利用散点图判断两个变量的相关关系资料讲解

合集下载

散点图揭示变量关联程度的方法

散点图揭示变量关联程度的方法

散点图揭示变量关联程度的方法散点图通过点的分布情况来揭示两个变量之间的关联程度。

以下是散点图如何揭示两个变量之间关联程度的详细说明:1. 点的分布模式●正相关:如果散点图中的点大致呈现从左下角到右上角的直线或曲线分布,即随着一个变量的增加,另一个变量也相应增加,这表明两个变量之间存在正相关关系。

正相关意味着一个变量的增加往往伴随着另一个变量的增加。

●负相关:相反,如果散点图中的点大致呈现从左上角到右下角的直线或曲线分布,即随着一个变量的增加,另一个变量相应减少,这表明两个变量之间存在负相关关系。

负相关意味着一个变量的增加往往伴随着另一个变量的减少。

●无关联或弱关联:如果散点图中的点分布散乱,没有明显的上升或下降趋势,那么这表明两个变量之间可能不存在明显的线性关联或关联程度较弱。

然而,这并不意味着两个变量之间完全无关,它们之间可能存在其他类型的关系(如非线性关系)。

2. 趋势线的添加为了进一步揭示两个变量之间的关联程度,可以在散点图中添加趋势线(如线性趋势线、多项式趋势线等)。

趋势线的斜率和截距可以提供关于变量之间关系的量化信息。

例如,线性趋势线的斜率表示一个变量随另一个变量变化的速率,斜率的大小和正负可以反映关联的程度和方向。

3. 点的密集程度散点图中点的密集程度也可以反映两个变量之间的关联程度。

如果点集中分布在某个区域,且形成明显的趋势线或带状分布,那么这表明两个变量之间的关联程度较强。

相反,如果点分布散乱且稀疏,那么这表明两个变量之间的关联程度较弱。

4. 异常值的识别在观察散点图时,还需要注意识别异常值(即与其他点显著不同的点)。

异常值可能是由测量错误、数据录入错误或极端情况引起的。

如果散点图中存在异常值,可能会对关联程度的判断产生影响。

因此,在分析时需要谨慎处理异常值,并考虑其对整体结果的影响。

综上所述,散点图通过点的分布模式、趋势线的添加、点的密集程度以及异常值的识别等方式来揭示两个变量之间的关联程度。

两个变量的相关关系知识点和典例

两个变量的相关关系知识点和典例

两个变量的相关关系知识点和典例1.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫做回归直线.(回归直线y ^=b ^x +a ^必过样本点的中心(x ,y ),其它点不一定过直线只是在直线附近,这个结论既是检验所求回归直线方程是否准确的依据,也是求参数的一个依据.)(2)回归方程为y ^=b ^x +a ^,其中b ^=∑i =1nx i y i -n xy∑i =1nx 2i -n x2=∑i =1n)(x i -x )(y i -y )∑i =1n)(x i -x )2,a ^=y -b ^x .(3)相关系数:相关系数r =∑i =1n)(t i -t )(y i -y )∑i =1n)(t i -t )2∑i =1n )(y i -y )2当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.(r 的符号表明两个变量是正相关还是负相关;|r |的大小表示线性相关性的强弱.)例一.某公司借助手机微信平台推广自己的产品,对今年前5个月的微信推广费用x 与月利润y (单位:百万元)进行了初步统计,得到下列表格中的数据:经计算,微信推广费用x 与月利润y 满足线性回归方程 6.517.5y x ∧=+.求p 的值.[解] ()()11245685,3040607040555p x y p =++++==++++=+, 因为样本中心(),x y 在回归直线 6.517.5y x ∧=+上, 所以40 6.5517.55p+=⨯+,解得50p = [变式练习]已知变量x ,y 之间的线性回归方程y ^=-0.7x +10.3,且变量x ,y 之间的一组相关数据如下表所示,则下列说法错误的是( )x 6 8 10 12 y6m32A.变量x ,y 之间呈负相关关系))))B.可以预测,当x =20时,b ^=-3.7 C.m =4))))))))))))))))))))))))D.该回归直线必过点(9,4)[解]由-0.7<0,得变量x ,y 之间呈负相关关系,故A 正确;当x =20时,y ^=-0.7×20+10.3=-3.7,故B 正确;由表格数据可知x -=14×(6+8+10+12)=9,y -=14(6+m +3+2)=11+m 4,则11+m 4=-0.7×9+10.3,解得m =5,故C 错;由m =5,得y -=6+5+3+24=4,所以该回归直线必过点(9,4),故D 正确.故选C.例二.下图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2019年我国生活垃圾无害化处理量.参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,)∑i =17)(y i -y )2=0.55,7≈2.646.参考公式:相关系数r =∑i =1n)(t i -t )(y i -y )∑i =1n )(t i -t )2∑i =1n )(y i -y )2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为b ^=∑i =1n)(t i -t )(y i -y )∑i =1n)(t i -t )2,a ^=y -b ^)t .[解] (1)由折线图中的数据和附注中的参考数据得 t =4,∑i =17)(t i -t)2=28,)∑i =17)(y i -y )2=0.55,∑i =17)(t i -t )(y i -y )=∑i =17t i y i -t ∑i =17y i =40.17-4×9.32=2.89,∴r ≈ 2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当大,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1)得b ^=∑i =17)(t i -t )(y i -y )∑i =17)(t i -t )2=2.8928≈0.103. a ^=y -b ^)t ≈1.331-0.103×4≈0.92. 所以y 关于t 的回归方程为y ^=0.92+0.10t .将2019年对应的t =9代入回归方程得y ^=0.92+0.10×9=1.82. 所以,预测2019年我国生活垃圾无害化处理量约为1.82亿吨.[变式练习]1.(2019·广州调研)某基地蔬菜大棚采用无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (单位:小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.根据统计,该基地的西红柿增加量y (千克)与使用某种液体肥料的质量x (千克)之间的对应数据为如图所示的折线图.(1)依据折线图计算相关系数r (精确到0.01),并据此判断是否可用线性回归模型拟合y 与x 的关系.(若|r |>0.75,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较高,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪运行台数受周光照量X 限制,并有如下关系:对商家来说,若某台光照控制仪运行,则该台光照控制仪产生的周利润为3)000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1)000元.若商家安装了3台光照控制仪,求商家在过去50周的周总利润的平均值.参考数据:0.3≈0.55,0.9≈0.95. 解:(1)由已知数据可得x =2+4+5+6+85=5,y =3+4+4+4+55=4.因为∑i =15)(x i -x )(y i -y )=(-3)×(-1)+0+0+0+3×1=6,∑i =15)(x i -x )2=(-3)2+(-1)2+02+12+32=25,∑i =15)(y i -y )2=(-1)2+02+02+02+12=2,所以相关系数r =∑i =15)(x i -x )(y i -y )∑i =15)(x i -x)2)∑i =15)(y i -y )2=625×2=)910≈0.95. 因为|r |>0.75,所以可用线性回归模型拟合y 与x 的关系. (2)由条件可得在过去50周里,当X >70时,共有10周,此时只有1台光照控制仪运行, 每周的周总利润为1×3)000-2×1)000=1)000(元).当50≤X ≤70时,共有35周,此时有2台光照控制仪运行, 每周的周总利润为2×3)000-1×1)000=5)000(元).当30<X <50时,共有5周,此时3台光照控制仪都运行, 每周的周总利润为3×3)000=9)000(元).所以过去50周的周总利润的平均值为1)000×10+5)000×35+9)000×550=4)600(元),所以商家在过去50周的周总利润的平均值为4)600元.例三.某机构为研究某种图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的关系,收集了一些数据并进行了初步处理,得到了下面的散点图及一些统计量的值.x y u∑i=18)(x i-x)2∑i=18)(x i-x)(y i-y)∑i=18)(u i-u)2∑i=18)(u i-u)(y i-y) 15.25 3.630.2692)085.5-230.30.7877.049表中u i=1x i,u=18∑i=18u i.(1)根据散点图判断:y=a+bx与y=c+dx哪一个模型更适合作为该图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的回归方程?(只要求给出判断,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程(回归系数的结果精确到0.01).(3)若该图书每册的定价为10元,则至少应该印刷多少册才能使销售利润不低于78)840元?(假设能够全部售出.结果精确到1)附:对于一组数据(ω1,υ1),(ω2,υ2),…,(ωn,υn),其回归直线υ^=α^+β^ω的斜率和截距的最小二乘估计分别为β^=∑i=1n)(ωi-ω)(υi-υ)∑i=1n)(ωi-ω)2,α^=υ-β^ω.解:(1)由散点图判断,y=c+dx更适合作为该图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的回归方程.(2)令u=1x,先建立y关于u的线性回归方程,由于d ^=∑i =18)(u i -u )(y i -y )∑i =18)(u i -u )2=7.0490.787≈8.957≈8.96, ∴c ^=y -d ^·u =3.63-8.957×0.269≈1.22, ∴y 关于u 的线性回归方程为y ^=1.22+8.96u , ∴y 关于x 的回归方程为y ^=1.22+8.96x .(3)假设印刷x 千册,依题意得10x -⎝⎛⎭⎫1.22+8.96x x ≥78.840, 解得x ≥10,∴至少印刷10)000册才能使销售利润不低于78)840元.[变式练习](2015课标Ⅰ,19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响.对近8年的年宣传费x i )和年销售量y i ))(i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyw∑i=18(x i -x )2∑i=18(w i -w )2 ∑i=18(x i -x )(y i -y ) ∑i=18(w i -w )(y i -y )46.6 563 6.8 289.81.61 469108.8表中w i =√x ,w =18∑i=18w i.(1)根据散点图判断,y =a +bx 与y =c +d √x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x,y 的关系为z =0.2y −x .根据(2)的结果回答下列问题: (i)年宣传费x =49时,年销售量及年利润的预报值是多少? (ii)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ))),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β^=∑i=1n (u i -u )(v i -v )∑i=1n(u i -u )2,α^=v -β^)u .解析 (1)由散点图可以判断,y =c +d √x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2分)(2)令w =√x ,先建立y 关于w 的线性回归方程.由于 d ^=∑i=18(w i -w )(y i -y )∑i=18(w i -w )2=108.81.6=68,c ^=y -d ^)w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w,因此y 关于x 的回归方程为y ^=100.6+68√x .(6分) (3)(i)由(2)知,当x =49时,年销售量y 的预报值 y ^=100.6+68√49=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32.(9分) (ii)根据(2)的结果知,年利润z 的预报值 z ^=0.2(100.6+68√x )-x =-x +13.6√x +20.12. 所以当√x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.。

第三节 变量间的相关关系-高考状元之路

第三节 变量间的相关关系-高考状元之路

第三节 变量间的相关关系预习设计 基础备考知识梳理1.两个变量的线性相关(1)正相关:在散点图中,点散布在从到的区域,对于两个变量的这种相关关系,我们将它称为正相关.(2)负相关:在散点图中,点散布在从 到 的区域,对于两个变量的这种相关关系,我们将它称为负相关.(3)线性相关关系、回归直线: 如果散点图中点的分布从整体上看大致在 就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.2.回归方程(1)最小二乘法: 求回归直线使得样本数据的点到它的 的方法叫做最小二乘法.(2)回归方程:方程a x by ˆˆ+=是两个具有线性相关关系的变量的一组数据),(,),,(),,(2211n n y x y x y x 的回归方程,其中:ˆ,ˆb a是待定参数. ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧-=⋅-====-∑∑-∑--∑==x b y a i y x n y x i n i i i n i b x n x x x y y x x n i i i n i n ˆˆ22211ˆ111)())((典题热身1.下列选项中,两个变量具有相关关系的是 ( )A .参加60年国庆阅兵的人数与观看第十一届全运会开幕布式的人数B .正方体的体积与棱长C .人体内的脂肪含量与年龄D .汶川大地震的经济损失与全球性金融危机的经济损失答案:C2.(2011.陕西高考)设),(,),,(),,(2211n n y x y x y x ⋅⋅⋅是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是 ( )A .直线l 过点),(y xB .x 和y 的相关系数为直线l 的斜率C .x 和y 的相关系数在O 到1之间D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同答案:A3.设有一个回归直线方程为,5.12ˆx y-=则变量x 增加一个单位 ( ) A .y 平均增加1.5个单位B .y 平均增加两个单位C .y 平均减少1.5个单位D .y 平均减少两个单位答案:C4.在一次实验中,测得(x ,y)的四组值为(1,2),(2,3),<蝴_(4,5),则y 与x 之间的回归直线方程为 ( )1ˆ.+=x yA 2ˆ.+=x yB 12ˆ.+=x yC 1ˆ.-=x yD 答案:A5.(2011.辽宁高考)调查了某地若干户家庭的年收入x (单位;万元)和年饮食支出y(单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:,321.0254.0ˆ+=x y 由回归直线方程可知,家庭年收入每增加l 万元,年饮食支出平均增加 万元.答案:0,254课堂设计 方法备考题型一 利用散点图判断两个变量的相关关系画出散点图,判断它们是否有相关关系.题型二 求回归直线方程【例2】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据;(1)请画出表中数据的散点图;(2)请根据表中提供的数据,用最小二乘法求出y 关于x 的回归方程.ˆˆˆa x b y+= 题型三 利用回归直线方程对总体进行估计【例3】某企业上半年产品产量与单位成本资料如下:(1)求出线性回归方程;(2)指出产量每增加1000件时,单位成本平均变动多少?(3)假定产量为6000件时,单位成本为多少元?技法巧点(1)线性相关关系的理解:相关关系与函数关系不同,函数关系中的两个变量间是一种确定性关系,例如正方形面积S 与边长x 之间的关系2x s =就是函数关系.相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系,例如商品的销售额与广告费是相关关系,两个变量具有相关关系是回归分析的前提. (2)求回归方程,关键在于正确求出系数b a b aˆ,ˆ,ˆ,ˆ由于的计算量大,计算时应仔细谨慎,分层进行,避免因计算产生错误.(注意回归直线方程中一次项系数为,ˆb 常数项为,ˆa 这与一次函数的习惯表示不同.)(3)回归分析是处理变量相关关系的一种数学方法,主要解决:①确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;②根据一组观察值,预测变量的取值及削断变量取值的变化趋势;③求出回归直线方程.失误防范1.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义.2.根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.随堂反馈 1.(20】】.江西高考)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为 ( )1-=⋅x y A 1+=⋅x y B x y c 2188+=⋅ 176=⋅y D 答案:C2.某考察团对全国10大城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查,y与x 具有真相关关系,回归方程为.562.166.0ˆ+=x y若某城市居民人均消费水平为7.675千元,估计该城市人均消费额占人均工资收入的百分比约为 ( )%83.A 0072.B 0076. c %66.D 答案:A3.(2011.广东高考)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y 之间的关系;小李这5天的平均投篮命中率为 ;用线性 回归分析的方程,预测小李该月6号打6小时篮球的投篮命中率为答案:53.0;5.0高效作业 技能备考一、选择题1.(201-1.福州模拟)已知变量x ,y 呈线性相关关系,回归方程为,25.0ˆx y+=则变量x ,y 是( ) A .线性正相关关系B .由回归方程无法判断其正负相关C .线性负相关关系D .不存在线性相关关系答案;A2.(2011.绍兴月考)对有线性相关关系的两个变量建立的回归直线方程x b a yˆˆˆ+=中,回归系数b ˆ( ) A .可以小于0 B .大于O C .能等于O D .只能小于0答案:A3.已知x 与y 之间的一组数据:则y 与x 的线性回归方程a x b yˆˆˆ+=必过 ( ) A .点(2,2) B .点(1.5,O) C .点(1,2) D .点(1.5,4)答案:D4.(2011.泰安模拟)下表是某厂l ~4月份用水量(单位:百吨)的一组数据:散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是,ˆ7.0ˆa x y+-=则 aˆ等于( ) 5.10.A 15.5.B 2.5.c 25.5.D答案:D5.对变量x ,y 有观测数据),10,,2,1)(,( =i y x i i 得散点图(1);对变量u ,v 有观测数据),10,,2,1)(,( =i v u i i 得散点图(2),由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关 B.变量_x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关答案:C6.(2011.青岛模拟)为了考察两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为⋅21l l 、已知两人所得的试验数据中,变量x 和y 的数据的平均值都相等,且分别是s 、t ,那么下列说法正确的是 ( )A .直线1l 和2l 一定有公共点(s ,t)B .直线1l 和2l 相交,但交点不一定是(s ,t)C .必有21//l l 21.l lD 与必定重合答案:A二、填空题7.(2011.舟山适应性考试)人的身高与手的扎长存在相关关系,且满足264.31303.0ˆ-=x y(x 为身高,y 为扎长,单位:cm),则当扎长为24.8 cm 时,身高为 cm.答案:03.1858.(2011.芜湖模拟)已知三点(3,10),(7,20),(11,24)的横坐标x 与纵坐标y 具有线性关系,则其线性回归方程是 答案:42347+=x y9.(2011.丽水调研)某单位为了了解用电量y 度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得线性回归方程,2ˆˆˆˆ-=+=b a x b y中预测当气温为-4℃时,用电量的度数约为 答案:68三、解答题10.(2011.台州模拟)在研究硝酸钠的可溶性程度时,对于不同的温度观测它在水中的溶解度,得观测结果如下:由资料看y 与x 呈线性相关,试求回归方程.11.(2011.枣 庄模拟)在某地区的12~30岁居民中随机抽取了10个人的身高和体重的统计资料如下表:根据上述数据,画出散点图并判断居民的身高和体重之间是否有相关关系.12.(2011.北京高考)以下茎叶图记录了甲、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树为19的概率. (注:方差],)()()[(1222212x x x x x x n s n -++-+-=其中x 为n x x x ,,,21 的平均数)。

散点图相关系数详解演示文稿

散点图相关系数详解演示文稿
空间上,根据这些数据点的分布特征,能够直观地研究变量间的统计关系以及它们的强弱程
度和数据对的可能走向。 数值(相关系数):变量间关系的密切程度常以一个数量性指标描述,这个指标称相关系数
r=0.8
11
第11页,共47页。
一、相关的概念
SPSS提供了三种相关分析的方法
二元变量分析( Bivariate ):
两变量之间高度负相关。
Correlations
1.5英里跑 所用时间
Pears on Correlation
1.5英 里 跑 所用时 间
1
Sig. (2-tailed)
耗氧量
N Pears on Correlation
31 -.832**
Sig. (2-tailed)
.000
N
31
**. Correlation is significant at the 0.01 level (2-tailed).
28
第28页,共47页。
三、二元变量分析
3. SPSS操作及案例分析 例二:在有氧训练中,人的耗氧量y(毫升/分*千克体重)是衡量人的身体状况的重要指标,它与多
项指标有关。为了研究人的耗氧量与多项指标之间的关系,对31名测试者进行测试。 现以人的耗氧量y为因变量,多项指标中之一1.5英里跑所用时间x3为自变量,通过散点图和
分广泛。
如:家庭收入与家庭消费支出之间关系是否相关 商品销售价格与商品销售额之间关系是否相关 客户满意度与商业企业综合竞争力之间关系是否相关
广告投入和销售额之间关系是否相关
21
第21页,共47页。
三、二元变量分析
3. SPSS操作及案例分析
例一:为了研究某项职业技能和员工年龄之间的

利用散点图判断两个变量的相关关系-PPT精品文档

利用散点图判断两个变量的相关关系-PPT精品文档

一块农田的水稻产量与施肥量之间的关系 。 水稻产量并不是由施肥量唯一确定,在取值上带有随机性 不确定关系
2、相关关系的概念
自变量取值一定时,因变量的取值带有一定的随机性的两个变量之间的关系叫相关关系.
(1)相关关系与函数关系的异同点:相同点:均是指两个变量的关系 不同点:函数关系是一种确定的关系。 而相关关系是一种非确定关系; 关关系不一定是因果关系,也可能是随机关系.
2、从散点图上可以看出,如果变量之间存在着某种关系,这些点会有一个集中的大致趋 势.
61 34.6
如上的一组数据,你能分析人体的脂肪含量与年龄 之间有怎样的关系吗?
从上表发现,对某个人不一定有此规律,但对很多个体放在一起,就体现出“人体脂肪随年龄增长而增加” 这一规律.而表中各年龄对应的脂肪数是这个年龄 人群的样本平均数.我们也可以对它们作统计图、 表,对这两个变量有一个直观上的印象和判断.
4、相关关系的类型 相关关系可分为线性相关,非线性相关两类.
注意: 两个变量之间的关系具有确定性关系—函数关系. 两个变量变量之间的关系具有随机性,不确定性—相关关系.
二:散点图
1、散点图:将样本中n个数据点(xi,yi)(i=1,2,…,n)描在平面直角坐标系中,以表示具有相关 关系的两个变量的一组数据的图形叫做散点图.
即,函数关系是一种因果关系,而相
(2)函数关系与相关关系之间有着密切联系:
在一定的条件下可以相互转化.而对于具有线性相关关系的两个变量来说,当求得其回归直线方程后, 又可以用一种确定性的关系对这两个变量间的取值进行估计:
3、判断相关关系的基本程序
两个变量 →一个变量值一定→另一个变量带有不确定性→相关关系
如高原含氧量与海拔高度 的相关关系,海平面以上, 海拔高度越高,含氧量越 少。 作出散点图发现,它们散 布在从左上角到右下角的区

散点图:直观判断变量相关性的步骤与注意事项

散点图:直观判断变量相关性的步骤与注意事项

散点图:直观判断变量相关性的步骤与注意事项使用散点图判断两个变量之间的相关关系是一种直观且有效的方法。

以下是具体步骤和注意事项:步骤1.收集数据:2.首先,确保你有两个变量的数据集。

这些数据集应该是一一对应的,即每个观测值在两个变量上都有对应的取值。

3.绘制散点图:4.使用统计软件(如Excel、SPSS、R、Python等)将两个变量的数据绘制成散点图。

在散点图中,通常一个变量作为横坐标(X轴),另一个变量作为纵坐标(Y轴)。

5.观察散点分布:6.仔细观察散点图中点的分布模式。

点的分布模式会给出两个变量之间关系的直观印象。

7.识别趋势:o正相关:如果随着一个变量的增加,另一个变量也呈现增加的趋势,那么这两个变量之间存在正相关关系。

在散点图中,这通常表现为点集沿斜向上方的方向分布。

o负相关:如果随着一个变量的增加,另一个变量呈现减少的趋势,那么这两个变量之间存在负相关关系。

在散点图中,这通常表现为点集沿斜向下方的方向分布。

o无相关:如果点的分布没有明显的上升或下降趋势,而是呈现随机分布的状态,那么这两个变量之间可能不存在明显的线性相关关系。

但请注意,这并不意味着它们之间不存在其他类型的关系(如非线性关系)。

8.评估紧密程度:9.除了方向外,还可以观察点集的紧密程度来评估相关性的强弱。

如果点集紧密地围绕在某条直线(或曲线)周围,那么相关性可能较强;如果点集分散较开,那么相关性可能较弱。

10.注意异常值:11.检查是否有异常值(即与其他点显著不同的点)影响对关系的判断。

有时,异常值可能是由测量错误或数据录入错误引起的,应该进行核查和处理。

注意事项●散点图只能揭示两个变量之间的关联程度,并不能确定因果关系。

●即使两个变量之间存在显著的相关性,也不意味着一个变量是导致另一个变量变化的原因。

●相关性可以是线性的,也可以是非线性的。

散点图可以帮助识别线性关系,但对于非线性关系的识别可能需要更复杂的分析工具(如回归分析中的多项式模型)。

人教课标版高中数学必修3《变量之间的相关关系与散点图》名师课件2

人教课标版高中数学必修3《变量之间的相关关系与散点图》名师课件2

②教师的执教水平与学生的学习成绩之间的关系;
③学生的身高与学生的学习成绩之间的关系;
④某个人的年龄与本人的知识水平之间的关系.
(A)①②
(B)①③
(C)②③
(D)②④
巩固训练
巩固训练
3.某市居民2005~2009年家庭平均收入x(单位:万元)与年平 均支出y(单位:万元)的统计资料如表所示:
根据统计资料,居民家庭年平均收入的中位数是 ______,家 庭年平均收入与年平均支出有 ______的线性相关关系.(填 “正相关”、“负相关”) 【解析】收入数据按大小排列为:11.5、12.1、13、13.5、 15,所以中位数为13. 答案:13 正相关
新课讲解 (二):散点图 【问题】在一次对人体脂肪含量和年龄关系的研究中,研 究人员获得了一组样本数据:
年龄 23 27 39 41 45 49 50
脂肪 9.5 17.8 21.2 25.9 27.5 26.3 28.2
年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
变量之间的相关关系与 散点图
复习引入
1.函数是研究两个变量之间的依存关系的一 种数量形式.对于两个变量,如果当一个变 量的取值一定时,另一个变量的取值被唯一 确定,则这两个变量之间的关系就是一个函 数关系.
函数关系:两个变量之间是一种确定的关系
复习引入
小学明也不,你物是好数理学数学怎不学成么好,物绩样的理不? 太好, 也?不??太?好?.啊.. .
随机性( 非确定性关系) 函数关系---函数关系指的是自变量和因变量之间的关系
是相互唯一确定的. 2、相关关系与函数关系的异同点 相同点:均是指两个变量的关系 不同点:函数关系是一种确定的关系,因果关系;而 相关关系是一种非确定性关系,也可能是伴随关系。

备战高考数学复习考点知识与题型讲解85---变量间的相关关系及回归模型

备战高考数学复习考点知识与题型讲解85---变量间的相关关系及回归模型

备战高考数学复习考点知识与题型讲解第85讲变量间的相关关系及回归模型考向预测核心素养两个变量线性相关的判断及应用,经验回归方程的求法及应用是高考考查的热点,各种题型均会出现.数据分析、数学运算一、知识梳理1.变量的相关关系(1)相关关系:两个变量有关系,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系.(2)散点图每一个成对样本数据都可用直角坐标系中的点表示出来,由这些点组成了统计图.我们把这样的统计图叫做散点图.(3)相关关系的分类:正相关和负相关.(4)线性相关:一般地,如果两个变量的取值呈现正相关或负相关,而且散点落在一条直线附近,我们称这两个变量线性相关.2.样本相关系数(1)r=∑ni=1(x i-x)(y i-y)∑ni=1(x i-x)2∑ni=1(y i-x)2.(2)当r>0时,称成对样本数据正相关;当r<0时,称成对样本数据负相关.(3)|r|≤1;当|r|越接近1时,成对样本数据的线性相关程度越强;当|r|越接近0时,成对样本数据的线性相关程度越弱.3.一元线性回归模型参数的最小二乘估计(1)我们将y^=b^x+a^称为Y关于x的经验回归方程,其中⎩⎪⎨⎪⎧b ^=∑ni =1(x i-x )(y i-y )∑ni =1(x i-x )2,a ^=y -b ^x .(2)残差分析①对于响应变量Y ,通过观测得到的数据称为观测值,通过经验回归方程得到的y ^称为预测值,观测值减去预测值称为残差.残差是随机误差的估计结果,通过对残差的分析可以判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据等,这方面工作称为残差分析.②残差的散点图比较均匀地集中在以横轴为对称轴的水平带状区域内,则满足一元线性回归模型对随机误差的假设.在R 2表达式中,∑i =1 n (y i -y )2与经验回归方程无关,残差平方和∑i =1n(y i -y ^i )2与经验回归方程有关.因此R 2越大,意味着残差平方和越小,即模型的拟合效果越好;R 2越小,表示残差平方和越大,即模型的拟合效果越差.[提醒](1)经验回归直线过样本的中点(x ,y ).(2)回归分析和独立性检验都是基于成对样本观测数据进行估计或推断 ,得出的结论都可能犯错误.二、教材衍化1.(人A 选择性必修第三册P 103习题8.1T 1改编)下列四个散点图中,变量x 与y 之间具有负的线性相关关系的是( )解析:选D.观察题图可知,只有D选项的散点图表示的是变量x与y之间具有负的线性相关关系,故选D.2.(人A选择性必修第三册P138复习T1改编)已知变量x与y正相关,且由观测数据算得样本平均数x-=3,y-=3.5,则由该观测数据算得的经验回归方程可能是( )A.y^=0.4x+2.3B.y^=2x-2.4C.y^=-2x+9.5D.y^=-0.3x+4.4解析:选A.由题意,x与y正相关,故排除C,D,将(x-,y-)代入经验回归方程检验得A正确.3.(人A选择性必修第三册P120习题8.2T2(2)改编)已知x,y的对应取值如下表,可得到经验回归方程为y^=0.95x+a^,则a^=( )x 013 4y 2.2 4.3 4.8 6.7A.3.25B.2.6C.2.2D.0解析:选B.经验回归直线过点(2,4.5),所以4.5=0.95×2+a^,所以a^=2.6.4.(人A选择性必修第三册P120习题8.2T2(2)改编)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得经验回归方程y^=0.67x+54.9.零件数x/个1020304050加工时间y/min62758189 现发现表中有一个数据看不清,请你推断出该数据的值为________.解析:由x=30,得y=0.67×30+54.9=75.设表中的“模糊数字”为a,则62+a+75+81+89=75×5,所以a=68.答案:68一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系来表示.( )(2)经验回归直线y^=b^x+a^至少经过点(x1,y1),(x2,y2),…,(x n,y n)中的一个点.( )(3)任何一组数据都对应着一个经验回归方程.( )答案:(1)√(2)×(3)×二、易错纠偏1.(回归模型意义不明致误)一位母亲记录了自己儿子3~9岁的身高数据(略),由此建立的身高与年龄的一元线性回归模型为y^=7.19x+73.93,用这个模型预报这个孩子10岁时的身高,则正确的叙述是( )A.身高一定是145.83 cmB.身高在145.83 cm以上C.身高在145.83 cm左右D.身高在145.83 cm以下解析:选C.由一元线性回归模型可得y^=7.19×10+73.93=145.83,所以预报这个孩子10岁时的身高在145.83 cm左右.2.(忽视经验回归直线过样本点中心致误)已知变量x和y的统计数据如下表:x 34567y 2.534 4.5 6根据上表可得经验回归方程为y^=b^x-0.25,据此可以预测当x=8时,y^=( ) A.6.4 B.6.25C.6.55D.6.45解析:选 C.由题中图表可知,x-=5,y-=4,因为经验回归方程经过样本的中心(x-,y-),则4=5b^-0.25,得b^=0.85,则经验回归方程为y^=0.85x-0.25,再将x=8代入方程,得y^=6.55.3.(决定系数的意义及应用不清致误)x和y的散点图如图所示,在相关关系中,若用y=c1e c2x拟合时的决定系数为R21,用y^=b^x+a^拟合时的决定系数为R22,则R21,R22中较大的是________.解析:由题图知,用y=c1e c2x拟合的效果比y^=b^x+a^拟合的效果要好,所以R21>R22,故较大者为R21.答案:R21考点一成对数据的相关性判断(自主练透)复习指导:通过收集现实问题中的成对数据作出散点图,并利用散点图直观认识变量间的相关关系.1.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图如图①,对变量u,v有观测数据(u,v i)(i=1,2,…,10),得散点图如图②.由这两个散点图可以判i断( )A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关解析:选C.由题图可得两组数据均线性相关,且图①的经验回归方程斜率为负,图②的经验回归方程斜率为正,则由散点图可判断变量x与y负相关,u与v正相关.2.对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是( )A.r2<r4<0<r3<r1B.r4<r2<0<r1<r3C.r4<r2<0<r3<r1D.r2<r4<0<r1<r3解析:选A.由题图知图①与图③是正相关,故r1>0,r3>0,图②与图④是负相关,故r2<0,r4<0,且图①与图②的样本点集中在一条直线附近,因此r2<r4<0<r3<r1,故选A.3.某公司在2020年上半年的月收入x(单位:万元)与月支出y(单位:万元)的统计资料如表所示:月份1月份2月份3月份4月份5月份6月份收入x 12.314.515.017.019.820.6支出y 5.63 5.75 5.82 5.89 6.11 6.18 根据统计资料,则( )A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系解析:选C.月收入的中位数是15+172=16,收入增加,支出增加,故x 与y 有正线性相关关系.判定两个变量相关性的方法(1)画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从左上角到右下角,两个变量负相关.(2)相关系数:当r >0时,正相关;当r <0时,负相关;|r |越接近于1,相关性越强.(3)经验回归方程:当b ^>0时,正相关;当b ^<0时,负相关.考点二 一元线性回归模型(多维探究)复习指导:经历用不同估算方法描述两个变量线性相关的过程,知道最小二乘法的思想,能根据给出的一元线性回归模型系数公式建立经验回归方程,并进一步了解回归的基本思想、方法及初步应用.角度1 经验回归方程(2022·贵州凯里第一中学高二期中)某市2017至2021年农村居民家庭人均纯收入y (单位:千元)的数据如下表:年份 2017 2018 2019 2020 2021 年份代号t12 3 4 5 人均纯收入y 3.13.53.94.64.9从表可以看出,人均纯收入y 与年份代号t 线性相关,已知i =15t i y i =64.70.(1)求y 关于t 的经验回归方程y ^=b ^t +a ^;(2)预测2025年的人均纯收入为多少.(附:参考公式:【解】 (1)由题中表格知,n =5,t -=15(1+2+3+4+5)=3,y -=15(3.1+3.5+3.9+4.6+4.9)=4,i =15t 2i =12+22+32+42+52=55,则b ^==64.7-5×3×455-5×32=0.47,a ^=y --b ^t -=4-0.47×3=2.59,故经验回归方程为y ^=0.47t +2.59.(2)当年份为2025年时,对应的年份代码t =9, 所以y ^=0.47×9+2.59=6.82, 故2025年的人均纯收入约为6.82千元. 角度2 相关系数足球是世界普及率最高的运动,我国大力发展校园足球.为了解本地区足球特色学校的发展状况,社会调查小组得到如下统计数据:年份x 2016 2017 2018 2019 2020 足球特色学校y (百个)0.30 0.60 1.00 1.40 1.70根据上表数据,计算y 与x 的相关系数r ,并说明y 与x 的线性相关程度. (已知:0.75≤|r |≤1,则认为y 与x 线性相关程度很强;0.3≤|r |<0.75,则认为y 与x 线性相关程度一般;|r |≤0.25,则认为y 与x 线性相关程度较弱.参考公式和数据:r =∑ni =1(x i -x )(y i -y )∑ni =1(x i -x )2∑ni =1(y i -y )2,∑ni =1(x i -x )2=10,∑ni =1(y i -y )2=1.3,13≈3.605 6)【解】 由题得x =2 018,y =1,所以r=∑ni=1(x i-x)(y i-y)∑ni=1(x i-x)2∑ni=1(y i-y)2=3.610 × 1.3=3.63.605 6≈0.998>0.75,所以y与x的线性相关程度很强.一元线性回归模型应用要点(1)建立经验回归方程的步骤①计算出x,y,x21+x22+…+x2n,x1y1+x2y2+…+x n y n的值;②利用公式计算参数a^,b^;③写出经验回归方程y^=b^x+a^.(2)经验回归方程的拟合效果,可以利用相关系数判断,当|r|越接近于1时,两变量的线性相关程度越强.|跟踪训练|某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第x年与年销售量y(单位:万件)之间的关系如下表:x 123 4y 12284256(1)在图中画出表中数据的散点图;(2)根据散点图选择合适的回归模型拟合y与x的关系(不必说明理由);(3)建立y 关于x 的经验回归方程,预测第5年的销售量.参考公式:经验回归方程y ^=b ^x +a ^的斜率和截距的最小二乘估计分别为b ^=∑ni =1 (x i -x )(y i -y )∑ni =1 (x i -x )2=∑ni =1x i y i -nx y ∑n i =1x 2i -n x 2,a ^=y -b ^x . 解:(1)作出的散点图如图:(2)根据散点图观察,可以用一元线性回归模型拟合y 与x 的关系. (3)观察(1)中散点图可知各点大致分布在一条直线附近,列出表格:i x i y i x 2i x i y i 1 1 12 1 12 2 2 28 4 56 3 3 42 9 126 4 4 56 16 224 ∑1013830418可得x =52,y =692,所以b ^=∑4i =1x i y i -4x y ∑4i =1x 2i -4x 2=418-4×52×69230-4×⎝ ⎛⎭⎪⎫522=735,a ^=y -b ^x =692-735×52=-2.故经验回归方程为y ^=735x -2.当x =5时,y ^=735×5-2=71.故预测第5年的销售量大约为71万件.考点三 非线性回归模型(综合研析)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到如图所示的散点图及一些统计量的值.x y w∑8i =1(x i -x )2∑8i =1(w i -w )2∑8i =1(x i -x )·(y i -y )∑8i =1(w i -w )·(y i -y ) 46.6 563 6.8 289.81.61469108.8表中w i =x i ,w =18∑8i =1w i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型;(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:①当年宣传费x =49千元时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v^=a^+b^u的斜率和截距的最小二乘估计分别为:b^=∑ni=1(u i-u)(v i-v)∑ni=1(u i-u)2,a^=v-b^u.【解】(1)由散点图可以判断y=c+d x适宜作为年销售量y关于年宣传费x的回归方程类型.(2)令w=x,先建立y关于w的经验回归方程,由d^=∑8i=1(w i-w)·(y i-y)∑8i=1(w i-w)2=108.81.6=68.得c^=y-d^w=563-68×6.8=100.6.所以y关于w的经验回归方程为y^=100.6+68w,因此y关于x的非线性经验回归方程为y^=100.6+68x.(3)①由(2)知,当x=49时,年销售量y的预报值y^=100.6+6849=576.6,年利润z的预报值z^=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z的预报值z^=0.2(100.6+68x)-x=-x+13.6x +20.12.所以当x=13.62=6.8,即x=46.24时,z^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.非线性回归分析问题求解策略有些非线性回归分析问题并不给出经验公式,这时我们可以画出已知数据的散点图,把它与学过的各种函数(幂函数、指数函数、对数函数等)的图象进行比较,挑选一种跟这些散点拟合得最好的函数,用适当的变量进行变换,把问题化为线性回归分析问题,使之得到解决.其一般步骤为:|跟踪训练|中国是茶的故乡,也是茶文化的发源地.中国茶的发现和利用已有四千七百多年的历史,且长盛不衰,传遍全球.为了弘扬中国茶文化,某酒店推出特色茶食品“排骨茶”,为了解每壶“排骨茶”中所放茶叶量x(单位:克)与食客的满意率y的关系,通过调查研究发现可选择函数模型y=1100e kx+c来拟合y与x的关系,根据以下数据:茶叶量x/克1234 5ln(100y) 4.34 4.36 4.44 4.45 4.51 可求得y关于x的回归方程为( )A.y^=1100e0.043x+4.291B.y^=1100e0.043x-4.291C.y^=e0.043x+4.291D.y^=e0.043x-4.291解析:选 A.由表中数据可知x-=1+2+3+4+55=3,4.34+4.36+4.44+4.45+4.515=4.42.对于A,y^=1100e0.043x+4.291化简变形可得100y^=e0.043x+4.291,两边同时取对数可得ln(100y^)=0.043x+4.291,将x-=3代入可得ln(100y^)=0.043×3+4.291=4.42,与题中数据吻合,故选项A正确;对于B,y^=1100e0.043x-4.291化简变形可得100y^=e0.043x-4.291,两边同时取对数可得ln(100y^)=0.043x-4.291,将x-=3代入可得ln(100y^)=0.043×3-4.291=-4.162≠4.42,所以选项B错误;对于C,y^=e0.043x+4.291,两边同时取对数可得ln y^= 0.043x+4.291,而表中所给数据为ln(100y^)的相关量,所以C错误;对于D,y^=e0.043x-4.291,两边同时取对数可知ln y^=0.043x-4.291,而表中所给数据为ln(100y^)的相关量,所以D错误;故选A.[A 基础达标]1.对两个变量x,y进行线性回归分析,计算得到相关系数r=-0.996 2,则下列说法中正确的是( )A.x与y正相关B.x与y具有较强的线性相关关系C.x与y几乎不具有线性相关关系D.x与y的线性相关关系还需进一步确定解析:选B.因为相关系数r=-0.996 2,所以x与y负相关,因为|r|=0.996 2,非常接近1,所以相关性很强,故选B.2.(2022·四川省彭山一中高三入学考试)下列命题错误的是( )A.线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱B.抛掷均匀硬币一次,出现正面的次数是随机变量C.将一组数据中的每个数据都乘以同一个非零常数a后,标准差也变为原来的a倍D.若回归直线的斜率估计值为0.25,x=2,y=3,则回归直线的方程为y=0.25x+2.5解析:选A.对于A,线性相关系数|r|越接近于1,则相关性越强,所以A错误;对于B,抛掷均匀硬币一次,出现正面的次数是随机变量,所以B正确;对于C,由标准差的定义可知将一组数据中的每个数据都乘以同一个非零常数a后,标准差也变为原来的a倍,所以C正确;对于D,因为回归直线的斜率估计值为0.25,x=2,y=3,所以b^=0.25,a^=y-b^x=3-2×0.25=2.5,则回归直线的方程为y=0.25x+2.5,所以D 正确.3.(多选)(2022·重庆巴蜀中学高三月考)为了建立茶水温度y随时间x变化的函数模型,小明每隔1分钟测量一次茶水温度,得到若干组数据(x1,y1),(x2,y2),…,(x n,y),绘制了如图所示的散点图.小明选择了如下2个函数模型来拟合茶水温度y随时间nx的变化情况,函数模型一:y=kx+b(k<0,x≥0);函数模型二:y=ka x+b(k>0,0<a<1,x≥0),下列说法正确的是( )A.变量y与x具有负的相关关系B.由于水温开始降得快,后面降得慢,最后趋于平缓,因此模型二能更好的拟合茶水温度随时间的变化情况C.若选择函数模型二,利用最小二乘法求得y=ka x+b的图象一定经过点(x-,y-)D.当x=5时,通过函数模型二计算得y=65.1,用温度计测得实际茶水温度为65.2,则残差为0.1解析:选ABD.观察散点图,变量x与y具有负的相关关系,A正确;由于函数模型二中的函数y=ka x+b(k>0,0<a<1,x≥0),在x≥0时,函数单调递减,可得B正确;若选择函数模型二,利用最小二乘法求出的回归方程一定经过(a x,y),C错误;由于残差=真实值-预测值,因此残差为65.2-65.1=0.1,故D正确.4.经调查某地若干户家庭的年收入x(万元)和年饮食支出y(万元)具有线性相关关系,并得到y关于x的经验回归方程:y^=0.245x+0.321,可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.解析:x变为x+1,y^=0.245(x+1)+0.321=0.245x+0.321+0.245,因此家庭年收入每增加1万元,年饮食支出平均增加0.245万元.答案:0.2455.(2022·合肥检测)某公司一种型号的产品近期销售情况如下表:根据上表可得到经验回归方程y^=0.75x+a^,据此估计,该公司7月份这种型号产品的销售额为________万元.解析:由题意,x=2+3+4+5+65=4,y=15.1+16.3+17.0+17.2+18.45=16.8,经验回归直线y^=0.75x+a^过(x,y),可得a^=13.8,当x=7时,可得y^=0.75×7+13.8=19.05.答案:19.056.(2020·高考全国卷Ⅱ)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i,yi)(i=1,2,…,20),其中x i和y i分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑20i =1x i =60,∑20i =1y i =1 200,∑20i =1(x i -x )2=80,∑20i =1(y i -y )2=9 000,∑20i =1(x i -x )(y i -y )=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =∑ni =1(x i -x )(y i -y )∑ni =1 (x i -x )2∑ni =1(y i -y )2,2≈1.414.解:(1)由已知得样本平均数y =120∑20i =1y i =60,从而该地区这种野生动物数量的估计值为60×200=12 000.(2)样本(x i ,y i )(i =1,2,…,20)的相关系数r =∑20i =1(x i -x )(y i -y )∑20i =1 (x i -x )2∑20i =1(y i -y )2=80080×9 000=223≈0.94.(3)分层随机抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层随机抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层随机抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.7.某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(x 个月)和市场占有率(y %)的几组相关对应数据:(1)根据上表中的数据,用最小二乘法求出y 关于x 的经验回归方程;(2)根据上述经验回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个月,该款旗舰机型市场占有率能超过0.5%(精准到月).解:(1)根据表中数据,计算x -=15×(1+2+3+4+5)=3,y -=15×(0.02+0.05+0.1+0.15+0.18)=0.1,所以b ^=1×0.02+2×0.05+3×0.1+4×0.15+5×0.18-5×3×0.112+22+32+42+52-5×32=0.042,所以a ^=0.1-0.042×3=-0.026, 所以经验回归方程为y ^=0.042x -0.026.(2)由上面的经验回归方程可知,上市时间与市场占有率正相关, 即上市时间每增加1个月,市场占有率都增加0.042个百分点; 由y ^=0.042x -0.026>0.5, 解得x ≥13;预计上市13个月时,该款旗舰机型市场占有率能超过0.5%.[B 综合应用]8.(2022·河南省湘豫名校联盟高三联考)如下表,根据变量x 与y 之间的对应数据可求出y ^=-0.32x +b .其中y -=8.现从这5个样本点对应的残差中任取一个值,则残差不大于0的概率为( )A.15B.25C.35D.45解析:选C.由表中的数据可知,x =10+15+20+25+305=20,设y 的最后一个数据为n ,则y =11+10+8+6+n5=8,所以n =5,将x ,y 代入y ^=-0.32x +b 得b =14.4, 这5个样本点对应的残差分别为:y 1-y ^1=11-(-0.32×10+14.4)=-0.2, y 2-y ^2=10-(-0.32×15+14.4)=0.4, y 3-y ^3=8-(-0.32×20+14.4)=0, y 4-y ^4=6-(-0.32×25+14.4)=-0.4, y 5-y ^5=5-(-0.32×30+14.4)=0.2, 所以残差不大于0的概率为35.9.(多选)(2022·石家庄市藁城新冀明中学阶段性测试)某市对2016年至2020年这五年间全市烧烤店盈利店铺的个数进行了统计,具体统计数据如下表所示:根据所给数据,得出y 关于t 的经验回归方程为y ^=b ^t +273,则下列说法正确的是( )A .该市2016年至2020年全市烧烤店盈利店铺个数的平均数y =219B .y 关于t 的经验回归方程为y ^=-18t +273 C .估计该市2022年烧烤店盈利店铺的个数为147D .预测从2027年起,该市烧烤店盈利店铺的个数将不超过100解析:选ABC.由已知数据得t -=3,y -=219,故A 正确;因为y 关于t 的经验回归直线过点(3,219),所以219=3b ^+273,所以b ^=-18,所以y 关于t 的经验回归方程为y ^=-18t +273.故B 正确;2022年的年份代码为7,故2022年该市烧烤店盈利店铺的个数约为y ^=-18×7+273=147.故C 正确;令-18t +273≤100,由t ∈N *,得t ≥10,故从2025年起,该市烧烤店盈利店铺的个数将不超过100.故D 不正确,故选ABC.[C 素养提升]10.(2022·江苏省南通市高三教学质量监测)紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数呈增长的趋势.下表给出了2019年种植的一批试验紫甘薯在温度升高时6组死亡的株数.经计算,x =16∑i =16 x i =26,y =16∑i =16y i =33,∑i =16 (x i -x )·(y i -y )=557,∑i =16(x i -x )2=84,∑i =16 (y i -y )2=3 930,∑i =16(y i -y ^i )2=236.64,e 8.060 5≈3 167,其中x i ,y i 分别为试验数据中的温度和死亡株数,i =1,2,3,4,5,6.(1)若用一元线性回归模型,求y 关于x 的经验回归方程y ^=b ^x +a ^(结果精确到0.1);(2)若用非线性回归模型求得y 关于x 的非线性经验回归方程y ^=0.06e 0.230 3x ,且决定系数为R 2=0.884 1.①试与(1)中的回归模型相比,用R2说明哪种模型的拟合效果更好;②用拟合效果好的模型预测温度为35 ℃时该批紫甘薯的死亡株数(结果取整数).解:(1)由题意,得b^=∑i=16(x i-x-)(y i-y-)∑i=16(x i-x-)2=55784≈6.6,所以a^=33-6.6×26=-138.6,所以y关于x的经验回归方程为y^=6.6x-138.6. (2)①经验回归方程y^=6.6x-138.6对应的决定系数为R2=1-∑i=16(y i-y^i)∑i=16(y i-y-)2=1-236.643 930≈0.939 8,因为0.939 8>0.884 1,所以经验回归方程y^=6.6x-138.6比非线性经验回归方程y^=0.06e0.230 3x的拟合效果更好.②当x=35时,y=6.6×35-138.6=92.4≈92,即当温度为35 ℃时,该批紫甘薯的死亡株数为92.21 / 21。

专题68 变量间的相关关系与统计案例-高考数学复习资料(解析版)

专题68 变量间的相关关系与统计案例-高考数学复习资料(解析版)

D.58 件
【答案】A
【解析】由题中数据,得 x =10, y =38,回归直线y^=b^x+a^过点( x , y ),且b^=-2,代入得a^=58, 则回归方程y^=-2x+58,所以当 x=6 时,y=46,故选 A.
附: K 2
n(ad bc)2

(a b)(c d)(a c)(b d)
P(K2≥k) 0.050 0.010 0.001
k
3.841 6.635 10.828
【解析】 (1)由调查数据,男顾客中对该商场服务满意的比率为 40 0.8 ,因此男顾客对该商场服务满 50
意的概率的估计值为0.8.
支出费用为 3.00 万元的家庭购买水果和牛奶的年支出费用约为( )
A.1.795 万元
B.2.555 万元
C.1.915 万元
D.1.945 万元
【答案】A
【解析】
x
1 = ×(2.09+2.15+2.50+2.84+2.92)=2.50(万元),
y
1 = ×(1.25+1.30+1.50+1.70
^
y=99+17.5×9=256.5(亿元).
(2)利用模型②得到的预测值更可靠.
理由如下:
(ⅰ)从折线图可以看出,2000 年至 2016 年的数据对应的点没有随机散布在直线 y=-30.4+13.5t 上下,
这说明利用 2000 年至 2016 年的数据建立的线性模型①不能很好地描述环境基础设施投资额的趋势.2010 年
(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法.
--
(2)样本点的中心:对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(xn,yn),其中(x,y)称为

人教版高中数学-利用散点图判断两个变量的关系

人教版高中数学-利用散点图判断两个变量的关系

利用散点图判断两个变量的关系
现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并可以利用散点图直观体会这种相关关系。

在考虑两个变量的关系时,通常将变量所对应的点在直角坐标系中描出,这些点就组成了散点图.散点图的特点是形象地体现了各对数据的密切程度,我们可以根据散点图来判断两个变量有没有线性关系.
例1. 设某地10户家庭的年收入和年饮食支出的统计资料如下:
试判断年收入和年饮食支出是否具有相关关系?
解析: 由上表数据,以年收入x的取值作为横坐标,把年饮食支出y的相应取值作为纵坐标,作出散点图.从图1中可以直观地看出家庭年收入和年饮食支出之间具有相关关系,并且当年收入的值由小变大时,年支出的值也在由小变大.
如果关于两个变量统计数据的散点图呈现图2的形状,则这两个变量之间不具有相关性.例如,学生的身高与学生的数学成绩没有相关关系,此时称变量间是不相关的.
例2. 某种产品的广告费支出x与销售额y(单位:百万元)之间有以下对应的数据:
试判断变量x与y是否具有线性相关关系.
解析: 要判断两个变量之间是否具有线性相关关系,最有效、最简便的方法是画出各个数据对应的散点图.因为它能形象地反映各对数据的密切程度.
散点图如下:
由图可以看出,各点都在一条直线附近,所以广告费支出x与销售额y之间有线性相关关系.。

4-1 相关分析原理及散点图

4-1 相关分析原理及散点图
即排量大的汽车,售价也较贵。
4-1 相关分析原理与散点图
四、绘制散点图 2.利用“标注个案”绘制散点图 在散点图中,当数据较多的时候,利用“设置标记”区分不
同数据就会存在困难,因为很多点的颜色较为接近,此时, 就可以采用“标注个案”绘制散点图。
4-1 相关分析原理与散点图
四、绘制散点图 子任务2:打开“汽车销售.sav ” (见本书配套资源)文件,
宽松且稀疏,弱相关
4-1 相关分析原理与散点图
四、绘制散点图 1.利用“设置标记”绘制散点图 在散点图中,“设置标记”是指以不同颜色的点来区
分不同的个案,类似于Excel 图表中的图例。
4-1 相关分析原理与散点图
四、绘制散点图 子任务1:打开“汽车销售.sav”(见本书配套资源)文件,
根据“排量_L”和“新车价格_美元”两个变量绘制散点图, 其中“汽车排量”作为自变量,“新车价格”作为因变量, 将“型号”设为“设置标记”。
正相关是指一个变量增加,另一个变量随之增加;或一个变量数 值减少,另一个变量随之减少,即两个变量的变化方向是相同的。
负相关是指一个变量增加,另一个变量反而减少;或一个变量减 少,另一个变量反而增加,即两个变量的变化方向是相反的。
4-1 相关分析原理与散点图
三、散点图的作用 1.正相关和负相关
“左下→右上”,正相关
而不是函数关系。 这主要是因为影响一个变量的因素往往有很多,而其中的一
些因素还没有被完全认识到,而这些因素导致了变量之间关 系的不确定性。
4-1 相关分析原理与散点图
二、相关分析 相关分析是研究两个或两个以上处于同等地位的变量
之间的相关关系的统计分析方法。相关分析在工农业、 水文、气象、社会经济和生物学等方面都有应用。 相关分析通常有2 种方法,一种是散点图,另一种是 相关系数。

高考数学必背知识手册-第八章-成对数据的统计分析(公式、定理、结论图表)

高考数学必背知识手册-第八章-成对数据的统计分析(公式、定理、结论图表)

第八章成对数据的统计分析(公式、定理、结论图表)一、成对数据的统计相关性1.变量的相关关系(1)函数关系函数关系是一种确定性关系,常用解析式来表示.(2)相关关系两个变量有关系,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系.与函数关系不同,相关关系是一种非确定性关系.2.散点图(1)散点图成对样本数据都可用直角坐标系中的点表示出来,由这些点组成的统计图叫做散点图. (2)正相关和负相关如果从整体上看,当一个变量的值增加时,另一个变量的相应值也呈现增加的趋势,我们就称这两个变量正相关;如果当一个变量的值增加时,另一个变量的相应值呈现减少的趋势,则称这两个变量负相关.3.线性相关一般地,如果两个变量的取值呈现正相关或负相关,而且散点落在一条直线附近,则称这两个变量线性相关.4.样本相关系数(1)对于变量x和变量y,设经过随机抽样获得的成对样本数据为(,),(,),,(,),利用相关系数r来衡量两个变量之间线性关系的强弱,相关系数r的计算公式:(其中,,,和,,,的均值分别为和).①当r >0时,称成对样本数据正相关.这时,当其中一个数据的值变小时,另一个数据的值通常也变小;当其中一个数据的值变大时,另一个数据的值通常也变大.②当r <0时,称成对样本数据负相关.这时,当其中一个数据的值变小时,另一个数据的值通常会变大;当其中一个数据的值变大时,另一个数据的值通常会变小.二、一元线性回归模型及其应用1.线性回归方程:(1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.(2)回归方程:两个具有线性相关关系的变量的一组数据:()()()1122,,,,,,n n x y x y x y ,其回归方程为a bx y +=∧,则1221,.ni i i nii x y nx y b x nx a y bx ==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑注意:线性回归直线经过定点(),x y .(3)相关系数:()()()()12211nii i nni i i i xx y y rx x y y ===--=--∑∑∑1222211ni ii n ni i i i x y nxyx nx y ny ===-=⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∑∑∑.【方法归纳】(1)利用散点图判断两个变量是否有相关关系是比较直观简便的方法.如果所有的样本点都落在某一函数的曲线附近,变量之间就有相关关系.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.若点散布在从左下角到右上角的区域,则正相关.(2)利用相关系数判定,当r 越趋近于1相关性越强.当残差平方和越小,相关指数2R 越大,相关性越强.(3)在分析实际中两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,也可计算相关系数r 进行判断.若具有线性相关关系,则可通过线性回归方程估计和预测变量的值.(4)正确运用计算 ,ba 的公式和准确的计算,是求线性回归方程的关键.并充分利用回归直线 y bxa =+ 过样本点的中心(),x y 进行求值.2、回归分析:对具有相关关系的两个变量进行统计分析的一种常用方法。

知识讲解_变量间的相关关系_基础

知识讲解_变量间的相关关系_基础

变量的相关关系【学习目标】1.明确两个变量具有相关关系的意义;2.知道回归分析的意义;3.知道回归直线、回归直线方程、线性回归分析的意义;4.掌握对两个变量进行线性回归的方法和步骤,并能借助科学计算器确定实际问题中两个变量间的回归直线方程;【要点梳理】要点一、变量之间的相关关系变量与变量之间存在着两种关系:一种是函数关系,另一种是相关关系。

1.函数关系函数关系是一种确定性关系,如y=kx+b,变量x取的每一个值,y都有唯一确定的值和它相对应。

2.相关关系变量间确定存在关系,但又不具备函数关系所要求的确定性相关关系分为两种:正相关和负相关要点诠释:对相关关系的理解应当注意以下几点:(1)相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系.因此,不能把相关关系等同于函数关系.(2)函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系.然而,学会新词并不能使脚变大,而是涉及到第三个因素——年龄.当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大.(3)函数关系与相关关系之间有着密切联系,在一定的条件下可以相互转化.例如正方形面积S与其边长x间虽然是一种确定性关系,但在每次测量边长时,由于测量误差等原因,其数值大小又表现出一种随机性.而对于具有线性关系的两个变量来说,当求得其回归直线后,我们又可以用一种确定性的关系对这两个变量间的关系进行估计.3.散点图将收集到的两个变量的统计数据分别作为横、纵坐标,在直角坐标系中描点,这样的图叫做散点图。

通过散点图可初步判断两个变量之间是否具有相关关系,她反映了各数据的密切程度。

要点二、正相关、负相关(1)正相关:在统计数据中的两个变量,一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关。

变量间的相关关系与统计案例

变量间的相关关系与统计案例

变量间的相关关系与统计案例在统计学中,变量之间的相关关系是一个非常重要的概念。

通过分析变量之间的相关关系,我们可以更好地理解数据之间的联系,为进一步的分析和预测提供基础。

本文将通过一些统计案例,介绍变量间相关关系的概念,并通过实际数据进行分析,帮助读者更好地理解相关关系的含义及其在实际应用中的重要性。

首先,我们需要了解什么是变量间的相关关系。

在统计学中,变量之间的相关关系是指它们之间存在的某种关联或者依存关系。

这种关系可以是正向的,也可以是负向的。

正向的相关关系意味着两个变量的数值同时增加或减少,负向的相关关系则表示一个变量的数值增加时,另一个变量的数值减少。

通过相关系数的计算,我们可以量化这种相关关系的强度和方向。

接下来,我们通过一个实际的统计案例来说明变量间相关关系的应用。

假设我们有一组数据,包括了某个城市每月的平均气温和冰淇淋销量。

我们想要分析气温和冰淇淋销量之间是否存在相关关系。

首先,我们可以通过散点图来观察两个变量之间的关系。

如果散点图呈现出一种明显的趋势,那么说明两个变量之间可能存在相关关系。

接着,我们可以通过计算相关系数来量化这种关系的强度。

最常用的相关系数是皮尔逊相关系数,它的取值范围在-1到1之间,绝对值越接近1,表示两个变量之间的相关关系越强。

在这个案例中,我们发现气温和冰淇淋销量之间存在着正向的相关关系。

也就是说,随着气温的升高,冰淇淋销量也会增加。

这个发现对于冰淇淋生产商来说是非常有用的信息,他们可以根据气温的变化来调整生产和销售策略,以更好地满足消费者的需求。

除了正向的相关关系,我们还可以遇到负向的相关关系。

比如,一个城市的降雨量和游乐园的游客数量之间可能存在负向的相关关系。

这意味着降雨量增加时,游客数量会减少。

这对于游乐园的经营者来说也是非常重要的信息,他们可以根据天气预报来调整营销策略,以减少降雨天对游客数量的影响。

通过以上案例,我们可以看到,变量间的相关关系在实际应用中具有非常重要的意义。

8.1.1-8.1.2变量的相关关系、样本相关系数(解析版)

8.1.1-8.1.2变量的相关关系、样本相关系数(解析版)

变量的相关关系样本相关系数导学案【学习目标】1.了解变量间的相关关系,会画散点图2.会用散点图判断两个变量之间是否具有相关关系【自主学习】知识点一变量间的相关关系(1)相关关系的定义变量之间有一定的联系,但不能完全用函数来表达.如人的体重y与身高x.一般来说,身高越高,体重越重,但不能用一个函数来严格地表示身高与体重之间的关系.相关关系是非确定性关系,因变量的取值具有一定的_随机性__.,那么这两个变量之间的关系叫做相关关系,两个变量之间的关系分为函数关系和相关关系.(2)散点图将样本中n个数据点(x i,y i)(i=1,2,…,n)描在平面直角坐标系中得到的图形叫做散点图.(3)正相关与负相关①正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.②负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.知识点二相关系数(1)样本相关系数r的计算公式我们可以利用相关系数来定量地衡量两个变量之间的线性相关关系,计算公式为()()niix x y y r --=∑.(2)样本相关系数r 的性质 ①||1r ≤;②当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关; ③|r |越接近于1,表明两个变量的线性相关性越强; ④|r |越接近于0,表明两个变量的线性相关性越弱.【合作探究】探究一相关关系及判断【例1】某个男孩的年龄与身高的统计数据如下表所示.(1)(2)判断y与x是否具有线性相关关系.[解](1)散点图如图所示.(2)由图知,所有数据点接近一条直线排列,因此,认为y与x具有线性相关关系.归纳总结:(1)两个变量x和y具有相关关系的判断方法①散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断;②表格、关系式法:结合表格或关系式进行判断;③经验法:借助积累的经验进行分析判断.(2)判断两个变量x和y之间是否具有线性相关关系,常用的简便方法就是绘制散点图,如果发现点的分布从整体上看大致在一条直线附近,那么这两个变量就是线性相关的,注意不要受个别点的位置的影响.【练习1】下列关系中,属于相关关系的是________(填序号).①正方形的边长与面积之间的关系; ②农作物的产量与施肥量之间的关系; ③出租车费与行驶的里程;④降雪量与交通事故的发生率之间的关系. 【答案】②②[在②中,正方形的边长与面积之间的关系是函数关系;在②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;②为确定的函数关系;在②中,降雪量与交通事故的发生率之间具有相关关系.]探究二 正负相关关系的判断【例2】有几组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩;③立方体的棱长和体积.其中两个变量成正相关的是( ) A .①③ B .②③ C .② D .③【答案】C[②是负相关;②是正相关;②不是相关关系.] 归纳总结:【练习2】对两个变量x 、y 进行线性相关检验,得线性相关系数10.7859r =,对两个变量u 、v 进行线性相关检验,得线性相关系数20.9568r =-,则下列判断正确的是( )A .变量x 与y 正相关,变量u 与v 负相关,变量x 与y 的线性相关性较强B .变量x 与y 负相关,变量u 与v 正相关,变量x 与y 的线性相关性较强C .变量x 与y 正相关,变量u 与v 负相关,变量u 与v 的线性相关性较强D .变量x 与y 负相关,变量u 与v 正相关,变量u 与v 的线性相关性较强【答案】C 【分析】根据相关系数的符号决定两个变量的正相关、负相关,以及相关系数绝对值越大,两个变量的线性相关性越强,进而可得出结论. 【详解】由线性相关系数10.78590r =>知x 与y 正相关, 由线性相关系数20.95680r =-<知u 与v 负相关,又12r r <,所以,变量u 与v 的线性相关性比x 与y 的线性相关性强, 故选:C.探究三 样本相关系数的应用【例3】两个变量x 与y 的回归模型中,分别选择了四个不同的模型来拟合y 与x 之间的关系,它们的相关系数r 如下,其中拟合效果最好的模型是( )A .模型1B .模型2C .模型3D .模型4【答案】A 【分析】根据相关系数||r越接近于1,模型的拟合效果越好,结合表格中的数据,即可求解.【详解】两个变量x与y的回归模型中,它们的相关系数||r越接近于1,这个模型的拟合效果越好,在所给的四个相关系数中0.98的绝对值最接近1,所以拟合效果最好的模型是模型1.故选:A.归纳总结:【练习3】对四组数据进行统计,获得以下散点图,关于其相关系数的比较,正确的是()A.2431r r r r<<<<B.4213r r r r<<<<C.4231r r r r<<<<D.2413r r r r<<<<【答案】A【分析】由给出的四组数据的散点图,结合相关系数的概念,逐图判定,即可求解.【详解】由给出的四组数据的散点图可以看出,题图1和题图3是正相关,相关系数大于0,题图2和题图4是负相关,相关系数小于0,题图1和题图2的点相对更加集中,所以相关性更强,所以1r 接近于1,2r 接近于1-, 由此可得24310r r r r <<<<. 故选:A .课后作业A 组 基础题一、选择题1.下列语句所表示的事件中的因素不具有相关关系的是( ) A .瑞雪兆丰年 B .读书破万卷,下笔如有神 C .吸烟有害健康 D .喜鹊叫喜,乌鸦叫丧【答案】: D解析: “瑞雪兆丰年”和“读书破万卷,下笔如有神”是根据多年经验总结归纳出来的,吸烟有害健康具有科学根据,所以它们都是相关关系,所以A 、B 、C 三项具有相关关系;结合生活经验知喜鹊和乌鸦发出叫声是它们自身的生理反应,与人无任何关系,故D 项不具有相关关系.2.在一组样本数据112212()()()(2n n n x y x y x y n x x x ≥,,,,,,,,,,不全相等)的散点图中,若所有样本点()(,1,2,,)i i x y i n =都在直线112y x =+上,则这组样本数据的样本相关系数为 A .-1 B .0C .12D .1【答案】D【解析】所有样本点均在直线上,则样本相关系数最大,即为1. 二、填空题3.如图,有5组(x ,y )数据,去掉________点对应的数据后,剩下的4组数据的线性相关程度最大.【答案】D[去掉D点对应的数据后,其余四点大致在一条直线附近,相关性最强.]4.以下是收集到的某物品的销售价格y和物品的大小x的数据:【答案】:有解析:物品大小的值由小变大时,销售价格也由小变大,因此,两个变量有相关关系.5.甲、乙、丙、丁四位同学各自对A,B两个变量的线性相关性做试验,并用回归分析方法分别求得相关系数r与残差平方和m,如下表:则________同学的试验结果体现A,B两变量有更强的线性相关性.【答案】丁【分析】根据数据直接判断即可.【详解】解:r越大,m越小,线性相关性越强,易知丁同学的试验结果体现A,B两变量的线性相关性较强.故【答案】为:丁.三、解答题6.下表提供了某厂节能降耗技术改进后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:(1)[解](1)散点图如图:7.两对变量A和B,C和D的取值分别对应如表1和表2,画出散点图,分别判断它们是否具有相关关系;若具有相关关系,说出它们相关关系的区别.表1[解]从图中可以看出两图中的点各自分布在一条曲线附近,因此两对变量都具有相关关系.图(1)中,当A的值由小变大时,B的值却是由大变小,故A和B成负相关;图(2)中,当C的值由小变大时,D的值也是由小变大,故C和D成正相关.8.有一位同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出热饮杯数与当天气温的对比表:(1)(2)你能从散点图中发现气温与热饮销售杯数之间关系的一般规律吗?解析:(1)以x轴表示温度,以y轴表示热饮杯数,可作散点图如图.(2)从图中可以看出,各点散布在从左上角到右下角的区域里,因此,气温与热饮销售杯数之间是具有相关关系,即气温越高,卖出去的热饮杯数越少.B组能力提升一、选择题1.变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4)(11.8,3),(12.5,2),(13,1),r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则A.r2<r1<0B.0<r2<r1C.r2<0<r1D.r2=r1【答案】C【解析】根据题中提供的数据,变量Y随X的增大而增大,故Y与X正相关,即r1>0;变量V随U的增大而减小,故V与U负相关,即r2<0,故r2<0<r1.二、解答题2.互联网使我们的生活日益便捷,网络外卖也开始成为不少人日常生活中不可或缺的一部分,某市一调查机构针对该市市场占有率较高的甲,乙两家网络外卖企业(以下称外卖甲、外卖乙)的经营情况进行了调查,调查结果如下表:(1)试根据表格中这五天的日接单量情况,从统计的角度说明这两家外卖企业的经营状况;(2)据统计表明,y与x之间具有线性相关关系.r ,则可认为y与x有较请用相关系数r对y与x之间的相关性强弱进行判断;(若||0.75强的线性相关关系,r值精确到0.001)参考数据:()()5166iii x x y y =--=∑77≈.【答案】(1)外卖甲比外卖乙经营状况更好;(2)【答案】见解析; 【分析】(1)由表格中的数据,求得22,x y s s =<甲乙,即可得结论;(2)根据公式,求得相关系数r 的值,结合||0.75r >,即可得到结论;【详解】(1)由表格中的数据,可得52981175x ++++==,231051575y ++++==,外卖甲的日接单量的方差222222(57)(27)(97)(87)(117)105s -+-+-+-+-==甲,外卖乙的日接单量的方差222222(27)(37)(107)(57)(157)23.65s -+-+-+-+-==乙,因为22,x y s s =<甲乙,即外卖甲平均日接单量与外卖乙平均日接单量相同,但外卖甲日接单量更集中一些,所以外卖甲比外卖乙经营状况更好.(2)①因为()()niix x y y r --=∑又()()5166iii x x y y =--=∑77≈,所以代入计算可得,相关系数660.8570.7577r ≈≈>, 所以可认为y 与x 之间有较强的线性相关关系.3.根据统计,某蔬菜基地西红柿亩产量的增加量y(百千克)与某种液体肥料每亩使用量x (千克)之间的对应数据的散点图,如图所示.依据数据的散点图可以看出,可用线性回归模型拟合y与x的关系,请计算相关系数r并加以说明(若0.75r>,则线性相关程度很高,可用线性回归模型拟合);附:相关系数公式()()n ni i i ix x y y x y nx y r---==∑∑.0.55≈0.95≈.【答案】0.95;【答案】见解析;【分析】根据散点图中的数据分别求得可得x,y,()()51i iixx y y=--∑,进而求得相关系数r,再与0.75比较下结论.【详解】由已知数据可得2456855x++++==,3444545y++++==,所以()()()()()5131100010316i iix x y y=--=-⨯-+-⨯+⨯+⨯+⨯=∑,====所以相关系数()()50.95iix x y y r --===≈∑.因为0.75r >,所以可用线性回归模型拟合y 与x 的关系.4.某湿地公园经过近十年的规划和治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的300个地块,并设计两种抽样方案,方案一:在该地区应用简单随机抽样的方法抽取30个作为样本区;依据抽样数据计算得到相应的相关系数0.81r =;方案二:在该地区应用分层抽样的方法抽取30个作为样本区,调查得到样本数据(),i i x y (1i =,2,…,30),其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得30160ii x==∑,3011200i i y ==∑,()302190ii x x =-=∑,()30218000i i y y=-=∑,()()301800i ii x xy y =--=∑.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求方案二抽取的样本(),i i x y (1i =,2,…,30)的相关系数(精确到0.01);并判定哪种抽样方法更能准确的估计.附:相关系数()()niix x y y r--=∑ 1.414≈;相关系数[]0.75,1r ∈,则相关性很强,r 的值越大,相关性越强.答案:(1)12000;(2)0.94r =,方案二的分层抽样方法更能准确的估计.【分析】(1)先由题中条件,得到样区野生动物平均数,进而可得出结果;(2)根据题中数据,直接计算相关系数;根据两种方案对应的相关系数的值,即可得出结果.【详解】(1)由题意可得,样区野生动物平均数为301111200403030i i y ==⨯=∑, 又地块数为300,所以该地区这种野生动物的估计值为3004012000⨯=; (2)由题中数据可得,样本(),i i x y (1i =,2,…,30)的相关系数为()()300.94iix x y y r --===≈∑.因为方案一的相关系数为0.81r =明显小于方案二的相关系数为0.94r =, 所以方案二的分层抽样方法更能准确的估计.。

利用散点图判断两个变量之间的线性相关关系

利用散点图判断两个变量之间的线性相关关系

自测自评 1.两个变量之间关系如下,
x246 y348
回归直线一定经过点( C )
A.(3,3)
B.(4,4)
C.(4,5)
D.(5,5)
2.一位母亲记录了儿子3~9岁的身高,数据(略),
由此建立的身高与年龄的回归模型为

y
=7.19x+73.93,
用这个模型预测这个孩子10岁时的身高,则正确的叙述
x3 4 5 6 7 y 1 1.5 2.8 3.2 4 (1)画出散点图; (2)求出线性回归方程; (3)估计使用年限为9年时,维修费用是多少?
解析:(1)散点图如下图:
(2)计算可得:-x =5,-y =2.5,
5
xiyi=70.2,
i=1
5
5
x2i =135,y2i =37.33.
i=1
i=1
解析:相应的散点图如下
3.线性相关:当一个变量变动时,另一个变量也 相应发生大致均等的变动,两者之间叫做线性相关.相 关关系与函数关系的相同点均是指两个变量的关系;不 同点是:函数关系是一种确定的关系,而相关关系是一 种非确定关系.
例如:人的身高和体重的关系是相关关系还是函数 关系?
相关关系
4.最小二乘法:在求回归直线时,公式中选取

故所求的回归方程为y=0.7x+0.35. (3) x=100, y=100×0.7+0.35=70.35 吨, 预测生产 100 吨甲产品的生产能耗比技改前降低 90-70.35=19.65(吨).
1.求解两个变量的回归直线方程的计算量较大,
需要细心、谨慎地计算.如果会使用含统计的科学计算
器,能简单得到
(1)依据这些数据画出散点图; (2)如果y与x之间具有线性相关关系,求回归直线 方程. 解析:(1)散点图如下:

散点图在判断两个变量线性相关关系中的应用

散点图在判断两个变量线性相关关系中的应用

散点图在判断两个变量线性相关关系中的应用
根据问题中给出的数据,描出数据点或利用计算机作出散点图,从散点图上观察两个变量的相关关系时,若各点散布在从左下角到右上角的区域里,则称正相关,若各点散布在从左上角到右下角的区域里,则称负相关,下面举例说明,供大家学习时参考.
例1 行驶中的汽车,在刹车时由于惯性的作用,要继续往前滑行一段距离才能停下,这段距离称为刹车距离.如下表1是某种车的车速与刹车后的停车距离:
(2)从散点图中发现车速与刹车后的停车距离之间关系.
解:(1)描出各数据点或在Excel 工作表中输入数据,选中数据区,按“插入/图表/图表类型/散点图/完成”
的顺序作出散点图,如图1所示.
(2)观察散点图,发现各点散布在从左下角到右上角的区域里,呈递增趋势,因此,车速与刹车后的停车距离之间成正相关,即车速越大,刹车后的停车距离越大. 例2 为了对某一新产品进行合理定价,对这类进行了试销试验,用以观察需求量y (单画出散点图,请观察需求量对于价格的一般规律.
解:描出数据点或在Excel 工作表中输入数据,选中数据区,按“插入/图表/图表类型/散点图/完成”的顺序作出散点图,如图2所示 . 观察散点图,发现各点散布在从左上角到右下角的区域里,呈递减趋势,因此,需求量对于价格成负相关,即价格越高,需求量就越低.
图1
图2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、从散点图上可以看出,如果变量之间存在着某种关系,这些点会有一个集中的大致趋 势.
负相关:如果散点图的点散布的位置是从在左上角到右下角的区域,即一个变量的值由小变大时,另 一个变量的值也近似的由大变小,对于两个变量的这种相关关系,我们称为负相关.
在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们将变量所对应的 点描出来,这些点就组成了变量之间的一个散点图.
探究:
(2)函数关系与相关关系之间有着密切联系: 在一定的条件下可以相互转化.而对于具有线性相关关系的两个变量来说,当求得其回归直线方程后, 又可以用一种确定性的关系对这两个变量间的取值进行估计:
3、判断相关关系的基本程序
两个变量 →一个变量值一定→另一个变量带有不确定性→相关关系
4、相关关系的类型 相关关系可分为线性相关,非线性相关两类.
如高原含氧量与海拔高度 的相关关系,海平面以上, 海拔高度越高,含氧量越 少。 作出散点图发现,它们散 布在从左上角到右下角的区 域内。又如汽车的载重和汽 车每消耗1升汽油所行使的 平均路程,称它们成负相关.
O
1、散点图的特点形象地体现了各数据的密切程度,因此我们可以根据散点图来判断两个 变量有没有线性关系.
利用散点图判断两个变量的相关关系
讲授新课
一:变量之间的相关关系
1.两变量之间的关系
(1)函数关系: 当自变量取值一定时,因变量取值由它唯一确定
正方形面积S与其边长x之间的函数关系S=x2 , 对自变量边长的每一个确定值,都有唯一确定值一定时,因变量的取值带有一定的随机性
一块农田的水稻产量与施肥量之间的关系 。 水稻产量并不是由施肥量唯一确定,在取值上带有随机性
不确定关系
2、相关关系的概念 自变量取值一定时,因变量的取值带有一定的随机性的两个变量之间的关系叫相关关系.
(1)相关关系与函数关系的异同点:相同点:均是指两个变量的关系 不同点:函数关系是一种确定的关系。 而相关关系是一种非确定关系; 即,函数关系是一种因果关系,而相 关关系不一定是因果关系,也可能是随机关系.
注意: 两个变量之间的关系具有确定性关系—函数关系. 两个变量变量之间的关系具有随机性,不确定性—相关关系.
二:散点图
1、散点图:将样本中n个数据点(xi,yi)(i=1,2,…,n)描在平面直角坐标系中,以表示具有相关 关系的两个变量的一组数据的图形叫做散点图.
2、正相关、负相关 正相关:如果散点图的点散布在从左下角到右上角的区域,即一个变量的值由小变大时,另一个变量 的值也近似的由小变大,对于两个变量的这种相关关系,我们称为正相关
.
年龄 23 27
39
41
45
49 50
53
54
56
57
58
脂肪
9.5 17.8 21.2 25.9 27.5 26.3 28.2 29.6
30.2
31.4 30.8 33.5
年龄 60
61
脂肪 35.2 34.6
如上的一组数据,你能分析人体的脂肪含量与年龄 之间有怎样的关系吗?
从上表发现,对某个人不一定有此规律,但对很多个体放在一起,就体现出“人体脂肪随年龄增长而增加” 这一规律.而表中各年龄对应的脂肪数是这个年龄
人群的样本平均数.我们也可以对它们作统计图、 表,对这两个变量有一个直观上的印象和判断.
下面我们以年龄为横轴, 脂肪含量为纵轴建立直 角坐标系,作出各个点, 称该图为散点图。
脂肪含量 40 35
如图:
30 25 20 15 10 5
O
20
25
30 35 40
年龄
45 50 55
60 65
从刚才的散点图发现:年龄越大,体内脂肪含量越高,点的位置散布在从左下角到右上角的区域。称它们成正相关。 但有的两个变量的相关,如下图所示:
相关文档
最新文档