2019年北京市门头沟区初三数学二模试题及详细解析
2019学年北京市门头沟区中考二模数学试卷【含答案及解析】
2019学年北京市门头沟区中考二模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米.将2500000用科学记数法表示应为()A.25×105 B.2.5×106 C.2.5×107 D.0.25×1072. 如图是某几何体的三视图,那么这个几何体是()A.圆柱 B.正方体 C.球 D.圆锥3. 如图,如果数轴上A,B两点表示的数互为相反数,那么点B表示的数为()A.2 B.-2 C.3 D.-34. 在下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.5. 如图,OA是⊙O的半径,弦BC⊥OA,D是⊙O上一点,如果∠ADC=26º,那么∠AOB的度数为()A.13º B.26º C.52º D.78º6. 如果一个多边形的内角和是外角和的3倍,那么这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形7. 在下列运算中,正确的是()A.a2·a3=a5 B.(a2)3=a5 C.a6÷a2=a3 D.a5+a5=2a108. 甲、乙两人进行射击比赛,他们5次射击的成绩(单位:环)如下图所示:设甲、乙两人射击成绩的平均数依次为、,射击成绩的方差依次为、,那么下列判断中正确的是()A.,B.,C.,D.,9. 一辆自行车在公路上行驶,中途发生了故障,停下修理一段时间后继续前进.已知行驶路程S(千米)与所用时间t(时)的函数关系的图象如图所示,那么自行车发生故障后继续前进的速度为()A.20千米/时 B.千米/时C.10千米/时 D.千米/时10. 在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M,N,直线m运动的时间为t(秒).设△OMN的面积为S,那么能反映S与t之间函数关系的大致图象是()A. B. C. D.二、填空题11. 在函数中,自变量x的取值范围是.12. 在半径为1的圆中,120°的圆心角所对的弧长是.13. 分解因式:ax2-9a= .14. 某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB的高度.如图,他们先在点C处测得建筑物AB的顶点A的仰角为30°,然后向建筑物AB前进10m到达点D处,又测得点 A的仰角为60°,那么建筑物AB的高度是 m.15. 为了倡导绿色出行,某市为市民提供了自行车租赁服务,其收费标准如下:16. 地区类别首小时内首小时外备注A类1.5元/15分钟2.75元/15分钟不足15分钟时按15分钟收费B类1.0元/15分钟1.25元/15分钟C类免费0.75元/15分钟td17. 在平面直角坐标系xOy中,矩形OABC如图放置,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2次碰到矩形的边时,点P的坐标为;当点P第6次碰到矩形的边时,点P的坐标为;当点P第2015次碰到矩形的边时,点P的坐标为____________.三、解答题18. 已知:如图,C为BE上一点,点A、D分别在BE两侧,AB∥ED,AB=CE,BC=ED.求证:AC=CD.四、计算题19. 计算:.五、解答题20. 已知,求的值.21. 已知关于x的方程(m≠0)(1)求证:方程总有两个不相等的实数根;(2)如果方程的两个实数根都是整数,求整数m的值.22. 如图,在平面直角坐标系xOy中,函数(x>0)的图象与一次函数y=kx-k的图象交点为A(m,2).(1)求一次函数的表达式;(2)设一次函数y=kx-k的图象与y轴交于点B,如果P是x轴上一点,且满足△PAB的面积是4,请直接写出P的坐标.23. 列方程或方程组解应用题:2014年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米.24. 如图,在△ABC中,D为AB边上一点,F为AC的中点,连接DF并延长至E,使得EF=DF,连接AE和EC.(1)求证:四边形ADCE为平行四边形;(2)如果DF=,∠FCD=30°,∠AED=45°,求DC的长.25. 以下是根据某电脑专卖店销售的相关数据绘制的统计图的一部分.请根据图1、图2解答下列问题:(1)来自该店财务部的数据报告表明,1~4月的电脑销售总额一共是290万元,请将图1中的统计图补充完整;(2)该店1月份平板电脑的销售额约为万元(结果精确到0.1);(3)小明观察图2后认为,4月份平板电脑的销售额比3月份减少了,你同意他的看法吗?请说明理由.26. 如图,⊙O为△ABC的外接圆,BC为⊙O的直径,AE为⊙O的切线,过点B作BD⊥AE于D.(1)求证:∠DBA=∠ABC;(2)如果BD=1,tan∠BAD=,求⊙O的半径.27. 阅读下面的材料:小明遇到一个问题:如图1,在□ABCD中,点E是边BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.如果,求的值.他的做法是:过点E作EH∥AB交BG于点H,那么可以得到△BAF∽△HEF.请回答:(1)AB和EH之间的数量关系是,CG和EH之间的数量关系是,的值为.(2)参考小明思考问题的方法,解决问题:如图2,在四边形ABCD中,DC∥AB,点E是BC延长线上一点,AE和BD相交于点F.如果,,求的值.28. 在平面直角坐标系xOy中,抛物线经过点A(4,0)和B(0,2).(1)求该抛物线的表达式;(2)在(1)的条件下,如果该抛物线的顶点为C,点B关于抛物线对称轴对称的点为D,求直线CD的表达式;(3)在(2)的条件下,记该抛物线在点A,B之间的部分(含点A,B)为图象G,如果图象G向上平移m(m>0)个单位后与直线CD只有一个公共点,请结合函数的图象,直接写出m的取值范围.29. 如图1,在△ABC中,CA=CB,∠ACB=90°,D是△ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE.(1)①依题意补全图形;②请判断∠ADC和∠CDE之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE,过点C作CM⊥DE,请判断线段CM,AE和BE之间的数量关系,并说明理由.(3)如图2,在正方形ABCD中,AB=,如果PD=1,∠BPD=90°,请直接写出点A到BP的距离.30. 我们给出如下定义:在平面直角坐标系xOy中,如果一条抛物线平移后得到的抛物线经过原抛物线的顶点,那么这条抛物线叫做原抛物线的过顶抛物线.如下图,抛物线F2都是抛物线F1的过顶抛物线,设F1的顶点为A,F2的对称轴分别交F1、F2于点D、B,点C是点A关于直线BD的对称点.(1)如图1,如果抛物线y=x 2的过顶抛物线为y=ax2+bx,C(2,0),那么①a= ,b= .②如果顺次连接A、B、C、D四点,那么四边形ABCD为()A.平行四边形 B.矩形 C.菱形 D.正方形(2)如图2,抛物线y=ax2+c的过顶抛物线为F2,B(2,c-1).求四边形ABCD的面积.(3)如果抛物线的过顶抛物线是F2,四边形ABCD的面积为,请直接写出点B的坐标.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第12题【答案】第13题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】第29题【答案】。
2019年北京市门头沟区中考数学模拟试卷(含答案解析)
2019年北京市门头沟区中考数学模拟试卷一.选择题(满分16分,每小题2分)1.下列说法不正确的是()A.三角形的三条高线交于一点B.直角三角形有三条高C.三角形的三条角平分线交于一点D.三角形的三条中线交于一点2.若代数式有意义,则x的取值范围是()A.x>﹣1且 x≠1 B.x≥﹣1 C.x≠1 D.x≥﹣1且 x≠13.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.4.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180°D.∠3+∠4=180°5.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.6.如图,数轴上表示实数的点可能是()A.点P B.点Q C.点R D.点S7.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市8.小明从家步行到校车站台,等候坐校车去学校,图中的折线表示这一过程中小明的路程S(km)与所花时间t(min)间的函数关系;下列说法:①他步行了1km到校车站台;②他步行的速度是100m/min;③他在校车站台等了6min;④校车运行的速度是200m/min;其中正确的个数是()个.A.1 B.2 C.3 D.4二.填空题(满分16分,每小题2分)9.若△ABC∽△DEF,请写出 2 个不同类型的正确的结论______、_______.10.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_________.11.化简:=_______ .12.你喜欢足球吗?下面是对某学校七年级学生的调查结果:则男同学中喜欢足球的人数占全体同学的百分比是________.13.如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D=___________度.14.A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程___________.15.如图,线段AB=4,M为AB的中点,动点P到点M的距离是1,连接PB,线段PB绕点P逆时针旋转90°得到线段PC,连接AC,则线段AC长度的最大值是________.16.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作Rt△ABC,使其斜边AB=c,一条直角边BC=a.已知线段a,c如图.小芸的作法如下:①取AB=c,作AB的垂直平分线交AB于点O;②以点O为圆心,OB长为半径画圆;③以点B为圆心,a长为半径画弧,与⊙O交于点C;④连接BC,AC.则Rt△ABC即为所求.老师说:“小芸的作法正确.”请回答:小芸的作法中判断∠ACB是直角的依据是______________.三.解答题(共12小题,满分68分)17.(5分)计算:()﹣2﹣+(﹣4)0﹣cos45°.18.(5分)解不等式组19.(5分)如图,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB.(1)求∠ACE;(2)若CD⊥AB于点D,∠CDF=74°,证明:△CFD是直角三角形.20.(5分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.21.(5分)如图,已知AC是矩形ABCD的对角线,AC的垂直平分线EF分别交BC.AD于点E和F,EF交AC于点O.(1)求证:四边形AECF是菱形;(2)若AC=8,EF=6,求BC的长.22.(5分)已知关于x的方程x2﹣2mx+m2+m﹣2=0有两个不相等的实数根.(1)求m的取值范围.(2)当m为正整数时,求方程的根.23.(5分)如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC的延长线于点D,AD交⊙O于F,FM⊥AB于H,分别交⊙O、AC于M、N,连接MB,BC.(1)求证:AC平分∠DAE;(2)若cosM=,BE=1,①求⊙O的半径;②求FN的长.24.(5分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下: 甲 7.29.69.67.89.3 4 6.58.59.99.6 乙 5.89.79.76.89.96.98.26.78.69.7 根据上面的数据,将下表补充完整:(说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)两组样本数据的平均数、中位数、众数如表所示: 结论 (1)估计乙业务员能获得奖金的月份有________个;(2)可以推断出____-业务员的销售业绩好,理由为______.(至少从两个不同的角度说明推断的合理性)25.(6分)如图,在△ABC 中,∠C =60°,BC =3厘米,AC =4厘米,点P 从点B出发,沿B →C →A 以每秒1厘米的速度匀速运动到点A .设点P 的运动时间为x 秒,B.P 两点间的距离为y 厘米.小新根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小新的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表: 经测量m 的值是______(保留一位小数).(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象; (3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC 中画出点P 所在的位置.26.(7分)有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣2.(1)请根据以上信息求出二次函数表达式;(2)将该函数图象中x>x2部分的图象向下翻折与原图象未翻折的部分组成图象“G”,试结合图象分析:平行于x轴的直线y=m与图象“G”的交点的个数情况.27.(7分)在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0<α<120°),得△A1BC1,交AC于点E,AC分别交A1C1.BC于D.F两点.(1)如图①,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;(2)如图②,当α=30°时,试判断四边形BC1DA的形状,并说明理由;(3)在(2)的情况下,求ED的长.28.(8分)如图,已知一次函数y=x+4 与x轴交于点A,与y轴交于点C,一次函数y =﹣x+b经过点C与x轴交于点B.(1)求直线BC的解析式;(2)点P为x轴上方直线BC上一点,点G为线段B P的中点,点F为线段AB的中点,连接GF,取GF的中点M,射线PM交x轴于点H,点 D 为线段PH的中点,点E为线段AH的中点,连接DE,求证:DE=GF;(3)在(2)的条件下,延长 PH 至 Q,使 PM=MQ,连接 AQ、BM,若∠BAQ+∠BMQ=∠DEB,求点 P 的坐标.参考答案一.选择题1.解:A.三角形的三条高线所在的直线交于一点,错误;B.直角三角形有三条高,正确;C.三角形的三条角平分线交于一点,正确;D.三角形的三条中线交于一点,正确;故选:A.2.解:由题意得:x+1≥0,且x﹣1≠0,解得:x≥﹣1,且x≠1,故选:D.3.解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.4.解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选:D.5.解:A.是轴对称图形,不是中心对称图形,故本选项错误;B.既是轴对称图形,又是中心对称图形,故本选项正确;C.是轴对称图形,不是中心对称图形,故本选项错误;D.是轴对称图形,不是中心对称图形,故本选项错误.故选:B.6.解:∵2<<3,∴数轴上表示实数的点可能是点Q.故选:B.7.解:A.甲超市的利润逐月减少,此选项正确;B.乙超市的利润在1月至4月间逐月增加,此选项正确;C.8月份两家超市利润相同,此选项正确;D.乙超市在9月份的利润不一定超过甲超市,此选项错误;故选:D.8.解:根据题意得:小明用了10分钟步行了1km到校站台,即小明步行了1km到校车站台,①正确,1000÷10=100m/min,即他步行的速度是100m/min,②正确,小明在校车站台从第10min等到第16min,即他在校车站台等了6min,③正确,小明用了14min的时间坐校车,走了7km的路程,7000÷14=500m/min,即校车运行的速度是500m/min,④不正确,即正确的是①②③,故选:C.二.填空题(共8小题,满分16分,每小题2分)9.解:∵△ABC∽△DEF,∴∠ABC=∠DEF,==,故答案为:∠ABC=∠DEF;==.10.解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.11.解:原式==,故答案为:.12.解:由题可得,男同学中喜欢足球的人数占全体同学的百分比是:×100%=50%,故答案为:50%.13.解:连接OC,由圆周角定理得,∠COD=2∠A=64°,∵CD为⊙O的切线,∴OC⊥CD,∴∠D=90°﹣∠COD=26°,故答案为:26.14.解:设乙车的速度是x千米/小时,则根据题意,可列方程:﹣=.故答案为:﹣=.15.解:如图所示:过点C作CD⊥y轴,垂足为D,过点P作PE⊥DC,垂足为E,延长EP 交x轴于点F.∵AB=4,O为AB的中点,∴A(﹣2,0),B(2,0).设点P的坐标为(x,y),则x2+y2=1.∵∠EPC+∠BPF=90°,∠EPC+∠ECP=90°,∴∠ECP=∠FPB.由旋转的性质可知:PC=PB.在△ECP和△FPB中,,∴△ECP≌△FPB.∴EC=PF=y,FB=EP=2﹣x.∴C(x+y,y+2﹣x).∵AB=4,O为AB的中点,∴AC==.∵x2+y2=1,∴AC=.∵﹣1≤y≤1,∴当y=1时,AC有最大值,AC的最大值为=3.故答案为:3.16.解:小芸的作法中判断∠ACB是直角的依据是直径所对的圆周角为直角.故答案为直径所对的圆周角为直角.三.解答题(共12小题,满分68分)17.解:原式=4﹣3+1﹣×=2﹣1=1.18.解:解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<3,则不等式组的解集为﹣1≤x<3.19.解:(1)∵∠A=30°,∠B=62°,∴∠ACB=180°﹣∠A﹣∠B=88°,∵CE平分∠ACB,∴∠ACE=∠BCE=∠ACB=44°;(2)∵CD⊥AB,∴∠CDB=90°,∴∠BCD=90°﹣∠B=28°,∴∠FCD=∠ECB﹣∠BCD=16°,∵∠CDF=74°,∴∠CFD=180°﹣∠FCD﹣∠CDF=90°,∴△CFD是直角三角形.20.解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.21.(1)证明:∵四边形ABCD是矩形∴AD∥BC,∴∠DAC=∠ACB,∵EF垂直平分AC,∴AF=FC,AE=EC,∴∠FAC=∠FCA,∴∠FCA=∠ACB,∵∠FCA+∠CFE=90°,∠ACB+∠CEF=90°,∴∠CFE=∠CEF,∴CE=CF,∴AF=FC=CE=AE,∴四边形AECF是菱形.证法二:∵四边形ABCD是矩形∴AD∥BC,∴∠DAC=∠ACB,∠AFO=∠CEO,∵EF垂直平分AC,∴OA=OC,∴△AOF≌△COE,∴OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.(2)解:∵四边形AECF是菱形∴OC=AC=4,OE=EF=3∴CE===5,∵∠COE=∠ABC=90,∠OCE=∠BCA,∴△COE∽△CBA,∴=,∴=,∴BC=.22.解:(1)∵关于x的方程x2﹣2mx+m2+m﹣2=0有两个不相等的实数根,∴△=(﹣2m)2﹣4(m2+m﹣2)>0.解得m<2;(2)由(1)知,m<2.有m为正整数,∴m=1,将m=1代入原方程,得x2﹣2x=0x(x﹣2)=0,解得x1=0,x2=2.23.(1)证明:连接OC,如图,∵直线DE与⊙O相切于点C,∴OC⊥DE,又∵AD⊥DE,∴OC∥AD.∴∠1=∠3∵OA=OC,∴∠2=∠3,∴∠1=∠2,∴AC平方∠DAE;(2)解:①∵AB为直径,∴∠AFB=90°,而DE⊥AD,∴BF∥DE,∴OC⊥BF,∴=,∴∠COE=∠FAB,而∠FAB=∠M,∴∠COE=∠M,设⊙O的半径为r,在Rt△OCE中,cos∠COE==,即=,解得r=4,即⊙O的半径为4;②连接BF,如图,在Rt△AFB中,cos∠FAB=,∴AF=8×=在Rt△OCE中,OE=5,OC=4,∴CE=3,∵AB⊥FM,∴,∴∠5=∠4,∵FB∥DE,∴∠5=∠E=∠4,∵=,∴∠1=∠2,∴△AFN∽△AEC,∴=,即=,∴F N =.24.解:如图,乙(1)估计乙业务员能获得奖金的月份有6个;(2)可以推断出甲业务员的销售业绩好,理由为:甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.故答案为0,1,3,0,2,4;6;甲,甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.25.解:(1)经测量,当t=6时,BP=3.0.(当t=6时,CP=6﹣BC=3,∴BC=CP.∵∠C=60°,∴当t=6时,△BCP为等边三角形.)故答案为:3.0.(2)描点、连线,画出图象,如图1所示.(3)在曲线部分的最低点时,BP⊥AC,如图2所示.26.解:(1)由上述信息可知该函数图象的顶点坐标为:(3,﹣2),设二次函数的表达式为:y=a(x﹣3)2﹣2.∵该函数图象经过点A(1,0),∴0=a(x﹣3)2﹣2,解得a=∴二次函数解析式为:y=(x﹣3)2﹣2.(2)如图所示:当m>0时,直线y=m与G有一个交点;当m=0时,直线y=m与G有两个交点;当﹣2<m<0时,直线y=m与G有三个交点;当m=﹣2时,直线y=m与G有两个交点;当m<﹣2时,直线y=m与G有一个交点.27.解:(1)EA1=FC.理由如下:∵AB=BC,∴∠A=∠C,∵△ABC绕点B顺时针旋转角α得△A1BC1,∴∠ABE=∠C1BF,AB=BC=A1B=BC1,在△ABE和△C1BF中,,∴△ABE≌△C1BF(ASA),∴BE=BF,∴A1B﹣BE=BC﹣BF,即EA1=FC;(2)四边形BC1DA是菱形.理由如下:∵旋转角α=30°,∠ABC=120°,∴∠ABC1=∠ABC+α=120°+30°=150°,∵∠ABC=120°,AB=BC,∴∠A=∠C=(180°﹣120°)=30°,∴∠ABC1+∠C1=150°+30°=180°,∠ABC1+∠A=150°+30°=180°,∴AB∥C1D,AD∥BC1,∴四边形BC1DA是平行四边形,又∵AB=BC1,∴四边形BC1DA是菱形;(3)过点E作EG⊥AB,∵∠A=∠ABA1=30°,∴AG=BG=AB=1,在Rt△AEG中,AE===,由(2)知AD=AB=2,∴DE=AD﹣AE=2﹣.28.(1)解:∵一次函数y=x+4 与x轴交于点A,与y轴交于点C,∴C(0,4),A(﹣5,0).∵一次函数y=﹣x+b经过点C,∴b=4,∴一次函数解析式为y=﹣x+4.(2)证明:如图1中,连接AP.在△APB中,∵PG=GB,AF=FB,∴FG=AP,在△APH中,∵AE=EH,PD=DH,∴DE=AP,∴FG=DE.(3)解:如图2中,延长GF交AQ于K,连接PE.∵GM=MF,∠PMG=∠QMF,PM=MQ,∴△PGM≌△QFM,∴QF=PG=GB,∴∠FQM=∠MPG,∴QF∥PB,∴四边形FGBQ是平行四边形,∴BQ=FG=DE,BQ∥DE,可得△DEH≌△QBH,∴EH=HB=AE,∴H(1,0),设GM=a,则MF=a,PA=4a,∵GK∥AP,PM=MQ,∴AK=KQ,∴MK=2a,FK=a,∴FM=FK,∠MFB=∠AFK,BF=AF,∴△AFK≌△BFM,∴∠FAK=∠MBF,∴BM∥AQ,∴∠BAQ=∠ABM,∵∠BAQ+∠BMQ=∠DEB=∠PAB,∴∠ABM+∠BMQ=∠PAB=∠PHA,∴PA=PH,∵AE=EH,∴PE⊥AH,设AE=EH=x,则EO=x﹣1,EO=OA﹣AE=5﹣x,∴5﹣x=x﹣1,∴x=3,∴PE=EB=6,EO=2,∴P(﹣2,6).。
2019年北京市中考二模数学试题(附答案)
2019北京市中考二模数学试题学校 姓名 准考证号考 生 须 知1.本试卷共8页,共三道大题,29道小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上。
在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答,在试卷上作答无效。
4.考试结束,请将本试卷和答题卡一并交回。
下面各题均有四个选项,其中只有一个..是符合题意的. 1.据有关部门数据统计,2015年中国新能源汽车销量超过33万辆,创历史 新高.数据“33万”用科学记数法表示为 A .43310⨯ B .43.310⨯ C .53.310⨯ D .60.3310⨯2.下列计算正确的是A .632a a a =⋅B .()222b a ab = C .()532a a =D .42232a a a =+3.如图,数轴上有四个点M ,P ,N ,Q ,若点M ,N 表示的数互为相反数,则 图中表示绝对值最大的数对应的点是 A .点M B .点N C .点P D .点Q 4.若312--x x 在实数范围内有意义,则x 的取值范围是 A .3≠x B .21>x 且3≠x C .2≥x D .21≥x 且3≠x 5.从长度分别是2,3,4的三条线段中随机抽出一条,与长为1,3的两条线段首尾顺次相接,能构成三角形的概率是 A .1 B .32 C .31D .0 6.将代数式2105x x -+配方后,发现它的最小值为A .30-B .20-C .5-D .07.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为A .⎩⎨⎧=+=-y x y x 4738B .⎩⎨⎧=-=+y x y x 4738C .⎩⎨⎧=-=-4738x y x yD .⎩⎨⎧=-=-4738y x y x PMNQ8.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 的度数为A .32°B .58°C .64°D .116° 9.如图,为了估计河的宽度,在河的对岸选定一个目标 点A ,在近岸取点B ,C ,D ,E ,使点A ,B ,D 在一 条直线上,且AD ⊥DE ,点A ,C ,E 也在一条直线上 且DE ∥BC .如果BC=24m ,BD=12m ,DE=40m ,则 河的宽度AB 约为 A .20mB .18mC .28mD .30m10.如图1,在等边△ABC 中,点D 是BC 边的中点,点P 为AB 边上的一个动点,设AP =x ,图1中线段DP 的长为y ,若表示y 与x 的函数关系的图象如图 2所示,则等边△ABC 的面积为 A .4 B . C .12 D .二、填空题(本题共18分,每小题3分) 11.分解因式:2484x x -+= .12.某班学生分组做抛掷瓶盖实验,各组实验结果如下表:根据表中的信息,估计掷一枚这样的瓶盖,落地后盖面朝上的概率为 . (精确到0.01)13.写出一个函数,满足当x>0时,y 随x 的增大而减小且图象过(1,3),则这个函数的表达式为 .14.甲、乙两名队员在5次射击测试中,成绩如下表所示:若需要你根据两名队员的5次成绩,选择一名队员参加比赛,你会选择队员 ,选择的理由是 .ECDB A PCDBA图1 图2第14题图 第15题图15.如图为44⨯的正方形网格,图中的线段均为格点线段(线段的端点为格点),则12345∠+∠+∠+∠+∠的度数为 .16.为预防“手足口病”,某学校对教室进行“药熏消毒”.消毒期间,室内每立方米空气中的含药量y (mg)与时间x (分钟)的函数关系如图所示.已知,药物燃 烧阶段,y 与x 成正比例,燃完后y 与x 成 反比例.现测得药物10分钟燃完,此时教 室内每立方米空气含药量为8mg .当每立方 米空气中含药量低于1.6mg 时,对人体才能 无毒害作用.那么从消毒开始,经过 分钟后教室内的空气才能达到安全要求.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:131833tan 303-⎛⎫--+-︒ ⎪⎝⎭.18.已知0142=++x x ,求代数式()()71212++--x x x 的值.19.解方程:221111x x x x --=--. 20.如图,在Rt △ABC 中,∠ABC=90°,点D 在边AB 上,且DB =BC ,过点D 作EF ⊥AC于E ,交CB 的延长线于点F .求证:AB=BF .21.在平面直角坐标系xOy 中,一次函数12y x b =+的图象与y 轴交于点A ,与反比例函数8y x=的图象交于点P (2,m ). (1)求m 与b 的值; 成绩/环 五次射击测试成绩DEFCB A 54321x /8O10y /mg(2)取OP 的中点B ,若△MPO 与△AOP 关于点B 中心对称,求点M 的坐标.22.为了促进旅游业的发展,某市新建一座景观桥.桥的拱肋ADB 可视为抛物线的一部分,桥面AB 可视为水平线段,桥面与拱肋用垂直于桥面的杆状景观灯连接,拱肋的跨度AB 为40米,桥拱的最大高度CD 为16米(不考虑灯杆和拱肋的粗细),求与CD 的距离为5米的景观灯杆MN 的高度.23.如图,CD 垂直平分AB 于点D ,连接CA ,CB ,将BC 沿BA 的方向平移,得到线段DE ,交AC 于点O ,连接EA ,EC . (1)求证:四边形ADCE 是矩形; (2)若CD =1,AD =2,求sin ∠COD 的值.24.阅读下面材料:当前,中国互联网产业发展迅速,互联网教育市场增长率位居全行业前列.以下是根据某媒体发布的2012 2015年互联网教育市场规模的相关数据,绘制的统计图表的一部分.(1)2015年互联网教育市场规模约是亿元(结果精确到1亿元),并补全条形 统计图;(2)截至2015年底,约有5亿网民使用互联网进行学习,互联网学习用户的年龄分布 如右图所示,请你补全扇形统计图,并估年份年增长率/%年份市场规模/亿元 NDOECDBA学习用户分布图截至2015年底互联网36-55岁9%其他7-17岁18-35岁56%7-17岁 %GHEFB C DA计7-17岁年龄段有 亿网民通过互联 网进行学习;(3)根据以上材料,写出你的思考、感受或建议(一条即可).25.如图,在Rt △ACB 中,∠C =90°,D 是AB 上一点,以BD 为直径的⊙O 切AC于点E ,交BC 于点F ,连接DF . (1)求证:DF=2CE ; (2)若BC =3,sin B =54,求线段BF 的长.26.阅读下面材料:小骏遇到这样一个问题:画一个和已知矩形ABCD 面积相等的正方形.小骏发现:延长AD 到E ,使得DE =CD , 以AE 为直径作半圆,过点D 作AE 的垂线, 交半圆于点F ,以DF 为边作正方形DFGH , 则正方形DFGH 即为所求.请回答:AD ,CD 和DF 的数量关系为 . 参考小骏思考问题的方法,解决问题:画一个和已知□ABCD 面积相等的正方形,并写出画图的简要步骤.FOE DC BA B CDA27.已知关于x 的方程()021222=-+-+m m x m x .(1) 求证:无论m 取何值时,方程总有两个不相等的实数根;(2) 抛物线()m m x m x y 21222-+-+=与x 轴交于()0,1x A ,()0,2x B 两点,且210x x <<,抛物线的顶点为C ,求△ABC 的面积;(3) 在(2)的条件下,若m 是整数,记抛物线在点B ,C 之间的部分为图象G (包含B ,C 两点),点D 是图象G 上的一个动点,点P 是直线b x y +=2上的一个动点,若线段DP 的最小值是55,请直接写出b 的值.28.如图,正方形ABCD ,G 为BC 延长线上一点,E 为射线BC 上一点,连接AE . (1)若E 为BC 的中点,将线段EA 绕着点E 顺时针旋转90°,得到线段EF ,连接CF . ①请补全图形;②求证:∠DCF =∠FCG ;(2)若点E 在BC 的延长线上,过点E 作AE 的垂线交∠DCG 的平分线于点M ,判断AE 与EM 的数量关系并证明你的结论.29.在平面直角坐标系xOy 中,对图形W 给出如下定义:若图形W 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度,例如,下图中的矩形ABCD 的坐标角度是90°.E GD C BAMAB C DGE yDCB A12345(1)已知点)3,0(-A ,)1,1(--B ,在点)0,2(C ,)0,1(-D ,)2,2(-E 中,选一点,使得以该点及点A ,B 为顶点的三角形的坐标角度为90°,则满足条件的点为 ;(2)将函数2ax y =)31(≤≤a 的图象在直线1=y 下方的部分沿直线1=y 向上翻折,求所得图形坐标角度m 的取值范围;(3)记某个圆的半径为r ,圆心到原点的距离为l ,且)1(3-=r l ,若该圆的坐标角度︒≤≤︒9060m .直接写出满足条件的r 的取值范围.答案及评分参考阅卷须知:为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共30分,每小题3分) 题 号 1 2 3 4 5 6 7 8 9 10 答 案CBDDCBAABD二、填空题(本题共18分,每小题3分) 11.()241x -;12.0.53;13.如3y x=,答案不唯一; 14.选择队员甲,理由:甲乙成绩的平均数相同,甲的成绩比乙的成绩稳定; 15.225︒;16.50.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式=323333-+-⨯………………………………………………4分 =523-.…………………………………………………………5分18.解:原式=2221227x x x x -+--+ ………………………………………2分 =248x x --+.……………………………………………………3分2410x x ++=∴241x x +=- .……………………………………………………… 4分∴原式=()248x x -++189.=+= ………………………………………………………5分 19. 解:去分母得:2(1)(21)1x x x x +--=-…………………………………1分 解得:2x =………………………………………………………………4分 经检验,2x =是原方程的解……………………………………………5分 ∴原方程的解为2x =20.证明:∵EF ⊥AC ,∴∠A +∠ADE =90°.∵∠ABC =90°,∴∠F +∠FDB =90°,∠DBF =90°∴∠A =∠F ………………………………1分在△ABC 和△FBD 中A FABC FBD BC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩D E A∴△ABC ≌△FBD ………………………………4分∴AB =BF .………………………………………5分 21.解:(1)∵12y x b =+与8y x =交于点P (2,m ),∴4m =,3b =.………………………………………………………2分(2)法一:由中心对称可知,四边形OA PM 是平行四边形 ∴OM ∥AP 且OM =AP∵一次函数12y x b =+的图象与y 轴交于点A (0,3)(2,4),(0,0)A P O ∴∴由平移规律可得点A 关于点B 对称点M 的坐标为(2,1).………5分 法二:∵一次函数12y x b =+的图象与y 轴交于点A ∴(0,3)A . ∵B 为OP 的中点∴(1,2)B .∴点A 关于点B 对称点M 的坐标为(2,1).………………5分22.解:如图建立坐标系………………………………………………………………1分设抛物线表达式为216y ax =+ …………………………………………………2分 由题意可知,B 的坐标为(20,0) ∴400160a += ∴125a =-∴211625y x =-+…………………………………………………………………4分 ∴当5x =时,15y =答:与CD 距离为5米的景观灯杆MN 的高度为15米.………………………5分23.(1)证明:由已知得BD //CE ,BD =CE . ∵CD 垂直平分AB ,∴AD =BD ,∠CDA =90°.∴AD //CE ,AD =CE .∴四边形ADCE 是平行四边形.…………………………………1分 ∴平行四边形ADCE 是矩形. …………………………………2分(2) 解:过D 作DF ⊥AC 于F ,xyNM DCB AOEC D BA在Rt △ADC 中,∠CDA =90°,∵CD =1,AD =2, 由勾股定理可得:AC =5.∵O 为AC 中点,∴OD =52. …………………………………3分 ∵AC DF AD DC ⋅=⋅,∴DF =255. ………………………4分 在Rt △ODF 中,∠OFD =90°,∴sin ∠COD =DF OD =45………5分 24.(1)1610,并补全图形; ……………………………………………………2分 (2)1.6; ………………………………………………………………………4分 (3)略.…………………………………………………………………………5分 25.(1)证明:连接OE 交DF 于G ,∵AC 切⊙O 于E ,∴∠CEO =90°. 又∵BD 为⊙O 的直径,∴∠DFC =∠DFB =90°.∵∠C =90°,∴四边形CEGF 为矩形.∴CE =GF ,∠EGF =90°…………………1分 ∴DF =2CE .………………………………2分(2)解:在Rt △ABC 中,∠C =90°,∵BC =3,4sin 5B =,∴AB =5.…………………………………3分设OE =x ,∵OE //BC ,∴△AOE ∽△ABC . ∴OE AO BC AB =,∴535x x -=,∴158x =.………………………4分 ∴BD =154. 在Rt △BDF 中,∠DFB =90°,∴BF =94…………………………5分 26.解:2DF AD CD =⋅………………………………………………………………1分解决问题:法一:过点A 作AM ⊥BC 于点M ,延长AD 到E ,使得DE =AM ,以AE 为直径作半圆,过点 D 作AE 垂线,交半圆于点F ,以DF 为边 作正方形DFGH ,正方形DFGH 即为所求.……………………………………………………………………………………5分GFO ED C A GHEF CDA法二:如图,过点A 作AM ⊥BC 于点M ,过点D 作DN ⊥BC 交BC 延长线于点N ,将平行四边形转化为等面积矩形,后同小骏的画法. ……………………………………………………………………………………5分 说明:画图2分,步骤2分.27.解:(1)∵1=a ,()12-=m b ,m m c 22-=∴()()0424144222>=---=-=∆m m m ac b ∴无论m 取任何实数时,方程总有两个不相等的实数根. ……2分(2)令,则()021222=-+-+m m x m x ()()02=-++m x m x∴m x -=或2+-=m x∵210x x <<∴m x -=1,22+-=m x …………………………………………4分 ∴2=AB当1+-=m x 时,1-=y∴1-=c y∴121=⨯=∆c ABC y AB S .………………………………………5分 (3) 0=b 或3-=b . …………………………………………………….. 7分28.(1)①补全图形,如图所示.…………………………………..1分②法一:证明:过F 作FH ⊥BG 于H ,连接EH ……..2分F EG D C B A DAG H E F D A由已知得AE ⊥EF ,AE =EF .在正方形ABCD 中,∵∠B =∠AEF =∠EHF =90°,∴∠AEB +∠FEC =90°∠AEB +∠BAE =90°∴∠BAE =∠HEF∴△ABE ≌△EHF .…………………………………………………..3分∴BE =FH ,AB =EH ,∵E 为BC 中点,∴BE =CE =CH =FH .∴∠DCF =∠HCF=45°. …………………………………………..4分法二证明:取线段AB 的中点H ,连接EH . …………………………………..2分由已知得AE ⊥EF ,AE =EF .∴∠AEB +∠FEC =90°.在正方形ABCD 中,∵∠B =90°,∴∠AEB +∠BAE =90°.∴∠FEC =∠BAE . ∵AB =BC ,E ,H 分别为AB ,BC 中点,∴AH=EC ,∴△ECF ≌△AHE .…………………………………………………..3分∴∠ECF =∠AHE =135°,∴∠DCF =∠ECF ∠ECD =45°.∴∠DCF =∠HCF .…………………………………………………..4分(2)证明:在BA 延长线上取一点H ,使BH =BE ,连接EH . …………..5分在正方形ABCD 中,∵AB =BC ,∴HA =CE . ∵∠B =90°,∴∠H =45°. ∵CM 平分∠DCG ,∠DCG =∠BCD =90°,∴∠MCE =∠H=45°.∵AD //BG ,∴∠DAE =∠AEC .∵∠AEM =∠HAD =90°, ∴∠HAE =∠CEM .∴△HAE ≌△CEM .………………………………………………. 6分∴AE =EM . ………………………………………………………. 7分H F E G D CB A HMA B C D GE9. (1)满足条件的点为)0,1(-D ,)2,2(-E ……………………………… 3分(2)当1=a 时,角的两边分别过点)(1,1-,)(1,1,此时坐标角度︒=90m ; 当3a =时,角的两边分别过点)(1,33-,)(1,33,此时坐标角度︒=60m ,所以︒≤≤︒9060m ;……………………………………………………… 6分(3)3233≤≤-r .…………………………………………………….8分。
2019年门头沟区初三年级第二次统一练习
2019年门头沟区初三年级第二次统一练习数 学 试 卷一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.-6的倒数是A .6B .6-C .16 D .16- 2.PM2.5是大气中粒径小于等于2.5微米的颗粒物,称为细颗粒物,是表征环境空气质量的主要污染物指标.2.5微米等于0.0000025米,把0.0000025用科学记数法表示为 A .62.510⨯ B .50.2510-⨯ C . 62.510-⨯ D .72510-⨯ 3.右图所示的是一个几何体的三视图,则这个几何体是A .球B .圆锥C .圆柱D .三棱柱4.已知一个多边形的内角和是外角和的3倍,则这个多边形的边数是 A .8B .6C .5D .35.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为A .15B .13C .58 D .38 6.已知圆锥侧面展开图的扇形半径为2cm ,面积是24cm 3π,则扇形的弧长和圆心角的度数分别为A .4πcm 1203,︒B.2πcm 1203,︒C .4πcm 603,︒D .2πcm 603,︒左视图 俯视图7.甲、乙两人进行射击比赛,他们5次射击的成绩(单位:环)如下表所示:设甲、乙两人射击成绩的平均数依次为x 甲、x 乙,射击成绩的方差依次为2S 甲、2S 乙,则下列判断中正确的是A .x x =乙甲,22S S =乙甲B .x x =乙甲, 22>S S 乙甲C .x x =乙甲,22<S S 乙甲D .<x x 乙甲, 22<S S 乙甲8.如图,在平行四边形ABCD 中,AC = 12,BD = 8,P 是AC 上的一个动点,过点P 作EF ∥BD ,与平行四边形的 两条边分别交于点E 、F .设CP=x ,EF=y ,则下列图象 中,能表示y 与x 的函数关系的图象大致是A .B .C .D . 二、填空题(本题共16分,每小题4分)9. 在函数y =x 的取值范围是 . 10.分解因式:216ax a -= . 11.某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB 的高度.如图,他们先在 点C 处测得建筑物AB 的顶点A 的仰角为30︒,然后 向建筑物AB 前进20m 到达点D 处,又测得点 A 的 仰角为60︒,则建筑物AB 的高度是 m . 12.如图,将边长为2的正方形纸片ABCD 折叠,使点B落在CD 上,落点记为E (不与点C ,D 重合),点A 落在点F 处,折痕MN 交AD 于点M ,交BC 于点N . 若12CE CD =,则BN 的长是 ,AM BN 的值 等于 ;若1CE CD n=(2n ≥,且n 为整数), 则AM BN的值等于 (用含n 的式子表示).A BCDEFMN PF E D CBAADB30︒60︒三、解答题(本题共30分,每小题5分)13114sin45(3)4-⎛⎫︒+-π+ ⎪⎝⎭.14.已知关于x的一元二次方程2630x x m-+-=有两个相等的实数根,求m的值及方程的根.15.已知13xy=,求2222332x y yxx y x y x xy y--⋅+-++的值.16.已知:如图,在△ABC中,∠ABC=90º,BD⊥AC 于点D,点E在BC的延长线上,且BE=AB,过点E 作EF⊥BE,与BD的延长线交于点F.求证:BC=EF.17.如图,在平面直角坐标系xOy中,一次函数y=3x的图象与反比例函数kyx=的图象的一个交点为A(1, m).(1)求反比例函数kyx=的解析式;(2)若点P在直线OA上,且满足P A=2OA,直接写出点P的坐标.18.列方程或方程组解应用题:为帮助地震灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,且两次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数.四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD中,∠DAB=60º,AC平分∠DAB,BC⊥AC,AC与BD交于点E,AD=6,CEtan BEC∠BC、DE的长及四边形ABCD的面积.AB CDFE A BCDE20.如图,AB 是⊙O 的直径,C 是AB 延长线上一点,点D 在⊙O 上,且∠A=30°,∠ABD =2∠BDC . (1)求证:CD 是⊙O 的切线;(2)过点O 作OF ∥AD ,分别交BD 、CD 于点E 、F .若OB =2,求 OE 和CF 的长.21.某校为了了解该校初二年级学生阅读课外书籍的情况,随机抽取了该年级的部分学生,对他们某月阅读课外书籍的情况进行了调查,并根据调查的结果绘制了如下的统计图表.请你根据以上信息解答下列问题:(1)这次共调查了学生多少人?E 组人数在这次调查中所占的百分比是多少? (2)求出表1中a 的值,并补全图1;(3)若该年级共有学生300人,请你估计该年级在这月里阅读课外书籍的时间不少于12小时的学生约有多少人.表1 阅读课外书籍人数分组统计表DF 阅读课外书籍人数分组统计图图1人数阅读课外书籍人数分组所占百分比统计图图26%26%30%20%AB C D E F22. 如图1,矩形MNPQ 中,点E 、F 、G 、H 分别在NP 、PQ 、QM 、MN 上,若4321∠=∠=∠=∠,则称四边形EFGH 为矩形MNPQ 的反射四边形.在图2、图3中,四边形ABCD 为矩形,且4=AB ,8=BC .(1)在图2、图3中,点E 、F 分别在BC 、CD 边上,图2中的四边形EFGH 是利用正方形网格在图上画出的矩形ABCD 的反射四边形.请你利用正方形网格在图3上画出矩形ABCD 的反射四边形EFGH ;(2)图2、图3中矩形ABCD 的反射四边形EFGH 的周长是否为定值?若是定值,请直接写出这个定值;若不是定值,请直接写出图2、图3中矩形ABCD 的反射四边形EFGH 的周长各是多少;(3)图2、图3中矩形ABCD 的反射四边形EFGH 的面积是否为定值?若是定值,请直接写出这个定值;若不是定值,请直接写出图2、图3中矩形ABCD 的反射四边形EFGH 的面积各是多少.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 在平面直角坐标系xOy 中,抛物线224276883m m y x x m m --=-++-+经过原点O ,点B (-2,n )在这条抛物线上.(1)求抛物线的解析式;(2)将直线2y x =-沿y 轴向下平移b 个单位后得到直线l , 若直线l 经过B 点,求n 、b 的值;(3)在(2)的条件下,设抛物线的对称轴与x 轴交于点C ,直线l 与y 轴交于点D ,且与抛物线的对称轴交于点E .若P 是抛物线上一点,且PB =PE ,求P 点的坐标.MNPQ GHEF1 23 4图1图3图2F24.已知:在△AOB 与△COD 中,OA =OB ,OC =OD ,︒=∠=∠90COD AOB . (1)如图1,点C 、D 分别在边OA 、OB 上,连结AD 、BC ,点M 为线段BC 的中点,连结OM ,则线段AD 与OM 之间的数量关系是 ,位置关系是 ;(2)如图2,将图1中的△COD 绕点O 逆时针旋转,旋转角为α (︒<<︒900α).连结AD 、BC ,点M 为线段BC 的中点,连结OM .请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;(3)如图3,将图1中的 △COD 绕点 O 逆时针旋转到使 △COD 的一边OD 恰好与△AOB 的边OA 在同一条直线上时,点C 落在OB 上,点M 为线段BC 的中点. 请你判断(1)中线段AD 与OM 之间的数量关系是否发生变化,写出你的猜想,并加以证明.25. 如图,在平面直角坐标系xOy 中, 已知矩形ABCD 的两个顶点B 、C 的坐标分别是B (1,0)、C (3,0).直线AC 与y 轴交于点G (0,6).动点P 从点A 出发,沿线段AB 向点B 运动.同时动点 Q 从点C 出发,沿线段CD 向点D 运动.点P 、Q 的运动速度均为每秒1个单位,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E . (1)求直线AC 的解析式;(2)当t 为何值时,△CQE 的面积最大?最大值为多少?(3)在动点P 、Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使得以C 、Q 、E 、H 为顶点的四边形是菱形?图1O MABCD图2DCB MO 图3A。
北京市门头沟区初三二模数学试题及答案
门头沟区初三年级第二次统一练习数 学 试 卷考生须知1.本试卷共6页,共五道大题,25道小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡的密封线内准确填写学校、班级和姓名。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.2的倒数是A .12 B .2 C .12- D .2- 2.一种细胞的直径约为0.00000156米.将0.00000156用科学记数法表示应为 A .61.5610⨯ B .61.5610-⨯ C .51.5610-⨯ D .415.610-⨯ 3.两圆的半径分别为5cm 和2cm ,圆心距为7cm ,则这两圆的位置关系是 A .内切 B .外切 C .外离 D .内含 4.右图所示的是一个几何体的三视图,则这个几何体是 A .长方体 B .正方体 C .圆柱体 D .三棱柱5.已知一组数据1,4,5,2,3,则这组数据的极差和方差分别是A .4,2B .4,3C .2,3D .1,56.若圆锥侧面展开图的扇形面积为65πcm 2,扇形的弧长为10πcm ,则圆锥的母线长是A .5cmB .10cmC .12cmD .13cm7.桌面上有三张背面相同的卡片,正面分别写有数字1、2、3.先将卡片背面朝上洗匀, 然后从中同时抽取两张,则抽到的两张卡片上的数字之积为奇数的概率是A .16 B .23 C . 13 D . 128.如图,正方形ABCD 的边长为2,动点P 从点C 出发,在正方形的边上沿着C B A →→的方向运动(点P 与 A 不重合). 设点P 的运动路程为x , 则下列图象中,表示△ADP 的面积y 与x 的函数关系的是二、填空题(本题共16分,每小题4分) 9.在函数2y x =-x 的取值范围是 .10.如图,在△ABC 中,DE ∥BC ,AD =3,BD =6,AE =4,则EC 的长是 . 11.已知一个多边形的内角和是外角和的2倍,则这个多边形的边数是4 3 2 1 0 1 2 3 x yC 43 2 1 0 12 3 xyB43 2 1 0 12 3 x y AB ACP主视图 左视图43 2 1 012 3 xyD EDCBA12.如图,在矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 的内部, 延长BG 交DC 于点F .若DC =2DF ,则AD AB = ;若DC=nDF ,则AD AB= (用含n 的式子表示).三、解答题(本题共30分,每小题5分)1310184sin 45(3)4-⎛⎫-︒+-π+ ⎪⎝⎭.14.解不等式组245(2),3(1)3,x x x x +≤+⎧⎨-<+⎩并求它的正整数解.15.已知:如图,DB ∥AC ,且12DB AC =,E 是AC 的中点. 求证:BC=DE . AECB DGE DCBAF16.已知20y x -=,求y x y y x y x y xy x x-++-⋅+-2222222的值.17.列方程或方程组解应用题:为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息: 信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工产品的数量是甲工厂每天加工产品数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?18.已知二次函数m x x y ++=22的图象与x 轴有且只有一个公共点. (1)求m 的值;(2)若此二次函数图象的顶点为A ,与y 轴的交点为B ,求A 、B 两点的坐标;(3)若1(,)P n y 、2(2,)Q y 是二次函数图象上的两点,且12y y >,请你直接写出n 的取值范围.四、解答题(本题共20分,每小题5分)19.如图,在梯形ABCD 中,AD //BC ,BD ⊥CD ,∠C =60°, AD 3BC =43AB 的长.ABCD20.已知:如图,O ⊙的直径AB 与弦CD 相交于点E ,BC BD =,O ⊙的切线BF 与弦AD 的延长线相交于点F .(1)求证:CD BF ∥;(2)连结BC ,若O ⊙的半径为4,3cos 4BCD ∠=, 求线段AD 、CD 的长.21.某校初三年级的学生积极参加“博爱在京城”的募捐活动. 小明把本年级学生400人的捐款情况进行了统计,并绘制成了如下不完整的频数分布表和频数分布直方图.请你根据以上图表提供的信息,解答下列问题: (1)补全频数分布表和频数分布直方图; (2)捐款金额的中位数落在哪个组内?(3)若该校共有学生1600人,请你估计该校学生捐款金额不低于40元的有多少人? 分组/元 频数 频率 10≤x <20 40 0.10 20≤x <30 80 0.20 30≤x <40 0.40 40≤x <50 100 50≤x <60 20 0.05 合 计4001.00AD FBO E102030405060频数图1ABD 22.如图1,有一张菱形纸片ABCD ,AC =8,BD =6.(1)若沿着AC 剪开,把它分成两部分,把剪开的两部分拼成一个平行四边形,请在图2中用实线画出你所拼成的平行四边形,并直接写出这个平行四边形的面积;(2)若沿着BD 剪开,把它分成两部分,把剪开的两部分拼成一个平行四边形,请在图3中用实线画出你所拼成的平行四边形,并直接写出这个平行四边形的周长;(3)沿着一条直线剪开,把它分成两部分,把剪开的两部分拼成与上述两种都不全等的平行四边形,请在图4中用实线画出你所拼成的平行四边形. (注:上述所画的平行四边形都不能与原菱形全等)五、解答题(本题共22分,第23、24题各7分,第25题8分)23.已知抛物线y =ax 2+bx -4a 经过A (-1,0)、C (0,4)两点,与x 轴交于另一点B . (1)求抛物线的解析式;(2)若点D (m ,m +1)在第一象限的抛物线上, 求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连结BD ,若点P 为抛物线上一点,且∠DBP =45°,求点P 的坐标. 周长为D C BA图3D CBA图4图2AB CD面积为11yxO24.已知在△ABC和△DBE中,AB=AC,DB=DE,且∠BAC=∠BDE.(1)如图1,若∠BAC=∠BDE=60°,则线段CE与AD 之间的数量关系是;(2)如图2,若∠BAC=∠BDE=120°,且点D在线段AB上,则线段CE与AD之间的数量关系是__________________;(3)如图3,若∠BAC=∠BDE=α,请你探究线段CE与AD之间的数量关系(用含α的式子表示),并证明你的结论.ADB图1BACDE图3EBACD图225.如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A , 与y 轴交于点B , 且OA = 3,AB = 5.点P 从点O 出发沿OA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AO 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BO -OP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)求直线AB 的解析式;(2)在点P 从O 向A 运动的过程中,求△APQ 的面积S 与t 之间的函数关系式(不必写出t 的取值 范围);(3)在点E 从B 向O 运动的过程中,四边形QBED能否成为直角梯形?若能,请求出t 的值;若不 能,请说明理由;(4)当DE 经过点O 时,请你直接写出t 的值. y xEDQPOBAC门头沟区初三年级第二次统一练习数学试卷评分参考一、选择题(本题共32分,每小题4分) 题号 1 2 3 45 6 7 8 答案A B B C A DCD二、填空题(本题共16分,每小题4分)题号 9 10 11 12答案x ≥28六22n n三、解答题(本题共30分,每小题5分) 13.计算:10184sin 45(3)4-⎛⎫-︒+-π+ ⎪⎝⎭.解:10184sin 45(3)4-⎛⎫-︒+-π+ ⎪⎝⎭2224142=-⨯++ 4分5=. 5分14.解不等式组245(2),3(1)3,x x x x +≤+⎧⎨-<+⎩并求它的正整数解.解: 245(2),3(1)3,x x x x +≤+⎧⎨-<+⎩ 由①,得x ≥-2. 1分由②,得x <3. 2分不等式组的解集在数轴上表示如下:3 所以原不等式组的解集为-2≤x <3. 4分 所以原不等式组的正整数解为1,2. 5分15. 证明:∵E 是AC 的中点, ∴EC=21AC .…………………………………………………………………… 1分 ∵12DB AC =,∴DB = EC . ……………………………………2分 ∵DB ∥AC ,∴DB ∥EC .……………………………………… 3分 ∴四边形DBCE 是平行四边形. ……………… 4分 ∴BC=DE . ……………………………………… 5分16.解:y x y y x y x yxy x x-++-⋅+-2222222 =yx y y x y x y x y x x -+++-⋅-2))(()(222分① ②· AECBD= 22x yx y x y +-- = 22x y x y+-. 3分当20y x -=时,x y 2=. 4分原式=242x xx x+-=-6. 5分17.解:设甲工厂每天加工x 件新产品,则乙工厂每天加工1.5x 件新产品. ………………1分 依题意,得1200120010.1.5x x-=…………………………………………………………3分 解得x=40. …………………………………………………………………………4分经检验,40x =是所列方程的解,且符合实际问题的意义. 当x=40时,1.5x=60.答:甲、乙两个工厂每天分别能加工新产品40件、60件. ………………………………5分 18. 解:(1)根据题意,得△=2240m -=.解得1m =. ……………………………………………………………………1分(2)当1m =时,221y x x =++.二次函数图象的顶点A 的坐标为(-1,0), ………………………………2分 与y 轴的交点B 的坐标为(0,1). …………………………………………3分(3)n 的取值范围是2n >或4n <-. ………………………………………………5分 四、解答题(本题共20分,每小题5分)19. 解:如图,分别过点A 、D 作AE ⊥BC 于点E ,DF ⊥BC 于点F . ……………………1分 ∴ AE // DF . 又∵ AD // BC ,∴ 四边形AEFD 是矩形.∴ 3 …………………………………………………………………… 2分 ∵ BD ⊥CD ,∠C=60°,BC=43∴ DC=BC·cos60°=143232=. ∴ CF=DC·cos60°=12332=. ∴ AE=DF= DC·sin60°=3233=. …………………………………………… 3分∴23BE BC EF CF =--= ………………………………………………………… 4分在Rt △ABE 中,∠AEB=90°,∴ 22223(23)21AE BE ++. ………………………………………… 5分 20.解:(1)由直径AB 平分CD , 可证AB CD ⊥.1分BF 与O ⊙相切,AB 是O ⊙的直径,AB BF ∴⊥. 2分 CD BF ∴∥.3分(2)连结BD.AB 是O ⊙的直径, 90ADB ∴∠=°. 在Rt ADB △中,3cos cos A C ==,428AB =⨯=, FE DC B A AD FBO E3cos864AD AB A∴=⋅=⨯=.4分在Rt AED△中,39cos642AE AD A=⋅=⨯=,∴DE=2222937622AD AE⎛⎫-=-=⎪⎝⎭.由直径AB平分CD,可求237CD DE==.5分21.解:(1)补全频数分布表和频数分布直方图. …………………………3分(每个1分)(2)捐款金额的中位数落在30≤x<40这个组内.………………………………4分(3)该校学生捐款数额不低于40元的有100201600480400+⨯=(人).……………5分22.解:(1)画出图形、面积为24.………………………………………………2分(每个1分)(2)画出图形、周长为22.……………………………………………4分(每个1分)(3)画出图形(答案不唯一).……………………………………………5分五、解答题(本题共22分,第23、24题各7分,第25题8分)23.解:(1)抛物线24y ax bx a=+-经过(10)A-,,(04)C,两点,404 4.a b aa--=⎧∴⎨-=⎩,解得13.ab=-⎧⎨=⎩,………………………………………………………………………1分∴抛物线的解析式为234y x x=-++.………………………………………2分(2)点(1)D m m+,在抛物线上,2134m m m∴+=-++.∴2230m m--=. 1m∴=-或3m=.点D在第一象限,1m∴=-舍去.∴点D的坐标为(34),.…………………………………………………3分抛物线234y x x=-++与x轴的另一交点B的坐标为(4),0,(04)C,,∴.45OC OB CBO BCO=∴∠=∠=°.设点D关于直线BC的对称点为点E.CD AB∥,45ECB CBO DCB∴∠=∠=∠=°.∴E点在y轴上,且3CE CD==.∴OE=1.(01)E∴,.………………………………………………………………4分即点D关于直线BC对称的点的坐标为(0,1).(3)过点D作BD的垂线交直线PB于点Q,过点D作DH x⊥轴于H,过点Q作QG DH⊥于G.∴90QDB QGD DHB∠=∠=∠=°..45PBD∠=°,45BQD∴∠=°..QD BD∴=QDG BDH∠+∠90=°,90DQG QDG∠+∠=°,DQG BDH∴∠=∠.QDG DBH∴△≌△. 4QG DH∴==,1DG BH==.(13)Q∴-,.………………………………………………………………………5分yOA BCDE设直线BP 的解析式为y kx b +=.由点(13)Q -,,点(40)B ,,求得直线BP 的解析式为31255y x =-+.…………6分 解方程组234,31255y x x y x ⎧=-++⎪⎨=-+⎪⎩得112,566;25x y ⎧=-⎪⎪⎨⎪=⎪⎩2240.x y =⎧⎨=⎩,(舍)∴点P 的坐标为266525⎛⎫- ⎪⎝⎭,. ……………………………………………………7分24.解:(1)CE= AD . …………………………………………………………………………2分 (2)3. ……………………………………………………………………4分(3)CE 与AD 之间的数量关系是 α2sin2CE AD =. 证明:∵AB =AC ,DB =DE , ∴.AB ACDB DE= ∵∠BAC =∠BDE , ∴△ABC ∽△DBE . ∴,.AB BCABC DBE DB BE =∠=∠ ∴,AB DBBC BE =.ABD ABC DBC DBE DBC CBE ∠=∠-∠=∠-∠=∠ ∴△ABD ∽△CBE .…………………………………………………………5分∴ .AD BDCE BE = 过点D 作DF ⊥BE 于点F . ∴1α.22BDF BDE ∠=∠=∴α22sin 2sin .2BE BF BD BDF BD ==⋅∠=⋅ …………………………6分∴ 1.α2sin2AD CE= ∴α2sin 2CE AD =.…………………………………………………………7分25.解:(1)在Rt △AOB 中,OA = 3,AB = 5,由勾股定理得224OB AB OA =-. ∴A (3,0),B (0,4). 设直线AB 的解析式为y kx b +=.∴30,4.k b b +=⎧⎨=⎩ 解得 4,34.k b ⎧=-⎪⎨⎪=⎩ ∴直线AB 的解析式为443y x +=-.…………1分 (2)如图,过点Q 作QF ⊥AO 于点F. ∵ AQ = OP= t ,∴3AP t =-.由△AQF ∽△ABO ,得QF AQBO AB =. F图3EDCA BF ABO P Q D E xyQ O A B C DPG H y∴45QF t =.∴45QF t =. …………2分 ∴14(3)25S t t =-⋅,∴22655S t t =-+.………………………3分(3)四边形QBED 能成为直角梯形.①如图,当DE ∥QB 时, ∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP=90°.由△APQ ∽△ABO ,得AQ APAO AB=. ∴335t t -=. 解得98t =. ……………………………5分 ②如图,当PQ ∥BO 时, ∵DE ⊥PQ ,∴DE ⊥BO ,四边形QBED 是直角梯形. 此时∠APQ =90°.由△AQP ∽△ABO ,得.AQ APAB AO = 即353t t-=. 解得158t =. ………………………6分(4)52t =或4514t =. ………………………8分y xEDQ POB AABOP QDE xy。
北京市门头沟区2019-2020学年中考第二次质量检测数学试题含解析
北京市门头沟区2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算-3-1的结果是( )A .2B .-2C .4D .-42.下列运算正确的是( )A .a 2•a 3=a 6B .(12)﹣1=﹣2C .16 =±4D .|﹣6|=6 3.要使分式有意义,则x 的取值应满足( ) A .x=﹣2 B .x≠2 C .x >﹣2 D .x≠﹣24.第四届济南国际旅游节期间,全市共接待游客686000人次.将686000用科学记数法表示为( ) A .686×104 B .68.6×105 C .6.86×106 D .6.86×105 5.如图,是由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,则拿掉这个小立方体木块之后的几何体的俯视图是( )A .B .C .D .6.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图①中有5个棋子,图②中有10个棋子,图③中有16个棋子,…,则图⑥________中有个棋子( )A .31B .35C .40D .507.如图,已知直线//AB CD ,点E ,F 分别在AB 、CD 上,:3:4CFE EFB ∠∠=,如果∠B =40°,那么BEF ∠=( )A .20°B .40°C .60°D .80°8.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AB=c ,∠A=α,则CD 长为( )A.c•sin2αB.c•cos2αC.c•sinα•tanαD.c•sinα•cosα9.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(32,0)B.(2,0)C.(52,0)D.(3,0)10.如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积()A.11 B.10 C.9 D.1611.如图,直角坐标平面内有一点(2,4)P,那么OP与x轴正半轴的夹角α的余切值为()A.2 B.12C5D512.若函数2yx=与y=﹣2x﹣4的图象的交点坐标为(a,b),则12a b+的值是()A.﹣4 B.﹣2 C.1 D.2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.14.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.15.同学们设计了一个重复抛掷的实验:全班48人分为8个小组,每组抛掷同一型号的一枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果.1组1~2组1~3组1~4组1~5组1~6组1~7组1~8组盖面朝上次数165 335 483 632 801 949 1122 1276盖面朝上频率0.550 0.558 0.537 0.527 0.534 0.527 0.534 0.532根据实验,你认为这一型号的瓶盖盖面朝上的概率为____,理由是:____.16.如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是___.17.函数y=2+1x中自变量x的取值范围是___________.18.已知:如图,矩形ABCD中,AB=5,BC=3,E为AD上一点,把矩形ABCD沿BE折叠,若点A 恰好落在CD上点F处,则AE的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为22,求线段EF的长.20.(6分)数学活动小组的小颖、小明和小华利用皮尺和自制的两个直角三角板测量学校旗杆MN的高度,如示意图,△ABC和△A′B′C′是他们自制的直角三角板,且△ABC≌△A′B′C′,小颖和小明分别站在旗杆的左右两侧,小颖将△ABC的直角边AC平行于地面,眼睛通过斜边AB观察,一边观察一边走动,使得A、B、M共线,此时,小华测量小颖距离旗杆的距离DN=19米,小明将△A′B′C′的直角边B′C′平行于地面,眼睛通过斜边B′A′观察,一边观察一边走动,使得B′、A′、M共线,此时,小华测量小明距离旗杆的距离EN=5米,经测量,小颖和小明的眼睛与地面的距离AD=1米,B′E=1.5米,(他们的眼睛与直角三角板顶点A,B′的距离均忽略不计),且AD、MN、B′E均与地面垂直,请你根据测量的数据,计算旗杆MN的高度.21.(6分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D 类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?22.(8分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A 型”、“B 型”、“AB 型”、“O 型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表: 血型 A B AB O 人数 10 5(1)这次随机抽取的献血者人数为 人,m= ;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A 型的概率是多少?并估计这3000人中大约有多少人是A 型血?23.(8分)如图,⊙O 中,AB 是⊙O 的直径,G 为弦AE 的中点,连接OG 并延长交⊙O 于点D ,连接BD 交AE 于点F ,延长AE 至点C ,使得FC=BC ,连接BC .(1)求证:BC 是⊙O 的切线;(2)⊙O 的半径为5,tanA=34,求FD 的长.24.(10分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x 元.请解答以下问题:(1)填空:每天可售出书 本(用含x 的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?25.(10分)先化简,再求代数式(22222x y x x xy y x xy ---+-)÷2y x y-的值,其中x=sin60°,y=tan30°. 26.(12分)如图,在四边形ABCD 中,∠BAC=∠ACD=90°,∠B=∠D .(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE=13AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形.27.(12分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题解析:-3-1=-3+(-1)=-(3+1)=-1.故选D.2.D【解析】【分析】运用正确的运算法则即可得出答案.【详解】A、应该为a5,错误;B、为2,错误;C、为4,错误;D、正确,所以答案选择D项.【点睛】本题考查了四则运算法则,熟悉掌握是解决本题的关键.3.D试题分析:∵分式有意义,∴x+1≠0,∴x≠﹣1,即x的取值应满足:x≠﹣1.故选D.考点:分式有意义的条件.4.D【解析】根据科学记数法的表示形式(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数)可得:686000=6.86×105,故选:D.5.B【解析】【分析】俯视图是从上面看几何体得到的图形,据此进行判断即可.【详解】由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,得拿掉第一排的小正方形,拿掉这个小立方体木块之后的几何体的俯视图是,故选B.【点睛】本题主要考查了简单几何体的三视图,解题时注意:俯视图就是从几何体上面看到的图形.6.C【解析】【分析】根据题意得出第n个图形中棋子数为1+2+3+…+n+1+2n,据此可得.【详解】解:∵图1中棋子有5=1+2+1×2个,图2中棋子有10=1+2+3+2×2个,图3中棋子有16=1+2+3+4+3×2个,…∴图6中棋子有1+2+3+4+5+6+7+6×2=40个,故选C.本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.7.C【解析】【分析】根据平行线的性质,可得CFB ∠的度数,再根据:3:4CFE EFB ∠∠=以及平行线的性质,即可得出BEF ∠的度数.【详解】∵//AB CD ,40ABF ︒∠=,∴180140CFB B ︒︒∠=-∠=,∵:3:4CFE EFB ∠∠=, ∴3607CFE CFB ︒∠=∠=, ∵//AB CD ,∴60BEF CFE ︒∠=∠=,故选C .【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等. 8.D【解析】【分析】根据锐角三角函数的定义可得结论.【详解】在Rt △ABC 中,∠ACB=90°,AB=c ,∠A=a ,根据锐角三角函数的定义可得sinα=BC AB , ∴BC=c•sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt △DCB 中,∠CDB=90°,∴cos ∠DCB= CD BC, ∴CD=BC•cosα=c•sinα•cosα,故选D .9.C【解析】【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,OAC BCDAOC BDC AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=kx,将B(3,1)代入y=kx,∴k=3,∴y=3x,∴把y=2代入y=3x,∴x=32,当顶点A恰好落在该双曲线上时,此时点A移动了32个单位长度,∴C也移动了32个单位长度,此时点C的对应点C′的坐标为(52,0)故选:C.【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.10.B【解析】【分析】根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.【详解】如图,∵四边形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵H BHC BCHCE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,则AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故选B.【点睛】本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键.11.B【解析】【分析】作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.【详解】过P作x轴的垂线,交x轴于点A,∵P(2,4),∴OA=2,AP=4,.∴4 tan22APOAα===∴1 cot2α=.故选B.【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义. 12.B【解析】【分析】求出两函数组成的方程组的解,即可得出a、b的值,再代入12a b+求值即可.【详解】解方程组224yx y x ⎧=⎪⎨⎪=--⎩①②, 把①代入②得:2x=﹣2x ﹣4, 整理得:x 2+2x+1=0,解得:x=﹣1,∴y=﹣2,交点坐标是(﹣1,﹣2),∴a=﹣1,b=﹣2,∴12a b+=﹣1﹣1=﹣2, 故选B .【点睛】本题考查了一次函数与反比例函数的交点问题和解方程组等知识点,关键是求出a 、b 的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3或1.2【解析】【分析】由△PBE ∽△DBC ,可得∠PBE=∠DBC ,继而可确定点P 在BD 上,然后再根据△APD 是等腰三角形,分DP=DA 、AP=DP 两种情况进行讨论即可得.【详解】∵四边形ABCD 是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE ∽△DBC ,∴∠PBE=∠DBC ,∴点P 在BD 上,如图1,当DP=DA=8时,BP=2,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=2:10,∴PE :6=2:10,∴PE=1.2;如图2,当AP=DP 时,此时P 为BD 中点,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.14..【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.15.0.532,在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.【解析】【分析】根据用频率估计概率解答即可.【详解】∵在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值,∴这一型号的瓶盖盖面朝上的概率为0.532,故答案为:0.532,在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.【点睛】本题考查了利用频率估计概率的知识,解答此题关键是用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.16.4m【解析】设路灯的高度为x(m),根据题意可得△BEF∽△BAD,再利用相似三角形的对应边正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因为两人相距4.7m,可得到关于x的一元一次方程,然后求解方程即可. 【详解】设路灯的高度为x(m),∵EF∥AD,∴△BEF∽△BAD,∴,即,解得:DF=x﹣1.8,∵MN∥AD,∴△CMN∽△CAD,∴,即,解得:DN=x﹣1.5,∵两人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路灯AD的高度是4m.17.x≥﹣12且x≠1【解析】【详解】试题解析:根据题意得:2+10 {-10 xx≥≠解得:x≥﹣12且x≠1.故答案为:x≥﹣12且x≠1.18.5 3【分析】根据矩形的性质得到CD=AB=5,AD=BC=3,∠D=∠C=90°,根据折叠得到BF=AB=5,EF=EA,根据勾股定理求出CF,由此得到DF的长,再根据勾股定理即可求出AE.【详解】∵矩形ABCD中,AB=5,BC=3,∴CD=AB=5,AD=BC=3,∠D=∠C=90°,由折叠的性质可知,BF=AB=5,EF=EA,在Rt△BCF中,CF4,∴DF=DC﹣CF=1,设AE=x,则EF=x,DE=3﹣x,在Rt△DEF中,EF2=DE2+DF2,即x2=(3﹣x)2+12,解得,x=53,故答案为:53.【点睛】此题考查矩形的性质,勾股定理,折叠的性质,由折叠得到BF的长度是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)①∠OCE=45°;②EF =【解析】【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.(2)①因为AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,∠EOC=∠DAO=105°,在OCE∆中,∠E=30°,利用内角和定理,得:∠OCE=45°.②作OG⊥CE于点G,根据垂径定理可得FG=CG,因为OC=OCE=45°.等腰直角三角形的斜倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=则EF=GE-FG=【试题解析】(1)∵直线与⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG∵OC=22,∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=23.∴EF=GE-FG=23-2.【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.20.11米【解析】【分析】过点C作CE⊥MN于E,过点C′作C′F⊥MN于F,则EF=B′E−AD=1.5−1=0.5(m),AE=DN=19,B′F=EN=5,根据相似三角形的性质即可得到结论.【详解】解:过点C作CE⊥MN于E,过点C′作C′F⊥MN于F,则EF=B′E−AD=1.5−1=0.5(m),AE=DN=19,B′F=EN=5,∵△ABC≌△A′B′C′,∴∠MAE=∠B′MF,∵∠AEM=∠B′FM=90°,∴△AMF∽△MB′F,∴,∴∴MF=,∵∴答:旗杆MN的高度约为11米.【点睛】本题考查了相似三角形的应用,正确的作出辅助线是解题的关键.21.(1)10,144;(2)详见解析;(3)96【解析】【分析】(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.【详解】解:(1)2÷20%=10(人),410×100%×360°=144°,故答案为10,144;(2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400×210×20%=96(人),答:估计该校将有96名留守学生在此关爱活动中受益.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.【解析】【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=1050×100=20,故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),补全表格中的数据如下:故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率=126 5025,3000×625=720,估计这3000人中大约有720人是A型血.【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.23.(1)证明见解析(2【解析】【分析】(1)由点G是AE的中点,根据垂径定理可知OD⊥AE,由等腰三角形的性质可得∠CBF=∠DFG,∠D=∠OBD,从而∠OBD+∠CBF=90°,从而可证结论;(2)连接AD,解Rt△OAG可求出OG=3,AG=4,进而可求出DG的长,再证明△DAG∽△FDG,由相似三角形的性质求出FG的长,再由勾股定理即可求出FD的长. 【详解】(1)∵点G是AE的中点,∴OD⊥AE,∵FC=BC,∴∠CBF=∠CFB,∵∠CFB=∠DFG,∴∠CBF=∠DFG∵OB=OD,∴∠D=∠OBD,∵∠D+∠DFG=90°,∴∠OBD+∠CBF=90°即∠ABC=90°∵OB是⊙O的半径,∴BC是⊙O的切线;(2)连接AD,∵OA=5,tanA=,∴OG=3,AG=4,∴DG=OD﹣OG=2,∵AB是⊙O的直径,∴∠ADF=90°,∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°∴∠DAG=∠FDG,∴△DAG∽△FDG,∴,∴DG2=AG•FG,∴4=4FG ,∴FG=1∴由勾股定理可知:【点睛】本题考查了垂径定理,等腰三角形的性质,切线的判定,解直角三角形,相似三角形的判定与性质,勾股定理等知识,求出∠CBF=∠DFG ,∠D=∠OBD 是解(1)的关键,证明证明△DAG ∽△FDG 是解(2)的关键.24.(1)(300﹣10x ).(2)每本书应涨价5元.【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x 元,则每天就会少售出10x 本,所以每天可售出书(300﹣10x )本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x 元,∴每天可售出书(300﹣10x )本.故答案为300﹣10x .(2)设每本书上涨了x 元(x≤10),根据题意得:(40﹣30+x )(300﹣10x )=3750,整理,得:x 2﹣20x+75=0,解得:x 1=5,x 2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.25.-【解析】【分析】先根据分式混合运算的法则把原式进行化简,再计算x 和y 的值并代入进行计算即可【详解】原式()()22,2x y x x y x x y y x y ⎡⎤--=-⋅⎢⎥--⎢⎥⎣⎦112,2x y x y x y y ⎛⎫-=-⋅ ⎪--⎝⎭()()()()22,22x y x y x y x y x y x y x y y ⎡⎤---=-⋅⎢⎥----⎢⎥⎣⎦()()22,2x y x y x y x y x y y--+-=⋅-- ()()2,2y x y x y x y y --=⋅-- 1,x y=--sin60tan30x y =︒==︒=Q∴原式===- 【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.26.(1)证明见解析;(2)从运动开始经过2s 或53s 或125s时,△BEP 为等腰三角形. 【解析】【分析】(1)根据内错角相等,得到两边平行,然后再根据三角形内角和等于180度得到另一对内错角相等,从而证得原四边形是平行四边形;(2)分别考虑P 在BC 和DA 上的情况求出t 的值.【详解】解:(1)∵∠BAC=∠ACD=90°,∴AB ∥CD ,∵∠B=∠D ,∠B+∠BAC+∠ACB=∠D+∠ACD+∠DAC=180°,∴∠DAC=∠ACB ,∴AD ∥BC ,∴四边形ABCD 是平行四边形.(2)∵∠BAC=90°,BC=5cm ,AB=3cm ,′由勾股定理得:AC=4cm ,即AB 、CD 间的最短距离是4cm ,∵AB=3cm ,AE=13AB , ∴AE=1cm ,BE=2cm ,设经过ts 时,△BEP 是等腰三角形,当P 在BC 上时,①BP=EB=2cm,t=2时,△BEP是等腰三角形;②BP=PE,作PM⊥AB于M,∴BM=ME=12BE=1cm∵cos∠ABC=35 AB BMBC BP==,∴BP=53 cm,t=53时,△BEP是等腰三角形;③BE=PE=2cm,作EN⊥BC于N,则BP=2BN,∴cosB=35 BNBE=,∴3 25 BN=,BN=65 cm,∴BP=125,∴t=125时,△BEP是等腰三角形;当P在CD上不能得出等腰三角形,∵AB、CD间的最短距离是4cm,CA⊥AB,CA=4cm,当P在AD上时,只能BE=EP=2cm,过P作PQ⊥BA于Q,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠QAD=∠ABC,∵∠BAC=∠Q=90°,∴△QAP∽△ABC,∴PQ:AQ:AP=4:3:5,设PQ=4xcm,AQ=3xcm,在△EPQ中,由勾股定理得:(3x+1)2+(4x)2=22,∴x=221325-,AP=5x=22135-cm,∴t=5+5+3﹣2213-=68221-,答:从运动开始经过2s或53s或125s或68221-s时,△BEP为等腰三角形.【点睛】本题主要考查平行四边形的判定定理及一元二次方程的解法,要求学生能够熟练利用边角关系解三角形. 27.水坝原来的高度为12米【解析】试题分析:设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x 的值即可.试题解析:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+,解得x=12,即BC=12,答:水坝原来的高度为12米..考点:解直角三角形的应用,坡度.。
北京市门头沟区2019-2020学年中考数学二模试卷含解析
北京市门头沟区2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩()m 1.50 1.60 1.65 1.70 1.75 1.80人数124332这些运动员跳高成绩的中位数是()A.1.65m B.1.675m C.1.70m D.1.75m2.一、单选题点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(1,﹣2)3.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在l<x<3的范围内有解,则t的取值范围是( )A.-5<t≤4B.3<t≤4C.-5<t<3 D.t>-54.二次函数y=ax²+bx+c(a,b,c为常数)中的x与y的部分对应值如表所示:x -1 0 1 3y135- 32953下列结论:(1)abc<0(2)当x>1时,y的值随x值的增大而减小;(3)16a+4b+c<0(4)x=3是方程ax²+(b-1)x+c=0的一个根;其中正确的个数为()A.4个B.3个C.2个D.1个5.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )A .18B .16C .14D .126.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A .2B .3C .5D .77.下列计算正确的是( ) A .a+a=2a B .b 3•b 3=2b 3 C .a 3÷a=a 3 D .(a 5)2=a 78.一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax 2+bx+c 的图象可能是()A .B .C .D .9.计算22x x x +-的结果为( ) A .1 B .x C .1x D .2x x+ 10.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 11()1323x x x ▲---+=-, 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业。
2019年北京市门头沟中考模拟初三二模数学试卷含答案
门头沟区2019年初三年级综合练习(二)数学试卷2019年5月考生须知1.本试卷共10页,三道大题,28个小题,满分100分.考试时间120分钟;2 .在试卷和答题卡上认真填写学校和姓名,并将条形码粘贴在答题卡相应位置处;3 .试题答案一律填涂或书写在答题卡上,在试卷上作答无效;4 .在答题卡上,选择题、作图题用2B铅笔作答,其它试题用黑色字迹签字笔作答;5.考试结束,将试卷、答题卡和草稿纸一并交回.、选择题(本题共16分,每小题2 分)第1- 8题均有四个选项,符合题意的选项只有一个.法表示为5.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板",它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为2.3.4.3A. 2.3 X 10 4B. 2.3 X 10C. 23 X1035D. 0.23 X 10在下面四个几何体中,俯视图是矩形的是B D在下列运算中,正确的是A. a2 a3B. 6 2 3C. a a aD. 5 5 10a a 2a如果a b 2 3,那么代数式a2b22a汽的值为A. 3B. 2.3C. 3.3D. 4.3A.932B. §167D.—161. 2013年12月2日1时30分,中国于西昌卫星发射中心成功将“嫦娥三号”探测器送入轨道. 2013 年12 月15日4时35分,“嫦娥三号”探测器与“玉兔号”月球车分离, “玉兔号”月球车顺利驶抵月球表面,留下了中国在月球上的第一个足迹.“玉兔号”月球车一共在月球上工作了972 天,约23 000小时.将23 000用科学记数y 轴的正方向,如果表示右安门的点的坐标为( 2 , 3),表示朝阳门的点的坐标为(3, 2),那么表示西便 k6 •已知点A (1, m 与点B ( 3, n )都在反比例函数 y —( k >0 )的图象上,那么 m 与n 的关系是 xA . m < nB. m >nC.m = nD.不能确定7.如图,线段 AB 是O O 的直径,弦 CD 丄AB / CAB = 30OD = 2,那么DC 的长等于A . 2 B. 4C. 3D. 2.3 8.团体购买某公园门票,票价如下表: 购票人数 1 ~ 50 51 ~ 100 100以上 门票价格13元/人11元/人9元/人某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游 览公园,则共需支付门票费为 1 290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为A . 20B. 35C. 30D. 4011.如图,在矩形 ABCDK E 是CD 的延长线上一点,连接BE 交AD 于点F .如果AB = 4 , BC = 6 , DE = 3,那么二、填空题(本题共16分,每小题2分)9.函数y - 的自变量x 的取值范围是 3x 1 10.写出一个比2大且比3小的无理数:ACAF 的长为 12.用一组a , b, c ( c 0)的值说明命题“如果a < b ,那么a < - ”是错误的,这组值可以是a = c13 .《算法统宗》是中国古代数学名著,作者是明代著名数学家 程大位.在其中有这样的记载“一百馒头一百僧,大僧三个 更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x 人,小和尚y 人,可列方程组为 14 .下图是利用平面直角坐标系画出的老北京一些地点的分别示意图,这个坐标系分别以正东和正北方向为 x 轴和DBy轴的正方向,如果表示右安门的点的坐标为( 2 , 3),表示朝阳门的点的坐标为(3, 2),那么表示西便第14题图 第15题图15. 如图,在平面直角坐标系 xOy 中,△ A0閉以看作是厶OCD§过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ OCD#到厶AOB 的过程: __________________ .16. 当三角形中一个内角 a 是另一个内角 卩的一半时,我们称该三角形为"特征三角形”,其中a 称为"特征角”.如果一个“特征三角形”为直角三角形,那么“特征角”度数为____ .三、解答题 (本题共68分,第17〜22题每小题5分,第23〜26题每小题6分,第27〜28题每小题7分)解答应写出文字说明、证明过程或演算步骤1 2 118.解不等式2x 1< 3x 2,并把它的解集在数轴上表示出来.19•已知:关于x 的一元二次方程x 2 4x 2m 0有两个不相等的实数根.(1) 求m 的取值范围; (2)如果m 为非负整数,且该方程的根都是整数,求 m 的值.20.下面是小明同学设计的“已知底边及底边上的高作等腰三角形”的尺规作图的过程. 已知:如图1,线段a 和线段b .a求作:△ ABC 使得AB = AC , BC = a, BC 边上的高为b . 作法:如图2,① 作射线BM 并在射线BM 上截取BC = a ;门的点的坐标为rrrriiinnn f”地安门安•天r l r T 1卜I --- I - - ► -4 一 ■» - 4 - ---- 1---- 1 -----1宣武门 正阳门 崇文门I-——|__卜=4 一半一 4一斗一」一」 -------------- 1 I I I 1 I H I I I I 二1=丄二* 3 一3三」 右安门 永定门」一!_■、■丄一丄■」■」■」■」■」I I I I I I I I I Ir ■'"T""T " 3上--------- 1 --------- IIi1 1i1 2/ A 1L =— _十= .十 二=1 1I 11 D1 1卜.-+ - --1 --1 17/11v11/[11 C BO1-3 -2-11i1 -11y17.计算:5 4si n451 .-4-3 -2 -10 1② 作线段BC 的垂直平分线 PQ PQ 交BC 于D; ③ 以D 为圆心,b 为半径作圆,交PQ 于A ; ④ 连接AB 和AC贝仏ABC 就是所求作的图形.根据上述作图过程,回答问题:(1) 用直尺和圆规,补全图 2中的图形; (2) 完成下面的证明:证明:由作图可知 BC = a , AD = b .••• PQ 为线段BC 的垂直平分线,点 A 在PQ±,••• AB = AC( ____________________________________ )(填依据)又••• AD 在线段BC 的垂直平分线 PQ 上,ADL BCAD 为BC 边上的高,且 AD = b .21•如图,在口ABCD^,点E 是BC 边的一点,将边 AD 延长至点F ,使得 AFC DEC ,连接CF, DE(1) 求证:四边形 DECf 是平行四边形;12(2) 如果 AB=13, DF=14, tan DCB 12,求 CF 的长.5422.如图,在平面直角坐标系xOy 中,一次函数y x b 的图象与反比例函数 y -的图象交于点 A ( 4 , n )x和B.(1) 求b 的值和点B 的坐标;(2) 如果P 是x 轴上一点,且 AP = AB 直接写出点 P 的坐标.x23.如图,点 C 在O O 上,AB 为直径,BD 与过点C 的切线垂直于 D, BD 与O O 交于点E.(1) 求证:BC 平分/ DBA(2) 如果 cos ABD -,OA = 2,求 DE 的长.224•如图,E 为半圆O 直径AB 上一动点,C 为半圆上一定点,连接 AC 和 BC AD 平分/ CAB 交 BC 于点D,连接CE和DE 如果AB = 6 cm , AC = 2.5 cm ,设A , E 两点间的距离为 x cm , C, E 两点间的距离为 y - cm, D, E 两点间的距离为y 2 cm.yB小明根据学习函数经验,分别对函数 y i 和y 2随自变量x 变化而变化的规律进行了探究.F 面是小明的探究过程,请将它补充完整:(1)按下表中自变量 x 值进行取点、画图、测量,得到了y i 和y 2与x 几组对应值:x /cm1 2 34 5 6 y 〃cm 2.502.27 2.47 m3.734.565.46 y 2/cm2.97 2.201.681.692.192.973.85问题:上表中的 m =cm ;(2)在同一平面直角坐标系 xOy 中,描出补全后的表中各组数值所对应的点( x ,y 2)和(x ,y i ),并画出函数y i 和y 2的图象;(3)结合函数的图象,解决问题:当厶 ACE 为等腰三角形时,AE 的长度约为 _____ cm (结果精确到0.01 ).25. 2019年1月有300名教师参加了“新技术支持未来教育”培训活动, 会议就“面向未来的教育” 和“家庭教育”这两个问题随机调查了 60位教师,并对数据进行了整理、描述和分析•下面给出了部分信息:a.关于“家庭教育”问题发言次数的频数分布直方图如下(数据分成6组:O w x v 4,4w x v 8, 8w x v 12, 12w x v 16, 16w x v 20, 20 w x < 24):CAO5频数(发言人数)b. 关于"家庭教育”问题发言次数在8w x v 12这一组的是:8 8 9 9 9 10 10 10 10 10 10 11 11 11 11c. “面向未来的教育”和"家庭教育”这两问题发言次数的平均数、众数、中位数如下:根据以上信息,回答下列问题:(1)表中m的值为_______ ;(2)在此次采访中,参会教师更感兴趣的问题是_______________ (填“面向未来的教育”或“家庭教育”),理由是_________________________________________________________ ;(3)假设所有参会教师都接受调查,___________________________________________________________________ 估计在“家庭教育”这个问题上发言次数超过8次的参会教师有 _____________________________________________________ 位.26. 在平面直角坐标系xOy中,抛物线y ax2 2ax 3a (a1 0 )顶点为P,且该抛物线与x轴交于A, B两点(点A在点B的左侧)•我们规定:抛物线与x轴围成的封闭区域称为“ G区域”(不包含边界);横、纵坐标都是整数的点称为整点.(1 )求抛物线y ax2 2ax 3a顶点P的坐标(用含a的代数式表示);(2)如果抛物线y ax2 2ax 3a经过(1,3 ).① 求a 的值;② 在①的条件下,直接写出“ G 区域”内整点的个数. ax 2 2ax 3a 在“G 区域”内有4个整点,直接写出 a 的取值范围上取点F ,使得/ EFD = 60。
北京市门头沟区2019-2020学年中考二诊数学试题含解析
北京市门头沟区2019-2020学年中考二诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°2.已知⊙O的半径为5,若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法判断3.已知x a=2,x b=3,则x3a﹣2b等于()A.89B.﹣1 C.17 D.724.下列各数:π,sin30°,﹣3,9其中无理数的个数是()A.1个B.2个C.3个D.4个5.在同一坐标系中,反比例函数y=kx与二次函数y=kx2+k(k≠0)的图象可能为()A.B.C.D.6.下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M 、N 恰落在直线y=x+3上,若N 点在第二象限内,则tan ∠AON 的值为( )A .B .C .D .8.下列命题中,真命题是( )A .对角线互相垂直且相等的四边形是正方形B .等腰梯形既是轴对称图形又是中心对称图形C .圆的切线垂直于经过切点的半径D .垂直于同一直线的两条直线互相垂直 9.方程23x 1x=-的解是 A .3B .2C .1D .010.若在同一直角坐标系中,正比例函数y =k 1x 与反比例函数y =2k x的图象无交点,则有( ) A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<011.下列运算结果正确的是( )A .(x 3﹣x 2+x )÷x=x 2﹣xB .(﹣a 2)•a 3=a 6C .(﹣2x 2)3=﹣8x 6D .4a 2﹣(2a )2=2a 2 12.如果实数a=11,且a 在数轴上对应点的位置如图所示,其中正确的是( ) A . B . C . D .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.七边形的外角和等于_____.14.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.15.一个样本为1,3,2,2,a ,b ,c ,已知这个样本的众数为3,平均数为2,则这组数据的中位数为______.16.如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm 刻度线与量角器的0°线在同一直线上,且直径DC 是直角边BC 的两倍,过点A 作量角器圆弧所在圆的切线,切点为E ,则点E 在量角器上所对应的度数是____.17.已知二次函数f(x)=x 2-3x+1,那么f(2)=_________.18.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列结论:abc 0<①,2a b 0+=②,a b c 0-+=③;24ac b 0->④,4a 2b c 0++>⑤,其中正确的结论序号是______三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解方程311(1)(2)x x x x -=--+. 20.(6分)如图,圆O 是ABC V 的外接圆,AE 平分BAC ∠交圆O 于点E ,交BC 于点D ,过点E 作直线//l BC .(1)判断直线l 与圆O 的关系,并说明理由;(2)若ABC ∠的平分线BF 交AD 于点F ,求证:BE EF =; (3)在(2)的条件下,若5DE =,3DF =,求AF 的长.21.(6分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图; (3)请估计该市中小学生一天中阳光体育运动的平均时间.22.(8分)如图,Rt ABP V 的直角顶点P 在第四象限,顶点A 、B 分别落在反比例函数ky x=图象的两支上,且PB x ⊥轴于点C ,PA y ⊥轴于点D ,AB 分别与x 轴,y 轴相交于点F 和.E 已知点B 的坐标为()1,3.()1填空:k =______; ()2证明://CD AB ;()3当四边形ABCD 的面积和PCD V 的面积相等时,求点P 的坐标.23.(8分) “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.24.(10分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条直线上,且∠CAB=75°.(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732)(1)求车架档AD的长;(2)求车座点E到车架档AB的距离(结果精确到1cm).25.(10分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?26.(12分)当a3b=2时,求代数式222222a b b aba ab b a b+--++-的值.27.(12分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.并整理分析数据如下表:平均成绩/环中位数/环众数/环方差甲a7 7 1.2乙7 b8 c(1)求a,b,c的值;分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.2.B【解析】【分析】比较OP与半径的大小即可判断.【详解】==,r5Q=,d OP6∴>,d r∴点P在Oe外,故选B.【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种.设O e 的半径为r ,点P 到圆心的距离OP d =,则有:①点P 在圆外d r ⇔>;②点P 在圆上d r ⇔=;①点P 在圆内d r ⇔<.3.A 【解析】 ∵x a =2,x b =3,∴x 3a−2b =(x a )3÷(x b )2=8÷9= 89, 故选A. 4.B 【解析】 【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数即可. 【详解】sin30°=12,故无理数有π, 故选:B . 【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数. 5.D 【解析】 【分析】根据k >0,k <0,结合两个函数的图象及其性质分类讨论. 【详解】 分两种情况讨论:①当k <0时,反比例函数y=kx,在二、四象限,而二次函数y=kx 2+k 开口向上下与y 轴交点在原点下方,D 符合;②当k >0时,反比例函数y=kx,在一、三象限,而二次函数y=kx 2+k 开口向上,与y 轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D . 故选D . 【点睛】本题主要考查二次函数、反比例函数的图象特点.6.D【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知:A既不是轴对称图形,也不是中心对称图形,故不正确;B不是轴对称图形,但是中心对称图形,故不正确;C是轴对称图形,但不是中心对称图形,故不正确;D即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别7.A【解析】【分析】过O作OC⊥AB于C,过N作ND⊥OA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=,求出ON,在Rt△NDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tan∠AON=求出即可.【详解】过O作OC⊥AB于C,过N作ND⊥OA于D,∵N在直线y=x+3上,∴设N的坐标是(x,x+3),则DN=x+3,OD=-x,y=x+3,当x=0时,y=3,当y=0时,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,∴3×4=5OC,OC=,∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=,∴ON=,在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(x+3)2+(-x)2=()2,解得:x1=-,x2=,∵N在第二象限,∴x只能是-,x+3=,即ND=,OD=,tan∠AON=.故选A.【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强. 8.C 【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案. 解答:解:A 、错误,例如对角线互相垂直的等腰梯形; B 、错误,等腰梯形是轴对称图形不是中心对称图形; C 、正确,符合切线的性质;D 、错误,垂直于同一直线的两条直线平行. 故选C . 9.A 【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解:去分母得:2x=3x ﹣3,解得:x=3, 经检验x=3是分式方程的解.故选A . 10.D 【解析】当k 1,k 2同号时,正比例函数y =k 1x 与反比例函数y =2k x的图象有交点;当k 1,k 2异号时,正比例函数y =k 1x 与反比例函数y =2k x的图象无交点,即可得当k 1k 2<0时,正比例函数y =k 1x 与反比例函数y =2k x的图象无交点,故选D. 11.C 【解析】 【分析】根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得. 【详解】A 、(x 3-x 2+x )÷x=x 2-x+1,此选项计算错误;B 、(-a 2)•a 3=-a 5,此选项计算错误;C 、(-2x 2)3=-8x 6,此选项计算正确;D 、4a 2-(2a )2=4a 2-4a 2=0,此选项计算错误. 故选:C . 【点睛】本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则.12.C【解析】分析:估计11的大小,进而在数轴上找到相应的位置,即可得到答案.详解:49 911,4 <<Q由被开方数越大算术平方根越大,49911,4∴<<即7 311,2 <<故选C.点睛:考查了实数与数轴的的对应关系,以及估算无理数的大小,解决本题的关键是估计11的大小.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.360°【解析】【分析】根据多边形的外角和等于360度即可求解.【详解】解:七边形的外角和等于360°.故答案为360°【点睛】本题考查了多边形的内角和外角的知识,属于基础题,解题的关键是掌握多边形的外角和等于360°.14.40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.15.1.【解析】解:因为众数为3,可设a=3,b=3,c未知,平均数=(1+3+1+1+3+3+c)÷7=1,解得c=0,将这组数据按从小到大的顺序排列:0、1、1、1、3、3、3,位于最中间的一个数是1,所以中位数是1,故答案为:1.点睛:本题为统计题,考查平均数、众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.16.60.【解析】【分析】首先设半圆的圆心为O,连接OE,OA,由题意易得AC是线段OB的垂直平分线,即可求得∠AOC=∠ABC=60°,又由AE是切线,易证得Rt△AOE≌Rt△AOC,继而求得∠AOE的度数,则可求得答案.【详解】设半圆的圆心为O,连接OE,OA,∵CD=2OC=2BC,∴OC=BC,∵∠ACB=90°,即AC⊥OB,∴OA=BA,∴∠AOC=∠ABC,∵∠BAC=30°,∴∠AOC=∠ABC=60°,∵AE是切线,∴∠AEO=90°,∴∠AEO=∠ACO=90°,∵在Rt△AOE和Rt△AOC中,AO AO OE OC=⎧⎨=⎩, ∴Rt △AOE ≌Rt △AOC(HL),∴∠AOE =∠AOC =60°,∴∠EOD =180°﹣∠AOE ﹣∠AOC =60°,∴点E 所对应的量角器上的刻度数是60°,故答案为:60.【点睛】本题考查了切线的性质、全等三角形的判定与性质以及垂直平分线的性质,解题的关键是掌握辅助线的作法,注意掌握数形结合思想的应用.17.-1【解析】【分析】根据二次函数的性质将x=2代入二次函数解析式中即可.【详解】Q f(x)=x 2-3x+1∴ f(2)= 22-3⨯2+1=-1.故答案为-1.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.18.①②③⑤【解析】【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】①由图象可知:抛物线开口方向向下,则a 0<,对称轴直线位于y 轴右侧,则a 、b 异号,即b 0>,抛物线与y 轴交于正半轴,则c 0>,abc 0<,故①正确;②对称轴为b x 12a=-=,b 2a =-,故②正确; ③由抛物线的对称性知,抛物线与x 轴的另一个交点坐标为()1,0-,所以当x 1=-时,y a b c 0=-+=,即a b c 0-+=,故③正确;④抛物线与x 轴有两个不同的交点,则2b 4ac 0->,所以24ac b 0-<,故④错误;⑤当x 2=时,y 4a 2b c 0=++>,故⑤正确.故答案为①②③⑤.【点睛】本题考查了考查了图象与二次函数系数之间的关系,二次函数2y ax bx c =++系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.原分式方程无解.【解析】【分析】根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.【详解】方程两边乘(x ﹣1)(x+2),得x(x+2)﹣(x ﹣1)(x+2)=3即:x 2+2x ﹣x 2﹣x+2=3整理,得x =1检验:当x =1时,(x ﹣1)(x+2)=0,∴原方程无解.【点睛】本题考查解分式方程,解题的关键是明确解放式方程的计算方法.20.(1)直线l 与O e 相切,见解析;(2)见解析;(3)AF=245. 【解析】【分析】()1连接.OE 由题意可证明BE CE =n n ,于是得到BOE COE ∠=∠,由等腰三角形三线合一的性质可证明OE BC ⊥,于是可证明OE l ⊥,故此可证明直线l 与O e 相切;()2先由角平分线的定义可知ABF CBF ∠=∠,然后再证明CBE BAF ∠=∠,于是可得到EBF EFB ∠=∠,最后依据等角对等边证明BE EF =即可;()3先求得BE 的长,然后证明BED V ∽AEB V ,由相似三角形的性质可求得AE 的长,于是可得到AF 的长.【详解】()1直线l 与O e 相切.理由:如图1所示:连接OE .AE Q 平分BAC ∠,BAE CAE ∴∠=∠.BE CE n n∴=, OE BC ∴⊥.//l BC Q ,OE l ∴⊥.∴直线l 与O e 相切.()2BF Q 平分ABC ∠,ABF CBF ∴∠=∠.又CBE CAE BAE Q ∠=∠=∠,CBE CBF BAE ABF ∴∠+∠=∠+∠.又EFB BAE ABF ∠=∠+∠Q ,EBF EFB ∴∠=∠.BE EF ∴=.()3由()2得8BE EF DE DF ==+=.DBE BAE ∠=∠Q ,DEB BEA ∠=∠,BED ∴V ∽AEB V .DE BE BE AE ∴=,即588AE =,解得;645AE =. 6424855AF AE EF ∴=-=-=. 故答案为:(1)直线l 与O e 相切,见解析;(2)见解析;(3)AF=245. 【点睛】本题主要考查的是圆的性质、相似三角形的性质和判定、等腰三角形的性质、三角形外角的性质、切线的判定,证得EBF EFB ∠=∠是解题的关键.21.(4)500;(4)440,作图见试题解析;(4)4.4.【解析】【分析】(4)利用0.5小时的人数除以其所占比例,即可求出样本容量;(4)利用样本容量乘以4.5小时的百分数,即可求出4.5小时的人数,画图即可;(4)计算出该市中小学生一天中阳光体育运动的平均时间即可.【详解】解:(4)由题意可得:0.5小时的人数为:400人,所占比例为:40%,∴本次调查共抽样了500名学生;(4)4.5小时的人数为:500×4.4=440(人),如图所示:(4)根据题意得:1000.5200120 1.580210020012080⨯+⨯+⨯+⨯+++=4.4,即该市中小学生一天中阳光体育运动的平均时间为4.4小时.考点:4.频数(率)分布直方图;4.扇形统计图;4.加权平均数.22.(1)1;(2)证明见解析;(1)P 点坐标为()1323-,. 【解析】【分析】 ()1由点B 的坐标,利用反比例函数图象上点的坐标特征可求出k 值;()2设A 点坐标为3a,a ⎛⎫ ⎪⎝⎭,则D 点坐标为30,a ⎛⎫ ⎪⎝⎭,P 点坐标为31,a ⎛⎫ ⎪⎝⎭,C 点坐标为()1,0,进而可得出PB ,PC ,PA ,PD 的长度,由四条线段的长度可得出PC PD PB PA=,结合P P ∠∠=可得出PDC V ∽PAB V ,由相似三角形的性质可得出CDP A ∠∠=,再利用“同位角相等,两直线平行”可证出CD//AB ; ()3由四边形ABCD 的面积和PCD V 的面积相等可得出PAB PCD S 2S =V V ,利用三角形的面积公式可得出关于a 的方程,解之取其负值,再将其代入P 点的坐标中即可求出结论.【详解】()1解:B Q 点()1,3在反比例函数k y x =的图象, k 133∴=⨯=.故答案为:1.()2证明:Q 反比例函数解析式为3y x=, ∴设A 点坐标为3a,.a ⎛⎫ ⎪⎝⎭PB x ⊥Q 轴于点C ,PA y ⊥轴于点D ,D ∴点坐标为30,a ⎛⎫ ⎪⎝⎭,P 点坐标为31,a ⎛⎫ ⎪⎝⎭,C 点坐标为()1,0,3PB 3a ∴=-,3PC a=-,PA 1a =-,PD 1=, 3PC 1a 3PB 1a 3a-∴==--,PD 1PA 1a=-, PC PD PB PA∴=. 又P P Q ∠∠=, PDC V ∴∽PAB V ,CDP A ∠∠∴=,CD//AB ∴.()3解:Q 四边形ABCD 的面积和PCD V 的面积相等,PAB PCD S 2S ∴=V V ,()131331a 212a 2a ⎛⎫⎛⎫∴⨯-⨯-=⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭, 整理得:2(a 1)2-=,解得:1a 12=2a 12(=舍去),P ∴点坐标为()1,323--.【点睛】本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题关键是:()1根据点的坐标,利用反比例函数图象上点的坐标特征求出k 值;()2利用相似三角形的判定定理找出PDC V ∽PAB V ;()3由三角形的面积公式,找出关于a 的方程.23.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】 (1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x 2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x <50时,w 随x 的增大而增大,∴x=46时,w 大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x 2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.24.63cm.【解析】试题分析:(1)在Rt ACD,AC=45,DC=60,根据勾股定理可得AD=即可得到AD 的长度;(2)过点E作EF AB,垂足为F,由AE=AC+CE,在直角EFA中,根据EF=AEsin75°可求出EF的长度,即为点E到车架档AB的距离;试题解析:25.(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵ 1.05 1.211 1.514 1.816 2.04 1.5251114164x ⨯+⨯+⨯+⨯+⨯==++++, ∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.5 1.52+=, ∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg 的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%.有25008%200⨯=.∴这2500只鸡中,质量为2.0kg 的约有200只.点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.26.1b a b++,6﹣. 【解析】原式=()()()()2b a b a b a b a b a b -+++-+ =11b b a b a b a b++=+++,当b=2时,6634==--. 27.(1)a=7,b=7.5,c=4.2;(2)见解析.【解析】【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;(2)结合平均数和中位数、众数、方差三方面的特点进行分析.【详解】(1)甲的平均成绩a=516274829112421⨯+⨯+⨯+⨯+⨯++++=7(环), ∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b=7+82=7.5(环),其方差c=110×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=110×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.【点睛】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.。
北京市门头沟区2019年中考数学模拟试卷(含答案)
2019年北京市门头沟区中考数学模拟试卷一.选择题(满分16分,每小题2分)1.下列说法不正确的是()A.三角形的三条高线交于一点B.直角三角形有三条高C.三角形的三条角平分线交于一点D.三角形的三条中线交于一点2.若代数式有意义,则x的取值范围是()A.x>﹣1且 x≠1 B.x≥﹣1 C.x≠1 D.x≥﹣1且 x≠13.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.4.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180°D.∠3+∠4=180°5.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.6.如图,数轴上表示实数的点可能是()A.点P B.点Q C.点R D.点S7.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市8.小明从家步行到校车站台,等候坐校车去学校,图中的折线表示这一过程中小明的路程S(km)与所花时间t(min)间的函数关系;下列说法:①他步行了1km到校车站台;②他步行的速度是100m/min;③他在校车站台等了6min;④校车运行的速度是200m/min;其中正确的个数是()个.A.1 B.2 C.3 D.4二.填空题(满分16分,每小题2分)9.若△ABC∽△DEF,请写出 2 个不同类型的正确的结论______、_______.10.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_________.11.化简:=_______ .12.你喜欢足球吗?下面是对某学校七年级学生的调查结果:男同学女同学喜欢的人数75 24不喜欢的人数15 36则男同学中喜欢足球的人数占全体同学的百分比是________.13.如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D=___________度.14.A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程___________.15.如图,线段AB=4,M为AB的中点,动点P到点M的距离是1,连接PB,线段PB绕点P逆时针旋转90°得到线段PC,连接AC,则线段AC长度的最大值是________.16.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作Rt△ABC,使其斜边AB=c,一条直角边BC=a.已知线段a,c如图.小芸的作法如下:①取AB=c,作AB的垂直平分线交AB于点O;②以点O为圆心,OB长为半径画圆;③以点B为圆心,a长为半径画弧,与⊙O交于点C;④连接BC,AC.则Rt△ABC即为所求.老师说:“小芸的作法正确.”请回答:小芸的作法中判断∠ACB是直角的依据是______________.三.解答题(共12小题,满分68分)17.(5分)计算:()﹣2﹣+(﹣4)0﹣cos45°.18.(5分)解不等式组19.(5分)如图,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB.(1)求∠ACE;(2)若CD⊥AB于点D,∠CDF=74°,证明:△CFD是直角三角形.20.(5分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.21.(5分)如图,已知AC是矩形ABCD的对角线,AC的垂直平分线EF分别交BC.AD于点E和F,EF交AC 于点O.(1)求证:四边形AECF是菱形;(2)若AC=8,EF=6,求BC的长.22.(5分)已知关于x的方程x2﹣2mx+m2+m﹣2=0有两个不相等的实数根.(1)求m的取值范围.(2)当m为正整数时,求方程的根.23.(5分)如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC 的延长线于点D,AD交⊙O于F,FM⊥AB于H,分别交⊙O、AC于M、N,连接MB,BC.(1)求证:AC平分∠DAE;(2)若cosM =,BE=1,①求⊙O的半径;②求FN的长.24.(5分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:甲 7.29.69.67.89.3 4 6.58.59.99.6乙 5.89.79.76.89.96.98.26.78.69.7根据上面的数据,将下表补充完整:4.0≤x≤4.95.0≤x≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.0甲 1 0 1 2 1 5乙(说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)两组样本数据的平均数、中位数、众数如表所示:人员平均数(万元)中位数(万元)众数(万元)甲8.2 8.9 9.6乙8.2 8.4 9.7结论(1)估计乙业务员能获得奖金的月份有________个;(2)可以推断出____-业务员的销售业绩好,理由为______.(至少从两个不同的角度说明推断的合理性)25.(6分)如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x秒,B.P两点间的距离为y厘米.小新根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小新的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x(s)0 1 2 3 4 5 6 7y(cm)0 1.0 2.0 3.0 2.7 2.7 m 3.6经测量m的值是______(保留一位小数).(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.26.(7分)有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣2.(1)请根据以上信息求出二次函数表达式;(2)将该函数图象中x>x2部分的图象向下翻折与原图象未翻折的部分组成图象“G”,试结合图象分析:平行于x轴的直线y=m与图象“G”的交点的个数情况.27.(7分)在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0<α<120°),得△A1BC1,交AC于点E,AC分别交A1C1.BC于D.F两点.(1)如图①,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;(2)如图②,当α=30°时,试判断四边形BC1DA的形状,并说明理由;(3)在(2)的情况下,求ED的长.28.(8分)如图,已知一次函数y=x+4 与x轴交于点A,与y轴交于点C,一次函数y=﹣x+b经过点C 与x轴交于点B.(1)求直线BC的解析式;(2)点P为x轴上方直线BC上一点,点G为线段B P的中点,点F为线段AB的中点,连接GF,取GF的中点M,射线PM交x轴于点H,点 D 为线段PH的中点,点E为线段AH的中点,连接DE,求证:DE=GF;(3)在(2)的条件下,延长 PH 至 Q,使 PM=MQ,连接 AQ、BM,若∠BAQ+∠BMQ=∠DEB,求点 P 的坐标.参考答案一.选择题1.解:A.三角形的三条高线所在的直线交于一点,错误;B.直角三角形有三条高,正确;C.三角形的三条角平分线交于一点,正确;D.三角形的三条中线交于一点,正确;故选:A.2.解:由题意得:x+1≥0,且x﹣1≠0,解得:x≥﹣1,且x≠1,故选:D.3.解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.4.解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选:D.5.解:A.是轴对称图形,不是中心对称图形,故本选项错误;B.既是轴对称图形,又是中心对称图形,故本选项正确;C.是轴对称图形,不是中心对称图形,故本选项错误;D.是轴对称图形,不是中心对称图形,故本选项错误.故选:B.6.解:∵2<<3,∴数轴上表示实数的点可能是点Q.故选:B.7.解:A.甲超市的利润逐月减少,此选项正确;B.乙超市的利润在1月至4月间逐月增加,此选项正确;C.8月份两家超市利润相同,此选项正确;D.乙超市在9月份的利润不一定超过甲超市,此选项错误;故选:D.8.解:根据题意得:小明用了10分钟步行了1km到校站台,即小明步行了1km到校车站台,①正确,1000÷10=100m/min,即他步行的速度是100m/min,②正确,小明在校车站台从第10min等到第16min,即他在校车站台等了6min,③正确,小明用了14min的时间坐校车,走了7km的路程,7000÷14=500m/min,即校车运行的速度是500m/min,④不正确,即正确的是①②③,故选:C.二.填空题(共8小题,满分16分,每小题2分)9.解:∵△ABC∽△DEF,∴∠ABC=∠DEF,==,故答案为:∠ABC=∠DEF;==.10.解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.11.解:原式==,故答案为:.12.解:由题可得,男同学中喜欢足球的人数占全体同学的百分比是:×100%=50%,故答案为:50%.13.解:连接OC,由圆周角定理得,∠COD=2∠A=64°,∵CD为⊙O的切线,∴OC⊥CD,∴∠D=90°﹣∠COD=26°,故答案为:26.14.解:设乙车的速度是x千米/小时,则根据题意,可列方程:﹣=.故答案为:﹣=.15.解:如图所示:过点C作CD⊥y轴,垂足为D,过点P作PE⊥DC,垂足为E,延长EP交x轴于点F.∵AB=4,O为AB的中点,∴A(﹣2,0),B(2,0).设点P的坐标为(x,y),则x2+y2=1.∵∠EPC+∠BPF=90°,∠EPC+∠ECP=90°,∴∠ECP=∠FPB.由旋转的性质可知:PC=PB.在△ECP和△FPB中,,∴△ECP≌△FPB.∴EC=PF=y,FB=EP=2﹣x.∴C(x+y,y+2﹣x).∵AB=4,O为AB的中点,∴AC==.∵x2+y2=1,∴AC=.∵﹣1≤y≤1,∴当y=1时,AC有最大值,AC的最大值为=3.故答案为:3.16.解:小芸的作法中判断∠ACB是直角的依据是直径所对的圆周角为直角.故答案为直径所对的圆周角为直角.三.解答题(共12小题,满分68分)17.解:原式=4﹣3+1﹣×=2﹣1=1.18.解:解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<3,则不等式组的解集为﹣1≤x<3.19.解:(1)∵∠A=30°,∠B=62°,∴∠ACB=180°﹣∠A﹣∠B=88°,∵CE平分∠ACB,∴∠ACE=∠BCE=∠ACB=44°;(2)∵CD⊥AB,∴∠CDB=90°,∴∠BCD=90°﹣∠B=28°,∴∠FCD=∠ECB﹣∠BCD=16°,∵∠CDF=74°,∴∠CFD=180°﹣∠FCD﹣∠CDF=90°,∴△CFD是直角三角形.20.解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.21.(1)证明:∵四边形ABCD是矩形∴AD∥BC,∴∠DAC=∠ACB,∵EF垂直平分AC,∴AF=FC,AE=EC,∴∠FAC=∠FCA,∴∠FCA=∠ACB,∵∠FCA+∠CFE=90°,∠ACB+∠CEF=90°,∴∠CFE=∠CEF,∴CE=CF,∴AF=FC=CE=AE,∴四边形AECF是菱形.证法二:∵四边形ABCD是矩形∴AD∥BC,∴∠DAC=∠ACB,∠AFO=∠CEO,∵EF垂直平分AC,∴OA=OC,∴△AOF≌△COE,∴OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.(2)解:∵四边形AECF是菱形∴OC=AC=4,OE=EF=3∴CE===5,∵∠COE=∠ABC=90,∠OCE=∠BCA,∴△COE∽△CBA,∴=,∴=,∴BC=.22.解:(1)∵关于x的方程x2﹣2mx+m2+m﹣2=0有两个不相等的实数根,∴△=(﹣2m)2﹣4(m2+m﹣2)>0.解得m<2;(2)由(1)知,m<2.有m为正整数,∴m=1,将m=1代入原方程,得x2﹣2x=0x(x﹣2)=0,解得x1=0,x2=2.23.(1)证明:连接OC,如图,∵直线DE与⊙O相切于点C,∴OC⊥DE,又∵AD⊥DE,∴OC∥AD.∴∠1=∠3∵OA=OC,∴∠2=∠3,∴∠1=∠2,∴AC平方∠DAE;(2)解:①∵AB为直径,∴∠AFB=90°,而DE⊥AD,∴BF∥DE,∴OC⊥BF,∴=,∴∠COE=∠FAB,而∠FAB=∠M,∴∠COE=∠M,设⊙O的半径为r,在Rt△OCE中,cos∠COE==,即=,解得r=4,即⊙O的半径为4;②连接BF,如图,在Rt△AFB中,cos∠FAB=,∴AF=8×=在Rt△OCE中,OE=5,OC=4,∴CE=3,∵AB⊥FM,∴,∴∠5=∠4,∵FB∥DE,∴∠5=∠E=∠4,∵=,∴∠1=∠2,∴△AFN∽△AEC,∴=,即=,∴F N=.24.解:如图,销售额数量x人员4.0≤x≤4.95.0≤x≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.0乙0 1 3 0 2 4(1)估计乙业务员能获得奖金的月份有6个;(2)可以推断出甲业务员的销售业绩好,理由为:甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.故答案为0,1,3,0,2,4;6;甲,甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.25.解:(1)经测量,当t=6时,BP=3.0.(当t=6时,CP=6﹣BC=3,∴BC=CP.∵∠C=60°,∴当t=6时,△BCP为等边三角形.)故答案为:3.0.(2)描点、连线,画出图象,如图1所示.(3)在曲线部分的最低点时,BP⊥AC,如图2所示.26.解:(1)由上述信息可知该函数图象的顶点坐标为:(3,﹣2),设二次函数的表达式为:y=a(x﹣3)2﹣2.∵该函数图象经过点A(1,0),∴0=a(x﹣3)2﹣2,解得a=∴二次函数解析式为:y=(x﹣3)2﹣2.(2)如图所示:当m>0时,直线y=m与G有一个交点;当m=0时,直线y=m与G有两个交点;当﹣2<m<0时,直线y=m与G有三个交点;当m=﹣2时,直线y=m与G有两个交点;当m<﹣2时,直线y=m与G有一个交点.27.解:(1)EA1=FC.理由如下:∵AB=BC,∴∠A=∠C,∵△ABC绕点B顺时针旋转角α得△A1BC1,∴∠ABE=∠C1BF,AB=BC=A1B=BC1,在△ABE和△C1BF中,,∴△ABE≌△C1BF(ASA),∴BE=BF,∴A1B﹣BE=BC﹣BF,即EA1=FC;(2)四边形BC1DA是菱形.理由如下:∵旋转角α=30°,∠ABC=120°,∴∠ABC1=∠ABC+α=120°+30°=150°,∵∠ABC=120°,AB=BC,∴∠A=∠C=(180°﹣120°)=30°,∴∠ABC1+∠C1=150°+30°=180°,∠ABC1+∠A=150°+30°=180°,∴AB∥C1D,AD∥BC1,∴四边形BC1DA是平行四边形,又∵AB=BC1,∴四边形BC1DA是菱形;(3)过点E作EG⊥AB,∵∠A=∠ABA1=30°,∴AG=BG=AB=1,在Rt△AEG中,AE===,由(2)知AD=AB=2,∴DE=AD﹣AE=2﹣.28.(1)解:∵一次函数y=x+4 与x轴交于点A,与y轴交于点C,∴C(0,4),A(﹣5,0).∵一次函数y=﹣x+b经过点C,∴b=4,∴一次函数解析式为y=﹣x+4.(2)证明:如图1中,连接AP.在△APB中,∵PG=GB,AF=FB,∴FG=AP,在△APH中,∵AE=EH,PD=DH,∴DE=AP,∴FG=DE.(3)解:如图2中,延长GF交AQ于K,连接PE.∵GM=MF,∠PMG=∠QMF,PM=MQ,∴△PGM≌△QFM,∴QF=PG=GB,∴∠FQM=∠MPG,∴QF∥PB,∴四边形FGBQ是平行四边形,∴BQ=FG=DE,BQ∥DE,可得△DEH≌△QBH,∴EH=HB=AE,∴H(1,0),设GM=a,则MF=a,PA=4a,∵GK∥AP,PM=MQ,∴AK=KQ,∴MK=2a,FK=a,∴FM=FK,∠MFB=∠AFK,BF=AF,∴△AFK≌△BFM,∴∠FAK=∠MBF,∴BM∥AQ,∴∠BAQ=∠ABM,∵∠BAQ+∠BMQ=∠DEB=∠PAB,∴∠ABM+∠BMQ=∠PAB=∠PHA,∴PA=PH,∵AE=EH,∴PE⊥AH,设AE=EH=x,则EO=x﹣1,EO=OA﹣AE=5﹣x,∴5﹣x=x﹣1,∴x=3,∴PE=EB=6,EO=2,∴P(﹣2,6).。
2019年北京市门头沟区中考数学二模试题卷(含答案和解析)
2019年北京市门头沟区中考数学二模试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)2013年12月2日1时30分,中国于西昌卫星发射中心成功将“嫦娥三号”探测器送入轨道.2013年12月15日4时35分,“嫦娥三号”探测器与“玉兔号”月球车分离,“玉兔号”月球车顺利驶抵月球表面,留下了中国在月球上的第一个足迹.“玉兔号”月球车一共在月球上工作了972天,约23000小时.将23000用科学记数法表示为()2.3. 4. 5.6.A. 2.3X103 B. 2.3X104(2分)在如图所示的四个几何体中,(2分)在下列运算中,正确的是(235A.a*cin,2、35B.)=aC.23X103俯视图是矩形的是()(2分)如果a-b=2y/3,那么代数式D.0.23X105D.C.B.J-6.23a~a=a D.5,5_10ci+。
一a2.,2。
:b-的值为2a a-bC.3^3D.(2分)七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为()32c-t(2分)已知点A(1,m)与点B(3,n)都在反比例函数y=—(R>0)的图象上,那x么农与〃的关系是()a.V5 B.2扼B•苦)3)4扼D-土A.m<nB.m>n D.不能确定C."2=〃7.(2分)如图,线段AB是。
的直径,弦CD LAB,Z.CAB=3Q°,OD=2,那么DC的长等于()C.V3D.2V38.(2分)团体购买某公园门票,票价如表,某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为()购票人数1〜5051〜100100以上门票价格13元/人11元/人9元/人A.20B.35C.30D.40二、填空题(本题共16分,每小题2分)9.(2分)函数—-—中,自变量x的取值范围是.10.(2分)写出一个比2大比3小的无理数(用含根号的式子表示).11.(2分)如图,在矩形中,E是CD的延长线上一点,连接BE交AD于点F.如果AB=4,BC=6,DE=3,那么AF的长为.BE12.(2分)用一组a,b,c(c70))的值说明命题"如果a<b,那么皂vb”是错误的,C C这组值可以是7=,b=,c=.13.(2分)《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚X人,小和尚V人,可列方程组为14.(2分)如图是利用平面直角坐标系画出的老北京一些地点的分别示意图,这个坐标系分别以正东和正北方向为x轴和y轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为.北"西便打矗b初WTf--4.-----|I I■I I■I I|liiaiiaiilL■■■o«••;••■■■■■•.$•:宜武门:正阳门崇文打::••♦■•Y-•-liiaiiaiilr----<---i-•・♦•••«»--liiaiiiiil15.(2分)如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:.A;x16.(2分)当三角形中的一个内角a是另一个内角P的一半时,我们称此三角形为“特征三角形”,其中a称为“特征角”.如果一个“特征三角形”的“特征角”为直角三角形,则这个“特征角”的度数为.三、解答题(本题共68分,第17〜22题每小题5分,第23〜26题每小题5分,第27〜28题每小题5分)解答应写出文字说明、证明过程或演算步骤.17.(5分)计算:(n-5)°+4sin45°+|-1|.is.(5分)解不等式L-iwMx-l,并把它的解集在数轴上表示出来.232-4-3-2-10123419.(5分)已知:关于x的一元二次方程U-4x+2m=。
北京市门头沟区2019年初三数学二模试题评标答案
门头沟区2019年初三年级综合练习(二)数学试卷答案及评分参考2019年5月一、选择题(本题共16分,每小题2分)题号12345678答案B D A A C B D C二、填空题(本题共16分,每小题2分)题号910111213141516答案13x ¹略247略略(-3,1)略30°,45°三、解答题(本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)17.(本小题满分5分)解:()054sin 45 1.π-+︒+-1412=+⨯+………………………………………………………………………………3分2=+…………………………………………………………………………………………5分18.(本小题满分5分)解:1211232x x --≤3643x x ≤--……………………………………………………………………………………1分3463x x ≤--……………………………………………………………………………………2分3x ≤-…………………………………………………………………………………………3分3.x ≥-………………………………………………………………………………………4分把它的解集在数轴上表示为:……………………………………………5分19.(本小题满分5分)解:(1)由题意得2(4)4120m >∆=-+⨯⨯,………………………………………………………1分解得 2.m <…………………………………………………………………………………2分(2)∵m 为非负整数,∴0,1.m =…………………………………………………………………………………3分当0m =时,原方程为240x x -=,解得10x =,2 4.x =当1m =时,原方程为2420x x -+=,解得此方程的根不是整数,∴1m =应舍去.20.(本小题满分5分)解:(1)尺规作图正确;…………………………………………………………………………………3分(2)填空正确.………………………………………………………………………………………5分21.(本小题满分5分)(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC .………………………………………………………………………………1分∴∠ADE =∠DEC .∵∠AFC =∠DEC ,∴∠AFC =∠ADE ,∴DE ∥FC .∴四边形DECF 是平行四边形.…………………………………………………………2分(2)解:如图,过点D 作DH ⊥BC 于点H ,………………………………………………………3分∵四边形ABCD 是平行四边形,∴AB=CD =13∵12tan 5BCD ∠=,CD =13,∴DH =12,CH =5.…………………4分∵DF =14,∴CE =14.∴EH =9.∴DE=15.∴CF=DE =15.…………………………………………………………………………………5分22.(本小题满分5分)解:(1)把A (-4,n )代入4y x=-中,得1n =,…………………………………………………1分把A (-4,1)代入y x b =-+中,得3b =-……………………………………………2分解方程组3,4.y x y x =--⎧⎪⎨=-⎪⎩得4,1.x y =-⎧⎨=⎩,1,4.x y =⎧⎨=-⎩∴点B 的坐标是(1,4)-…………………………………………………………………3分(2)点P 的是坐标(3,0)或(11,0)-.…………………………………………………………5分23.(本小题满分6分)(1)证明:连接OC ,∵DC 是⊙O 的切线,∴DC ⊥OC .……………………1分又∵DC ⊥BD ,∴OC ∥BD .∴∠1=∠3.………………………………………………………………………………2分∵OC =OB ,∴∠1=∠2.∴∠2=∠3.(2)解:连接AE 和AC ,∵AB 是⊙O 的直径,DC ⊥BD ,∴∠ACB =∠AEB =∠CDB =90°.∵1cos 2ABD ∠=,OA =2,BC 平分∠DBA ,∴∠ABD =60°,∠2=∠3=30°,AB =4.在Rt △ACB 中,∠ACB =90°,AB =4,∠2=30°,∴BC =.在Rt △CDB 中,∠CDB =90°,BC =,∠3=30°,∴BD =3.在Rt △AEB 中,∠AEB =90°,AB =4,∠ABE =60°,∴BE =2.∴DE =1.………………………………………………………………………………………6分24.(本小题满分6分)解:(1)3.00;…………………………………………………………………………………………1分(2)略;……………………………………………………………………………………………3分(3)2.50,2.00,3.00.……………………………………………………………………………6分25.(本小题满分6分)解:(1)11;…………………………………………………………………………………………2分(2)略;……………………………………………………………………………………………4分(3)200.…………………………………………………………………………………………6分26.(本小题满分6分)解:(1)∵()222314y ax ax a a x a =--=--,………………………………………………………1分∴该抛物线的顶点为()1,4.a -………………………………………………………………2分(2)①∵抛物线223y ax ax a =--经过(1,3),∴323a a a =--,解得3.4a =-…………………………………………………………3分②6个.………………………………………………………………………………………4分(3)2132a --<,12.23a <≤……………………………………………………………………6分27.(本小题满分7分)解:(1)∵△ABC 是等边三角形,∴∠BAC =60°.………………………………………………………………………………1分∵∠BAD =α,∴∠DAC =∠BAC -∠BAD =60°-α.………………………………………………………2分又∵∠AFG =∠EFD =60°,(2)线段CG 与BD 之间的数量关系是CG =2BD .……………………………………………4分证明如下:在AC 上截取CH =BD ,交AC 于H ,连接BE ,BH ,AE ,BH 交AD 于M .∵D ,E 关于AB 对称,∴∠BAE =∠BAD =α,∠ABE =∠ABC =60°,∴BD =BE ,AD =AE .∴∠EAC =∠BAE +∠BAC =60°+α.∴∠EAC =∠AGE .∴EA =EG .∵等边△ABC 中,AB =BC ,∠ABD =∠C =60°.∴△ABD ≌△BCH (SAS ).…………………………………………………5分∴AD =BH ,∠HBC =∠DAB =α.∴EG =BH .∴∠ABM =∠ABC -∠HBC =60°-α.∴∠BMD =∠ABM +∠BAD =60°.∴∠BMD =∠EFD =60°.∴EG //BH .∴四边形EGHB 是平行四边形.………………………………………………6分∴BE =GH .∴BE =GH =CH =BD .∴CG =GH +CH =2BD .………………………………………………………7分28.(本小题满分7分)解:(1)①3;…………………………………………………………………………………2分②如图,设P (0,t ).∵点P 在线段EF 上,∴-3≤t ≤3.当0≤t ≤3时,由题意可知d max =PC ,d min =PE .∴PE =3-t ,PF =t +3,CF =3.∵(),7d P ABCD =正方形,∴PC +PE =7.∴PC =4+t .在Rt △PCF 中,由勾股定理得()()222433t t +=++,解得 1.t =…………………………………………………………………………………4分∴P (0,1).当0>t ≥-3时,由对称性可知P (0,-1).综上,P 的坐标为(0,1)和(0,-1).………………………………………………5分(2)3 3.t -<<…………………………………………………………………………………7分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
北京市门头沟区中考二模数学试题及答案
门头沟区初三二模考试试卷数 学学校 姓名 准考证号__________________一、选择题(本题共32分,每小题4分) 1.3-的倒数是A .3B .-3C .13-D .132. 门城湖公园位于门城湖畔,南至永定河管理处,北至城子东街,设计水体面积670000平方米,水体蓄水量160万立方米.请将670000用科学计数法表示A. 46710⨯B. 56.710⨯C. 60.6710⨯D. 60.610⨯ 3. 窗花是我国的传统艺术,下列四个窗花图案中,不是..轴对称图形的是A. B. C. D.4.为了调查某班的学生每天使用零花钱的使用情况,张华随机调查了20名同学,结果 如下表:每天使用零花钱(单位:元)1 2 3 4 5 人数13655则这20名同学每天使用的零花钱的平均数和中位数分别是 A .3,3 B .3,3.5 C .3.5,3.5 D .3.5,35.在九张形状、大小、质地等完全相同的卡片的一面分别标上数字1,2,3,4,5,6,7,8,9,将这九张卡片放到不透明的桌面上洗匀,且标有数字的一面向下,从中随机摸取一张卡片,则摸到卡片上标有的数字是2的整数倍的概率为 A .45 B .49 C .59 D .12考生须知 1.本试卷共6页,共五道大题,25道小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
6. 已知一扇形的圆心角是60︒,扇形的半径为9,则这个扇形的弧长..是 A. π B. 2π C. 3π D. 4π7. 如图,BD 是⊙O 的直径,∠A=60︒,则∠DBC 的度数是 A. 30︒ B. 45︒ C. 60︒ D. 25︒8. 如图,把左边的图形折叠起来,它会变为右面的哪幅立体图形A . B. C. D.二、填空题(本题共16分,每小题4分)9.请写出一个对称轴为1,且开口朝上的二次函数关系式 . 10. 分解因式a am am 962+-=____________________. 11. 阳光通过窗口照射到室内,在地面上留下2.7m 宽的亮区 (如图所示),已知亮区到窗口下的墙脚距离EC =8.7m , 窗口高AB =1.8m ,则窗口底边离地面的高BC =________m .12. 我们知道,一元二次方程12-=x 没有实数根,即不存在一个实数的平方 等于-1,若我们规定一个新数“i ”,使其满足12-=i (即方程12-=x 有一个根为i ),并且进一步规定: 一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有,1i i =12-=i ,,).1(23i i i i i -=-=⋅=.1)1()(2224=-==i i 从而对任意正整数n ,则6i =______________;由于,.)(.4414i i i i i in n n ===+同理可得,1,,143424=-=-=++n n n i i i i 那么,20132012432i i i i i i +⋅⋅⋅++++的值为________________三、解答题(本题共30分,每小题5分)13. 计算:()011()33-2cos 454π-----+︒. 14.解分式方程 26111x x x -=+-15. 已知13x y =,求y x y y x y x y xy x x -++-⋅+-2222222的值.16已知:如图,四边形ABCD 是正方形.G 是 BC 上的一点,AG DE ⊥于E ,AG BF ⊥于点F .O BDA DOyx42BA(1)求证:△ABF ≌△DAE ; (2)求证:FB EF AF +=.17.如图,直线AB 与y 轴交于点A ,与x 轴交于点B ,点A 的纵坐标、点B 的横坐标如图所示.(1)求直线AB 的解析式;(2)点P 在直线AB 上,是否存在点P 使得△AOP 的面积为1,如果有请直接写出所有满足条件的点P 的坐标18. 节能减排已经是全社会都在关注的问题,低碳出行是倡导的绿色理念.据调查从某地到北京,若乘飞机需要2小时,若乘汽车需要7小时.这两种交通工具平均每小时二氧化碳的排放量之和为65千克,飞机全程二氧化碳的排放总量比汽车全程二氧化碳的排放总量多40千克,求飞机和汽车平均每小时二氧化碳的排放量.四、解答题(本题共20分,每小题5分)19. 如图,在平行四边形ABCD 中,点E ,F 分别是AB ,CD 的中点.(1)求证:四边形AEFD 是平行四边形; (2)若∠A =60°,AB =6,AD =4,求BD 的长.20. 如图,线段BC 切⊙O 于点C ,以AC 为直径,连接AB 交⊙O 于点D ,点E 是BC 的中点,交AB 于点D ,连结OB 、DE 交于点F . (1)求证:DE 是⊙O 的切线; (2)若4AC =,43BC =求EFFD的值.21. 在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下三个统计图表(如图1,图2,图3),请根据图表提供的信息,回答下列问题:(1)图1中“统计与概率”所在扇形的圆心角为 度; (2)图2、3中的a = ,b = ;(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?1234-1-2-1-212345xyO22. 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如2322(12)+=+.善于思考的小明进行了以下探索:设a+b=(m +n)2(其中a 、b 、m 、n 均为整数),则有a +b=m 2+2n 2+2mn.∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把类似a+b 的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1) 当a 、b 、m 、n 均为正整数时,若23(3)a b m n +=+用含m 、n 的式子分别表示a 、b ,则a = ,b= ;(2)利用探索的结论,找一组正整数a 、b 、m 、n 填空: +=( + )2;(3)若243(3)a m n +=+且a 、m 、n 均为正整数,求a 的值?五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知二次函数223y x x =-++图象的对称轴为直线. (1)请求出该函数图像的对称轴; (2)在坐标系内作出该函数的图像;(3)有一条直线过点p (1,5),若该直线与二次函数223y x x =-++只有一个交点,请求出所有满足条件的直线的关系式.24. 在△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,M 是BC 边中点中点,连接MD 和MEEDBCEDBC MBC(1)如图24-1所示,若AB=AC ,则MD 和ME 的数量关系是(2)如图24-2所示,若AB ≠AC 其他条件不变,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程;(3) 在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧..作等腰直角三角形,M 是BC 的中点,连接MD 和ME ,请在图24-3中补全图形,并直接判断△MED 的形状.25.如图25-1,抛物线y =-x 2+bx +c 与直线221+=x y 交于C 、D 两点,其中点C 在y 轴图24-1图24-2图24-3上,点D 的坐标为)273(,. 点P 是y 轴右侧的抛物线上一动点,过点P 作PE ⊥x 轴于点E ,交CD 于点F .(1)求抛物线的解析式;(2)若点P 的横坐标为m ,当m 为何值时,以O 、C 、P 、F 为顶点的四边形是平行四边形?请说明理由.(3)若存在点P ,使∠PCF =45°,请直接写出....相应的点P 的坐标.PE O FCDB A xy O CDB A 备用图yx图25-1门头沟区初三二模考试 数学试卷答案及评分参考一、 选择题(本题共32分,每小题4分) 题号 1 2 3 4 5 6 7 8 答案CBDCBCAB二、 填空题(本题共16分,每小题4分) 题号 9 1011 12答案不唯一2(3)a m -4-1(2分)i(2分)三、解答题(本题共30分,每小题5分)13.解= 4312---+……………………………………………………4分=82-+ ……………………………………………………5分14. 解: 去分母,得()()()1611x x x x --=+-. ……………………2分 解得 5x =-. ……………………4分检验:把5x =-代入()()110x x +-≠所以5x =-是原方程的解. ……………………5分15解:y x y y x y x yxy x x-++-⋅+-2222222 =yx yy x y x y x y x x -+++-⋅-2))(()(22·················· 2分= yx y y x x -+-2)(2=)()(2y x y x -+. ·························· 3分当13x y =时,3y x =. ························ 4分 原式=2(3)(3)x x x x +-=-4. ······················· 5分16. (1)∵ ABCD 是正方形, ∴ 090=∠BAD .∴ 090=∠+∠DAE BAF .∵ AG DE ⊥于E , ∴ 090=∠+∠ADE DAE .∴ ADE BAF ∠=∠. …………………1分 ∵ AG DE ⊥于E ,AG BF ⊥于F ,∴ 090=∠=∠DEA AFB . …………………2分 ∵ 在正方形ABCD 中,AD AB =, …………………3分 ∴ △ABF ≌△DAE . …………………4分 (2)证明:∵ △ABF ≌△DAE , ∴ AE BF =.∵ EF AE AF +=, ∴ EF BF AF +=. …………………5分 17. (1)根据题意得,A (0,2),B (4,0)…………………1分 设直线AB 的解析式为(0)y kx b k =+≠则240b k b =⎧⎨+=⎩ …………………2分∴122k b ⎧=-⎪⎨⎪=⎩ …………………3分∴直线AB 的解析式为122y x =-+ (2) 1235(1,);(1,)22p p - …………………5分18. 设飞机和坐汽车每小时的二氧化碳排放量分别是x 千克和y 千克. 根据题意,得 (1)分65,2740.x y x y +=⎧⎨-=⎩ …………………3分 解得:55,10.x y =⎧⎨=⎩ …………………4分答: 飞机和汽车每小时的二氧化碳排放量分别是55千克和10千克. ………5分四、解答题(本题共20分,每小题5分)19.(1)证明:如图∵ 四边形ABCD 是平行四边形,∴ AB ∥CD 且AB=CD . ﹍﹍﹍﹍1分 ∵ 点E ,F 分别是AB ,CD 的中点,∴ CD DF AB AE 21,21==.∴ AE=DF . ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 2分 ∴ 四边形AEFD 是平行四边形. ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3分(2)解:过点D 作DG ⊥AB 于点G .在Rt △AGD 中,∵90,60,AGD A ∠=︒∠=︒ AD =4, ∴ cos 602,sin 6023AG AD DG AD =⋅︒==⋅︒= ∴ 4BG AB AG =-=.在Rt △DGB 中,∴ 22121627DB DG BG =+=+= ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍5分20. (1)证明:连结OD 、CD (如图) ∵AC 是⊙O 直径∴90ADC BDC ∠=∠=︒. ………………1分 ∵点E 是BC 的中点, DE BE EC ∴==.OA OD DE BE ==,,ADO A ∴∠=∠,DBE BDE ∠=∠.……………2分 90DBE A ∠+∠=︒, 90BDE ADO ∴∠+∠=︒.90EDO ∴∠=︒. ……………3分 ∴OD DE ⊥.即DE 是⊙O 的切线 . (2)解:连结OE .则OE ∥AB ,12OE AB = ∴△OEF ∽△BDF . ∵BC 切⊙O 于点C ∴90ACB ∴∠=︒在Rt ABC △中,4,43AC BC ==,∴ 根据勾股定理得,AB = 8,……………4分 ∴ OE = 4,∵∠A =60°.∴ AOD △是边长为2的等边三角形, ∴ 2AD =,BD = AB-AD =6. ∴4263EF OE FD BD ===……………………5分21.(1)36. ……………1分 (2)60; 14 ……………3分 (3)依题意,得45%×60=27 ……………4分 答:唐老师应安排27课时复习“数与代数”内容。
北京市门头沟区2019-2020学年中考数学二模考试卷含解析
北京市门头沟区2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.a2·a3﹦a6B.a3+ a3﹦a6C.|-a2|﹦a2D.(-a2)3﹦a62.如果关于x的不等式组2030x ax b-≥⎧⎨-≤⎩的整数解仅有2x=、3x=,那么适合这个不等式组的整数a、b组成的有序数对(,)a b共有()A.3个B.4个C.5个D.6个3.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为24.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.5.正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD与QR相交于S点,则四边形RBCS的面积为()A.8 B.172C.283D.7786.如图,△ABC是⊙O的内接三角形,∠BOC=120°,则∠A等于()A .50°B .60°C .55°D .65°7.如图,把长方形纸片ABCD 折叠,使顶点A 与顶点C 重合在一起,EF 为折痕.若AB=9,BC=3,试求以折痕EF 为边长的正方形面积( )A .11B .10C .9D .168.如图,已知直线//AB CD ,点E ,F 分别在AB 、CD 上,:3:4CFE EFB ∠∠=,如果∠B =40°,那么BEF ∠=( )A .20°B .40°C .60°D .80°9.全球芯片制造已经进入10纳米到7纳米器件的量产时代. 中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米. 数据0.000000007用科学计数法表示为( ) A .9710-⨯B .10710-⨯C .11710-⨯D .12710-⨯10.已知二次函数y =ax 2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c <1;②a ﹣b+c <1;③b+2a <1;④abc >1.其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③11.设α,β是一元二次方程x 2+2x -1=0的两个根,则αβ的值是( ) A .2 B .1 C .-2 D .-112.一元二次方程210x x --=的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).14.下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第n根图形需要____________根火柴.15.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于_____.16.如图,点A是双曲线y=﹣9x在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=kx上运动,则k的值为_____.177+3)73_____.18.已知抛物线y=-x2+mx+2-m,在自变量x的值满足-1≤x≤2的情况下.若对应的函数值y的最大值为6,则m的值为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE 上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.20.(6分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:请将以上两幅统计图补充完整;若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_ ▲ 人达标;若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?21.(6分)随着高铁的建设,春运期间动车组发送旅客量越来越大,相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间的铁路发送旅客量情况进行了调查,过程如下.(Ⅰ)收集、整理数据请将表格补充完整:(Ⅱ)描述数据为了更直观地显示动车组发送旅客量占比的变化趋势,需要用什么图(回答“折线图”或“扇形图”)进行描述;(Ⅲ)分析数据、做出推测预估2019年春运期间动车组发送旅客量占比约为多少,说明你的预估理由.22.(8分)已知矩形ABCD,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD的外部(如图),将半圆O绕点A顺时针旋转α度(0°≤α≤180°)(1)半圆的直径落在对角线AC上时,如图所示,半圆与AB的交点为M,求AM的长;(2)半圆与直线CD相切时,切点为N,与线段AD的交点为P,如图所示,求劣弧AP的长;(3)在旋转过程中,半圆弧与直线CD只有一个交点时,设此交点与点C的距离为d,直接写出d的取值范围.23.(8分)2018年4月12日上午,新中国历史上最大规模的海上阅兵在南海海域隆重举行,中国人解放军海军多艘战舰、多架战机和1万余名官兵参加了海上阅兵式,已知战舰和战机总数是124,战数的3倍比战机数的2倍少8.问有多少艘战舰和多少架战机参加了此次阅兵.24.(10分)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)初中部 a 85 b s初中2高中部85 c 100 160(1)根据图示计算出a、b、c的值;结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.25.(10分)某街道需要铺设管线的总长为9000m,计划由甲队施工,每天完成150m.工作一段时间后,y m与甲队工作时间x(天)因为天气原因,想要40天完工,所以增加了乙队.如图表示剩余管线的长度()之间的函数关系图象.(1)直接写出点B的坐标;(2)求线段BC所对应的函数解析式,并写出自变量x的取值范围;(3)直接写出乙队工作25天后剩余管线的长度.26.(12分)已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.求:(1)求∠CDB的度数;(2)当AD=2时,求对角线BD的长和梯形ABCD的面积.27.(12分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据同底数幂相乘,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解. 【详解】a 2·a 3﹦a 5,故A 项错误;a 3+ a 3﹦2a 3,故B 项错误;a 3+ a 3﹦- a 6,故D 项错误,选C. 【点睛】本题考查同底数幂加减乘除及乘方,解题的关键是清楚运算法则. 2.D 【解析】 【分析】求出不等式组的解集,根据已知求出1<2a ≤2、3≤3b<4,求出2<a≤4、9≤b <12,即可得出答案. 【详解】解不等式2x−a≥0,得:x≥2a, 解不等式3x−b≤0,得:x≤3b,∵不等式组的整数解仅有x =2、x =3, 则1<2a ≤2、3≤3b<4, 解得:2<a≤4、9≤b <12, 则a =3时,b =9、10、11; 当a =4时,b =9、10、11;所以适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有6个, 故选:D . 【点睛】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a 、b 的值. 3.A 【解析】 【分析】根据中位数,众数,平均数,方差等知识即可判断; 【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1. 故选A . 【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型. 4.D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A. ∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B. ∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C. ∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;D. ∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的定义,解题的关键是熟练的掌握中心对称图形与轴对称图形的定义.5.D【解析】【分析】根据正方形的边长,根据勾股定理求出AR,求出△ABR∽△DRS,求出DS,根据面积公式求出即可.【详解】∵正方形ABCD的面积为16,正方形BPQR面积为25,∴正方形ABCD的边长为4,正方形BPQR的边长为5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四边形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴AB AR DR DS=,∴431DS =,∴DS=34,∴∴阴影部分的面积S=S正方形ABCD-S△ABR-S△RDS=4×4-12×4×3-12×34×1=778,故选:D.【点睛】本题考查了正方形的性质,相似三角形的性质和判定,能求出△ABR和△RDS的面积是解此题的关键.6.B【解析】【分析】由圆周角定理即可解答.【详解】∵△ABC是⊙O的内接三角形,∴∠A=12∠BOC,而∠BOC=120°,∴∠A=60°.故选B.【点睛】本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键.7.B【解析】【分析】根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.【详解】如图,∵四边形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵H BHC BCHCE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EHC ≌△FBC , ∴BF=HE , ∴BF=HE=DE , 设BF=EH=DE=x , 则AF=CF=9﹣x ,在Rt △BCF 中,由BF 2+BC 2=CF 2可得x 2+32=(9﹣x )2, 解得:x=4,即DE=EH=BF=4, 则AG=DE=EH=BF=4,∴GF=AB ﹣AG ﹣BF=9﹣4﹣4=1, ∴EF 2=EG 2+GF 2=32+12=10, 故选B .【点睛】本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键. 8.C 【解析】 【分析】根据平行线的性质,可得CFB ∠的度数,再根据:3:4CFE EFB ∠∠=以及平行线的性质,即可得出BEF ∠的度数.【详解】∵//AB CD ,40ABF ︒∠=, ∴180140CFB B ︒︒∠=-∠=, ∵:3:4CFE EFB ∠∠=, ∴3607CFE CFB ︒∠=∠=, ∵//AB CD ,∴60BEF CFE ︒∠=∠=, 故选C .【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.9.A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】数据0.000000007用科学记数法表示为7×10-1.故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=1,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;③由抛物线的开口向下知a<1,∵对称轴为1>x=﹣>1,∴2a+b<1,故本选项正确;④对称轴为x=﹣>1,∴a、b异号,即b>1,∴abc<1,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;(4)当x=1时,可以确定y=a+b+C 的值;当x=﹣1时,可以确定y=a ﹣b+c 的值. 11.D 【解析】试题分析:∵α、β是一元二次方程的两个根,∴αβ==-1,故选D .考点:根与系数的关系. 12.A 【解析】 【分析】把a=1,b=-1,c=-1,代入24b ac ∆=-,然后计算∆,最后根据计算结果判断方程根的情况. 【详解】21,1,14145a b c b ac ==-=-∴∆-=+=Q∴方程有两个不相等的实数根.故选A. 【点睛】本题考查根的判别式,把a=1,b=-1,c=-1,代入24b ac ∆=-计算是解题的突破口. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.43 【解析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可. 解:如图所示,在RtABC 中,tan ∠ACB=ABBC,∴BC=0tan tan 60AB x ACB =∠, 同理:BD=tan 30x,∵两次测量的影长相差8米,∴00tan 30tan 60x x-=8,∴3故答案为43.“点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.14.62n+【解析】【分析】根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.【详解】第一个图中有8根火柴棒组成,第二个图中有8+6个火柴棒组成,第三个图中有8+2×6个火柴组成,……∴组成n个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.故答案为6n+2【点睛】本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.15.5π【解析】【分析】根据题意得出球在无滑动旋转中通过的路程为12圆弧,根据弧长公式求出弧长即可.【详解】解:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为14圆的周长,然后沿着弧O1O2旋转14圆的周长,则圆心O运动路径的长度为:112544π⨯⨯+×2π×5=5π,故答案为5π.【点睛】本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度.16.1 【解析】【分析】根据题意得出△AOD∽△OCE,进而得出AD OD OAEO CE OC==,即可得出k=EC×EO=1.【详解】解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=10°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴AD OD OAEO CE OC===tan60°=3,∴AODEOCSS∆∆=()23=1,∵点A是双曲线y=-9x在第二象限分支上的一个动点,∴S△AOD=12×|xy|=92,∴S△EOC=32,即12×OE×CE=32,∴k=OE×CE=1,故答案为1.【点睛】本题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,正确添加辅助线,得出△AOD∽△OCE是解题关键.17.4【解析】利用平方差公式计算.【详解】解:原式=(7)2-(3)2=7-3=4.故答案为:4.【点睛】本题考查了二次根式的混合运算.18.m=8或【解析】【分析】求出抛物线的对称轴分三种情况进行讨论即可.【详解】抛物线的对称轴,抛物线开口向下,当,即时,抛物线在-1≤x≤2时,随的增大而减小,在时取得最大值,即解得符合题意.当即时,抛物线在-1≤x≤2时,在时取得最大值,即无解.当,即时,抛物线在-1≤x≤2时,随的增大而增大,在时取得最大值,即解得符合题意.综上所述,m的值为8或故答案为:8或考查二次函数的图象与性质,注意分类讨论,不要漏解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)说明见解析;(2)当∠B=30°时,四边形ACEF是菱形.理由见解析.【解析】试题分析:(1)证明△AEC≌△EAF,即可得到EF=CA,根据两组对边分别相等的四边形是平行四边形即可判断;(2)当∠B=30°时,四边形ACEF是菱形.根据直角三角形的性质,即可证得AC=EC,根据菱形的定义即可判断.(1)证明:由题意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠FEA=∠CAE,∵AF=CE=AE,∴∠F=∠FEA=∠CAE=∠ECA.在△AEC和△EAF中,∵∴△EAF≌△AEC(AAS),∴EF=CA,∴四边形ACEF是平行四边形.(2)解:当∠B=30°时,四边形ACEF是菱形.理由如下:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE垂直平分BC,∴∠BDE=90°∴∠BDE=∠ACB∴ED∥AC又∵BD=DC∴DE是△ABC的中位线,∴E是AB的中点,∴BE=CE=AE,又∵AE=CE,∴AE=CE=AB,又∵AC=AB,∴AC=CE,∴四边形ACEF是菱形.考点:菱形的判定;全等三角形的判定与性质;线段垂直平分线的性质;平行四边形的判定.20.(1)见解析;(2)1;(3)估计全校达标的学生有10人【解析】【分析】(1)成绩一般的学生占的百分比=1-成绩优秀的百分比-成绩不合格的百分比,测试的学生总数=不合格的人数÷不合格人数的百分比,继而求出成绩优秀的人数.(2)将成绩一般和优秀的人数相加即可;(3)该校学生文明礼仪知识测试中成绩达标的人数=1200×成绩达标的学生所占的百分比.【详解】解:(1)成绩一般的学生占的百分比=1﹣20%﹣50%=30%,测试的学生总数=24÷20%=120人,成绩优秀的人数=120×50%=60人,所补充图形如下所示:(2)该校被抽取的学生中达标的人数=36+60=1.(3)1200×(50%+30%)=10(人).答:估计全校达标的学生有10人.21.(Ⅰ)见表格;(Ⅱ)折线图;(Ⅲ)60%、之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019 年增加的百分比接近3%.【解析】【分析】(Ⅰ)根据百分比的意义解答可得;(Ⅱ)根据折线图和扇形图的特点选择即可得;(Ⅲ)根据之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019 年增加的百分比接近3% .【详解】(Ⅰ)年份2014 2015 2016 2017 2018动车组发送旅客量a 亿人次0.87 1.14 1.46 1.80 2.17铁路发送旅客总量b 亿人次 2.52 2.76 3.07 3.42 3.82动车组发送旅客量占比× 100 34.5 % 41.3 % 47.6 % 52.6 % 56.8 %(Ⅱ)为了更直观地显示动车组发送旅客量占比的变化趋势,需要用折线图进行描述,故答案为折线图;(Ⅲ)预估2019 年春运期间动车组发送旅客量占比约为60%,预估理由是之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019 年增加的百分比接近3%.【点睛】本题考查了统计图的选择,根据统计图的特点正确选择统计图是解题的关键.22.(2)AM=165;(2)»AP=23π;(3)7≤d<4或3.【解析】【分析】(2)连接B′M,则∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的长度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根据相似三角形的性质可求出AM的长度;(2)连接OP、ON,过点O作OG⊥AD于点G,则四边形DGON为矩形,进而可得出DG、AG的长度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,进而可得出△AOP为等边三角形,再利用弧长公式即可求出劣弧AP的长;(3)由(2)可知:△AOP为等边三角形,根据等边三角形的性质可求出OG、DN的长度,进而可得出CN的长度,画出点B′在直线CD上的图形,在Rt△AB′D中(点B′在点D左边),利用勾股定理可求出B′D的长度进而可得出CB′的长度,再结合图形即可得出:半圆弧与直线CD只有一个交点时d的取值范围.【详解】(2)在图2中,连接B′M,则∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴AMAB=AB'AC,即AM4=45,∴AM=165;(2)在图3中,连接OP、ON,过点O作OG⊥AD于点G,∵半圆与直线CD相切,∴ON⊥DN,∴四边形DGON为矩形,∴DG=ON=2,∴AG=AD-DG=2.在Rt△AGO中,∠AGO=90°,AO=2,AG=2,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP为等边三角形,∴AP n=60π4360⨯⨯=23π.(3)由(2)可知:△AOP为等边三角形,∴33∴3当点B′在直线CD上时,如图4所示,在Rt△AB′D中(点B′在点D左边),AB′=4,AD=3,∴22AB'AD-7,∴CB′=47.∵AB′为直径,∴∠ADB′=90°,∴当点B′在点D右边时,半圆交直线CD于点D、B′.∴当半圆弧与直线CD只有一个交点时,7<4或3【点睛】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的性质、勾股定理以及切线的性质,解题的关键是:(2)利用相似三角形的性质求出AM的长度;(2)通过解直角三角形找出∠OAG=60°;(3)依照题意画出图形,利用数形结合求出d的取值范围.23.有48艘战舰和76架战机参加了此次阅兵.【解析】【分析】设有x艘战舰,y架战机参加了此次阅兵,根据题意列出方程组解答即可.【详解】设有x艘战舰,y架战机参加了此次阅兵,根据题意,得124 328 x yx y+=⎧⎨=-⎩,解这个方程组,得4876 xy=⎧⎨=⎩,答:有48艘战舰和76架战机参加了此次阅兵.【点睛】此题考查二元一次方程组的应用,关键是根据题意列出等量关系进行解答. 24.(1)85,85,80; (2)初中部决赛成绩较好;(3)初中代表队选手成绩比较稳定.【解析】【分析】分析:(1)根据成绩表,结合平均数、众数、中位数的计算方法进行解答;(2)比较初中部、高中部的平均数和中位数,结合比较结果得出结论;(3)利用方差的计算公式,求出初中部的方差,结合方差的意义判断哪个代表队选手的成绩较为稳定.【详解】详解: (1)初中5名选手的平均分75808585100a 855++++==,众数b=85, 高中5名选手的成绩是:70,75,80,100,100,故中位数c=80;(2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,故初中部决赛成绩较好;(3)222222++++=5S 初中(75-85)(80-85)(85-85)(85-85)(100-85)=70, ∵22S S 初中高中<,∴初中代表队选手成绩比较稳定.【点睛】本题是一道有关条形统计图、平均数、众数、中位数、方差的统计类题目,掌握平均数、众数、中位数、方差的概念及计算方法是解题的关键.25.(1)(10,7500)(2)直线BC 的解析式为y=-250x+10000,自变量x 的取值范围为10≤x≤40.(3)1250米.【解析】【分析】(1)由于前面10天由甲单独完成,用总的长度减去已完成的长度即为剩余的长度,从而求出点B 的坐标;(2)利用待定系数法求解即可;(3)已队工作25天后,即甲队工作了35天,故当x=35时,函数值即为所求.【详解】(1)9000-150×10=7500. ∴点B 的坐标为(10,7500)(2)设直线BC 的解析式为y=kx+b ,依题意,得:解得:∴直线BC 的解析式为y=-250x+10000,∵乙队是10天之后加入,40天完成,∴自变量x 的取值范围为10≤x≤40.(3)依题意,当x=35时,y=-250×35+10000=1250. ∴乙队工作25天后剩余管线的长度是1250米.【点睛】本题考查了一次函数的应用,理解题意观察图象得到有用信息是解题的关键.26.:(1) 30º;(2)33ABCD S 梯形=. 【解析】 分析:(1)由已知条件易得∠ABC=∠A=60°,结合BD 平分∠ABC 和CD ∥AB 即可求得∠CDB=30°;(2)过点D 作DH ⊥AB 于点H ,则∠AHD=30°,由(1)可知∠BDA=∠DBC=30°,结合∠A=60°可得∠ADB=90°,∠ADH=30°,DC=BC=AD=2,由此可得AB=2AD=4,AH=3,这样即可由梯形的面积公式求出梯形ABCD 的面积了.详解:(1) ∵在梯形ABCD 中,DC ∥AB ,AD =BC ,∠A =60°,∴∠CBA=∠A=60º,∵BD 平分∠ABC ,∴∠CDB=∠ABD=12∠CBA=30º, (2)在△ACD 中,∵∠ADB=180º–∠A –∠ABD=90º.∴BD=AD tan ⋅A=2tan60º=23.过点D 作DH ⊥AB ,垂足为H ,∴AH=AD sin ⋅A=2sin60º=3.∵∠CDB=∠CBD=12∠CBD=30º, ∴DC=BC=AD=2∵AB=2AD=4∴()()ABCD 11S AB CD DH 4233322=+⋅=+=梯形.点睛:本题是一道应用等腰梯形的性质求解的题,熟悉等腰梯形的性质和直角三角形中30°的角所对直角边是斜边的一半及等腰三角形的判定,是正确解答本题的关键.27.这棵树CD 的高度为8.7米【解析】试题分析:首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.试题解析:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).(米).在直角△BCD中,CD=BCsin∠CBD=10×2答:这棵树CD的高度为8.7米.考点:解直角三角形的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年北京市门头沟区九年级第二学期综合练习(二)数学试卷及详细解析2019年5月一、选择题(本题共16分,每小题2分)第1- 8题均有四个选项,符合题意的选项只有..一个. 1. 2013年12月2日1时30分,中国于西昌卫星发射中心成功将“嫦娥三号”探测器送入轨道.2013年12月15日4时35分,“嫦娥三号”探测器与“玉兔号”月球车分离,“玉兔号”月球车顺利驶抵月球表面,留下了中国在月球上的第一个足迹.“玉兔号”月球车一共在月球上工作了972天,约23 000小时.将23 000用科学记数法表示为 A .2.3 × 103B .2.3 × 104C .23 × 103D .0.23 × 1052.在下面四个几何体中,俯视图是矩形的是A B C D3.在下列运算中,正确的是 A .235a a a ⋅=B .()325a a =C .623a a a ÷=D .55102a a a +=4.如果23a b -=222a b ab a a b ⎛⎫+-⋅ ⎪-⎝⎭的值为 A 3 B .23 C .33 D .435.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七 巧板拼成的正方形,如果在此正方形中随机取一点, 那么此点取自黑色部分的概率为 A .932B .516C .38D .7166.已知点A (1,m )与点B (3,n )都在反比例函数ky x=(0k >)的图象上,那么m 与n 的关系是 A .m n <B .m n >C .m = nD .不能确定OABCDFEDCBA7.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB = 30°,OD = 2,那么DC 的长等于 A .2 B .4 C 3D .238.团体购买某公园门票,票价如下表:购票人数 1 ~ 50 51 ~ 100 100以上 门票价格13元 / 人11元 / 人9元 / 人某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1 290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为 A .20B .35C .30D .40二、填空题(本题共16分,每小题2分) 9. 函数131y x =-的自变量x 的取值范围是 .10.写出一个比2大且比3小的无理数: .11.如图,在矩形ABCD 中,E 是CD 的延长线上一点,连接BE 交AD 于点F .如果AB = 4,BC = 6,DE = 3,那么AF 的长为 .12.用一组a ,b ,c (0c ≠)的值说明命题“如果a b <,那么a bc c<”是错误的,这组值可以是a = ,b = ,c = .13.《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个 更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x 人,小和尚y 人,可列方程组为 .14.下图是利用平面直角坐标系画出的老北京一些地点的分别示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(2-,3-),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为 .北第14题图 第15题图15.如图,在平面直角坐标系xOy 中,△AOB 可以看作是△OCD 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD 得到△AOB 的过程:. 16.当三角形中一个内角α是另一个内角β的一半时,我们称该三角形为“特征三角形”,其中α称为“特征角”三、解答题 (本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)解答应写出文字说明、证明过程或演算步骤. 17.计算:()054sin 451π-+︒+-.18.解不等式1211232x x --≤,并把它的解集在数轴上表示出来.–1–2–3–4123419.已知:关于x 的一元二次方程2420x x m -+=有两个不相等的实数根.(1)求m 的取值范围;(2)如果m 为非负整数,且该方程的根都是整数,求m 的值.ba20.下面是小明同学设计的“已知底边及底边上的高作等腰三角形”的尺规作图的过程.已知:如图1,线段a 和线段b .求作:△ABC ,使得AB = AC ,BC = a ,BC 边上的高为b . 作法:如图2,① 作射线BM ,并在射线BM 上截取BC = a ; ② 作线段BC 的垂直平分线PQ ,PQ 交BC 于D ; ③ 以D 为圆心,b 为半径作圆,交PQ 于A ; ④ 连接AB 和AC .则△ABC 就是所求作的图形. 根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形; (2)完成下面的证明:证明:由作图可知BC = a ,AD = b .∵ PQ 为线段BC 的垂直平分线,点A 在PQ 上,∴ AB = AC ( )(填依据). 又∵ AD 在线段BC 的垂直平分线PQ 上, ∴ AD ⊥BC .∴ AD 为BC 边上的高,且AD = b .21.如图,在□ABCD 中,点E 是BC 边的一点,将边AD 延长至点F ,使得AFC DEC ∠=∠,连接CF ,DE .(1)求证:四边形DECF 是平行四边形; (2)如果AB =13,DF =14,12tan 5DCB ∠=,求CF 的长. FEDCBA图1图222.如图,在平面直角坐标系xOy 中,一次函数y x b =-+的图象与反比例函数4y x=-的图象交于点A (4-,n )和B . (1)求b 的值和点B 的坐标;(2)如果P 是x 轴上一点,且AP = AB ,直接写出点P 的坐标.23.如图,点C 在⊙O 上,AB 为直径,BD 与过点C 的切线垂直于D ,BD 与⊙O 交于点E .(1)求证:BC 平分∠DBA ; (2)如果1cos 2ABD ∠=,OA = 2,求DE 的长.B24.如图,E 为半圆O 直径AB 上一动点,C 为半圆上一定点,连接AC 和BC ,AD 平分∠CAB交BC 于点D ,连接CE 和DE .如果AB = 6 cm ,AC = 2.5 cm ,设A ,E 两点间的距离为x cm ,C ,E 两点间的距离为y 1 cm ,D ,E 两点间的距离为y 2 cm .EO小明根据学习函数经验,分别对函数y 1和y 2随自变量x 变化而变化的规律进行了探究. 下面是小明的探究过程,请将它补充完整:(1)按下表中自变量x 值进行取点、画图、测量,得到了y 1和y 2与x 几组对应值:问题:上表中的m = cm ;(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 2)和(x ,y 1),并画出函数y 1和y 2的图象;(3)结合函数的图象,解决问题:当△ACE 为等腰三角形时,AE 的长度约为 cm(结果精确到0.01).25.2019年1月有300名教师参加了“新技术支持未来教育”培训活动,会议就“面向未来的教育”和“家庭教育”这两个问题随机调查了60位教师,并对数据进行了整理、描述和分析.下面给出了部分信息:a. 关于“家庭教育”问题发言次数的频数分布直方图如下(数据分成6组:0≤x<4,4≤x<8,8≤x<12,12≤x<16,16≤x<20,20≤x≤24):频数(发言人数)Array次数 / 次b. 关于“家庭教育”问题发言次数在8≤x<12这一组的是:8 8 9 9 9 10 10 10 10 10 10 11 11 11 11c.“面向未来的教育”和“家庭教育”这两问题发言次数的平均数、众数、中位数如下:根据以上信息,回答下列问题:(1)表中m的值为;(2)在此次采访中,参会教师更感兴趣的问题是(填“面向未来的教育”或“家庭教育”),理由是;(3)假设所有参会教师都接受调查,估计在“家庭教育”这个问题上发言次数超过8次的参会教师有位.26.在平面直角坐标系xOy 中,抛物线223y ax ax a =--(0a ¹)顶点为P ,且该抛物线与x轴交于A ,B 两点(点A 在点B 的左侧).我们规定:抛物线与x 轴围成的封闭区域称为“G 区域”(不包含边界);横、纵坐标都是整数的点称为整点.(1)求抛物线223y ax ax a =--顶点P 的坐标(用含a 的代数式表示); (2)如果抛物线223y ax ax a =--经过(1, 3).① 求a 的值;② 在①的条件下,直接写出“G 区域”内整点的个数.(3)如果抛物线223y ax ax a =--在“G 区域”内有4个整点,直接写出a 的取值范围.27.如图,在等边三角形ABC 中,点D 为BC 边上的一点,点D 关于直线AB 的对称点为点E ,连接AD 、DE ,在AD 上取点F ,使得∠EFD = 60°,射线EF 与AC 交于点G . (1)设∠BAD = α,求∠AGE 的度数(用含α的代数式表示); (2)用等式表示线段CG 与BD 之间的数量关系,并证明.AB CD EFG28.对于平面直角坐标系xOy 中的动点P 和图形N ,给出如下定义:如果Q 为图形N 上一个动点,P ,Q 两点间距离的最大值为d max ,P ,Q 两点间距离的最小值为d min ,我们把d max + d min 的值叫点P 和图形N 间的“和距离”,记作(),d P N 图形. (1)如图,正方形ABCD 的中心为点O ,A (3,3).① 点O 到线段AB 的“和距离”(),d O AB =线段 ;② 设该正方形与y 轴交于点E 和F ,点P 在线段EF 上,(),7d P ABCD =正方形, 求点P 的坐标.x图1(2)如图2,在(1)的条件下,过C ,D 两点作射线CD ,连接AC ,点M 是射线CD 上的一个动点,如果(),6d M AC <+线段M 点横坐标t 取值范围.x图22019年北京市门头沟区九年级第二第二学期综合练习(二)参考答案及评分标准2019年5月三、解答题(本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)17.(本小题满分5分)解:()054sin45 1.π-+︒+-141=+ (3)分2=+…………………………………………………………………………………………5分18.(本小题满分5分)解:1211232x x--≤3643x x≤--……………………………………………………………………………………1分3463x x≤--……………………………………………………………………………………2分3x≤-…………………………………………………………………………………………3分3.x≥-………………………………………………………………………………………4分把它的解集在数轴上表示为:–1–2–3–41234……………………………………………5分19.(本小题满分5分)解:(1)由题意得2(4)4120m>∆=-+⨯⨯,………………………………………………………1分H FEDCB A解得2.m < ………………………………………………………………………………… 2分(2)∵ m 为非负整数,∴0,1.m = ………………………………………………………………………………… 3分当0m =时,原方程为240x x -=, 解得 10x =,2 4.x =当1m =时,原方程为2420x x -+=, 解得此方程的根不是整数, ∴ 1m =应舍去.∴0.m =……………………………………………………………………………………… 5分 20.(本小题满分5分) 解:(1)尺规作图正确;………………………………………………………………………………… 3分 (2)填空正确. (5)分21.(本小题满分5分)(1)证明:∵ 四边形ABCD 是平行四边形, ∴ A D ∥B C .……………………………………………………………………………… 1分∴ ∠ADE =∠DEC . ∵ ∠AFC =∠DEC , ∴ ∠AFC =∠ADE , ∴ DE ∥FC .∴ 四边形D E C F 是平行四边形.………………………………………………………… 2分 (2)解:如图,过点D 作DH ⊥BC 于点H , ……………………………………………………… 3分∵ 四边形ABCD 是平行四边形, ∴ AB=CD =13∵ 12tan 5BCD ∠=,CD =13, ∴ DH =12,CH =5.………………… 4分 ∵ DF =14, ∴ CE =14. ∴ EH =9.∴ DE.∴CF=DE =15.………………………………………………………………………………… 5分 22.(本小题满分5分)BB 解:(1)把A (-4,n )代入4y x=-中,得1n =,………………………………………………… 1分把A (-4,1)代入y x b =-+中,得3b =- ……………………………………………2分解方程组3,4.y x y x =--⎧⎪⎨=-⎪⎩得4,1.x y =-⎧⎨=⎩ , 1,4.x y =⎧⎨=-⎩ ∴ 点B 的坐标是(1,4)- ………………………………………………………………… 3分(2)点P 的是坐标(3,0)或(11,0)-. ………………………………………………………… 5分23.(本小题满分6分) (1)证明:连接OC ,∵ DC 是⊙O 的切线, ∴ DC ⊥OC .…………………… 1分 又∵ DC ⊥BD , ∴ OC ∥BD .∴ ∠1=∠3. ……………………………………………………………………………… 2分∵ OC =OB , ∴ ∠1=∠2. ∴ ∠2=∠3.∴ B C 平分∠D B A ;……………………………………………………………………… 3分 (2)解:连接AE 和AC ,∵ AB 是⊙O 的直径,DC ⊥BD ,∴ ∠ACB =∠AEB =∠CDB =90°. ∵ 1cos 2ABD ∠=,OA = 2,BC 平分∠DBA , ∴ ∠ABD =60°,∠2=∠3=30°,AB =4. 在Rt △ACB 中,∠ACB =90°,AB =4,∠2=30°,∴ BC =在Rt △CDB 中,∠CDB =90°,BC =,∠3=30°, ∴ BD =3.在Rt △AEB 中,∠AEB =90°,AB =4,∠ABE =60°, ∴ BE =2.∴DE =1. ……………………………………………………………………………………… 6分24.(本小题满分6分)解:(1)3.00; (1)分(2)略;…………………………………………………………………………………………… 3分(3)2.5,2.,3.00. …………………………………………………………………………… 6分25.(本小题满分6分)解:(1)11; (2)分 (2)略;…………………………………………………………………………………………… 4分(3)200 . ………………………………………………………………………………………… 6分26.(本小题满分6分)解:(1)∵()222314y ax ax a a x a =--=--,……………………………………………………… 1分∴ 该抛物线的顶点为()1,4.a - ……………………………………………………………… 2分(2)① ∵ 抛物线223y ax ax a =--经过(1, 3),∴323a a a =--,解得3.4a =- (3)分 ②6个. ……………………………………………………………………………………… 4分(3)2132a --≤<,12.23a <≤ …………………………………………………………………… 6分27.(本小题满分7分)解:(1)∵ △ABC 是等边三角形,∴∠BAC=60°. ……………………………………………………………………………… 1分∵ ∠BAD = α, ∴∠D A C=∠B A C-∠B A D=60°-α. (2)分又∵ ∠AFG = ∠EFD = 60°,∴ ∠A G E =180°-∠D A C -∠A F G = 60°+MHA B CD E F Gxα. ……………………………………………… 3分 (2)线段C G 与B D 之间的数量关系是C G=2B D . (4)分证明如下:在AC 上截取CH =BD ,交AC 于H ,连接BE ,BH ,AE , BH 交AD 于M . ∵ D ,E 关于AB 对称,∴ ∠BAE =∠BAD =α,∠ABE =∠ABC =60°,∴ BD = BE ,AD = AE .∴ ∠EAC =∠BAE +∠BAC =60°+α. ∴ ∠EAC =∠AGE . ∴ EA = EG .∵ 等边△ABC 中,AB = BC ,∠ABD =∠C = 60°. ∴ △A B D ≌△B CH (S A S ). (5)分∴ AD =BH ,∠HBC = ∠DAB = α. ∴ EG = BH .∴ ∠ABM =∠ABC -∠HBC = 60°-α. ∴ ∠BMD =∠ABM +∠BAD = 60°. ∴ ∠BMD =∠EFD = 60°. ∴ EG // BH . ∴ 四边形E G H B 是平行四边形. (6)分∴ BE = GH .∴ BE = GH = CH = BD . ∴ C G = G H + C H= 2B D . ……………………………………………………… 7分28.(本小题满分7分)解:(1)①3② 如图,设P (0,t ). ∵ 点P 在线段EF 上, ∴ -3≤t ≤3 .当0≤t ≤3时,由题意可知d max =PC ,d min =PE . ∴ PE = 3-t ,PF = t +3,CF =3. ∵(),7d P ABCD =正方形, ∴ PC + PE =7. ∴ PC = 4+ t .在Rt △PCF 中,由勾股定理得 ()()222433t t +=++, 解得1.t =………………………………………………………………………………… 4分∴ P (0,1).当0>t≥-3时,由对称性可知P(0,-1).综上,P的坐标为(0,1)和(0,-1). ………………………………………………5分(2)-<<…………………………………………………………………………………7分3 3.t说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。