初中数学证明题解题技巧与步骤
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谈谈初中数学证明题解题技巧与步骤
马荣生2012年12月29日 13:51
摘要;数学源于生活,许多学生在刚刚接触证明题时,原先的数学思维形成定势,导致在实际解决证明题的过程中,却因为种种原因而感到无从下手!尤其命题的证明是数学学习中常见的一种题型,证明的过程特别是证题思路和语言表达方式是初学者感到困惑的地方,尤其是在执行新课标以后,语文教学中不讲语法知识,数学也淡化了概念的教学,初中又没有接触到逻辑知识,学生的语言表达能力和逻辑推理能力很差.因此,了解一些关于命题证明的知识是很有必要的.那如何求解证明题呢?如何让学生不再畏惧证明题呢?
关键词:证明题解题技巧解题步骤
人教版初中数学教材中是想通过对《证明》的学习,让学生通过对图形的性质及相互关系进行探索的同时,使学生经历推理的过程,进行简单的推理训练,从而具备了一定的推理能力,树立了初步的推理意识,为严格的推理证明打下了基础。许多学生在实际解决证明题的过程中,却因为种种原因而感到无从下手!那如何求解证明题呢?如何让学生不再畏惧证明题呢?通过对教材中《证明》的教学,根据学生的认知水平,本人认为可以从以下六个方面来解决:
首先我们来看看几个关于证明的例题
例题1:已知:A、B、C、D在同一直线上,AB=CD,DE∥AF,且DE=AF。
求证:△AFC≌△DEB
E
B
A D
C
F
例题2. 如图2,已知点A、B、C、D在同一直线上,AC=BD,AM∥CN,BM∥DN。
求证:AM=CN
例题3:证明:等腰三角形两底角的平分线相等
1.弄清题意
例题1和例题2中的题设和结论都也明确给出,并且已知中的图形一目了然,结论是证明两个三角形全等或通过证明两个三角形全等来得到对应边相等,而且解题过程不是很复杂,所以同学们只需依据三角形全等判定方法来进行证明就行了。而例题3则不同,此题为“文字型”数学证明题,既没有图形,也无直观的已知与求证。如何弄清题意呢?根据命题的定义可知,命题由条件与结论两部分组成,因此区分命题的条件与结论至关重要,是解题成败的关键。命题可以改写成“如果………..,那么……….”的形式,其中“如果………..”就是命题的条件,“那么…….”就是命题的结论,据此对题目进行改写:如果在等腰三角
形中分别作两底角的平分线,那么这两条平分线长度相等。于是题目的意思就很清晰了,就是在等腰三角形中作两底角平分线,然后根据已知的条件去求证这两条平分线相等。这样题目要求我们做什么就一目了然了
2.根据题意,画出图形
图形对解决证明题,能起到直观形象的提示,所以画图因尽量与题意相符合。并且把题中已知的条件,能标在图形上的尽量标在图形上。 (如下图1所示是依据题意所画的图形)
1.3根据题意与图形,用数学的语言与符号写出已知和求证
众所周知,命题的条件---已知,命题的结论---求证。(但要特别注意的是,已知、求证必须用数学的语言和符号来表示。这一点很多同学目前还不太习惯)
例题3中的条件与结论转化为:
已知:如上图(1)所示,在等腰△ABC中,AB=AC, BD、CE分别是△ABC的两底角∠ABC 和∠ACB平分线。
求证:BD=CE
4分析已知、求证与图形,探索证明的思路
对于证明思路的探索,一般有三种思考方式:
(1)正向思维。
对于一般简单的题目(如例题1),我们正向思考,轻而易举可以做出,这里就不详细讲述了。
(2)逆向思维。
顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法推荐学生是一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,尤其在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,通常最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正确写出来就可以了。这是非常好用的方法,同学们一定要试一试。
(3)正逆结合。
对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜
分析:例题3中要想证明 BD=CE ,就要引导学生观察图形(图形(1)),弄清题意。发现BD、CE分别存在于两对三角形中:△ABD与△ACE,△BEC与△CDB,只要能证明其中任何一对三角形全等,即可利用全等三角形性质得到对应边相等。(此思维方式属于逆向思维)5根据证明的思路,用数学的语言与符号写出证明的过程
证明过程的书写,其实就是把证明的思路从脑袋中搬到纸张上。这个过程,对数学符号与数学语言的应用要求较高,在讲解时,要提醒学生任何的“因为、所以”,在书写是都要符合公理、定理、推论或以已知条件相吻合,不能无中生有、胡说八道,要有根有据!
例题3:证明:
∵AB=AC(已知)
∴∠ABC=∠ACB(等边对等角)
∵BD、CE分别是△ABC的角平分线(已知)
∴∠1=∠ABC, ∠2=∠ACB(角平分线的定义)
∴∠1=∠2(等量代换)
在△BEC与△CDB中,
∵∠ACB=∠ABC, BC=CB, ∠1=∠2
∴△BEC≌△CDB(ASA)
∴BD=CE(全等三角形的对应边相等)
补充例题1和例题2的证明过程,供同学们学习时参考
例题1证明:
∵AB=CD
∴AB+BC=CD+BC
即 AC=BD
又∵DE∥AF
∴∠CAF=∠BDE(两直线平行,内错角相等)
在△BDE和△CAF中
∵DE=AF, ∠CAF=∠BDE, AC=BD
∴△BDE≌△CAF(SAS)
故原命题得证
例题2证明:
分析:要证AM=CN
只要证△ABM≌△CDN,在这两个三角形中,由于AM∥CN,BM∥DN,可得
∠A=∠NCD,∠ABM=∠D
可见有两角对应相等,故只需证其夹边相等即可。
又由于AC=BD,而
故AB=CD