反之发散。

即正项
级数收敛部分和数列有上界。

2、根值判别法。

3、对数审敛法
级数的敛散性定义:[公式]收敛[公式]部分和数列[公式]收敛,[公式].若级数[公式]收敛,则必有[公式],反之未必(如:调和级数).由此可知,若[公式],则级数[公式]
必发散。

方法二:比值辨别法
对于正项级数[公式],[公式]则该正项级数发散;[公式]则该正项级数收敛;[公式]
或[公式]不易计算或不存在,此方法失效。

注:对于多个式子连乘的,适合用比值判别法。

方法三:根值辨别法
对于正项级数:[公式]则该正项级数发散;[公式]则该正项级数收敛;[公式]或[公式]不易计算或不存在,此方法失效。

注:对于通项中含有以[公式]为指数幂的,适合用
根值判别法。

方法四:对数欧拉变换法
(1)若存在[公式],使当[公式]时,[公式],则正项级数[公式]收敛;(2)若[公式][公式][公式],则正项级数[公式]发散。

常数项级数与幂级数的敛散性判定

常数项级数与幂级数的敛散性判定

常数项级数与幂级数的敛散性判定常数项级数和幂级数是数学分析中常见的两种级数形式。

在研究级数的性质和求解级数问题时,判定其敛散性是一个关键的问题。

本文将介绍常数项级数和幂级数的敛散性判定方法。

一、常数项级数的敛散性判定常数项级数的一般形式为:\[ \sum_{n=1}^{\infty} a_n \]其中,\( a_n \)表示级数的通项。

常数项级数的敛散性主要通过判别级数的通项\( a_n \)是否满足某些条件来进行。

1. 正项级数判别法若级数的通项\( a_n \)皆大于等于零,并且\( a_{n+1} \geq a_n \)(\( n \)为正整数),则称该级数为正项级数。

正项级数的敛散性可以直接通过判断级数的通项\( a_n \)是否收敛于零来决定。

即若\( \lim_{n \to \infty} a_n = 0 \),则正项级数收敛;若\( \lim_{n \to \infty} a_n \neq 0 \),则正项级数发散。

2. 比较判别法若存在一个收敛的正项级数\( \sum_{n=1}^{\infty} b_n \),使得对于所有\( n \),有\( a_n \leq b_n \),则称级数\( \sum_{n=1}^{\infty} a_n \)与级数\( \sum_{n=1}^{\infty} b_n \)相比较。

根据比较判别法,如果级数\( \sum_{n=1}^{\infty} b_n \)收敛,则级数\( \sum_{n=1}^{\infty} a_n \)也收敛;如果级数\( \sum_{n=1}^{\infty}b_n \)发散,则级数\( \sum_{n=1}^{\infty} a_n \)也发散。

3. 极限判别法对于级数的通项\( a_n \),若存在\( \lim_{n \to \infty}\frac{a_{n+1}}{a_n} = L \),其中\( L \)是常数,则称级数\( \sum_{n=1}^{\infty} a_n \)满足极限判别法。

常数项级数的敛散性判别法

常数项级数的敛散性判别法

1
发散 .
n1 n(n1)
4.比较判别法的极限形式:


设 un 与 vn 都是正项级数,如果
n1
n1
lim un n vn

l,
则(1) 当 0l时 ,二级数有相同的敛散性;


(2) 当 l 0时,若 v n 收敛,则 u n 收敛;
n1
n1


(3) 当 l时, 若 vn 发散,则 un 发散;
第二讲 常数项级数的敛散性判别法
• 内容提要
1.正项级数及其审敛法; 2.交错级数判别方法; 3. 绝对收敛与条件收敛.
• 教学要求
1.掌握正项级数的比较判别法; 2.熟悉比值判别法,了解根值判别法; 3.掌握交错级数判别方法; 4. 判断级数的绝对收敛与条件收敛.
一、正项级数及其敛散性判别法

1.定义: 如果级un中 数各项 un 均 0, 有
两点注意:
1 . 当 1 时 比 值 审 敛 法 失 效 ;


级数
1发散 ,
n1n

级数
n1
1 n2
收敛,

(

1)
2.条 件 是 充 分 的 ,而 非 必 要 .
例 u n22 ( n1)n2 3 nvn,
级n数 1unn 122 ( n1)n收,敛

则级数 un发散;
n1
如果有p1, 使得nl im npun存在,

则级数 un收敛.
n1
例 3 判 定 下 列 级 数 的 敛 散 性 :
(1) si1 n;
n1 n
1

无穷级数习题课(2)

无穷级数习题课(2)
第七章 无穷级数习题课 (一)
常数项级数
1
一、定义及性质
1.常数项级数 2.敛散性定义
an
n1
n
设Sn
k 1
an,如果
lim
n
Sn
s
存在,
3.性质
则级数收敛,否则级数发散。
必要性:
级数
an 收敛
n1
lim
n
an
0.
线性运算性质: 设级数 un s, vn , , 为常数
n1
n1
n1
No
Yes
| an 收| 敛
n1
lim an1 a n
n
lim
n
n
an
No
1
No
找正项收敛
级数 bn n1
找正项发散
级数 cn n1
an (1)n un No
Yes
an为交错级数
n1
用其它方 法证明
1
Yes 1
an发散
n1
an收敛
n1
an bn
an收敛
n1
an cn
解:
由于
an
2n 1 3n
3n 3n
n1 3n
n 3n1
n1 3n
,由定义
Sn
(1
2) 3
(2 3
3 32
)
3 ( 32
4 33
)
(
n 3n1
n1 3n )
1
n1 3n
S
lim
n
Sn
lim(1
n
n1 3n )
1
所以原级数收敛,且和为1。
6
【例2】判别级数

常数项级数敛散性的判定法

常数项级数敛散性的判定法

应用广泛
常数项级数在数学物理方程、概 率论、统计学等领域有广泛的应 用,是解决实际问题的重要工具。
理论价值
常数项级数的敛散性判定法是数 学理论的重要组成部分,对于数 学的发展和深入研究具有重要意 义。
判定常数项级数敛散性的意义
解决问题
通过判定常数项级数的敛散性,可以解决一系列数学问题,如求和、 积分、无穷乘积等。
柯西收敛准则
柯西收敛准则
如果对于任意给定的正数$epsilon$,存在一个正整数$N$,使得对于所有的$n>N$,级数 中相邻两项的绝对值都小于$epsilon$,则级数收敛。
柯西收敛准则的适用范围
适用于所有常数项级数,是判定级数收敛性的最基本准则。
柯西收敛准则的证明
通过反证法,假设存在一个不收敛的级数,然后构造一个满足条件的$epsilon$和$N$,使得 对于所有的$n>N$,级数中相邻两项的绝对值都大于$epsilon$,这与假设矛盾,因此级数 必须收敛。
几何级数
总结词
几何级数是每一项都与前一项成固定 比例的级数。
详细描述
几何级数是一种特殊的等比级数,其一般形式 为$sum_{n=0}^{infty} a_n r^n$,其中$a_n$ 是首项,$r$是公比。当$|r| < 1$时,几何级数 收敛;当$|r| = 1$时,几何级数可能收敛或发 散;当$|r| > 1$时,几何级数发散。
常数项级数的性质
常数项级数的每一项都是非负的或非正的,即an ≥ 0或an ≤ 0。 常数项级数的和可以是有限的、无限的或无穷的。
常数项级数的分类
收敛级数
当常数项级数的和是有限的,则该级 数为收敛级数。
发散级数
当常数项级数的和是无限的或无穷的 ,则该级数为发散级数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 (1) ∑ ; n = 1 n!

un+1 ( n + 1)! 10 n n + 1 ( 2) Q → ∞ ( n → ∞ ), = ⋅ = n +1 un n! 10 10 ∞ n! 故级数 ∑ n 发散. n=1 10 un+1 ( 2n − 1) ⋅ 2n = lim = 1, ( 3) Q lim n→ ∞ u n→ ∞ ( 2n + 1) ⋅ ( 2n + 2) n
y
y=
1 ( p > 1) p x
1
2 3 4
x
= 1 + ∫1
n
dx 1 1 1 (1 − p−1 ) < 1 + p = 1+ x p−1 n p−1
即sn有界,
则P − 级数收敛 .
时 当p > 1 , 收敛 P − 级数 时 当p ≤ 1 , 发散
重要参考级数: 几何级数, P-级数, 调和级数. 重要参考级数: 几何级数, P-级数, 调和级数.
un = l, 设 un 与 v n 都是正项级数, 如果 lim n→ ∞ v n n =1 n =1
则(1) 当 0 < l < +∞ 时, 二级数有相同的敛散性; (2) 当 l = 0 时,若
∞ ∞




∑ vn 收敛,则 ∑ un 收敛; n =1
n =1
(3) 当 l = +∞ 时, 若
例 2 证明级数

n =1

1 是发散的. 是发散的 n( n + 1)
证明
1 1 Q , > n( n + 1) n + 1
1 而级数 ∑ 发散, n =1 n + 1
∴ 级数 ∑
n =1 ∞

1 发散 . n( n + 1)
4.比较判别法的极限形式: 4.比较判别法的极限形式: 比较判别法的极限形式
第二讲
常数项级数的敛散性判别法
• 内容提要
1.正项级数及其审敛法; 正项级数及其审敛法; 交错级数判别方法; 2.交错级数判别方法; 绝对收敛与条件收敛. 3. 绝对收敛与条件收敛.
• 教学要求
1.掌握正项级数的比较判别法; 掌握正项级数的比较判别法; 熟悉比值判别法,了解根值判别法; 2.熟悉比值判别法,了解根值判别法; 掌握交错级数判别方法; 3.掌握交错级数判别方法; 4. 判断级数的绝对收敛与条件收敛. 判断级数的绝对收敛与条件收敛 绝对收敛与条件收敛.
n→ ∞
发散
比值判别法的优点: 不必找参考级数. 比值判别法的优点 不必找参考级数.
两点注意: 两点注意
1.当 时比值审敛法失效; 1.当ρ = 1时比值审敛法失效;
1 例 级数 ∑ 发散 , n =1 n

级数 ∑
n =1

n
(ρ = 1) 1 收敛 , 2
2.条件是充分的,而非必要. 2.条件是充分的,而非必要. 条件是充分的
≤ u1
n→ ∞
数列s2n是有界的,
Q lim u2 n+1 = 0,
n→ ∞
∴ lim s2 n = s ≤ u1 .
∴ lim s2 n+1 = lim ( s2 n + u2 n+1 ) = s ,
n→ ∞ n→ ∞
∴ 级数收敛于和 s , 且s ≤ u1 .
余项 rn = ± ( un+1 − un+ 2 + L),



例6
sin n 的收敛性. 判别级数 ∑ 的收敛性. 2 n =1 n
∞ sin n 1 1 Q 2 ≤ 2 , 而 ∑ 2 收敛 , n=1 n n n


sin n ∴ ∑ 2 收敛 , n n=1
故由定理知原级数绝对收敛. 故由定理知原级数绝对收敛
∑ v n 发散,则∑ un 发散;
n =1 n =1


un 证明 (1) 由lim = l n→ ∞ v n
l 对于ε = > 0, 2
l un l ∃ N , 当n > N时, l − < < l + 2 vn 2
l 3l 即 v n < un < v n 2 2 (n > N )
由比较审敛法的推论, 得证. 由比较审敛法的推论 得证
∞ m =1
uN + 3 < ruN + 2 < r 2 uN +1 , L ,
而级数 ∑ r m −1uN +1收敛 ,
m =1
m −1
uN +1 ,

∴ ∑ uN + m =
∑ uu收敛, n = N +1
收敛
当ρ > 1时, 取ε < ρ − 1, 使r = ρ − ε > 1, 时
当n > N时, un+1 > run > un , lim un ≠ 0.
n =1 ∞
正项级数收敛⇔部分和所成的数列 sn有界.
均为正项级数, 3.比较判别法 设 ∑ un和 ∑ vn均为正项级数, 比较判别法
n =1


) 且un ≤ vn (n = 1, 2,L ,若∑vn 收 ,则 un 收 ; 敛 ∑ 敛
n =1 ∞

散 则 散 反 , ∑un 发 , ∑vn 发 . 之 若
x 故函数 单调递减 , ∴ un > un+1 , x −1 n 又 lim un = lim = 0. 原级数收敛. 原级数收敛 n→ ∞ n→ ∞ n − 1
三、绝对收敛与条件收敛
定义: 正项和负项任意出现的级数称为任意项级数. 定义: 正项和负项任意出现的级数称为任意项级数.
定 理 若
∑u
rn = un+1 − un+ 2 + L,
满足收敛的两个条件, 满足收敛的两个条件
∴ rn ≤ un+1 .
定理证毕. 定理证毕
( −1) n 例 5 判别级数∑ 的收敛性. 的收敛性. n−1 n= 2
n


x − (1 + x ) )′ = Q( < 0 ( x ≥ 2) 2 x −1 2 x ( x − 1)
n=1

n
收 ,则 敛
∑u 收敛.
n=1 n

1 证明 令 v n = ( un + un ) ( n = 1,2,L), 2 ∞ 且 v n ≤ un , ∴ ∑ v n收敛 , 显然 v n ≥ 0,
又 Q ∑ un = ∑ ( 2v n − un ),
n =1 n =1


∴ ∑ un 收敛 收敛.
2 + ( −1) 3 例 Q un = ≤ n = vn , n 2 2
n
2 + ( −1)n ∴ 级数 ∑ un = ∑ 收敛 , n 2 n =1 n =1


un+1 2 + ( −1)n+1 但 = = an , n un 2( 2 + ( −1) )
lim a 2 n
n→ ∞
1 = , 6

n=1 ∞
n=1
证明 (1) 设 σ = ∑ vn Q un ≤ vn ,
且 sn = u1 + u2 + L + un ≤ v1 + v2 + L + vn ≤ σ ,
n =1
n=1

n=1
即部分和数列有界

∑ un收敛. n =1

( 2) 设 sn → ∞ ( n → ∞ ) 且 un ≤ v n ,
一、正项级数及其敛散性判别法
1.定义: 1.定义: 如果级数 ∑ un中各项均有 un ≥ 0, 定义 这种级数称为正项级数. 这种级数称为正项级数. 2.正项级数收敛的充要条件 正项级数收敛的充要条件: 2.正项级数收敛的充要条件: s1 ≤ s2 ≤ L ≤ sn ≤ L 部分和数列 { sn } 为单调增加数列. 为单调增加数列. 定理
n =1
n =1 ∞
上定理的作用: 上定理的作用: 任意项级数


正项级数
定义:若 ∑ un 收敛, 则称∑ un 为绝对收敛; 收敛, 为绝对收敛; 定义:
n =1
n =1
发散, 收敛, 为条件收敛. 若 ∑ un 发散,而 ∑ un 收敛, 则称 ∑ un 为条件收敛.
n =1 n =1 n =1
5.极 限判 5.极 判 法 限 别法 别 :

∑u 为正项级数,
n=1 n
n→∞ n→∞

果 如 limnun = l > 0 (或limnun = ∞), 级 则 数
∑u 发散;
n=1 n

果 如 有p > 1, 使 limnpun存 , 得 在
n→∞
级 则 数
∑un 收敛. n=1

判定下列级数的敛散性: 例 3 判定下列级数的敛散性:

证明 当ρ为有限数时 , 对∀ε > 0,
un+1 ∃ N , 当n > N时, 有 − ρ < ε, un
un+1 即 ρ −ε < < ρ +ε un
(n > N )
当ρ < 1时, 取ε < 1 − ρ, 时
使r = ε + ρ < 1,
相关文档
最新文档