高二数学向量知识点总结
高二空间向量法知识点梳理
高二空间向量法知识点梳理介绍:在高中数学中,空间向量法是一个重要的概念。
它为我们解决空间中的几何问题提供了一个有力的工具。
本文将对高二空间向量法的知识点进行梳理和总结,以帮助读者更好地理解和运用这一方法。
一、向量及其运算1. 向量的定义:向量是具有大小和方向的量,用有向线段表示。
2. 向量的表示方法:可以用坐标表示,也可以用字母表示。
3. 向量的运算:包括加法、减法和数乘。
4. 向量的性质:零向量、单位向量等。
二、向量的模和方向角1. 向量的模:向量的模表示向量的长度,可以通过勾股定理求得。
2. 向量的方向角:向量的方向角是指与某一基准轴之间的夹角。
三、向量的共线与垂直1. 向量共线的判定:如果两个向量的夹角为0度或180度,则它们共线。
2. 向量垂直的判定:如果两个向量的内积为0,则它们垂直。
四、空间平面与直线的向量方程1. 空间平面的向量方程:可以通过平面上一点和法向量表示。
2. 直线的向量方程:可以通过直线上一点和方向向量表示。
五、向量的数量积与向量积1. 向量的数量积:也称为内积,表示两个向量之间的相似程度。
2. 向量的数量积的性质:包括交换律、分配律等。
3. 向量的向量积:也称为叉乘,表示两个向量所确定的平行四边形的面积与方向。
4. 向量的向量积的性质:包括分配律、反交换律等。
六、空间向量的线性运算与共面问题1. 空间向量的线性运算:包括向量的线性组合和线性相关性。
2. 共面向量的判定:如果三个向量在同一平面内,则它们共面。
七、空间直线与平面的位置关系1. 空间直线与平面的位置关系:包括平行、垂直和相交等情况。
总结:空间向量法是解决几何问题的重要方法,具有广泛的应用范围。
通过对高二空间向量法知识点的梳理和总结,我们可以更好地掌握和运用这一方法。
希望本文对你在学习空间向量法时有所帮助!。
职高高二向量的数学知识点
职高高二向量的数学知识点向量是数学中常见的概念,职业高中高二学生在学习数学时也会接触到向量的相关知识点。
本文将重点介绍职业高中高二学生需要掌握的向量数学知识点,包括向量的定义、向量的加减、数量积和向量积等内容。
一、向量的定义向量是由大小和方向组成的量,通常用箭头表示。
向量可以表示为有序数对,也可以用字母加一个箭头表示。
例如,AB→表示从点A指向点B的向量,向量的起点是A,终点是B。
二、向量的加减1. 向量的加法向量的加法是指将两个向量按照一定规则进行相加。
具体来说,如果有向量AB→和向量BC→,则向量AC→等于向量AB→加上向量BC→的结果。
2. 向量的减法向量的减法是指将两个向量按照一定规则进行相减。
具体来说,如果有向量AC→和向量AB→,则向量BC→等于向量AC→减去向量AB→的结果。
三、数量积1. 数量积的定义数量积是指两个向量的乘积与它们夹角的余弦值之积。
设有向量a→和向量b→,它们的数量积记作a·b,计算公式为a·b=|a||b|cosθ,其中|a|和|b|分别表示向量a→和向量b→的模,θ表示两个向量的夹角。
2. 数量积的性质数量积具有以下性质:- a·b = b·a(数量积的交换律)- k(a·b) = (ka)·b = a·(kb)(k为常数)- a·a = |a|^2(向量的模的平方)四、向量积1. 向量积的定义向量积是指两个向量的乘积与它们所在平面的法向量垂直,并且遵循右手法则。
设有向量a→和向量b→,它们的向量积记作a×b,计算公式为|a×b|=|a||b|sinθn,其中|a×b|表示向量a×b的模,θ表示两个向量的夹角,n表示垂直于向量a→和向量b→所在平面的单位法向量。
2. 向量积的性质向量积具有以下性质:- a×b = -b×a(向量积的反交换律)- (ka)×b = k(a×b) = a×(kb)(k为常数)- a×a = 0(向量积的对称性)综上所述,职业高中高二学生应该掌握的向量数学知识点主要包括向量的定义、向量的加减、数量积和向量积等内容。
高二数学向量知识点总结
高二数学向量知识点总结高二数学向量知识点总结(一)考点一:向量的概念、向量的基本定理【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。
注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积两个平面向量的垂直关系。
【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。
【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。
由于向量应用的广泛性,经常也会与函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。
考点四:向量与函数的综合问题【内容解读】向量与函数的综合问题是高考经常出现的问题,考查了向量的知识,函数的知识,达到了高考中试题的覆盖面的要求。
【命题规律】命题以函数作为坐标,以向量的坐标运算或向量与解形的内容相结合,也有向量与函数图象平移结合的问题,属中档偏易题。
考点五:平面向量与函数问题的交汇【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。
【命题规律】命题多以解答题为主,属中档题。
考点六:平面向量在平面几何中的应用【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将形和数紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.【命题规律】命题多以解答题为主,属中等偏难的试题。
高二数学空间向量知识点总结归纳
高二数学空间向量知识点总结归纳数学中的空间向量是指存在于三维空间中的有方向和大小的物理量。
在高二数学中,我们学习了关于空间向量的各种性质和运算法则,以及与之相关的应用。
本文将对高二数学空间向量的知识点进行总结和归纳。
一、空间向量的定义与表示方法在空间中,向量可以用有序数对或有序三元组表示。
通常,我们用大写字母表示向量,如AB、CD等。
表示向量的有序数组称为坐标,常用小写字母表示,如a、b、c等。
假设向量AB的坐标为(a₁, a₂,a₃),则可表示为AB = a₁i + a₂j + a₃k,其中i、j、k分别表示x、y、z轴的单位向量。
二、向量的基本运算法则1. 向量的加法向量的加法遵循平行四边形法则,即将两个向量的起点相连接,然后以这条连线为对角线构建平行四边形,向量的和为平行四边形的对角线向量。
2. 向量的减法向量的减法可以转化为向量的加法,即A-B = A + (-B),其中-B表示B的反向量。
所以,向量A减去向量B,可以先求出B的反向量,再用向量的加法进行计算。
3. 向量的数量积向量的数量积又称为点积,用符号·表示。
设有两个向量A = a₁i + a₂j + a₃k和B = b₁i + b₂j + b₃k,则向量A和B的数量积为A·B = a₁b₁ + a₂b₂ + a₃b₃。
4. 向量的向量积向量的向量积又称为叉积,用符号×表示。
设有两个向量A = a₁i + a₂j + a₃k和B = b₁i + b₂j + b₃k,则向量A和B的向量积为A×B = (a₂b₃ - a₃b₂)i + (a₃b₁ - a₁b₃)j + (a₁b₂ - a₂b₁)k。
三、空间向量的性质与定理1. 平行向量如果两个向量的方向相同或相反,则它们被称为平行向量。
平行向量的数量积为零。
2. 垂直向量如果两个向量的数量积为零,则它们被称为垂直向量。
垂直向量的叉积也为零。
3. 向量共面如果三个向量可以放在同一个平面上,则它们被称为共面向量。
高二上数学向量知识点总结归纳
高二上数学向量知识点总结归纳高二上学期的数学课程中,向量是一个重要的知识点。
向量在几何和代数中都有广泛的应用,掌握好向量的相关知识对于理解和解决各种数学问题非常关键。
本文将对高二上学期的数学向量知识点进行总结和归纳,帮助同学们复习和掌握这一重要内容。
1. 向量的定义和表示方法向量是具有大小和方向的量,常用带箭头的字母表示。
向量一般用有序对表示,如AB,表示从点A指向点B的箭头。
向量还可以用坐标表示,如向量AB的坐标表示为(3, 4),表示在横坐标上移动3个单位,在纵坐标上移动4个单位。
2. 向量的运算法则2.1 向量的加法向量的加法是指两个向量相加,结果是另一个向量。
向量的加法满足交换律和结合律,即A + B = B + A,(A + B) + C = A + (B + C)。
2.2 向量的数量乘法向量的数量乘法是指一个向量与一个实数相乘,结果是一个向量。
数量乘法可以改变向量的大小和方向。
当实数大于0时,向量与实数的乘积的方向不变;当实数小于0时,向量与实数的乘积的方向相反。
2.3 向量的减法向量的减法是指一个向量减去另一个向量,结果是另一个向量。
向量的减法可以转化为向量的加法,即A - B = A + (-B),其中向量-B表示与向量B大小相等方向相反的向量。
3. 向量的数量3.1 向量的模向量的模是指向量的大小,也叫向量的长度,一般用符号||A||表示。
对于坐标表示的向量A(x, y),其模可以用勾股定理计算,即||A|| =√(x^2 + y^2)。
3.2 向量的单位向量向量的单位向量是指其模为1的向量,用符号A/||A||表示,其中A表示原向量。
单位向量的方向与原向量相同。
4. 向量的共线和垂直关系4.1 向量的共线两个向量共线是指两个向量的方向相同或方向相反。
判断两个向量共线可以比较它们的坐标形式或者比较它们的比值关系。
4.2 向量的垂直两个向量垂直是指两个向量之间的夹角为90度。
判断两个向量垂直可以用向量的数量乘积,若两个向量的数量乘积等于0,则它们垂直。
高二数学向量知识点
高二数学向量知识点1. 向量的定义和表示向量是带有方向和大小的量,通常用箭头来表示。
向量用字母加上一个箭头来表示,例如AB→表示从点A指向点B的向量。
2. 向量的加法和减法向量的加法是指将两个向量的大小和方向相加得到一个新的向量。
向量的减法是指将两个向量的大小和方向相减得到一个新的向量。
3. 向量的数量积向量的数量积也叫点积,表示为两个向量之间的乘积。
向量的数量积等于这两个向量的模长的乘积再乘以它们夹角的余弦值。
4. 向量的向量积向量的向量积也叫叉积,表示为两个向量之间的乘积。
向量的向量积等于这两个向量的模长的乘积再乘以它们夹角的正弦值,并且结果是一个新的向量。
5. 平面向量的坐标表示平面向量可以使用其在坐标系中的坐标表示。
一般情况下,平面向量的坐标表示为 (x, y),其中 x 表示向量在 x 轴上的投影,y 表示向量在 y 轴上的投影。
6. 向量的数量积的性质向量的数量积具有交换律、结合律和分配律。
即对于任意向量 a、b 和 c,有以下性质:- 交换律:a·b = b·a- 结合律:(a + b)·c = a·c + b·c- 分配律:k(a·b) = (ka)·b = a·(kb),其中 k 是一个实数7. 向量的向量积的性质向量的向量积满足反交换律和分配律。
即对于任意向量 a 和b,有以下性质:- 反交换律:a×b = -b×a- 分配律:a×(b + c) = a×b + a×c8. 向量共线与垂直的判定- 共线判定:如果两个向量的数量积为0,则它们共线。
- 垂直判定:如果两个向量的数量积为0,则它们垂直。
9. 向量的模长和单位向量向量的模长表示向量的大小,用 ||a|| 或 |a| 表示,计算方式为向量的坐标的平方和的开平方。
单位向量是模长为1的向量,可以通过将向量除以它的模长得到。
高二上学期数学向量知识点
高二上学期数学向量知识点一、向量的定义和表示向量是具有大小和方向的量,用箭头表示。
表示向量AB的有向线段记作→AB或AB,向量名用小写字母加箭头表示。
二、向量的运算1. 向量的加法向量的加法满足交换律和结合律。
即,对于向量AB、BC和CD,有:→AB + →BC = →BC + →AB = →AC(→AB + →BC) + →CD = →AB + (→BC + →CD)2. 向量的数乘向量的数乘指将向量与一个实数相乘,即每个分量分别乘以这个实数。
例如,k→AB = →kAB = →BA(当k<0时)其中,k为实数。
3. 向量的减法向量的减法可以通过向量的加法和数乘来表示,即→AB - →CD = →AB + (→DC)例如,向量AB - 向量CD可以表示为→AB +(-1)→CD。
4. 长度和方向角向量的长度是表示向量大小的量,记作|→AB|或AB。
长度计算公式为:|→AB| = √(x² + y²),其中,(x, y)为向量AB的坐标。
向量的方向角是与正x轴的夹角,记作α。
计算公式为:tanα = y / x三、向量的坐标表示向量可以通过坐标表示法来表示。
例如,向量→AB可以表示为(3, 4),其中3为向量在x轴上的投影,4为向量在y轴上的投影。
四、向量的数量积向量的数量积又称点积或内积,表示为→AB · →CD。
数量积的计算公式为:→AB · →CD = |→AB| |→CD| cosθ其中,θ为向量→AB与向量→CD的夹角。
五、向量的叉积向量的叉积又称矢量积或外积,表示为→AB × →CD。
叉积的计算公式为:→AB × →CD = |→AB| |→CD| sinθ →n其中,θ为向量→AB与向量→CD的夹角,→n为垂直于向量→AB和→CD所在平面的单位向量。
六、平面向量的应用平面向量在几何和力学问题中有着广泛的应用。
例如:1. 平面向量可以用于表示物体的位移、速度和加速度。
高二数学平面向量知识点
高二数学平面向量知识点一、向量的表示与运算平面向量是具有大小和方向的量,常用箭头表示。
向量AB的起点为A,终点为B。
向量的表示可以用坐标形式,也可以用向量符号表示。
1. 向量的坐标表示:设向量AB的起点为A(x₁, y₁),终点为B(x₂, y₂),则向量AB的坐标表示为AB = (x₂ - x₁, y₂ - y₁)。
2. 向量的向量符号表示:设向量AB的起点为A,终点为B,向量AB的向量符号表示为→AB。
3. 向量的加法与减法:向量的加法满足三角形法则,即将两个向量的起点连接起来,然后连接两个向量的终点,所得向量为其和向量。
向量的减法即为加法的逆运算。
二、向量的数量运算向量的数量运算包括向量的数乘和向量的数量积。
1. 向量的数乘:向量的数乘即将一个向量与一个实数相乘,结果是一个新的向量,其大小为原向量的大小与实数的乘积,方向与原向量相同(当实数为正数时)或相反(当实数为负数时)。
若向量a = (x, y),实数k,则向量ka = (kx, ky)。
2. 向量的数量积:向量的数量积又称为点积,用符号·表示。
设向量a = (x₁, y₁),向量b = (x₂, y₂),则向量a与b的数量积为a·b = x₁x₂ + y₁y₂。
数量积的性质:- 交换律:a·b = b·a- 结合律:(ka)·b = k(a·b) = a·(kb) (k为实数)- 分配律:(a + b)·c = a·c + b·c三、向量的模与单位向量向量的模即为向量的大小,用符号|a|表示。
设向量a = (x, y),则向量a的模为|a| = √(x² + y²)。
单位向量是模等于1的向量。
设向量a = (x, y),则向量a的单位向量为a/|a| = (x/|a|, y/|a|)。
四、向量的夹角设向量a与向量b的夹角为θ,则有以下公式成立:cosθ = (a·b) / (|a|·|b|)- 若cosθ = 0,则称向量a与向量b垂直。
(完整版)高二空间向量知识点归纳总结
一.知识要点1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性 2. 空间向量的运算:定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
b a B A OA OB +=+=;b a OB OA BA -=-=;)(R a OP ∈=λλ运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b a λλλ+=+)( 运算法则:三角形法则、平行四边形法则 3. 共线向量: (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a //。
(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a =λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ= <=>OB y OA x OC +=,其中1=+y x(4)与a 共线的单位向量为||a a ±4. 共面向量 : (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使。
b y a x p += (3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>OC z OB y OA x OP ++=,其中1=++z y x5. 空间向量基本定理:如果三个向量c b a ,,不共面,那么对空间任一向量p ,存在一个唯一的有序实数组z y x ,,,使c z b y a x p ++=。
若三向量c b a ,,不共面,我们{}c b a ,,把叫做空间的一个基底,c b a ,,叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
第01讲 空间向量与立体几何-2023年高二数学(人教A版2019选择性必修第一册)(原卷版)
第01讲 空间向量与立体几何知识点1 空间向量的有关概念1.在空间,把具有方向和大小的量叫做空间向量,空间向量的大小叫做空间向量的长度或模.注:数学中讨论的向量与向量的起点无关,只与大小和方向有关,只要不改变大小和方向,空间向量可在空间内任意平移,故我们称之为自由向量。
2. 表示法:(1)几何表示法:空间向量用有向线段表示,有向线段的长度表示空间向量的模(2)字母表示法:用字母表示,若向量a 的起点是A ,终点是B ,则a 也可记作AB →,其模记为|a |或|AB →|. 3.几类特殊的空间向量 名称 定义表示法 零向量 规定长度为0的向量叫做零向量 记为0 单位模为1的向量叫做单位向量|a|=1或【考点目录】【知识梳理】知识点2 空间向量的线性运算(一)空间向量的加减运算共起点的两边为邻边作平行四边形,共起点对角线为和共起点,连终点,方向指向被减向量a+b=b+aλa的长度是a的长度的|λ|倍μa)=(λμ)a知识点3 共线向量与共面向量1.共线向量与共面向量的区别 //0a b b ≠()使得a b λ=;(2)存在唯一实数λ,使得0a b b λ≠=(),则//a b .注意:0b ≠不可丢掉,否则实数就不唯一.―→―→―→1、空间一点实数对→数对(,,)x y z ,使得对空间中任意一点(OP xOA yOB zOC x+=++其中共面向量定理的用途:⇒λ利用向量的线性运算即可,但一定要注意所表示的向量必须有一个公共点。
2.直线l 的方向向量如图O ∥l ,在直线l 上取非零向量a ,设P 为l 上的任意一点,则∥λ∥R 使得OP ―→=λa. 定义:把与a 平行的非零向量称为直线l 的方向向量.知识点4 空间向量的夹角定义如图,已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∥AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉范围 0≤〈a ,b 〉≤π向量垂直 如果〈a ,b 〉=π2,那么向量a ,b 互相垂直,记作a ∥b知识点5 空间向量的数量积运算1.(1)空间向量的数量积已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |·cos 〈a ,b 〉.零向量与任意向量的数量积为0,即0·a =0.注:a b ⋅等于a 的长度a 与b 在a 的方向上的投影b cos a,b 〈〉的乘积.(2)运算律数乘向量与数量积的结合律(λa )·b =λ(a ·b ),λ∥R交换律 a ·b =b ·a 分配律a ·(b +c )=a ·b +a ·c2.投影向量及直线与平面所成的角(1)如图∥,在空间,向量a 向向量b 投影,由于它们是自由向量,因此可以先将它们平移到同一个平面α内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,c =|a |cos 〈a ,b 〉b|b |,向量c 称为向量a 在向量b 上的投影向量.类似地,可以将向量a 向直线l 投影(如图∥).(2)如图∥,向量a 向平面β投影,就是分别由向量a 的起点A 和终点B 作平面β的垂线,垂足分别为A ′,B ′,得到向量A ′B ′——→,向量A ′B ′——→称为向量a 在平面β上的投影向量.这时,向量a ,A ′B ′——→的夹角就是向量a 所在直线与平面β所成的角.知识点6 空间向量数量积运算律及性质1、数量乘积的运算律:()1a b b a ⋅=⋅; ()2()()()a b a b a b λλλ⋅=⋅=⋅; ()3()a b c a c b c +⋅=⋅+⋅.2、若a ,b 为非零向量,e 为单位向量,则有()1e a a e a cos a,e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a a a =⋅;()4a b cos a,b a b ⋅〈〉=;()5a b a b ⋅≤.知识点7 空间向量基本定理1.定理如果三个向量a ,b ,c 不共面,那么对任意一个空间向量p ,存在唯一的有序实数组(x ,y ,z ),使得p =xa+yb+zc .其中{a ,b ,c }叫做空间的一个基底,a ,b ,c 都叫做基向量.如果p =xa+yb+zc ,则称xa+yb+zc 为p 在基底{a ,b ,c }下的分解式. 2.空间向量的正交分解(1)单位正交基底:空间的一个基底中的三个基向量两两垂直,且长度都为1,常用{i ,j ,k }表示. (2)正交分解:由空间向量基本定理可知,对空间中的任意向量a ,均可以分解为三个向量xi ,yj ,zk ,使a =xi +yj +zk .像这样,把一个空间向量分解为三个两两垂直的向量,叫做把空间向量正交分解.知识点8 空间向量基本定理应用1、证明平行、共面问题(1)对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb .(2) 如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =xa +yb .(3)直线平行和点共线都可以转化为向量共线问题;点线共面可以转化为向量共面问题.2、求夹角、证明垂直问题 (1)θ为a ,b 的夹角,则cos θ=a ·b|a ||b |. (2)若a ,b 是非零向量,则a ∥b ∥a ·b =0. 3、求距离(长度)问题 ||a =a ·a ( ||AB →=AB →·AB→ ).知识点9 空间直角坐标系1.空间直角坐标系(1)空间直角坐标系:在空间选定一点O 和一个单位正交基底{i ,j ,k },以O 为原点,分别以i ,j ,k 的方向为正方向,以它们的长为单位长度建立三条数轴:x 轴、y 轴、z 轴,它们都叫做坐标轴,这时我们就建立了一个空间直角坐标系Oxyz .(2)相关概念:O 叫做原点,i ,j ,k 都叫做坐标向量,通过每两条坐标轴的平面叫做坐标平面,分别称为Oxy 平面、Oyz 平面、Ozx 平面,它们把空间分成八个部分. 注意点:(1)基向量:|i |=|j |=|k |=1,i ·j =i ·k =j ·k =0.(2)画空间直角坐标系Oxyz 时,一般使∥xOy =135°(或45°),∥yOz =90°.(3)建立的坐标系均为右手直角坐标系.在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系. 2.空间一点的坐标、向量的坐标 (1)空间点的坐标在空间直角坐标系Oxyz 中,i ,j ,k 为坐标向量,对空间任意一点A ,对应一个向量OA →,且点A 的位置由向量OA →唯一确定,由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使OA →=xi +yj +zk .在单位正交基底{i ,j ,k }下与向量OA →对应的有序实数组(x ,y ,z ),叫做点A 在空间直角坐标系中的坐标,记作A (x ,y ,z ),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标.注:空间直角坐标系中坐标轴、坐标平面上的点的坐标特点(2)空间点的对称问题∥空间点的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.∥对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论. (3)空间向量的坐标向量的坐标:在空间直角坐标系Oxyz 中,给定向量a ,作OA →=a ,由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使a =xi +yj +zk .有序实数组(x ,y ,z )叫做a 在空间直角坐标系Oxyz 中的坐标,可简记作a =(x ,y ,z ).知识点10 空间向量的坐标运算1.空间向量的坐标运算法则设向量a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),λ∥R ,那么(1)空间向量运算的坐标表示与平面向量的坐标表示完全一致.(2)设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB →=(x 2-x 1,y 2-y 1,z 2-z 1).即一个空间向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标.(3)运用公式可以简化运算:(a ±b )2=a 2±2a ·b +b 2;(a +b )·(a -b )=a 2-b 2. (4)向量线性运算的结果仍是向量,用坐标表示;数量积的结果为数量.2.空间向量相关结论的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则有(1)平行关系:当b ≠0时,a ∥b ∥a =λb ∥a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∥R); (2)垂直关系:a ∥b ∥a ·b =0∥a 1b 1+a 2b 2+a 3b 3=0.(3)|a|=a ·a =a 21+a 22+a 23.(4)cos 〈a ,b 〉=a ·b|a ||b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. 3.空间两点间的距离公式在空间直角坐标系中,设P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2). (1)P 1P 2――→=(x 2-x 1,y 2-y 1,z 2-z 1).(2)P 1P 2=|P 1P 2――→|=(x 2-x 1)2+(y 2-y 1)2+(z 2-z 1)2. (3)若O (0,0,0),P (x ,y ,z ),则|OP →|=x 2+y 2+z 2.知识点11 空间中点、直线和平面的向量表示1.空间直线的向量表示式设A 是直线上一点,a 是直线l 的方向向量,在直线l 上取AB →=a ,设P 是直线l 上任意一点, (1)点P 在直线l 上的充要条件是存在实数t ,使AP →=ta ,即AP →=tAB →.(2)取定空间中的任意一点O ,点P 在直线l 上的充要条件是存在实数t .使OP →=OA →+ta . (3)取定空间中的任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP →=OA →+tAB →.2.空间平面的向量表示式∥如图,设两条直线相交于点O ,它们的方向向量分别为a 和b ,P 为平面α内任意一点,由平面向量基本定理可知,存在唯一的有序实数对(x ,y ),使得OP →=xa +yb .∥如图,取定空间任意一点O ,空间一点P 位于平面ABC 内的充要条件是存在实数x ,y ,使OP →=OA →+xAB →+yAC →.我们把这个式子称为空间平面ABC 的向量表示式.∥由此可知,空间中任意平面由空间一点及两个不共线向量唯一确定.如图,直线l ∥α,取直线l 的方向向量a ,我们称向量a 为平面α的法向量.给定一个点A 和一个向量a ,那么过点A ,且以向量a 为法向量的平面完全确定,可以表示为集合{P |a ·AP →=0}.知识点12 空间平行、垂直关系的向量表示知识点13 空间距离及向量求法设u 为直线l 的单位方向向量,A ∥l ,P ∉l ,AP―→=a ,向量AP ―→在直线l 上的投影向量为AQ ―→(AQ ―→=(a ·u )u .), 则PQ =|AP ―→|2-|AQ ―→|2=a 2-a ·u2―→知识点14 空间角及向量求法成锐角的余角.两平面的夹角平面α与平面β相交,形成四个二面角,把不大于π2的二面角称为这两个平面的夹角.设平面α与平面β的夹角为θ,两平面α,β的法向量分别为n 1,n 2,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|(1)两个平面的夹角的范围是⎣⎡⎦⎤0,π2(2)两平面的夹角是两法向量的夹角或其补角.考点一 空间向量及其线性运算1.(2022·重庆·高二期末)在长方体1111ABCD A B C D -中,1BA BC CC ++=( ) A .11D BB .1D BC .1DBD .1BD2.(2022·湖南益阳·高二期末)在四面体OABC 中,,,,OA a OB b OC c M ===为OA 的中点,N 为棱BC 上的点,且2BN NC =,则MN =( )A .112233a b c -++B .112233a b c --C .121233a b c -++D .111222a b c -++3.(2022·陕西商洛·高二期末(理))在平行六面体1111ABCD A B C D -中,点P 在1A C 上,且1114A P AC =,若1AP xAA yAB zAD =++,则x y z ++=( )A .34B .1C .54D .744.(2022·福建师大附中高二期末)如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是( ).【考点剖析】A .1122-++a b cB .1122a b c ++C .1122a b c --+D .1122a b c -+考点二 共线问题5.(2022·全国·高二期末)已知空间向量a ,b ,且2AB a b =+,56BC a b =-+,72CD a b =-,则一定共线的三点是( ) A .、、A B CB .BCD 、、C .A BD 、、D .A C D 、、6.(2022·山西吕梁·高二期末)在平行六面体1111ABCD A B C D -中,点P 在1A C 上,若1311444AP AA AB AD =++,则11A PAC =( ) A .13B .34C .14D .237.(2022·上海松江·高二期末)设O ABC -是正三棱锥,1G 是ABC 的重心,G 是1OG 上的一点,且13OG GG =,若OG xOA yOB zOC =++,则(),,x y z 为( )A .111,,444⎛⎫ ⎪⎝⎭B .333,,444⎛⎫ ⎪⎝⎭C .111,,333⎛⎫ ⎪⎝⎭D .222,,333⎛⎫ ⎪⎝⎭考点三 共面问题8.【多选】(2022·广东江门·高二期末)若{,,}a b c 构成空间的一个基底,则下列向量共面的是( ) A .,,a b a a b -+ B .,,b c b b c -+ C .,,a b c a b -+D .,,a b a b c c +++9.(2022·山东·巨野县第一中学高二期末)对于空间一点O 和不共线三点A ,B ,C ,且有623OP OA OB OC =++,则( )A .O ,A ,B ,C 四点共面 B .P ,A ,B ,C 四点共面 C .O ,P ,B ,C 四点共面D .O ,P ,A ,B ,C 五点共面10.(2022·上海市建平中学高二期末)已知A 、B 、C 、D 、E 是空间中的五个点,其中点A 、B 、C 不共线,则“DE 平面ABC ”是“存在实数x 、y ,使得DE x AB y AC =+的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件11.(2022·福建厦门·高二期末)已知{},,a b c 是空间的一个基底,AB a b =+,AC a c =+,AD b c λ=+,若,,,A B C D 四点共面.则实数λ的值为( )A .1-B .0C .1D .212.(2022·江西·临川一中高二期末(理))已知空间向量()2,1,a m =-,()1,1,2b =-,()1,2,2c t =-,若a ,b ,c 共面,则m +2t =( )A .-1B .0C .1D .-613.(2022·全国·高二期末)已知(2,1,3)PA =-,(1,2,3)PB =-,(7,6,)PC λ=,若P ,A ,B ,C 四点共面,则λ=___________.考点四 空间向量基本定理14.(2022·重庆长寿·高二期末)如图,在斜棱柱1111ABCD A B C D -中,AC 与BD 的交点为点M ,AB a =,AD b =,1AA c =,则1MC =( )A .1122a b c ++B .1122---a b cC .1122-++a b cD .1122a b c --+15.(2022·天津市第九十五中学益中学校高二期末)在四棱锥P ABCD -中,底面ABCD 是正方形,E 为PD 中点,若PA a =,PB b =,PC c =,则BE =( )A .131222a b c ++B .111222a b c --C .131222a b c -+D .131222a b c +-16.(2022·河南郑州·高二期末(理))已知三棱锥O —ABC ,点M ,N 分别为线段AB ,OC 的中点,且OA a =,OB b =,OC c =,用a ,b ,c 表示MN ,则MN 等于( )A .()12c a b -- B .()12b ac -- C .()12a cb -- D .()12c a b ++ 17.(2022·江苏无锡·高二期末)定义:设{}123,,a a a 是空间的一个基底,若向量123p xa ya za =++,则称有序实数组(),,x y z 为向量p 在基底{}123,,a a a 下的坐标.已知{},,a b c 是空间的单位正交基底,{},,2a b a b a c +-+是空间的另一个基底,若向量p 在基底{},,2a b a b a c +-+下的坐标为()1,2,3.(1)求向量p 在基底{},,a b c 下的坐标; (2)求向量p 在基底{},,a b c 下的模.考点五 空间向量的数量积及其性质的应用18.(2022·广西钦州·高二期末(理))如图,正四棱柱是由四个棱长为1的小正方体组成的,AB 是它的一条侧棱,128,,P P P ⋯是它的上底面上其余的八个点,则集合{},1,2,,8i x x AB AP i =⋅=⋯的元素个数( )A .1B .2C .4D .819.(2022·福建省华安县第一中学高二期末)三棱锥A BCD -中,2AB AC AD ===,2BAD π∠=,3BAC π∠=,则AB CD ⋅=______.20.(2022·河南焦作·高二期末(理))已知在四面体ABCD 中,236AB AC AD ===,3BAC CAD DAB π∠=∠=∠=,则BC BD ⋅=______.21.(2022·河南新乡·高二期末(理))已知空间向量()0,1,2AB =-,2AC =,2,3AB AC π=,则AB BC ⋅=( )A .5B 5C .5D 522.(2022·北京昌平·高二期末)已知正三棱锥-P ABC 的底面ABC 的边长为2,M 是空间中任意一点,则()MA MB MC ⋅+的最小值为( )A .32-B .1-C .D .12-23.(2022·江苏省扬州市教育局高二期末)如图,平行六面体1111ABCD A B C D -的底面ABCD 是边长为1的正方形,且1160A AD A AB ∠=∠=︒,12AA =,则线段1AC 的长为( )AB C D .24.(2022·江苏宿迁·高二期末)四面体ABCD 中,2,90,2===∠=︒⋅=-AB AC AD BAD AB CD ,则BAC ∠=( )A .30︒B .45︒C .60︒D .90︒25.(2022·福建厦门·高二期末)在四面体OABC 中,OA OB OC ==,60AOB AOC ∠==︒,90BOC ∠=︒,则OB 与AC 所成角的大小为( ) A .30°B .60°C .120°D .150°26.(2022·全国·高二期末)已知()0,0,0O ,()1,2,3A ,()2,1,2B ,()1,1,2P ,点Q 在直线OP 上运动,当QA QB ⋅取最小值时,点Q 的坐标是______27.【多选】(2022·湖北黄冈·高二期末)棱长为2的正方体1111ABCD A B C D -的侧面11ABB A (含边界)内有一动点P ,则( )A .若1111,1B P mB B nB A m n =++=,则 1110B P B D ⋅= B .若11(01)A P A B λλ=<<,则110C P BD ⋅= C .若()11111111,22B P PA A E AC AD ==+,则 1123E B P A⋅=- D .若()1111112A E AC A D =+,则存在非零向量1B P 使111B P A E ⋅=-考点六 空间向量的运算的坐标表示(一)空间向量坐标的基本运算28.(2022·内蒙古乌兰察布·高二期末(理))已知向量()()2,1,3,1,1,2a b =-=-,则2a b +=( )A .B .()4,1,1-C .()5,1,4-D29.(2022·重庆九龙坡·高二期末)在空间直角坐标系中,若(1,1,0)A ,1(2,0,1)2AB =--,则点B 的坐标为( ) A .(3,1,﹣2)B .(-3,1,2)C .(-3,1,-2)D .(3,-1,2)30.(2022·福建宁德·高二期末)已知()1,2,3A ,()4,5,9B ,13AC AB =,则AC 的坐标为______. 31.(2020·陕西·绥德中学高二期末(理))若(1,1,0)a =,(1,0,2)b =- ,则与a b +同方向的单位向量是_______. 32.【多选】(2022·福建三明·高二期末)已知正方体1111ABCD A B C D -的棱长为2,建立如图所示的空间直角坐标系Dxyz ,则( )A .点1C 的坐标为(2,0,2)B .()12,2,2C A =--C .1BD 的中点坐标为(1,1,1) D .点1B 关于y 轴的对称点为(-2,2,-2)(二)空间向量平行的坐标运算33.(2022·河南焦作·高二期末(理))已知向量()2,1,1a x =---,()2,,2b x x =-,且//a b ,则x 的值为( ) A .2-B .1C .1-或2D .1或2-34.(2022·浙江·杭州四中高二期末)已知向量()1,1,0a =-,()1,0,2b =,且ka b +与2a b -互相平行,则k =( ) A .114-B .15C .35D .12-35.(2022·北京昌平·高二期末)已知(,2,6)a x =-是直线1l 的方向向量,(1,,3)b y =-是直线2l 的方向向量.若直线12l l ∥,则x y +=________.36.(2022·重庆长寿·高二期末)已知()1,2,1u =是直线l 的方向向量,()2,,2v y =为平面α的法向量,若l α⊥,则y 的值为( )A .2-B .12-C .14D .4(三)空间向量垂直的坐标运算37.(2022·广东广州·高二期末)已知向量(1,3,2)a →=-,(2,,4)b m →=--,若a b →→⊥,则实数m 的值是___________. 38.【多选】(2022·福建福州·高二期末)已知空间向量()()1,,2,2,1,2a k k b =+-=-,且a b ⊥,则 ( ) A .6k =-B .6k =C .3b =D .9b =39.(2022·河北保定·高二期末)已知()2,1,3a =-,()1,2,1b =-,若()b a b λ⊥+,则实数λ=______.40.(2022·黑龙江·哈尔滨工业大学附属中学校高二期末(文))已知向量a →=(1,1,k),b →=(−1,0,−1),c →=(0,2,1),且向量2a b -与c 互相垂直,则k 的值是( ) A .1 B .2- C .3- D .4-(四)空间向量模长的坐标运算41.(2021·湖北·黄石市有色第一中学高二期末)若点(1,1,2)A -,(0,3,0)B ,(1,0,1)C -点D 在z 轴上,且AD BC ⊥则||=AD ______.42.(2022·天津市滨海新区塘沽第一中学高二期末)已知向量()2,1,3a →=-,()1,1,b x =-,若a →与b →垂直,则2a b →→+=___________.43.(2022·江苏·南京市大厂高级中学高二期末)向量(),1,1a x =,()1,,1b y =,()2,4,2c =-,且a c ⊥,//b c ,则2a b +=______.44.(2022·江苏·沭阳如东中学高二期末)已知(1,21,0),(3,,)a t t b t t =--=,则||b a -的最小值( )A B C .143D (五)空间向量夹角的坐标运算45.(2022·吉林辽源·高二期末)已知空间向量(3,22)a =-,b 是单位向量,1213a b -=,则向量a 与b 的夹角为______.46.(2022·全国·高二期末)若向量(1,,)a λλ=,(2,1,1)b =-,a ,b 夹角为钝角,则λ的取值范围是______. 47.(2022·江苏淮安·高二期末)如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,P A ⊥平面ABCD ,PA AB =,M 为PC 上一动点,PM tPC =,若⊥BMD 为钝角,则实数t 可能为( )A .15B .14 C .13D .1248.(2022·广东江门·高二期末)若两个单位向量(,,0),(,0,)OA m n OB n p ==与向量(1,1,1)OC =的夹角都等于π4,则cos AOB ∠=__________.(六)空间向量投影的坐标运算49.(2022·上海金山·高二期末)在空间直角坐标系O xyz - 中,已知向量()1,0,3a =,则a 在x 轴上的投影向量为________.50.(2022·天津天津·高二期末)已知空间向量()1,0,1=a ,()2,1,2b =-,则向量a 在向量b 上的投影向量的坐标是__________.51.(2022·广东惠州·高二期末)已知()0,1,1a =,()0,1,0b =,则a 在b 上的投影向量为( )A .1B C .()0,1,0D .110,,22⎛⎫ ⎪⎝⎭考点七 空间向量在立体几何平行、垂直问题中的应用(一)平行问题52.(2022·黑龙江·哈尔滨工业大学附属中学校高二期末(文))如图,已知四棱锥V ABCD -的底面是矩形,VD ⊥平面,222,,,ABCD AB AD VD E F G ===分别是棱,,AB VC CD 的中点.(1)求证:EF ⊥平面VAD ;(2)求平面AVE 与平面VEG 夹角的大小.53.(2022·安徽滁州·高二期末)如图,在多面体ABCDEF 中,AD ⊥平面ABC ,AD //BE //CF ,且AD =1,BE =5,CF =3,⊥ABC 是边长为2的正三角形,G 是AB 的中点.(1)求证:CG //平面DEF ;(2)求二面角E DF A --的余弦值.(二)垂直问题54.(2022·安徽省宿州市第二中学高二期末)如图,边长为2的等边PCD 所在的平面垂直于矩形ABCD 所在的平面,BC =M 为BC 的中点.(1)证明:AM PM ⊥;(2)求平面P AM 与平面ABCD 的夹角的大小;(3)求点D 到平面AMP 的距离.55.(2022·福建福州·高二期末)如图,在正四棱柱1111ABCD A B C D -中,已知2AB AD ==,15AA =,E ,F 分别为1DD ,1BB 上的点,且11DE B F ==.(1)求证:BE ⊥平面ACF :(2)求点B 到平面ACF 的距离.56.(2022·湖北恩施·高二期末)在三棱台ABC -A 1B 1C 1中,C 1C ⊥平面ABC ,AB ⊥BC ,且AB =BC =C 1C =2A 1B 1,O 为AC 的中点,P 是C 1C 的中点.(1)证明:平面A 1BC ⊥平面POB ;(2)求二面角B 1-A 1B -C 的余弦值.(三)综合问题57.(2022·浙江·杭州四中高二期末)已知平面β法向量为()3,1,5m =-,直线l 的方向向量为()6,2,10n =--,则( )A .l 与β平行B .l 与β垂直C .l 与β相交但不垂直D .以上都不对58.【多选】(2022·广东深圳·高二期末)直三棱柱111ABC A B C 中,1,,,,CA CB CA CB CC D E M ⊥==分别为11B C ,11,CC AB 的中点,点N 是棱AC 上一动点,则( )A .对于棱AC 上任意点N ,有1MN BC ⊥B .棱AC 上存在点N ,使得MN ⊥面1BC NC .对于棱AC 上任意点N ,有MN 面1A DED .棱AC 上存在点N ,使得MN DE ∥59.(2022·北京房山·高二期末)如图,正方体1111ABCD A B C D -中,P 是1A D 的中点,则下列说法正确的是( )A .直线PB 与直线1A D 垂直,直线PB ∥平面11B D CB .直线PB 与直线1DC 平行,直线PB ⊥平面11AC DC .直线PB 与直线AC 异面,直线PB ⊥平面11ADC BD .直线PB 与直线11B D 相交,直线PB ⊂平面1ABC考点八 空间角的计算60.(2022·广东江门·高二期末)在直三棱柱111ABC A B C 中,1190,,BCA D F ∠=︒分別是1111,A B AC 的中点,1BC CA CC ==,则1BD 与1AF 所成角的正弦值是( )A B .12 C D 61.(2022·贵州六盘水·高二期末(理))如图是正方体的平面展开图,则在这个正方体中:⊥BM 与ED 平行⊥BM 与CE 垂直⊥CE 与平面ABCD ⊥CN 与BM 所成角为60︒以上四个命题中,正确命题的序号是( )A .⊥⊥B .⊥⊥C .⊥⊥D .⊥⊥62.(2022·黑龙江·双鸭山一中高二期末)如图,在四棱锥S ABCD -中,底面ABCD 为等腰梯形,AD BC ∥,60DAB ∠=,SA ⊥面ABCD ,22SA AD BC ===,点F 为线段SD 中点(1)求证:CF 面SAB ;(2)求异面直线FC 与BD 所成角的大小.63.【多选】(2022·山东·巨野县第一中学高二期末)已知在直三棱柱111ABC A B C 中,底面是一个等腰直角三角形,且1AB BC BB ==,E 、F 、G 、M 分别为1111B C A B AB BC ,,,的中点.则( )A .1GB 与平面11ACC A B .1AB 与1BC 所成角为3π C .1//A M 平面EFBD .平面1AB C ⊥平面1A MC64.(2022·河南南阳·高二期末(理))如图,四边形ABEF 为直角梯形,//AF BE 且BE EF ⊥,CDFE 为正方形,且平面CEFD ⊥平面ABEF ,22EF AF BE ===,13AP AB =,23DQ DC =,则PQ =______,直线PQ 与平面ACD 所成角的正弦值为______.65.(2022·福建省仙游县度尾中学高二期末)如图,在三棱锥-P ABC 中,PAC △是正三角形,AC BC ⊥,2,AC BC PB ===D 是AB 的中点.(1)证明:AC PD ⊥;(2)求直线BC 与平面PAB 所成角的正弦值.66.(2022·甘肃·测试·编辑教研五高二期末(理))如图,在直三棱柱111ABC A B C 中,AC BC ⊥,2AC BC ==,13CC =,点D ,E 分别在棱1AA ,1CC 上,且1AD =,2CE =,M 为棱11A B 的中点.(1)求证:11C M B D ⊥;(2)求直线AB 与平面1DB E 所成角的正弦值.67.(2022·四川绵阳·高二期末(理))如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD ⊥,//BC AD ,2PA AB BC ===,4=AD ,E 为棱PD 的中点,F 是线段PC 上一动点.(1)求证:平面PBC ⊥平面PAB ;(2)若直线BF 与平面ABCD F EA D --的余弦值.(三)平面与平面所成的角(二面角)68.(2022·青海玉树·高二期末(理))如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,2PA AB =,正方形ABCD 的对角线交于点O .(1)求证:BD ⊥平面P AC ;(2)求二面角P BD C --的余弦值.69.(2022·云南曲靖·高二期末)如图所示,AE ⊥平面ABCD ,四边形AEFB 为矩形,,BC AD BA AD ⊥,224AE AD AB BC ====.(1)求证:CF ⊥平面ADE ;(2)求平面CDF 与平面AEFB 所成锐二面角的余弦值.70.(2022·广东中山·高二期末)如图,在四棱锥P ABCD -中,底面四边形ABCD 为直角梯形,π2DAB ∠=,π3ABC ∠=,22AB DC ==,PD PA =CD PD ⊥.(1)求证:平面PAD ⊥平面ABCD ;(2)求平面APB 和平面PBC 的夹角大小.71.(2022·浙江省杭州第九中学高二期末)如图,在三棱锥-P ABC 中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,BM BC λ=,且二面角M PA C --为30°,求λ的值.考点九 空间距离的计算(一)点到直线的距离72.(2022·吉林白山·高二期末)已知(3,1,0)A ,(5,2,2)B ,(2,0,3)C ,则点C 到直线AB 的距离为( )A .3BC .D73.(2022·安徽省宿州市第二中学高二期末)已知直线l 经过点()211A ,,,且()101n =,,是l 的方向向量,则点()432P ,,到l 的距离为( )A .12BCD 74.(2022·青海海东·高二期末(理))在正方体1111ABCD A B C D -中,6,3,,AB AB AE PF ==分别是线段11,A C BB 的中点,则点P 到直线EF 的距离是( )A B .125 C D .185(二)点到平面的距离、直线到平面的距离、平面到平面的距离75.(2022·上海市奉贤中学高二期末)经过原点的平面α的一个法向量为(3,1,2)n =,点A 坐标为(0,1,0),则点A 到平面α的距离为______.76.(2022·青海·海南藏族自治州高级中学高二期末(理))设正方体1111ABCD A B C D -的棱长为4,则点1C 到平面1A BD 的距离是( )A B C D77.(2022·江苏·南京师大附中高二期末)在矩形ABCD 中,2==AD AB E 是线段AD 的中点,将⊥ABE 沿BE 折起到⊥PBE 位置(如图),点F 是线段CP 的中点.(1)求证:DF ⊥平面PBE :(2)若二面角P BE C --的大小为2π,求点A 到平面PCD 的距离. 78.(2022·浙江省杭州第九中学高二期末)若两平行平面α、β分别经过坐标原点O 和点()2,1,1A ,且两平面的一个法向量为()1,0,1n =-,则两平面间的距离是______.(三)异面直线的距离79.(2022·福建·厦门外国语学校高二期末)如图,在正方体1111ABCD A B C D -中,AB =1,M ,N 分别是棱AB ,1CC 的中点,E 是BD 的中点,则异面直线1D M ,EN 间的距离为______.80.(2022·浙江宁波·高二期末)如图,正四棱锥P ABCD -的棱长均为2,点E 为侧棱PD 的中点.若点M ,N 分别为直线AB ,CE 上的动点,则MN 的最小值为______.81.(2022·全国·高二期末)在如图所示实验装置中,正方形框架的边长都是1,且平面ABCD ⊥平面ABEF ,活动弹子,M N 分别在正方形对角线AC ,BF 上移动,则MN 长度的最小值是___________.考点十 空间向量与立体几何的综合问题82.【多选】(2022·广东茂名·高二期末)(多选)如图,在长方体1111ABCD A B C D -中,11AA =,AB AD ==E 是侧面11AA D D 的中心,F 是底面ABCD 的中心,以A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则( )A .EF 是单位向量B .三棱锥1A BCD -外接球的表面积为7πC .直线EF 与1A CD .//EF 平面1A BC83.【多选】(2022·辽宁辽阳·高二期末)在空间直角坐标系O xyz -中,(1,0,0),(1,2,2),(0,0,2)---A B C ,则( )A .3⋅=OC ABB .点B 到平面AOC 的距离是2C .异面直线OC 与ABD .点O 到直线AB 84.【多选】(2022·江苏南通·高二期末)在平行六面体1111ABCD A B C D -中,1AB AD AA ==,1160A AB A AD DAB ∠∠∠===,点P 在线段1BC 上,则( ) A .1AP B C ⊥B .P 到11A B 和CD 的距离相等C .AP 与11A BD .AP 与平面ABCD所成角的正弦值最大为13 一、单选题 1.(2022·江苏扬州·高二期中)如图,在平行六面体1111ABCD A B C D -中,M 为AC 和BD 的交点,若AB a =,AD b =,1AA c =,则下列式子中与1MB 相等的是( )A .1122-+a b cB .1122a b c +- C .1122a b c -++ D .1122--+a b c 2.(2022·河北·石家庄二十三中高二阶段练习)设直线1l 、2l 的方向向量分别为a ,b ,能得到12l l ⊥的是( ) A .(1,2,2)a =-,(2,4,4)b =-B .(2,2,1)a =-,(3,2,10)b =-C .(1,0,0)a =,(3,0,0)b =-D .(2,3,5)a =-,(2,3,5)b =3.(2022·全国·高二专题练习)如图所示,空间四边形ABCD 中,点G 为BCD △的重心,E ,F ,H 分别为边CD ,AD 和BC 的中点,则1132AG BE CA ++的化简结果为( )A .AFB .AHC .AED .CF4.(2021·全国·高考真题(理))在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角【过关检测】为( )A .π2B .π3C .π4D .π65.(2022·湖北·武汉市第十七中学高二期中)在正四面体D ABC -中,点E 在棱AB 上,满足2AE EB =,点F 为线段AC 上的动点,则( )A .存在某个位置,使得DE BF ⊥B .存在某个位置,使得π4FDB ∠= C .存在某个位置,使得直线DE 与平面DBFD .存在某个位置,使得平面DEF 与平面DAC二、多选题 6.(2022·广东·普宁市华侨中学高二阶段练习)如图所示,平行六面体1111ABCD A B C D -中,11111A C B D O ⋂=,以顶点A 为端点的三条棱长都为1,且1160BAD DAA BAA ∠=∠=∠=︒,则下列结论正确的是( )A.1BD B .1//CO 平面1BDA C .1AA 与平面ABCDD .四棱锥1B ABCD -7.(2022·全国·高二专题练习)已知直三棱柱111ABC A B C 中,AB BC ⊥,1AB BC BB ==,O 为1A C 的中点.点P 满足1BP BC λ=,其中[0,1]λ∈,则( )A .对[0,1]λ∀∈时,都有11A P OB ⊥B .当13λ=时,直线1A P 与AB 所成的角是30° C .当12λ=时,直线1A P 与平面111A B CD .当12λ=时,直线1A P 与1OB 相交于一点Q ,则112PQ QA = 三、填空题8.(2022·重庆·四川外国语大学附属外国语学校高二阶段练习)在平行六面体1111ABCD A B C D -中,用向量AB ,AD ,1AA 表示1D B =______.9.(2022·江西南昌·高二期末(理))已知正四面体ABCD 中,E ,F 分别是线段BC ,AD 的中点,点G 是线段CD 上靠近D 的四等分点,则直线EF 与AG 所成角的余弦值为______.四、解答题10.(2022·全国·高二课时练习)如图,在三棱柱111ABC A B C 中,AB ⊥平面11BB C C ,122AB BB BC ===,1BC E 为11A C 的中点.(1)求证:1C B ⊥平面ABC ;(2)求点A 到平面BCE 的距离.11.(2022·辽宁实验中学高二阶段练习)如图,在平行六面体1111ABCD A B C D -中,1160A AD A AB BAD ∠=∠=∠=︒,2AB AD ==,11AA =,点P 为线段BC 中点.(1)求1D P ;(2)求直线1AB 与1D P 所成角的余弦值.12.(2022·广东·顺德一中高二阶段练习)如图,在三棱柱111ABC A B C 中,1CC ⊥平面ABC ,,,D E F 分别为111,,AA AC A C 的中点,AB BC ==12AC AA ==.(1)求证:AC ⊥平面BEF ;(2)求二面角1B CD C 的余弦值; 13.(2022·天津·静海一中高二阶段练习)如图,⊥AE 平面ABCD ,//CF AE ,//AD BC ,AD AB ⊥,2AE BC ==,1AB AD ==,87CF =,则(1)求BD 与EC 所成角的余弦值;(2)求直线CE 与平面BDE 所成角的正弦值; (3)求平面EBD 与平面BDF 的夹角的余弦值.。
高二数学向量知识点及公式
高二数学向量知识点及公式向量是数学中重要的概念之一,它在几何、代数和物理等领域都有广泛的应用。
在高二数学学习中,向量是一个重要的知识点。
本文将介绍高二数学中的向量知识点及相关公式。
一、向量的定义和表示方式在数学中,向量可以定义为具有大小和方向的量。
我们通常用箭头来表示一个向量,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
向量通常用有序数对来表示,例如AB向量可以表示为AB=(x, y)。
其中x表示向量在x轴上的分量,y表示向量在y轴上的分量。
二、向量的相等和零向量向量的相等表示两个向量的大小和方向完全相同。
如果向量AB=(x1, y1),向量CD=(x2, y2),当且仅当x1=x2且y1=y2时,向量AB与向量CD相等。
零向量是一个特殊的向量,它的大小为0且没有方向。
零向量通常用0来表示,即0=(0, 0)。
三、向量的运算1. 向量的加法向量的加法定义为:向量AB+向量CD=(x1+x2, y1+y2)。
即将两个向量的对应分量分别相加,得到一个新的向量。
2. 向量的减法向量的减法定义为:向量AB-向量CD=(x1-x2, y1-y2)。
即将两个向量的对应分量分别相减,得到一个新的向量。
3. 向量的数乘向量的数乘定义为:k*向量AB=(k*x, k*y)。
即将向量的分量分别乘以一个实数k,得到一个新的向量。
四、向量的线性相关与线性无关如果存在不全为零的实数k,使得k*向量AB+向量CD=0,那么向量AB与向量CD就是线性相关的。
换句话说,线性相关的向量可以通过数乘和加法运算得到零向量。
如果向量AB与向量CD线性相关,那么它们之间存在线性关系式k*向量AB=向量CD。
这个式子的解不止一个,所以线性相关的向量存在无穷多个线性关系式。
如果向量AB与向量CD线性无关,那么它们之间不存在线性关系式k*向量AB=向量CD。
换句话说,线性无关的向量不能通过数乘和加法运算使得两个向量相等。
五、向量的模和单位向量向量的模(长度)定义为:|向量AB|=√(x^2+y^2)。
高职数学高二知识点向量
高职数学高二知识点向量在高二的数学学习中,向量是一个重要的知识点。
向量可以表示物理量的大小和方向,广泛用于解决各种实际问题。
本文将简要介绍高职数学高二阶段所学的向量知识点。
一、向量的概念和表示方法向量是具有大小和方向的量。
在数学中,我们通常用有向线段来表示向量。
一条有向线段由起点和终点确定,起点表示向量的起始位置,终点表示向量的末端位置。
向量通常用小写字母加箭头表示,例如a,表达为向量a。
二、向量的运算1. 向量的加法向量的加法满足平行四边形法则。
即将第二个向量的起点与第一个向量的终点相连,连接的线段表示两个向量的和。
向量的加法满足交换律和结合律。
2. 向量的数乘向量的数乘即将向量的大小与一个实数相乘。
数乘后得到的向量与原向量的方向相同(当实数为正)或相反(当实数为负)。
3. 向量的减法向量的减法可以通过将减数取负后与被减数进行相加,即a-b=a+(-b)。
三、向量的性质1. 平行向量若向量a和向量b的方向相同或相反,则称它们为平行向量。
平行向量的大小之比为其模的比值。
2. 相等向量若向量a和向量b的大小相等且方向相同,则称它们为相等向量。
3. 零向量零向量是指大小为零的向量,记作0。
零向量的方向可以是任意方向。
四、向量的坐标表示在直角坐标系中,向量的坐标表示可以使用有序实数对表示。
设向量a的起点为点A(x1, y1),终点为点B(x2, y2),则向量a的坐标表示为(x2-x1, y2-y1)。
五、向量的数量积和夹角1. 向量的数量积向量的数量积(又称点积)是指两个向量的模的乘积与两个向量夹角的余弦值的乘积。
设向量a=(x1, y1)和向量b=(x2, y2),则向量a和向量b的数量积为a·b=x1x2+y1y2。
2. 向量夹角的余弦值公式设向量a和向量b的夹角为θ,则有cosθ=(a·b)/(|a||b|)。
六、向量的应用向量广泛应用于物理学、几何学和力学等领域。
例如在平面力学中,我们可以用向量表示力和速度;在几何学中,可以通过向量计算线段的长度和方向。
高二数学直线和向量知识点
高二数学直线和向量知识点直线和向量是高中数学中的基础知识点之一,对于高二学生来说,掌握直线和向量的相关概念和运算方法是非常重要的。
本文将以清晰明了的方式来介绍直线和向量的知识点,帮助高二学生更好地理解和应用这些知识。
一、直线知识点1. 直线的定义直线是由无数个点按一定规律排列而成的,其中任意两个点都可以确定一条唯一的直线。
2. 直线的表示方法直线可以用解析式、参数方程和一般式等形式表示。
其中,一般式表示为Ax + By + C = 0,A、B和C为常数。
3. 斜率斜率是直线的重要性质,它表示了直线在平面上的倾斜程度。
直线的斜率可以通过计算两点之间的纵坐标差除以横坐标差来得到。
若两点坐标分别为(x₁, y₁)和(x₂, y₂),则直线的斜率可以表示为:斜率 k = (y₂ - y₁) / (x₂ - x₁)4. 直线的性质直线还有一些重要的性质,包括平行、垂直、相交等。
若两条直线的斜率相等,则它们平行;若两条直线的斜率的乘积为-1,则它们垂直。
直线的相交与平行性质以及判断两直线相交点的方法也是数学中的重要内容。
二、向量知识点1. 向量的定义向量是具有大小和方向的量,在平面上可以用有向线段表示。
向量的起点和终点分别表示向量的起点和终点,向量的长度表示向量的大小,方向表示向量的指向。
2. 向量的表示方法向量可以通过坐标表示、分解表示和模长与方向角表示等方式来表示。
坐标表示将向量表示为一个由坐标数字组成的有序组,分别表示向量在x轴和y轴上的分量。
分解表示将向量分解为与坐标轴平行的分量,分别表示向量在x轴和y轴上的投影长度。
模长与方向角表示是通过向量的长度和角度来表示向量,其中模长为向量长度,方向角为向量与x轴的夹角。
3. 向量的运算向量的运算包括向量的加法、减法和数量乘法。
向量加法是将两个向量的对应分量相加,得到一个新的向量。
向量减法是将两个向量的对应分量相减,得到一个新的向量。
数量乘法是将向量的每个分量乘以一个实数,得到一个新的向量。
高二数学复习考点知识与题型专题讲解3---空间向量基本定理
高二数学复习考点知识与题型专题讲解1.2 空间向量基本定理【考点梳理】考点一空间向量基本定理如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯一的有序实数组(x,y,z),使得p=x a+y b+z c.我们把{a,b,c}叫做空间的一个基底,a,b,c都叫做基向量.考点二空间向量的正交分解1.单位正交基底如果空间的一个基底中的三个基向量两两垂直,且长度都是1,那么这个基底叫做单位正交基底,常用{i,j,k}表示.2.向量的正交分解由空间向量基本定理可知,对空间任一向量a,均可以分解为三个向量x i,y j,z k使得a=x i+y j+z k. 像这样把一个空间向量分解为三个两两垂直的向量,叫做把空间向量进行正交分解.考点三证明平行、共线、共面问题(1) 对于空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a=λb.(2) 如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b.考点三求夹角、证明垂直问题(1)θ为a,b的夹角,则cos θ=a·b|a||b|.(2)若a ,b 是非零向量,则a ⊥b ⇔a ·b =0. 知识点三 求距离(长度)问题 ||a =a ·a ( ||AB →=AB →·AB → ).【题型归纳】题型一:空间向量基底概念1.(2021·广东·广州市海珠中学高二期中)下列说法正确的是( ) A .任何三个不共线的向量可构成空间向量的一个基底 B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .直线的方向向量有且仅有一个2.(2021·云南师大附中高二期中)已知{},,a b c 能构成空间的一个基底,则下面的各组向量中,不能构成空间基底的是( ) A .,,a b b c +B .,,a a b c -C .,,a c b c a b ---D .,,a b a b c ++3.(2021·湖南·周南中学高二)设向量,,a b c 不共面,则下列可作为空间的一个基底的是( ) A .{,,}a b b a a +-B .{,,}a b b a b +- C .{,,}a b b a c +-D .{,,}a b c a b c +++ 题型二:空间基底表示向量4.(2022·四川·成都外国语学校高二阶段练习(理))如图,在三棱锥O ABC -中,设,,,OA a OB b OC c ===,若,2AN NB BM MC ==,则MN =( )A .112263a b c +-B .112263a b c -+ C .111263a b c --D .111263a b c ++5.(2022·江苏常州·高二期中)在四面体OABC 中,,,OA a OB b OC c ===,点M 在OA 上,且2,OM MA N =为BC 中点,则MN =( ) A .121232a b c -+B .211322a b c -++C .111222a b c +-D .221332a b c ++6.(2022·湖北·武汉市第十九中学高二期末)如图,在四面体OABC 中,OA a =,OB b =,OC c =,点M 在线段OA 上,且2OM MA =,N 为BC 的中点,则MN 等于( )A .111322a b c ++B .111322a b c -+ C .111322a b c +-D .111322a b c -++ 题型三:空间向量基本定理判断共面7.(2022·全国·高二)已知A ,B ,C 三点不共线,O 为平面ABC 外一点,下列条件中能确定P ,A ,B ,C 四点共面的是( )A .OP OA OB OC =++B .2OP OA OB OC =-- C .111532OP OA OB OC =++D .111333OP OA OB OC =++8.(2022·全国·高二)对空间任一点O 和不共线三点A 、B 、C ,能得到P 、A 、B 、C 四点共面的是( )A .OP OA OB OC =++B .111236OP OA OB OC =++ C .1122OP OA OB OC =++D .以上都错9.(2022·全国·高二)下列向量关系式中,能确定空间四点P ,Q ,R ,S 共面的是( )A .AP AQ AR AS →→→→=++B .23AP AQ AR AS →→→→=++ C .23AP AQ AR AS →→→→=+-D .243AP AQ AR AS →→→→=-+ 题型四:空间向量共面求参数10.(2022·江西·临川一中高二期末(理))已知空间向量()2,1,a m =-,()1,1,2b =-,()1,2,2c t =-,若a ,b ,c 共面,则m +2t =( )A .-1B .0C .1D .-611.(2022·江苏·高二课时练习)已知i ,j ,k 是三个不共面的向量,22AB i j k =-+,23BC i j k =+-,35CD i j k λ=+-,且A ,B ,C ,D 四点共面,则λ的值为( ).A .1-B .1C .2-D .212.(2021·山东省实验中学高二期中)已知A ,B ,C 三点不共线,O 是平面ABC 外任意一点,若2156OM OA OB OC λ=++,则A ,B ,C ,M 四点共面的充要条件是( ) A .1730λ=B .1330λ=C .1730λ=-D .1330λ=-题型五:空间向量基本定理的应用13.(2022·四川·阆中中学高二阶段练习(理))已知存在非零实数λ使得AP BC λ=,且(,0)OP OA xOB yOC x y =-++>,则62x y +的最小值为( )A .4+.8C .6.6+14.(2022·安徽蚌埠·高二期末)在下列命题中正确的是( ) A .已知,,a b c 是空间三个向量,则空间任意一个向量p 总可以唯一表示为p xa yb zc =++ B .若,C AB D 所在的直线是异面直线,则,C AB D 不共面 C .若三个向量,,a b c 两两共面,则,,a b c 共面D .已知A ,B ,C 三点不共线,若111236OD OA OB OC =++,则A ,B ,C ,D 四点共面15.(2021·吉林·长春市第二十九中学高二)已知A 、B 、C 三点不共线,点O 是平面ABC 外一点,则在下列各条件中,能得到点M 与A 、B 、C 一定共面的是( )A .111222OM OA OB OC =++B .1313O OB OC M OA =-+ C .OM OA OB OC =++D .2OM O OB OC A =-- 题型六:空间向量基本定理16.(2022·全国·高二课时练习)如图所示,已知1111ABCD A B C D -是平行六面体.(1)化简1AA BC AB ++;(2)设M 是底面ABCD 的中心,N 是侧面11BCC B 对角线1BC 上的34分点,设1MN AB AD AA αβγ=++,试求α,β,γ的值.17.(2021·河北·石家庄市第六中学高二期中)如图,已知正方体'ABCD A B C D -'''.点E是上底面''''A B C D 的中心,取{,,}AB AD AA ' 为一个基底,在下列条件下,分别求,,x y z的值.(1)BD x AD y AB z AA =+'+'; (2)AE x AD y AB z AA =+'+.【双基达标】一、单选题18.(2022·四川省成都市新都一中高二期中(理))已知M ,A ,B ,C 为空间中四点,任意三点不共线,且2OM OA xOB yOC =-++,若M ,A ,B ,C 四点共面,则x y +的值为( ) A .0B .1C .2D .319.(2022·江苏·涟水县第一中学高二阶段练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++D .1OG =111888OA OB OC ++ 20.(2022·四川省绵阳南山中学高二期中(理))如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且13OG OG =,则( )A .1OG OA OB OC =++B .1111333OG OA OB OC =++ C .1111444OG OA OB OC =++D .1111999OG OA OB OC =++21.(2022·四川省绵阳南山中学高二期中(理))已知O ,A ,B ,C 为空间四点,且向量OA ,OB ,OC 不能构成空间的一个基底,则一定有( ) A .OA ,OB ,OC 共线B .O ,A ,B ,C 中至少有三点共线 C .OA OB +与OC 共线D .O ,A ,B ,C 四点共面22.(2022·江苏宿迁·高二期中)已知P 是ABC 所在平面外一点,M 是PC 中点,且BM x AB y AC z AP =++,则x y z ++=( )A .0B .1C .2D .323.(2022·福建龙岩·高二期中)在平行六面体1111ABCD A B C D -中,点E 是线段1CD 的中点,3AC AF =,设AB a =,AD b =,1AA c =,则EF =( ) A .521632a b c +-B .121632a b c ---C .121632a b c ++D .521632a b c --+24.(2022·全国·高二课时练习)设x a b =+,y b c =+,z c a =+,且{},,a b c 是空间的一个基底,给出下列向量组:①{},,a b x ;②{},,x y z ;③{},,b c z ;④{},,x y a b c ++,则其中可以作为空间的基底的向量组有( ) A .1B .2C .3D .425.(2022·广东深圳·高二期末)如图,在三棱柱111ABC A B C -中,E ,F 分别是BC ,1CC 的中点,2AG GE =,则GF =( )A .1121332AB AC AA -+B .1121332AB AC AA ++C .1211332AB AC AA -+-D .1121332AB AC AA -++26.(2022·全国·高二课时练习)在平行六面体ABCD A B C D ''''-中,已知BA ,BC ,BB '为三条不共面的线段,若23AC x AB yBC zC C ''=++,则x y z ++的值为( ). A .1B .76C .56D .11627.(2022·四川省内江市第六中学高二阶段练习(理))已知空间的一组基底{},,a b c ,若m a b c =-+与n xa yb c =++共线,则x y +的值为( ). A .2B .2-C .1D .0【高分突破】一:单选题28.(2022·吉林·长春吉大附中实验学校高二期末)已知空间向量a ,b ,c ,下列命题中正确的个数是( ) ①若a 与b 共线,b 与c 共线,则a 与c 共线; ②若a ,b ,c 非零且共面,则它们所在的直线共面;⑧若a ,b ,c 不共面,那么对任意一个空间向量p ,存在唯一有序实数组(),,x y z ,使得p xa yb zc =++;④若a ,b 不共线,向量(),,0c a b R λμλμλμ=+∈≠,则{},,a b c 可以构成空间的一个基底. A .0B .1C .2D .329.(2022·江苏省阜宁中学高二期中)《九章算术》中的“商功”篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵111ABC A B C -中,,M N 分别是111,A C BB 的中点,G 是MN 的中点,若1AG xAB yAA zAC =++,则x y z ++=( )A .1B .12C .32D .3430.(2022·安徽芜湖·高二期末)下列命题中正确的个数为( ) ①若向量a ,b 与空间任意向量都不能构成基底,则a b ∥;②若向量a b +,b c +,c a +是空间一组基底,则a ,b ,c 也是空间的一组基底; ③{},,a b c 为空间一组基底,若()0,,xa yb zc x y z R ++=∈,则2220x y z ++=;④对于任意非零空间向量()123,,a a a a =,()123,,b b b b =,若a b ∥,则312123aa ab b b ==.A .1B .2C .3D .4 二、多选题31.(2022·福建福州·高二期中)如图,在平行六面体ABCD A B C D ''''-中,AB a =,AD b =,AA c '=.若CM MD '=,12A C A P ''=,则( )A .a A C b c =++'B .1122AM a b c =++C .A ,P ,D 三点共线D .A ,P ,M ,D 四点共面32.(2022·河北邯郸·高二期末)已知a ,b ,c 是空间的一个基底,则下列说法中正确的是( ) A .若0xa yb zc ++=,则0x y z ===B .a ,b ,c 两两共面,但a ,b ,c 不共面C .一定存在实数x ,y ,使得a xb yc =+D .a b +,b c -,2c a +一定能构成空间的一个基底33.(2022·广东惠州·高二期末)下面四个结论正确的是( )A .空间向量a ,()0,0b a b ≠≠,若a b ⊥,则0a b ⋅=B .若对空间中任意一点O ,有111632OP OA OB OC =++,则P 、A 、B 、C 四点共面C .已知{},,a b c 是空间的一组基底,若m a c =+,则{},,a b m 也是空间的一组基底D .任意向量a ,b ,c 满足()()a b c a b c ⋅⋅=⋅⋅34.(2021·浙江·金华市曙光学校高二阶段练习)已知点P 为三棱锥O ABC -的底面ABC 所在平面内的一点,且12OP OA mOB nOC =+-(m ,n R ∈),则m ,n 的值可能为( )A .1m =,12n =-B .12m =,1n =C .12m =-,1n =-D .32m =,1n =35.(2021·湖南·郴州市第三中学高二期中)下列结论正确的是( )A .三个非零向量能构成空间的一个基底,则它们不共面B .两个非零向量与任何一个向量都不能构成空间的一个基底,则这两个向量共线C .若a ,b 是两个不共线的向量,且(c a b λμλ=+,R μ∈且0)λμ≠,则{a ,b ,}c 构成空间的一个基底D .若OA ,OB ,OC 不能构成空间的一个基底,则O ,A ,B ,C 四点共面36.(2021·浙江省杭州第二中学高二期中)已知{},,a b c 是空间中的一个基底,则下列说法正确的是( )A .存在不全为零的实数x ,y ,z ,使得0xa yb zc ++=B .对空间任一向量p ,存在唯一的有序实数组(),,x y z ,使得p xa yb zc =++C .在a ,b ,c 中,能与a b +,a b -构成空间另一个基底的只有cD .不存在另一个基底{},,a b c ''',使得2323a b c a b c '''++=++37.(2021·重庆·高二阶段练习)下列命题中,正确的有( )A .空间任意向量,a b 都是共面向量B .已知P ,A ,B ,C 四点共面,对空间任意一点O ,若2OP OA OB tOC =++,则1t =-C .在四面体中P ABC -,若0PA BC ⋅=,0PC AB ⋅=,则0PB AC ⋅=D .若向量,,a b b c c a +++是空间一组基底,则,,a b c 也是空间的一组基底38.(2022·湖南省临湘市教研室高二期末)已知M ,A ,B ,C 四点互不重合且任意三点不共线,则下列式子中能使{,,}MA MB MC 成为空间的一个基底的是( )A .111345OM OA OB OC =++B .2MA MB MC =+C .23OM OA OB OC =++D .32MA MB MC =-三、填空题39.(2022·全国·高二课时练习)如图,在三棱柱111ABC A B C -中,M 为11A C 的中点,若AB a =,BC b =,1AA c =,则BM =______.(用a 、b 、c 表示)40.(2022·江苏常州·高二期中)已知P 是ABC 所在平面外一点,2=PM MC ,且BM x AB y AC z AP =++,则实数x y z ++的值为____________.41.(2022·全国·高二)已知,a b 是平面α上的两个向量,有以下命题:①平面α上任意一个向量(),p a b R λμλμ=+∈;②若存在,R λμ∈,使0a b λμ+=,则0λμ==;③若,a b 不共线,则空间任意一个向量(),p a b R λμλμ=+∈;④若,a b 不共线,且p 与,a b 共面,则都有(),p a b R λμλμ=+∈.请填上所有真命题的序号___________.42.(2022·广东珠海·高二期末)已知四面体OABC 中,D ,E 分别在AB ,OC 上,且AD DB =,2OE EC =,若DE OA OB OC αβγ=++,则αβγ++=________.43.(2021·福建·三明一中高二)如图所示,M 是四面体OABC 的棱BC 的中点,点N在线段OM 上,点P 在线段AN 上,且AP =3PN ,23ON OM =,设OA a =,,OB b OC c ==,则OP =________(用,,a b c 来表示)44.(2022·全国·高二期末)已知三棱锥O ABC -,点M ,N 分别为线段AB ,OC 的中点,且OA a =,OB b =,OC c =,用a ,b ,c 表示MN ,则MN 等于_____________.45.(2022·全国·高二)已知关于向量的命题,(1)a b a b -=+是a ,b 共线的充分不必要条件;(2)若//a b ,则存在唯一的实数λ,使a b λ=;(3)0a b ⋅=,0b c ⋅=,则a c =; (4)若{},,a b c 为空间的一个基底,则{},,a b b c c a +++构成空间的另一基底; (5)()a b c a b c ⋅⋅=⋅⋅.在以上命题中,所有正确命题的序号是________.四、解答题46.(2022·江苏·徐州市王杰中学高二)如图,在空间四边形OABC 中,已知E 是线段BC 的中点,G 在AE 上,且2AG GE =.(1)试用OA ,OB ,OC 表示向量OG ;(2)若2OA =,3OB =,4OC =,60AOC BOC ∠=∠=︒,90AOB ∠=︒,求OG AB ⋅的值.47.(2022·全国·高二)如图,在平行六面体1111ABCD A B C D -中,12C C EC =,13AC FC =.(1)求证:A 、F 、E 三点共线;(2)若点G 是平行四边形11B BCC 的中心,求证:D 、F 、G 三点共线.48.(2022·江苏·扬州中学高二阶段练习)如图,在四面体OABC 中,M 是棱OA 上靠近A 的三等分点,N 是棱BC 的中点,P 是线段MN 的中点.设OA a =,OB b =,OC c =.(1)用a ,b ,c 表示向量OP ;(2)若1a b c ===,且满足(从下列三个条件中任选一个,填上序号:①,,,3π===a b b c c a ;②,,,,32ππ===a b c a b c ;③2,,,,23a b c a b c ππ===,则可求出OP 的值;并求出OP 的大小.49.(2021·山东济宁·高二期中)已知平行六面体1111ABCD A B C D -中,底面ABCD 是边长为1的正方形,12AA =,1160A AB A AD ∠=∠=︒.(1)求1AD AC ⋅;(2)求1AC .【答案详解】1.C【详解】对于A,任何三个不共面的向量都可构成空间的一个基底,所以A错误,B错误;对于C,两两垂直的三个非零向量不共面,可构成空间的一个基底,C正确;对于D,直线的方向向量有无数个,所以D错误.故选:C2.C【详解】由图形结合分析---,,a cbc a b三个向量共面,不构成基底,故选:C3.C选项A:由于()()2+--=,三个向量共面,故不能作为空间的一个基底;a b b a a选项B:由于()()2++-=,三个向量共面,故不能作为空间的一个基底;a b b a b选项C :若,,a b b a c +-三个向量共面,则存在,x y R ∈,使得()()()()c x a b y b a x y a x y b =++-=-++,则向量,,a b c 共面,矛盾,故,,a b b a c +-三个向量不共面,因此可以作为空间的一个基底;选项D :由于()a b c a b c ++=++,三个向量共面,故不能作为空间的一个基底; 故选:C4.A【详解】连接,,OM ON 111()()()223MN ON OM OA OB OC CM OA OB OC CB =-=+-+=+--=11112112()()23263263OA OB OC OB OC OA OB OC a b c +---=+-=+-. 故选:A5.B【解析】【分析】利用空间向量的线性运算,空间向量基本定理求解即可.【详解】解:点M 在线段OA 上,且2OM MA =,N 为BC 中点,∴23OM OA =,111()222ON OB OC OB OC =+=+, ∴122113122223a b c MN ON OM OB OC OA =-=+-+=-+. 故选:B .6.D【解析】【分析】利用空间向量的加法与减法可得出OM 关于a 、b 、c 的表达式.【详解】()()21113232MN MA AB BN OA OB OA BC OB OA OC OB =++=+-+=-+- 111322a b c =-++. 故选:D.7.D【解析】【分析】根据点P 与点,,A B C 共面,可得1x y z ++=,验证选项,即可得到答案.【详解】设OP xOA yOB zOC =++,若点P 与点,,A B C 共面,则1x y z ++=,对于选项A :11131x y z ++=++=≠,不满足题意;对于选项B :21101x y z ++=--=≠,不满足题意;对于选项C :11131153230x y z ++=++=≠,不满足题意; 对于选项D :1111333x y z ++=++=,满足题意.故选:D.8.B【解析】【分析】证明出若OP xOA yOB zOC =++且1x y z ++=,则P 、A 、B 、C 四点共面,进而可得出合适的选项.【详解】设OP xOA yOB zOC =++且1x y z ++=,则()1OP xOA yOB x y OC =++--,()()OP OC x OA OC y OB OC ∴-=-+-, 则CP xCA yCB =+,所以,CP 、CA 、CB 为共面向量,则P 、A 、B 、C 四点共面. 对于A 选项,OP OA OB OC =++,11131++=≠,P 、A 、B 、C 四点不共面; 对于B 选项,111236OP OA OB OC =++,1111236++=,P 、A 、B 、C 四点共面; 对于C 选项,1122OP OA OB OC =++,1112122++=≠,P 、A 、B 、C 四点不共面.故选:B.9.D【解析】【分析】由243AP AQ AR AS →→→→=-+,得23RP RQ RS →→→=+,即得解. 【详解】由243AP AQ AR AS →→→→=-+,得23AP AR AQ AR AS AR →→→→→→⎛⎫⎛⎫-=-+- ⎪ ⎪⎝⎭⎝⎭,即23RP RQ RS →→→=+,所以RP →,,RQ RS →→为共面向量, 故,,,P Q R S 四点共面. 故选:D . 10.D 【解析】 【分析】根据向量共面列方程,化简求得2m t +. 【详解】2111-≠-,所以,a b 不共线, 由于a ,b ,c 共面, 所以存在,x y ,使c xa yb =+, 即()()()21,2,22,,1,11,t x m y -=--+,()()(),,21,2,22,,t x x y x y y m -+-=-, ()()1,2,22,,2y t x y x x m y ---+=+,21222x y x y mx y t-+=-⎧⎪-=⎨⎪+=⎩,()()13123222x y m t mx y t =-⎧⎪=-⇒⋅-+⋅-=⎨⎪+=⎩, 即26m t +=-.故选:D 11.B 【解析】 【分析】根据已知条件用i ,j ,k 表示AC ,AD ,再由空间共面向量定理设AD x AB y AC =+,再列方程组,解方程组即可求解. 【详解】因为22AB i j k =-+,23BC i j k =+-,35CD i j k λ=+-所以3AC AB BC i j k =+=-- ,()326A AC D CD i j k λ+==++-, 由空间共面向量定理可知,存在实数,x y 满足AD x AB y AC =+, 即()()()326232i j k x i j k i j k y λ++-=-+-+-,所以332262x y x y x y λ+=+⎧⎪=--⎨⎪-=-⎩,解得221x y λ=-⎧⎪=⎨⎪=⎩,所以λ的值为1,故选:B. 12.B 【解析】 【分析】由四点共面的充要可得21156λ++=,求解即可. 【详解】O 是平面ABC 外任意一点,且2156OM OA OB OC λ=++,若A ,B ,C ,M 四点共面的充要条件是21156λ++=,即1330λ=. 故选:B. 13.A 【解析】 【分析】根据向量的共面定理,得到2x y +=,再结合基本不等式,即可求解. 【详解】由题意,存在非零实数λ使得AP BC λ=,可得//AP BC ,即,,,P A B C 四点共面, 因为(,0)OP OA xOB yOC x y =-++>,根据向量的共面定量,可得11x y -++=,即2x y +=,又由621621621()()(62)(84222y x x y x y x y x y +=⋅++=⋅+++≥+=+当且仅当62y x x y=时,即x =时,等号成立,所以62x y +的最小值为4+故选:A. 14.D 【解析】 【分析】对于A ,利用空间向量基本定理判断,对于B ,利用向量的定义判断,对于C ,举例判断,对于D ,共面向量定理判断 【详解】对于A ,若,,a b c 三个向量共面,在平面α,则空间中不在平面α的向量不能用,,a b c 表示,所以A 错误,对于B ,因为向量是自由向量,是可以自由平移,所以当,C AB D 所在的直线是异面直线时,,C AB D 有可能共面,所以B 错误,对于C ,当三个向量,,a b c 两两共面时,如空间直角坐标系中的3个基向量两两共面,但这3个向量不共面,所以C 错误,对于D ,因为A ,B ,C 三点不共线,111236OD OA OB OC =++,且1111236++=,所以A ,B ,C ,D 四点共面,所以D 正确, 故选:D 15.B 【解析】 【分析】证明出当1x y z ++=,且OM xOA yOB zOC =++,则点M 、A 、B 、C 共面.然后逐项验证可得合适的选项. 【详解】若1x y z ++=,且OM xOA yOB zOC =++,则()1OM xOA yOB x y OC =++--,则()()OM OC x OA OC y OB OC -=-+-, 即xCA yCB CM =+,所以,点M 、A 、B 、C 共面. 对于A 选项,1111222++≠,A 选项中的点M 、A 、B 、C 不共面; 对于B 选项,111133-+=,B 选项中的点M 、A 、B 、C 共面;对于C 选项,1111++≠,C 选项中的点M 、A 、B 、C 不共面; 对于D 选项,2111--≠,D 选项中的点M 、A 、B 、C 不共面. 故选:B. 16.(1)1AC ; (2)12α=,14,34γ=. 【解析】 【分析】(1)利用平行六面体的性质及向量的线性运算即得;(2)利用向量线性运算的几何表示可得1113244AB A MN AA D =++,进而即得. (1)∵1111ABCD A B C D -是平行六面体, ∴1111111AA BC AB AA BC A B AC ++=++= (2)∵MN =MB BN +11324DB BC =+()()11324AB AD AA AD =-++ 1113244AB AD AA =++,又1MN AB AD AA αβγ=++, ∴12α=,14,34γ=. 17.(1)1,1,1x y z ==-= (2)11,,122x y z === 【解析】 【分析】(1)利用空间向量的加法运算,结合相等向量,由空间向量的基本定理求解; (2)利用空间向量的加法运算,结合相等向量,由空间向量的基本定理求解; (1)解:BD BA AA A D ''''=++,AD AB AA '=-+,又因为BD x AD y AB z AA =+'+', 所以1,1,1x y z ==-=; (2)AE AA A D D E =+''''+,12AA AD DB ='++,()12AA AD AB AD =++-', 1122AD AB AA =+'+, 又因为AE x AD y AB z AA =+'+, 所以11,,122x y z ===. 18.D 【解析】 【分析】根据四点共面结论:若,,,A B C D 四点共面,则OD aOA bOB cOC =++且1a b c ++=, 【详解】若M ,A ,B ,C 四点共面,则21x y -++=,则3x y += 故选:D . 19.B 【解析】 【分析】利用向量加法减法的几何意义并依据空间向量基本定理去求向量1OG 【详解】连接AG 并延长交BC 于N ,连接ON ,由G 是ABC 的重心,可得23AG AN =,()12ON OB OC =+ 则()()2221112=3332333AG AN ON OA OB OC OA OB OC OA ⎡⎤=-=+-=+-⎢⎥⎣⎦ 则()1111112444333OG OG OA AG OA OB OC OA ⎛⎫==+=++- ⎪⎝⎭111121212OA OB OC =++ 故选:B 20.D 【解析】 【分析】利用向量加法减法的几何意义并依据空间向量基本定理去求向量1OG 【详解】连接AG 并延长交BC 于N ,连接ON ,由G 是ABC 的重心,可得23AG AN =,()12ON OB OC =+则()()2221112=3332333AG AN ON OA OB OC OA OB OC OA ⎡⎤=-=+-=+-⎢⎥⎣⎦ 则()1111112111333333999OG OG OA AG OA OB OC OA OA OB OC ⎛⎫==+=++-=++ ⎪⎝⎭ 故选:D 21.D 【解析】 【分析】根据空间向量基本定理即可判断 【详解】由于向量OA ,OB ,OC 不能构成空间的一个基底知OA ,OB ,OC 共面,所以O ,A ,B ,C 四点共面 故选:D 22.A 【解析】 【分析】利用向量减法的三角形法则进行计算即可. 【详解】因为M 是PC 中点,()()()1122BM PM PB PC AB AP AC AP AB AP ∴=-=--=--- 1122AB AC AP =-++,又BM x AB y AC z AP =++, 111,,22x y z ∴=-==,∴0x y z ++=. 故选:A. 23.B 【解析】 【分析】利用向量加法的平行四边形法则,减法的三角形法则即可求解 【详解】因为E 为1CD 中点, 所以()()11111112222AE AD AC AA AD AD AB AA AD AB =+=+++=++ ()11333AC AF AF AC AD AB =⇒==+ 所以1111111213322632EF AF AE AD AB AA AD AB AB AD AA =-=+---=--- 即121362a b c EF =--- 故选:B 24.C 【解析】 【分析】以A 为顶点作AB a =,AD b =,1AA c =,作出平行六面体1111ABCD A B C D -,根据空间向量的加法法则作出,,,,x y z a b c ++,然后判断各组向量是否共面可得结论. 【详解】如图,作平行六面体1111ABCD A B C D -,AB a =,AD b =,1AA c =, 则AC a b =+,1AD b c =+,1AB c a =+,1AC a b c =++,由平行六面体知,,,a b x 共面,,,x y z 不共面,,,b c z 不共面,,,x y a b c ++不共面, 因此可以作为空间的基底的有3组. 故选:C .25.D 【解析】 【分析】根据空间向量线性运算的几何意义进行求解即可. 【详解】23GF AF AG AC CF AE =-=+-()11121121232332AC AA AB AC AB AC AA =+-⨯+=-++, 故选:D . 26.B 【解析】 【分析】根据向量的加法法则及共面向量的基本定理即可求解. 【详解】根据向量的加法法则可得AC AB BC CC AB BC C C '''=++=+-,又23AC x AB yBC zC C ''=++,且,,AB BC C C '不共面,所以 1 2=1 3=-1x y z =⎧⎪⎨⎪⎩,解得111,,23x y z ===-,所以1171236x y z ++=+-=. 故选:B. 27.D 【解析】 【分析】根据m 与n 共线,由()xa yb c z a b c ++=-+,即可求解. 【详解】因为m 与n 共线,空间的一组基底{},,a b c , 所以()xa yb c z a b c ++=-+,所以,,1,x z y z z =⎧⎪=-⎨⎪=⎩解得1,1.x y =⎧⎨=-⎩,所以x +y =0. 故选:D. 28.B 【解析】【分析】用向量共线或共面的基本定理即可判断. 【详解】若 a 与b ,b 与c 共线,0b = ,则不能判定a c λ= , 故①错误;若非零向量,,a b c 共面,则向量c 可以在一个与,a b 组成的平面平行的平面上, 故②错误;,,a b c 不共面,意味着它们都是非零向量,可以作为一组基底,故③正确;c a b λμ=+,∴ c 与,a b 共面,故,,a b c 不能组成一个基底,故④错误; 故选:C. 29.C 【解析】 【分析】连接,AM AN ,由()111312244AG AM AN AB AA AC =+=++,即可求出答案. 【详解】连接,AM AN 如下图:由于G 是MN 的中点,()12AG AM AN =+∴ 11111222AA AC AB AA ⎛⎫=+++ ⎪⎝⎭1131244AB AA AC =++. 根据题意知1AG xAB yAA zAC =++.32x y z ∴++=. 故选:C. 30.C 【解析】 【分析】根据题意、空间向量基底的概念和共线的运算即可判断命题①②③,根据空间向量的平行关系即可判断命题④. 【详解】①:向量a b ,与空间任意向量都不能构成一个基底,则a 与b 共线或a 与b 其中有一个为零向量,所以//a b ,故①正确;②:由向量a b b c c a +++,,是空间一组基底,则空间中任意一个向量d ,存在唯一的实数组()x y z ,,使得d ()()()()()()x a b y b c z c a x z a x y b y z c =+++++=+++++,所以a b c ,,也是空间一组基底,故②正确;③:由{}a b c ,,为空间一组基底,若0()xa yb zc x y z R ++=∈,,, 则0x y z ===,所以2220x y z ++=,故③正确;④:对于任意非零空间向量123()a a a a =,,,123()b b b b =,,,若//a b ,则存在一个实数λ使得=a b λ,有112233a b a b a bλλλ=⎧⎪=⎨⎪=⎩,又123b b b ,,中可以有为0的,分式没有意义,故④错误. 故选:C 31.BD 【解析】 【分析】根据空间向量运算判断AB 选项的正确性,根据三点共线、四点共面的知识判断CD 选项的正确性. 【详解】A C AC AB AD a b c A A AA '=-=+-='+'-,A 选项错误. ()()11112222AM AC A AB AD AD a b c D AA =+=+++='++',B 选项正确. 12A C A P ''=则P 是A C '的中点, ()()()111222c AP AC AA AB AD A b A a ''=+=++++=, c AD b AD AA ''=+=+,则不存在实数λ使AP AD λ'=,所以C 选项错误.()1112212122P a b c a b c b M AM AP AD +==⎛⎫=--= ⎪⎝++⎭+,由于,P M ∉直线AD ,所以,,,A P M D 四点共面,所以D 选项正确. 故选:BD 32.ABD 【解析】 【分析】利用空间向量的基底的概念及空间向量基本定理逐项分析即得. 【详解】∵a ,b ,c 是空间的一个基底,则a ,b ,c 不共面,且两两共面、不共线, ∴若0xa yb zc ++=,则0x y z ===,A 正确,B 正确;若存在x ,y 使得a xb yc =+,则a ,b ,c 共面,与已知矛盾,C 错误;设()()()22a b x b c y c a ya xb y x c +=-++=++-,则21,1,0,y x y x =⎧⎪=⎨⎪-=⎩,此方程组无解,∴a b +,b c -,2c a +不共面,D 正确. 故选:ABD. 33.ABC 【解析】 【分析】空间向量垂直的数量积表示可判断A ;由向量四点共面的条件可判断B ;由空间向量基底的定义可判断C ; a b ⋅是一个数值,c b ⋅也是一个数值,说明a 和c 存在倍数关系,或者说共线,可判断D. 【详解】空间向量a ,()0,0b a b ≠≠,若a b ⊥,则0a b ⋅=,故A 正确; 对空间中任意一点O ,有111632OP OA OB OC =++,且1111632++=,则P 、A 、B 、C 四点共面,故B 正确;因为{},,a b c 是空间的一组基底,所以,,a b c 不共面,m a c =+,则,,+a b a c 也不共面, 即{},,a b m 也是空间的一组基底,故C 正确;任意向量a ,b ,c 满足()()a b c a b c ⋅⋅=⋅⋅,由于a b ⋅是一个数值,c b ⋅也是一个数值, 则说明a 和c 存在倍数关系,或者说共线,不一定相等,故D 错误. 故选:ABC. 34.CD 【解析】 【分析】根据平面向量基本定理,结合空间向量加法的几何意义进行求解即可. 【详解】因为点P 为三棱锥O ABC -的底面ABC 所在平面内的一点, 所以由平面向量基本定理可知:()()AP y AC z AB AO OP y AO OC z AO OB =+⇒+=+++,化简得:(1)OP y z OA yOC zOB =--++,显然有11y z y z --++=, 而12OP OA mOB nOC =+-,所以有11122m n m n +-=⇒-=,当1m =,12n =-时,32m n -=,所以选项A 不可能;当12m =,1n =时,12m n -=-,所以选项B 不可能;当12m =-,1n =-时,12m n -=,所以选项C 可能; 当32m =,1n =时,12m n -=,所以选项D 可能, 故选:CD 35.ABD 【解析】 【分析】根据空间向量基本定理即可判断出各个选项的正误. 【详解】解:对于选项A :三个非零向量能构成空间的一个基底,则三个非零向量不共面,所以选项A 正确,对于选项B :三个非零向量不共面,则此三个向量可以构成空间的一个基底, 若两个非零向量与任何一个向量都不能构成空间的一个基底,则这三个向量共面, 则已知的两个向量共线,所以选项B 正确, 对于选项C :(c a b λμλ=+、R μ∈且λ、0)μ≠,∴a ,b,c 共面,不能构成基底,所以选项C 错误,对于选项D :OA 、OB 、OC 共起点,若O 、A 、B 、C 四点不共面,则必能作为空间的一个基底,所以选项D 正确, 故选:ABD .36.BC【解析】【分析】根据空间向量基底概念分别判断即可.【详解】对于A,若存在不全为零的实数x,y,z,使得x y za b c,++=0{a,b,}c不能构成空间的一个基底,所以A错;对于B,因为{a,b,}c构成空间的一个基底,所以对空间任一向量p,总存在唯一的有序实数组(x,y,)z,使得p xa yb zc=++,所以B对;对于C,因为2()()b a b a b=+--,=++-,2()()a ab a b所以a,b,不能与a b+,a b-构成空间另一个基底;又因为设x,y,z R∈若()()0++-+=x a b y a b zc⇒++-+=⇒===,x y a x y b zc x y z()()00所以c与a b+,a b-构成空间另一个基底;所以在a,b,c中,能与a b+,a b-构成空间另一个基底的只有c,所以C对;对于D,存在,根据向量运算几何意义,++表示以O为顶点,以1a,2b,3c为相邻三边的长方体对角线,a b c23绕此对角线长方体旋转,基底也变为另一基底{a',b',}c',都满足2323++='+'+',所以D错误.a b c a b c故选:BC37.ACD【解析】【分析】利用空间向量共面定理及数量积运算,逐一分析判断即可.【详解】解:对于A ,空间任意向量,a b 都是共面向量,所以A 正确;对于B ,已知P ,A ,B ,C 四点共面,对空间任意一点O ,若2OP OA OB tOC =++, 则211t ++=,解得2t =-,所以B 错误;对于C ,在四面体中P ABC -,若0PA BC ⋅=,0PC AB ⋅=,则()()2PA BC PB BA PC PB PB PC PB BA PC BA PB ⋅=+⋅-=⋅-+⋅-⋅ ()2PB PC PB BA PB PB PC PB BA =⋅--⋅=⋅--0PB AC =⋅=,所以C 正确; 对于D ,因为向量,,,a b b c c a +++是空间一组基底,则对于空间任一向量()d x y z =,,,都存在实数m ,n ,p ,使得()()()()d x y z m a b n b c p c a ==+++++,,,即()()()d m p a m n b n p c =+++++,所以,,a b c 也是空间的一组基底,所以D 正确. 故选:ACD .38.AC【解析】【分析】根据基底的性质,结合各选项中向量的线性关系、空间向量基本定理判断M 、A 、B 、C 是否共面,即可知{,,}MA MB MC 是否能成为空间基底.【详解】A :因为111345OM OA OB OC =++,且1111345++≠,利用平面向量基本定理知:点M 不在平面ABC 内,向量,,MA MB MC 能构成一个空间基底;B :因为2MA MB MC =+,利用平面向量基本定理知:向量,,MA MB MC 共面,不能构成一个空间基底;C :由23,1231OM OA OB OC =++++≠,利用平面向量基本定理和空间平行六面体法知:OM 是以点O 为顶点的对角线,向量,,MA MB MC 能构成一个空间基底;D :由32MA MB MC =-,根据平面向量的基本定理知:向量,,MA MB MC 共面,不能构成空间的一个基底.故选:AC.39.1122a b c -++ 【解析】【分析】利用空间向量的线性运算,结合题意,求解即可.【详解】根据题意,()1111111122BM BA AA A M AB AA AC AB AA AB BC =++=-++=-+++ 11122AB BC AA =-++=1122a b c -++. 故答案为:1122a b c -++.40.0【解析】 【分析】由2=PM MC 可得出BM 关于{},BP BC 的表达式,再利用空间向量的减法可求得x 、y 、z 的值,即可得解.【详解】因为2=PM MC ,则()2BM BP BC BM -=-, 所以,()()121221333333BM BP BC AP AB AC AB AB AC AP =+=-+-=-++, 所以,1x =-,23y =,13z =,因此,0x y z ++=.故答案为:0.41.④【解析】【分析】通过反例可知①②错误;根据平面向量基本定理、空间向量基本定理可判断出③④正误.【详解】对于①,若0a b ==,则对于平面内任意一个向量p ,无法得到(),p a b R λμλμ=+∈,①错误;对于②,若0a b ==,则,λμ为任意实数,②错误;对于③,若p 与,a b 不共面,则对于空间任意一个向量p ,无法得到p a b λμ=+(),R λμ∈,③错误;对于④,由平面向量基本定理可知④正确.故答案为:④.42.13-【解析】连接OD ,根据题意,结合空间向量加减法运算求解即可.【详解】解:连接OD∵四面体OABC 中,D ,E 分别在AB ,OC 上,且AD DB =,2OE EC = ∴()2111232223DE OE OD OC OA OB OA OB OC =-=-+=--+∴121223αβγ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩∴13αβγ++=-.故答案为:13-43.111444a b c ++【解析】【分析】利用空间的基底结合空间向量的线性运算计算即可得解.,,OA a OB b OC c ===,而M 是四面体OABC 的棱BC 的中点,则1()2OM OB OC =+1122b c =+, 因AP =3PN ,23ON OM =,则33()44OP OA AP OA AN OA ON OA =+=+=+-132111443444OA OM a b c =+⋅=++, 所以111444OP a b c =++. 故答案为:111444a b c ++44.()12c a b -- 【解析】【分析】根据给定条件利用空间向量的线性运算即可得解.【详解】三棱锥O ABC -,点M ,N 分别为线段AB ,OC 的中点,则()11112222MN MB BO ON AB OB OC OB OA OB OC =++=-+=--+()11112222OC OA OB c a b =--=--, 所以MN 等于()12c a b --. 故答案为:()12c a b --. 45.(1)(4)【解析】根据共线向量,向量垂直,向量的基本定理,向量数量积的定义与性质,逐一分析5个命题的真假,即可得解.【详解】(1)若a b a b -=+,则a ,b 反向共线,即满足充分条件,但当非零向量a ,b 同向共线时,不存在a b a b -=+,即满足不必要条件,故(1)正确;(2)若向量a ,b 中有一个零向量,则存在无数个实数λ,使a b λ=,即(2)错误;(3)若0a b ⋅=,0b c ⋅=,说明a b ⊥,b c ⊥,不一定存在a c =,即(3)错误;(4)令()()a b b c c a λμ+=+++,则()a b a b c μλλμ+=+++,所以110λμλμ=⎧⎪=⎨⎪+=⎩,无解,即a b +,b c +,c a +不共面,所以{},,a b b c c a +++构成空间的另一基底,即(4)正确; (5)()()cos ,a b c a b c a b c a b ⋅⋅=⋅⋅=⋅⋅,即(5)错误.命题(1)(4)正确.故答案为:(1)(4).46.(1)111333OG OA OB OC =++(2)73【解析】【分析】(1)根据空间向量线性运算法则计算可得;(2)由(1)可得111()()333OG AB OA OB OC OB OA ⋅=++⋅-,根据空间向量数量积的运算律及定。
高二数学知识点复习:向量
高二数学知识点复习:向量什么是向量在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。
它可以形象化地表示为带箭头的线段。
箭头所指:代表向量的方向;线段长度:代表向量的大小。
与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
向量垂直公式a,b是两个向量a=(a1,a2) b=(b1,b2)a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb,λ是一个常数a垂直b:a1b1+a2b2=0证明:①几何角度:向量A (x1,y1),长度L1 =√(x1²+y1²)向量B (x2,y2),长度L2 =√(x2²+y2²)(x1,y1)到(x2,y2)的距离:D=√[(x1 - x2)² + (y1 - y2)²]两个向量垂直,根据勾股定理:L1² + L2² = D²∴ (x1²+y1²) + (x2²+y2²) = (x1 - x2)² + (y1 - y2)²∴ x1² + y1² + x2² + y2² = x1² -2x1x2 + x2²+ y1² - 2y1y2 + y2²∴ 0 = -2x1x2 - 2y1y2∴ x1x2 + y1y2 = 0②扩展到三维角度:x1x2 + y1y2 + z1z2 = 0,那么向量(x1,y1,z1)和(x2,y2,z2)垂直综述,对任意维度的两个向量L1,L2垂直的充分必要条件是:L1×L2=0 成立。
平面向量加法公式已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC 的和,记作AB+BC即有:AB+BC=AC。
用坐标表示时,显然有:AB+BC=(x2-x1,y2-y1)+(x3-x2,y3-y2)=(x2-x1+x3-x2,y2-y1+y3-y2)=(x3-x1,y3-y1)=AC。
高2数学知识点总结(推荐8篇)
高2数学知识点总结(推荐8篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高2数学知识点总结(推荐8篇)高2数学知识点总结(1)向量的基本概念(1)向量既有大小又有方向的量叫做向量.物理学中又叫做矢量.如力、速度、加速度、位移就是向量.向量可以用一条有向线段(带有方向的线段)来表示,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.向量也可以用一个小写字母a,b,c表示,或用两个大写字母加表示(其中前面的字母为起点,后面的字母为终点)(5)平行向量方向相同或相反的非零向量,叫做平行向量.平行向量也叫做共线向量.若向量a、b平行,记作a∥规定:0与任一向量平行.(6)相等向量长度相等且方向相同的向量叫做相等向量.①向量相等有两个要素:一是长度相等,二是方向相同,二者缺一不可.②向量a,b相等记作③零向量都相等.④任何两个相等的非零向量,都可用同一有向线段表示,但特别要注意向量相等与有向线段的起点无关.对于向量概念需注意(1)向量是区别于数量的一种量,既有大小,又有方向,任意两个向量不能比较大小,只可以判断它们是否相等,但向量的模可以比较大小.(2)向量共线与表示它们的有向线段共线不同.向量共线时,表示向量的有向线段可以是平行的,不一定在同一条直线上;而有向线段共线则是指线段必须在同一条直线上.(3)由向量相等的定义可知,对于一个向量,只要不改变它的大小和方向,它是可以任意平行移动的,因此用有向线段表示向量时,可以任意选取有向线段的起点,由此也可得到:任意一组平行向量都可以平移到同一条直线上.向量的运算律(1)交换律:α+β=β+α(2)结合律:(α+β)+γ=α+(β+γ)(3)数量加法的分配律:(λ+μ)α=λα+μα(4)向量加法的分配律:γ(α+β)=γα+γβ高2数学知识点总结(2)判断充分与必要条件一、定义法对于“?圯”,可以简单的记为箭头所指为必要,箭尾所指为充分。
高二数学选修一向量知识点总结
高二数学选修一向量知识点总结向量是高中数学中的重要概念,也是高考数学中的热点考点之一。
在高二数学选修一中,学生需要全面掌握向量的相关知识点,理解其性质和运算规则,并能够熟练应用到解题中。
本文将对高二数学选修一向量知识点进行总结,包括向量的定义、向量的表示、向量的运算以及向量的应用。
一、向量的定义在平面直角坐标系或空间直角坐标系中,向量是用有向线段表示的。
具体而言,向量有大小和方向两个属性,且可以记作AB→,其中A称为向量的起点,B称为向量的终点。
方向可以用角度或方向角表示,大小可以用模或长度表示。
二、向量的表示向量的表示方法有多种,包括坐标表示、分量表示、单位向量表示等。
1. 坐标表示:在平面直角坐标系中,向量AB→的坐标表示为(AB→) = (x2 - x1,y2 - y1),其中(x1,y1)为向量的起点坐标,(x2,y2)为向量的终点坐标。
在空间直角坐标系中,向量的坐标表示类似,即(AB→) = (x2 - x1,y2 - y1,z2 - z1)。
2. 分量表示:向量的分量表示是指将向量投影在坐标轴上得到的数值表示。
在平面直角坐标系中,向量AB→的分量表示为AB→ = (x,y),其中x为向量在x轴上的分量,y为向量在y轴上的分量。
同样,在空间直角坐标系中,向量的分量表示是将向量在各个坐标轴上的投影得到的三个数。
3. 单位向量表示:单位向量是长度为1的向量,它的表示通常用字母u、v或i、j来表示。
其中,i为平面直角坐标系或空间直角坐标系的x轴正方向的单位向量,j为y轴正方向的单位向量。
在空间直角坐标系中,还有k表示z轴正方向的单位向量。
三、向量的运算向量在数学中有多种运算,包括加法、减法、数量乘法和点积运算。
1. 加法:向量的加法是指将两个向量的对应分量相加得到的新向量。
具体而言,向量的加法满足交换律和结合律。
即若向量A = (x1,y1)、B = (x2,y2),则A + B = (x1 + x2,y1 + y2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学向量知识点总结
高二数学向量知识点总结(一)
考点一:向量的概念、向量的基本定理
【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。
注意对向量概念的理解,向量是能够自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算
【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则实行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会实行平面向量积的运算,能使用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。
【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点
【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来协助理解。
【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。
因为向量应用的广泛性,经常也会与三角函数,解析
几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难
度略高的题目。
考点四:向量与三角函数的综合问题
【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的
要求。
【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向
量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。
考点五:平面向量与函数问题的交汇
【内容解读】平面向量与函数交汇的问题,主要是向量与二次函
数结合的问题为主,要注意自变量的取值范围。
【命题规律】命题多以解答题为主,属中档题。
考点六:平面向量在平面几何中的应用
【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入
向量的坐标表示后,使向量之间的运算代数化,这样就能够将“形”
和“数”紧密地结合在一起.所以,很多平面几何问题中较难解决的问题,都能够转化为大家熟悉的代数运算的论证.也就是把平面几何图形
放到适当的坐标系中,赋予几何图形相关点与平面向量具体的坐标,
这样将相关平面几何问题转化为相对应的代数运算和向量运算,从而
使问题得到解决.
【命题规律】命题多以解答题为主,属中等偏难的试题。
高二数学向量知识点总结(二)
平面向量
戴氏航天学校老师总结加法与减法的代数运算:
(1)若a=(x1,y1 ),b=(x2,y2 )则a b=(x1+x2,y1+y2 ).
向量加法与减法的几何表示:平行四边形法则、三角形法则。
戴氏航天学校老师总结向量加法有如下规律:+= +(交换律);
+( +c)=( + )+c (结合律);
两个向量共线的充要条件:
(1) 向量b与非零向量共线的充要条件是有且仅有一个实数,使得b= .
(2) 若=(),b=()则‖b .
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这个平面内的任一向量,戴氏航天学校老师提醒有且只有一对实数,,使得= e1+ e2。