常用半导体基础知识
半导体的基本知识
第1章 半导体的基本知识1.1 半导体及PN 结半导体器件是20世纪中期开始发展起来的,具有体积小、重量轻、使用寿命长、可靠性高、输入功率小和功率转换效率高等优点,因而在现代电子技术中得到广泛的应用。
半导体器件是构成电子电路的基础。
半导体器件和电阻、电容、电感等器件连接起来,可以组成各种电子电路。
顾名思义,半导体器件都是由半导体材料制成的,就必须对半导体材料的特点有一定的了解。
1.1.1 半导体的基本特性在自然界中存在着许多不同的物质,根据其导电性能的不同大体可分为导体、绝缘体和半导体三大类。
通常将很容易导电、电阻率小于410-Ω•cm 的物质,称为导体,例如铜、铝、银等金属材料;将很难导电、电阻率大于1010Ω•cm 的物质,称为绝缘体,例如塑料、橡胶、陶瓷等材料;将导电能力介于导体和绝缘体之间、电阻率在410-Ω•cm ~1010Ω•cm 范围内的物质,称为半导体。
常用的半导体材料是硅(Si)和锗(Ge)。
用半导体材料制作电子元器件,不是因为它的导电能力介于导体和绝缘体之间,而是由于其导电能力会随着温度的变化、光照或掺入杂质的多少发生显著的变化,这就是半导体不同于导体的特殊性质。
1、热敏性所谓热敏性就是半导体的导电能力随着温度的升高而迅速增加。
半导体的电阻率对温度的变化十分敏感。
例如纯净的锗从20℃升高到30℃时,它的电阻率几乎减小为原来的1/2。
而一般的金属导体的电阻率则变化较小,比如铜,当温度同样升高10℃时,它的电阻率几乎不变。
2、光敏性半导体的导电能力随光照的变化有显著改变的特性叫做光敏性。
一种硫化铜薄膜在暗处其电阻为几十兆欧姆,受光照后,电阻可以下降到几十千欧姆,只有原来的1%。
自动控制中用的光电二极管和光敏电阻,就是利用光敏特性制成的。
而金属导体在阳光下或在暗处其电阻率一般没有什么变化。
3、杂敏性所谓杂敏性就是半导体的导电能力因掺入适量杂质而发生很大的变化。
在半导体硅中,只要掺入亿分之一的硼,电阻率就会下降到原来的几万分之—。
半导体基础知识
第一章、半导体器件
1、为什么将自然界导电性能中等的半导体材料制成本征半导体,导电性能极差,又将其掺杂,改善导电性能?
制成本征半导体是为了讲自然界中的半导体材料进行提纯,然后人工掺杂,通过控制掺杂的浓度就可以控制半导体的导电性,以达到人们的需求
2、为什么半导体器件的温度稳定性差?是多子还是少子是影响温度稳定性的主要因素?
导致半导体性能温度稳定性差的主要原因有二:β
(1)禁带宽度与温度有关(一般,随着温度的升高而变窄);(2)少数载流子浓度与温度有关(随着温度的升高而指数式增加)。
多子。
3、为什么半导体器件有最高工作频率?
这是因为半导体器件的主要组成单元是PN结,PN结的显著特征是单向导电性,因为PN结的反向截止区是由耗尽层变宽导致截止,而这个过程是需要一定的时间的,如果频率太高导致时间周期小于截止时间就可能造成PN结失去单向导电性,导致半导体器件不能正常工作,所以半导体器件有最高工作频率的限制。
4、整流,是指将交流电变换为直流电称为AC/DC变换,这正变换的功率流向是由电源传向负载,称之为整流。
5、为什么基极开路集电极回路会有穿透电流?
虽然集电结是反偏的,虽然基极是开路的,但是,晶体管芯,是块半导体材料。
半导体材料,又不是绝缘体,加上电压,就有微弱的电流,这很正常。
从集电区向基区出现的“反向饱和电流Icbo”,在基极没有出路,就流向发射极了。
这一流动,就形成了一个Ib。
这个Ib,就引出了一个贝塔倍的Ic; 这个Ib和Ic之和,就是穿透电流Iceo,等于(1+贝塔)Icbo。
6、
展开。
半导体的基本知识
半导体的基本知识半导体是一种电导率介于导体和绝缘体之间的材料。
半导体的电性质可以通过施加电场或光照来改变,这使得半导体在电子学和光电子学等领域有广泛的应用。
以下是关于半导体的一些基本知识:1. 基本概念:导体、绝缘体和半导体:导体(Conductor):电导率很高,电子容易通过的材料,如金属。
绝缘体(Insulator):电导率很低,电子很难通过的材料,如橡胶、玻璃。
半导体(Semiconductor):电导率介于导体和绝缘体之间的材料,如硅、锗。
2. 晶体结构:半导体通常以晶体结构存在,常见的半导体材料有硅(Si)、锗(Ge)、砷化镓(GaAs)等。
3. 电子能带:价带和导带:半导体中的电子能带分为价带和导带。
电子在价带中,但在施加电场或光照的作用下,电子可以跃迁到导带中,形成电流。
能隙:价带和导带之间的能量差称为能隙。
半导体的能隙通常较小,这使得它在室温下就能够被外部能量激发。
4. 本征半导体和杂质半导体:本征半导体:纯净的半导体材料,如纯硅。
杂质半导体:在半导体中引入少量杂质(掺杂)以改变其导电性质。
掺入五价元素(如磷、砷)形成n型半导体,而掺入三价元素(如硼、铝)形成p型半导体。
5. p-n 结:p-n 结:将p型半导体和n型半导体通过特定工艺连接在一起形成p-n 结。
这是许多半导体器件的基础,如二极管和晶体管。
6. 半导体器件:二极管(Diode):由p-n 结构构成,具有整流特性。
晶体管(Transistor):由多个p-n 结构组成,可以放大和控制电流。
集成电路(Integrated Circuit,IC):在半导体上制造出许多微小的电子器件,形成集成电路,实现多种功能。
7. 半导体的应用:电子学:微电子器件、逻辑电路、存储器件等。
光电子学:光电二极管、激光二极管等。
太阳能电池:利用半导体材料的光伏效应。
这些是半导体的一些基本知识,半导体技术的不断发展推动了现代电子、通信和计算机等领域的快速进步。
半导体器件的基础知识
向电压—V(BR)CBO。 当集电极开路时,发射极与基极之间所能承受的最高反
向电压—V(BR)EBO。
精选课件
28
1.2 半导体三极管
③ 集电极最大允许耗散功率 PCM 在三极管因温度升高而引起的参数变化不超过允许值时, 集电极所消耗的最大功率称集电极最大允许耗散功率。
三极管应工作在三极 管最大损耗曲线图中的安 全工作区。三极管最大损 耗曲线如图所示。
热击穿:若反向电流增大并超过允许值,会使 PN 结烧 坏,称为热击穿。
结电容:PN 结存在着电容,该电容为 PN 结的结电容。
精选课件
5
1.1 半导体二极管
1.1.3 半导体二极管
1.半导体二极管的结构和符号 利用 PN 结的单向导电性,可以用来制造一种半导体器 件 —— 半导体二极管。 电路符号如图所示。
将两个 NPN 管接入判断 三极管 C 脚和 E 脚的测试电 路,如图所示,万用表显示阻
值小的管子的 值大。
4.判断三极管 ICEO 的大小 以 NPN 型为例,用万用 表测试 C、E 间的阻值,阻值 越大,表示 ICEO 越小。
精选课件
33
1.2 半导体三极管
1.2.6 片状三极管
1.片状三极管的封装 小功率三极管:额定功率在 100 mW ~ 200 mW 的小功率 三极管,一般采用 SOT-23形式封装。如图所示。
精选课件
21
1.2 半导体三极管
由图可见: (1)当 V CE ≥ 1 V 时,特性曲线基本重合。 (2)当 VBE 很小时,IB 等于零,三极管处于截止状态。
精选课件
22
1.2 半导体三极管
(3)当 VBE 大于门槛电压(硅管约 0.5 V,锗管约 0.2 V) 时,IB 逐渐增大,三极管开始导通。
半导体的基础知识
I
内电场 外电场
R
E 外电场与内电场的方向相反,内电场变弱,结果使空 间电荷区(PN结)变窄。
(2)反向截止
① 定义: P区接电源负极,N区接电源正极,则为 加反向电压,称反向偏置,简称反偏。如图所示。 ② 电路图 耗尽层 P区 N区
内电场 外电场
R
E 外电场与内电场的方向相同,内电场变弱,结果使空 间电荷区(PN结)变宽。
(2)负载电压的平均值
数学理论证明,一个周期内,半波整流电路输出电压的平 1 均值是交流电压 即峰值的
UO
2 E2
0.45E2
(6-1)
(3)负载电流的平均值
Uo E2 IL 0.45 RL RL
(6-2)
(4)整流元件的选择
流过整流二极管VD的平均电流: I D I L
T
负载
e1
e2
RL
U0
图6—2单相半波整流电路
(1)工作原理
设变压器副边感应交流电压为 E2 为交流电压的有效值 e2 2 E 2 sin t A、在交流电压的正半周(0-π ),输出电压极性a端为 正、b端为负,如图6—3(a)所示,二极管VD正偏导通, 负载RL上获得的电压为 U o e2
2、二极管的伏安特性
iD/mA 1)二极管伏安特性曲线 20 AB段:正向导通区 接 近 直 线
15
10 OC段:反向截止区 5
B
O
C -40 -30 -20 -10 -10
A 0.8 u / V D
0.2 0.4 0.6 OA段:死区
D
CD段:反向击穿 区
-20
-30
-40
相关题:121、245
半导体器件基础知识
半导体基础知识一、半导体本础知识(一)半导体自然界的物质按其导电能力区别,可分为导体、半导体、绝缘体三类。
半导体是导电能力介于导体和绝缘体之前的物质,其电阻率在10-3~109Ω范围内。
用于制作半导体元件的材料通常用硅或锗材料。
(二)半导体的种类在纯净的半导体中掺入特定的微量杂质元素,能使半导体的导电能力大提高。
掺入杂质后的半导体称为杂质半导体。
根据掺杂元素的性质不同,杂质半导体可分为N型和P型半导体。
(三)PN结及其特性1、PN结:PN结是构成半导体二极管、三极管、场效应管和集成电路的基础。
它是由P型半导体和N型半导体相“接触”后在它们交界处附近形成的特殊带电薄层。
2、PN结的单向导电性:当PN结外加正向电压(又叫正向偏置)时,PN结会表现为一个很小的电阻,正向电流会随外加的电压的升高而急速上升。
称这时的PN结处于导通状态。
当PN结外加反向电压(以叫反向偏置)时,PN结会表现为一个很大的电阻,只有极小的漏电流通过且不会随反向电压的增大而增大,这时的电流称为反向饱和电流。
称这时的PN结处于截止状态。
当反向电压增加到某一数值时,反向电流急剧增大,这种现象称为反向击穿。
这时的反向电压称为反向击穿电压,不同结构、工艺和材料制成的管子,其反向击穿电压值差异很大,可由1伏到几百伏,甚至高达数千伏。
3、频率特性由于结电容的存在,当频率高到某一程度时,容抗小到使PN结短路。
导致二极管失去单向导电性,不能工作,PN结面积越大,结电容也越大,越不能在高频情况下工作。
二、半导体二极管(一)半导体二极管及其基本特性1、半导体二极管:半导体二极管(简称为二极管)是由一个PN结加上电极引线并封装在玻璃或塑料管壳中而成的。
其中正极(或称为阳极)从P区引出,负极(或称为阴极)从N区引出。
以下是常见的一些二极管的电路符号:普通二极管稳压二极管发光二极管整流桥堆2、二极管的伏安特性二极管的伏安特征如下图所示:二极管的伏安特性曲线(二)二极管的分类二极管有多种分类方法1、按使用的半导体材料分类二极管按其使用的半导体材料可分为锗二极管、硅二极管、砷化镓二极管、磷化镓二极管等。
半导体基础知识
符号
1
+ W78XX +
2
_
3
_
W79XX
1 2
3
1.6.3 W78XX、W79XX系列 集成稳压器的使用方法
一、 组成输出固定电压的稳压电路
1. W78XX系列
+
1
W78XX
Co
2
+
Uo = 12V
改善负载 的暂态响 应,消除 高频噪声
注意 3 Ui 输入 Ci 电压 极性 抵消输入 长接线的 电感效, 防止自激 Ci : 0.1~1F
IR + +
R UR
IL
IZ RL
2、引起电压不 稳定的原因
UI
电源电压的波动 负载电流的变化
DZ
稳压二极管
+ UL
将微小的电压变化转 换成较大的电流变化
三端稳压器封装及电路符号
封装
塑料封装
金属封装
79LXX
W7805 1 3 2
W7905 1 3 2
78LXX
1
2
3
UI GND UO GND UI UO
空穴
负离子
电子
正离子
一、载流子的浓度差引 N型材料 起多子的扩散扩散使 交界面处形成空间电 荷区(也称耗尽层)
内电场方向
二、空间电荷区特点
基本无无载流子,仅 有不能移动的离子
三、扩散和漂移达到动态平衡
扩散电流= 漂移电流 总电流=0 利于少子的漂移
形成内电场
阻止多子扩散进行
1.2.2 PN结的单向导电性
外界条件决定半导体内部 载流子数量
三、本征半导体: 纯净的半导体
半导体基础知识
容易导电的物质叫导体,如:金属、石墨、人体、大地以及各种酸、碱、盐的水溶液等都是导体。 不容易导电的物质叫做绝缘体,如:橡胶、塑料、玻璃、云母、陶瓷、纯水、油、空气等都是绝缘体。 所谓半导体是指导电能力介于导体和绝缘体之间的物质。如:硅、锗、砷化镓、磷化铟、氮化镓、碳化硅等。半 导体大体上可以分为两类,即本征半导体和杂质半导体。本征半导体是指纯净的半导体,这里的纯净包括两个意思, 一是指半导体材料中只含有一种元素的原子;二是指原子与原子之间的排列是有一定规律的。本征半导体的特点是导 电能力极弱,且随温度变化导电能力有显著变化。杂质半导体是指人为地在本征半导体中掺入微量其他元素(称杂质) 所形成的半导体。杂质半导体有两类:N 型半导体和 P 型半导体。
多晶则是有多个单晶晶粒组成的晶体,在其晶界处的颗粒间的晶体学取向彼此不同,其周期性与规则性也在此 处受到破坏。
7.常用半导体材料的晶体生长方向有几种?
我们实际使用单晶材料都是按一定的方向生长的,因此单晶表现出各向异性。单晶生长的这种方向直接来自晶 格结构,常用半导体材料的晶体生长方向是<111>和<100>。
29.半导体芯片制造对厂房洁净度有什么要求?
空气中的一个小尘埃将影响整个芯片的完整性、成品率,并影响其电学性能和可*性,所以半导体芯片制造工艺需 在超净厂房内进行。1977 年 5 月,原四机部颁布的《电子工业洁净度等级试行规定》如下:
电子工业洁净度等级试行规定
洁净室等 洁净度 温度(℃) 相对湿度 正压值 噪声
电阻率 ρ=1/σ,单位为 Ω*cm
9.PN 结是如何形成的?它具有什么特性?
如果用工艺的方法,把一边是 N 型半导体另一边是 P 型半导体结合在一起,这时 N 型半导体中的多数载流子电子 就要向 P 型半导体一边渗透扩散。结果是 N 型区域中邻近 P 型区一边的薄层 A 中有一部分电子扩散到 P 型区域中去了, 如图 2-6 所示(图略)。薄层 A 中因失去了这一部分电子 而带有正电。同样,P 型区域中邻近 N 型区域一边的薄层 B 中有一部分空穴扩散到 N 型区域一边去了,如图 2-7 所示(图略)。结果使薄层 B 带有负电。这样就在 N 型和 P 型两 种不同类型半导体的交界面两侧形成了带电薄层 A 和 B(其中 A 带正电,B 带负电)。A、B 间便产生了一个电场, 这个带电的薄层 A 和 B,叫做 PN 结,又叫做阻挡层。
半导体的基本知识
1.1.2 杂质半导体
6.载流子的漂移运动和扩散运动 热运动:没有电场作用时,半导体中载流子的不规 则运动。——无电流 漂移运动:有电场作用时,半导体中载流子产生定 向运动。——漂移电流 扩散运动:当半导体受光照或从外界有载流子注入 时,半导体内载流子浓度分布不均匀,载流子从高 浓度区域向低浓度区域运动。——扩散电流
这就是PN结的单向导电性。
关键
在于它的耗尽层的存在,且其宽度随外加电 压而变化。
1.1.3 PN结
3. PN结电流方程
PN结两端的电压与 流过PN结电流的关系式
iD/mA D 1.0
i I S (eU U T 1)
式中 Is 反向饱和电流; UT 等效电压 T=300k(室温)时 UT= 26mv
掺杂浓度远大于本征半导体中载流子浓度,所以, 自由电子浓度远大于空穴浓度。自由电子称为多 数载流子(多子),空穴称为少数载流子(少 子)。
# 正离子不能自由运动,不能自由运动参加导电,不是载流子。
1.1.2 杂质半导体
2. P型半导体
多数载流子
P型半导体主要靠空穴导电, 掺入杂质越多,空穴浓度越高, 导电性越强。
PN结上所加的反向电压达到某一数值时,反向电 流激增的现象 当反向电压较大时,强电场直接从共价键中将电 子拉出来,形成大量载流子,使反向电流激增。
击穿是可逆。 掺杂浓度大的二极管容易发生
雪崩击穿
当反向电压增高时,少子获得能量高速运动,在空 间电荷区与原子发生碰撞,产生碰撞电离。形成连 锁反应,象雪崩一样,使反向电流激增。
–1.0
0.5
iD=–IS
1.0 D/V D
–0.5 –0.5
0
0.5
PN结伏安特性
半导体重要基础知识点
半导体重要基础知识点
半导体是指具有介于导体和绝缘体之间电导率的材料。
它在现代电子
学中起着重要的作用,广泛应用于各种电子器件和技术中。
在学习半
导体的基础知识时,以下几个关键概念是不可或缺的。
1. 能带理论:
能带理论是解释半导体电导性质的基础。
它将固体材料中电子的能量
划分为能量带,包括导带和禁带。
导带中的电子可以自由移动,导致
材料具备良好的导电性;而禁带中没有电子,因此电子无法自由移动。
2. 纯净半导体:
纯净半导体由单种原子构成,并且没有杂质。
其中,硅是最常用的半
导体材料之一。
纯净的半导体通常表现为绝缘体,因为其禁带宽度较大,电子无法跃迁到导带。
3. 杂质掺杂:
为了改变半导体的导电性质,可以通过掺杂过程引入杂质。
其中,掺
入五价元素(如磷、砷)的半导体称为n型半导体,因为杂质的额外
电子可以增加导电性能;而掺入三价元素(如硼、铝)的半导体称为p 型半导体,因为杂质的缺电子位可以增加导电性能。
4. PN 结:
PN结是由n型半导体和p型半导体相接触而形成的结构。
在PN结中,形成了一个漏斗状的能带结构,其中P区域的缺电子位和N区域的额
外电子形成了势垒。
这个势垒可以控制电子的流动,使得PN结可以用
于逻辑门、二极管等电子器件中。
半导体作为现代电子技术的基础之一,无论是手机、计算机还是各种
智能设备,都离不开半导体器件的应用。
因此,熟悉半导体的基础知识对于理解和应用现代科技至关重要。
半导体基础知识
现代电子学中,用的最多的半导 体是硅和锗,它们的最外层电子 (价电子)都是四个。
Ge
Si
电子器件所用的半导体具有晶体结构,因 此把半导体也称为晶体。
2、半导体的导电特性
1)热敏性 与温度有关。温度升高,导电能力增强。 2)光敏性 与光照强弱有关。光照强,导电能力增强 3)掺杂性 加入适当杂质,导电能力显著增强。
图 二极管的结构示意图 (a)点接触型
(2) 面接触型二极管—
PN结面积大,用 于工频大电流整流电路。
往往用于集成电路制造工 艺中。PN 结面积可大可小,用 于高频整流和开关电路中。
(b)面接触型
(3) 平面型二极管—
(c)平面型 图 二极管的结构示意图
2、分类
1)按材料分:硅管和锗管 2)按结构分:点接触和面接触 3)按用途分:检波、整流…… 4)按频率分:高频和低频
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
空间电荷区
扩散运动 (浓度差产生)
阻挡多子扩散
2)内电场的形成及其作用{ 促进少子漂移 漂移运动
P型半导体
、所以扩散和 移这一对相反- - - - - - 运动最终达到 衡,相当于两- - - - - - 区之间没有电- - - - - - 运动,空间电 区的厚度固定- - - - - - 变。
在常温下,由于热激发,使一些价电子 获得足够的能量而脱离共价键的束缚,成 为自由电子,同时共价键上留下一个空位, 称为空穴。
半导体基础知识
半导体基础知识(详细篇)2.1.1 概念根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。
1. 导体:容易导电的物体。
如:铁、铜等2. 绝缘体:几乎不导电的物体。
如:橡胶等3. 半导体:半导体是导电性能介于导体和半导体之间的物体。
在一定条件下可导电。
半导体的电阻率为10-3~109 Ω·cm。
典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。
半导体特点:1) 在外界能源的作用下,导电性能显著变化。
光敏元件、热敏元件属于此类。
2) 在纯净半导体内掺入杂质,导电性能显著增加。
二极管、三极管属于此类。
2.1.2 本征半导体1.本征半导体——化学成分纯净的半导体。
制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”。
它在物理结构上呈单晶体形态。
电子技术中用的最多的是硅和锗。
硅和锗都是4价元素,它们的外层电子都是4个。
其简化原子结构模型如下图:外层电子受原子核的束缚力最小,成为价电子。
物质的性质是由价电子决定的。
外层电子受原子核的束缚力最小,成为价电子。
物质的性质是由价电子决定的。
2.本征半导体的共价键结构本征晶体中各原子之间靠得很近,使原分属于各原子的四个价电子同时受到相邻原子的吸引,分别与周围的四个原子的价电子形成共价键。
共价键中的价电子为这些原子所共有,并为它们所束缚,在空间形成排列有序的晶体。
如下图所示:硅晶体的空间排列与共价键结构平面示意图3.共价键共价键上的两个电子是由相邻原子各用一个电子组成的,这两个电子被成为束缚电子。
束缚电子同时受两个原子的约束,如果没有足够的能量,不易脱离轨道。
因此,在绝对温度T=0°K(-273°C)时,由于共价键中的电子被束缚着,本征半导体中没有自由电子,不导电。
只有在激发下,本征半导体才能导电4.电子与空穴当导体处于热力学温度0°K时,导体中没有自由电子。
当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚,而参与导电,成为自由电子。
半导体基础知识
半导体基础知识 Prepared on 24 November 2020一.名词解释:1..什么是半导体半导体具有那些特性导电性介于导体与绝缘体之间的物质称为半导体热敏性:导电能力受温度影响大,当环境温度升高时,其导电能力增强。
可制作热敏元件。
光敏性:导电能力受光照影响大,当光照增强时候,导电能力增强。
可制作光敏元件。
掺杂性:导电能力受杂质影响极大,称为掺杂性。
2.典型的半导体是SI和Ge , 它们都是四价元素。
Si是一种化学元素,在地壳中含量仅次于氧,其核外电子排布是。
3.半导体材料中有两种载流子,电子和空穴。
电子带负电,空穴带正电,在纯净半导体中掺入不同杂质可得到P型和N型半导体,常见P型半导体的掺杂元素为硼,N型半导体的掺杂元素为磷。
P型半导体主要空穴导电, N型半导体主要靠电子导电。
4. 导体:导电性能良好,其外层电子在外电场作用下很容易产生定向移动,形成电流,常见的导体有铁,铝,铜等低价金属元素。
5.绝缘体:一般情况下不导电,其原子的最外层电子受原子核束缚很强,只有当外电场达到一定程度才可导电。
惰性气体,橡胶等。
6.半导体:一般情况下不导电,但在外界因素刺激下可以导电,例如强电场或强光照射。
其原子的最外层电子受原子核的束缚力介于导体和绝缘体之间。
Si,Ge等四价元素。
7. 本征半导体:无杂质的具有稳定结构的半导体。
8晶体:由完全相同的原子,分子或原子团在空间有规律的周期性排列构成的有一定几何形状的固体材料,构成晶体的完全相同的原子,分子,原子团称为基元。
9.晶体结构:简单立方,体心立方,面心立方,六角密积, NACL结构,CSCL结构,金刚石结构。
10.七大晶系:三斜,单斜,正交,四角,六角,三角,立方。
11.酸腐蚀和碱腐蚀的化学反应方程式:SI+4HNO3+HF=SIF4+4NO2+4H2OSI+2NaOH+H2O=Na2SiO3+2H212.自然界的物质,可分为晶体和非晶体两大类。
(完整word版)半导体基础知识
1.1 半导体基础知识概念归纳本征半导体定义:纯净的具有晶体结构的半导体称为本征半导体。
电流形成过程:自由电子在外电场的作用下产生定向移动形成电流。
绝缘体原子结构:最外层电子受原子核束缚力很强,很难成为自由电子。
绝缘体导电性:极差。
如惰性气体和橡胶.半导体原子结构:半导体材料为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚得那么紧.半导体导电性能:介于半导体与绝缘体之间.半导体的特点:★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。
★在光照和热辐射条件下,其导电性有明显的变化.晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。
共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。
自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子.空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。
电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。
空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。
本征半导体的电流:电子电流+空穴电流.自由电子和空穴所带电荷极性不同,它们运动方向相反。
载流子:运载电荷的粒子称为载流子。
导体电的特点:导体导电只有一种载流子,即自由电子导电。
本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。
本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发.复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。
动态平衡:在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,达到动态平衡。
载流子的浓度与温度的关系:温度一定,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。
半导体基础知识详细
半导体基础知识详细半导体是一种电子特性介于导体和绝缘体之间的材料。
它的电阻率介于导体和绝缘体之间,而且在外界条件下可以通过控制电场、光照、温度等因素来改变其电子特性。
半导体材料广泛应用于电子器件、太阳能电池、光电器件、传感器等领域。
1. 半导体的基本概念半导体是指在温度为绝对零度时,其电阻率介于导体和绝缘体之间的材料。
在室温下,半导体的电阻率通常在10^-3到10^8Ω·cm之间。
半导体的导电性质可以通过控制材料中的杂质浓度来改变,这种过程称为掺杂。
2. 半导体的晶体结构半导体的晶体结构分为两种:共价键晶体和离子键晶体。
共价键晶体是由原子间共享电子形成的晶体,如硅、锗等。
共价键晶体的晶格结构稳定,电子在晶格中移动时需要克服较大的势垒,因此其导电性较差。
离子键晶体是由正负离子间的静电作用形成的晶体,如氯化钠、氧化镁等。
离子键晶体的晶格结构较稳定,电子在晶格中移动时需要克服较小的势垒,因此其导电性较好。
3. 半导体的能带结构半导体的能带结构是指半导体中电子能量的分布情况。
半导体的能带结构分为价带和导带两部分。
价带是指半导体中最高的能量带,其中填满了价电子。
导带是指半导体中次高的能量带,其中没有或只有很少的电子。
当半导体中的电子受到外界激发时,可以从价带跃迁到导带,形成电子空穴对。
4. 半导体的掺杂半导体的掺杂是指向半导体中加入少量的杂质原子,以改变其电子特性。
掺杂分为n型和p 型两种。
n型半导体是指向半导体中掺入少量的五价杂质原子,如磷、砷等。
这些杂质原子会向半导体中释放一个电子,形成自由电子,从而提高半导体的导电性能。
p型半导体是指向半导体中掺入少量的三价杂质原子,如硼、铝等。
这些杂质原子会从半导体中吸收一个电子,形成空穴,从而提高半导体的导电性能。
5. 半导体器件半导体器件是利用半导体材料制造的电子器件,包括二极管、晶体管、场效应管、集成电路等。
二极管是一种由n型半导体和p型半导体组成的器件,具有单向导电性。
半导体基础知识
外延基础知识一、基本概念能级:电子是不连续的,其值主要由主量子数N决定,每一确定能量值称为一个能级。
能带:大量孤立原子结合成晶体后,周期场中电子能量状态出现新特点:孤立原子原来一个能级将分裂成大量密集的能级,构成一相应的能带。
(晶体中电子能量状态可用能带描述)导带:对未填满电子的能带,能带中电子在外场作用下,将参与导电,形成宏观电流,这样的能带称为导带。
价带:由价电子能级分裂形成的能带,称为价带。
(价带可能是满带,也可能是电子未填满的能带)直接带隙:导带底和价带顶位于K空间同一位置。
间接带隙:导带底和价带顶位于K空间不同位置。
同质结:组成PN结的P型区和N型区是同种材料。
(如红黄光中的:GaAs上生长GaAs,蓝绿光中:U(undope)-GaN上生长N(dope)- GaN)异质结:两种晶体结构相同,晶格常数相近,但带隙宽度不同的半导体材料生长在一起形成的结,称为异质结。
(如蓝绿光中:GaN上生长Al GaN)超晶格(superlatic):由两种或两种以上组分不同或导电类型各异的超薄层(相邻势阱内电子波函数发生交迭)的材料,交替生长形成的人工周期性结构,称为超晶格材料。
量子阱(QW):通常把势垒较厚,以致于相邻电子波函数不发生交迭的周期性结构,称为量子阱(它是超晶格的一种)。
二、半导体1.分类:元素半导体:Si 、Ge化合物半导体:GaAs、InP、GaN(Ⅲ-Ⅴ)、ZnSe(Ⅱ-Ⅵ)、SiC2.化合物半导体优点:a.调节材料组分易形成直接带隙材料,有高的光电转换效率。
(光电器件一般选用直接带隙材料)b.高电子迁移率。
c.可制成异质结,进行能带裁减,易形成新器件。
3.半导体杂质和缺陷杂质:替位式杂质(有效掺杂)间隙式杂质缺陷:点缺陷:如空位、间隙原子线缺陷:如位错面缺陷:(即立方密积结构里夹杂着少量六角密积)如层错4.外延技术LPE:液相外延,生长速率快,产量大,但晶体生长难以精确控制。
(普亮LED常用此生长方法)MOCVD(也称MOVPE):Metal Organic Chemical Vapour Deposition金属有机汽相淀积,精确控制晶体生长,重复性好,产量大,适合工业化大生产。
半导体主要知识点总结
半导体主要知识点总结一、半导体的基本概念1.1半导体的定义与特点:半导体是介于导体和绝缘体之间的一类材料,具有介于导体和绝缘体之间的电阻率。
与导体相比,半导体的电阻率较高;与绝缘体相比,半导体的电子传导性能较好。
由于半导体具有这种特殊的电学性质,因此具有重要的电子学应用价值。
1.2半导体的晶体结构:半导体晶体结构通常是由离子键或共价键构成的晶体结构。
半导体的晶体结构对其电学性质有重要的影响,这也是半导体电学性质的重要基础。
1.3半导体的能带结构:半导体的电学性质与其能带结构密切相关。
在半导体的能带结构中,通常存在导带和价带,以及禁带。
导带中的载流子为自由电子,价带中的载流子为空穴,而在禁带中则没有载流子存在。
二、半导体的掺杂和电子输运2.1半导体的掺杂:半导体的电学性质可以通过掺杂来调控。
通常会向半导体中引入杂质原子,以改变半导体的电学性质。
N型半导体是指将少量的五价杂质引入四价半导体中,以增加自由电子的浓度。
P型半导体是指将少量的三价杂质引入四价半导体中,以增加空穴的浓度。
2.2半导体中的载流子输运:在半导体中,载流子可以通过漂移和扩散两种方式进行输运。
漂移是指载流子在电场作用下移动的过程,而扩散是指载流子由高浓度区域向低浓度区域扩散的过程。
这两种过程决定了半导体材料的电学性质。
三、半导体器件与应用3.1二极管:二极管是一种基本的半导体器件,由N型半导体和P型半导体组成。
二极管具有整流和选择通道的功能,是现代电子设备中广泛应用的器件之一。
3.2晶体管:晶体管是一种由多个半导体材料组成的器件。
它通常由多个P型半导体、N型半导体和掺杂层组成。
晶体管是目前电子设备中最重要的器件之一,具有放大、开关和稳定电流等功能。
3.3集成电路:集成电路是将大量的电子器件集成在一块芯片上的器件。
它是现代电子设备中最重要的组成部分之一,可以实现各种复杂的功能,如计算、存储和通信等。
3.4发光二极管:发光二极管是一种将电能转化为光能的半导体器件,具有高效、省电和寿命长的特点。
半导体基本知识
4)温度升高,激发的电子空穴对数目增加,半导体的导电能力增强。 空穴的出现是半导体导电区别于导体导电的一个主要特征。
如果在本征半导体中掺入微量杂质(其他元素),形成杂质半导体,其导电 能力会显著变化。根据掺入杂质的不同,可以分为P型半导体和N型半导体。
在本征半导体硅(或锗)中掺入微量的 五价元素,如磷、砷、锑等,就形成N型半 导体。杂质原子替代了晶格中的某些硅原子, 它的四个价电子和周围四个硅原子组成共价 键,而多出的一个价电子很容易受激发脱离 原子核的束缚成为自由电子,但并不同时产 生空穴,相应的五价元素的原子因失去一个 电子而成为不能自由移动的带正电粒子—— 正离子,由于杂质原子可以提供电子,故也 称施主原子,如右图所示。
在本征半导体硅(或锗)中掺入微量的 三价元素,如硼、铝、铟等,就形成P型半导 体。杂质原子替代了晶格中的某些硅原子, 它的三个价电子和周围四个硅原子组成共价 键,而第四个共价键因缺少一个价电子出现 空位,由于空位的存在,使邻近共价键内的 电子只需很小的激发能便能填补这个空位, 相应的三价元ቤተ መጻሕፍቲ ባይዱ的原子因得到一个电子而成 为不能自由移动的带负电粒子——负离子, 由于杂质原子得到电子,故也称为受主原子, 如右图所示。
这种杂质半导体的多子是空穴,因空穴 带正(positive)电,所以称为P型半导体。P 型半导体中空穴的浓度比电子的浓度高得多。 当在其两端加电压时,主要由空穴定向移动 形成电流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杂质半导体载流子浓度
• 有杂质电离和本征激发两个产生载流子的过程。 • 根据半导体物理理论,少量掺杂时,在产生载流子与载流子复合达到动态
平衡条件下,多数载流子与少子浓度的乘积等于同一温度时的本征载流子 浓度的平方。
杂质半导体的载流子浓度
no po ni 2
no 热平衡条件下自由电子的浓度
po 热平衡条件下空穴的浓度
硅单晶材料
2、本征半导体的结构
• 硅和锗是四价元素,在原子最外层轨道上的四个 电子称为价电子。根据化学的知识可以知道,最 外层的价电子受原子核的束缚力最小,容易脱离 原子核的束缚而成为自由电子。在半导体晶体中, 一个原子最外层的价电子分别与周围的四个原子 的价电子形成共价键。
半导体的原子结构为金刚 石结构:每个原子都处在正 四面体的中心,而四个其它 原子位于四面体的顶点。
导体--铁、铝、铜等金属元素等低价元素,其最外层电 子在外电场作用下很容易产生定向移动,形成电流。
绝缘体--惰性气体、橡胶等,其原子的最外层电子受原 子核的束缚力很强,只有在外电场强到相当程度时才可能导 电。
导 体: 电阻率ρ < 10-4 Ω·cm 绝缘体:电阻率ρ > 109 Ω·cm 半导体:电阻率ρ介于前两者之间。
半导体--硅(Si)、锗(Ge),均为四价元素,它们原 子的最外层电子受原子核的束缚力介于导体与绝缘体之间。
本征半导体是纯净的晶体结构的半导体。 无杂质 稳定的结构
砷化镓(GaAs) 属于半导体化合物。
• 半导体在物理结构上有多晶体和单晶体两种形态, 制造半导体器件必须使用单晶体,即整个一块半 导体材料是由一个晶体组成的。制造半导体器件 的半导体材料纯度要求很高,要达到 99.9999999%,常称为“九个9”。
杂质半导体的示意表示法
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
P 型半导体
N型半导体
多数载流子浓度=杂质浓度+热激发少子浓度
估算
• 在室温下,Si的本征浓度ni= 1.48×1010/cm3 Si的原子密度NSi = 5×1022/cm3,若掺入百万分之一浓度的P原子形成N型半导体, 估算一下杂质半导体中的多子和少子的浓度是多少?
在本征半导体中掺入三价杂质元素,如硼、镓、 铟等形成了P型半导体,也称为空穴型半导体。
N型半导体
在N型半导体中自由电子
是多数载流子,它主要由杂
质原子提供;空穴是少数载
流子,由热激发形成。提供
Si
自由电子的五价杂质原子因
P
失去了这个价电子而带正电
荷,成为正离子,因此五价
杂质原子也称为施主杂质。
本征硅或锗 + 少量磷 N型半导体
ni pi BT 2e 2kT
(1.1)
式中ni、pi分别表示电子和空穴的浓度(cm-3),T为热力学温 度(K),k为波尔兹曼常数(8.63×10-5eV/K),Eg为T=0K时 破坏共价键所需的能量,又称禁带宽度(eV),B是与半导体 材料有关的常数(cm-3K-3/2)。
二 杂质半导体
• 杂质半导体
多余电子
Si Si
施主杂质
P型半导体
P型半导体中空穴是多数 载流子,其数量主要由掺 杂的浓度确定;电子是少 数载流子,由热激发形成。 三价杂质也称为受主杂质。
空穴
Si
Si
B
Si
本征硅或锗 +少量硼 P型半导体
受主杂质
• 判断下面是属于何种半导体?
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
Si
2、本征半导体的结构
共价键
由于热运动,具有足够能量 的价电子挣脱共价键的束缚 而成为自由电子(本征激发,热 激发)
自由电子的游离使共价键中 留有一个空位置,称为空穴
自由电子与空穴相碰同时消失,称为复合。 动态平衡 一定温度下,自由电子与空穴对的浓度一定;温度升高, 热运动加剧,挣脱共价键的电子增多,自由电子与空穴对 的浓度加大。
Si
Si
Si
Si
Si
Si
Si
Si
Si
p
Si
Si
Si
Si
Si
Si
Si
Si
p
Si
Si
Si
Si
Si
+Leabharlann SiSiSi
B
Si
B
Si
Si
+
Si
Si Si
Si
载流子的浓度问题
• 对于本征半导体,由于存在本征激发(热激发)和复合,在动态平衡下载 流子的浓度趋于稳定值n=p=ni,也称为本征载流子浓度。
• 想一想,ni 是如何计算的?
第一章 常用半导体器件
第一章 常用半导体器件
§1.1 半导体基础知识 §1.2 半导体二极管 §1.3 晶体三极管 §1.4 场效应管
§1 半导体基础知识
一、本征半导体 二、杂质半导体 三、PN结的形成及其单向导电性 四、PN结的电容效应
一、本征半导体
1、什么是半导体?什么是本征半导体?
导电性介于导体与绝缘体之间的物质称为半导体。
在本征半导体中掺入某些微量杂质元素,可使半导 体的导电性发生显著变化。掺入的杂质主要是三价或五 价元素,掺入杂质的本征半导体称为杂质半导体。要注 意,这里的杂质半导体是在提纯的本征半导体中掺入一 定浓度的三价或五价元素而得到的,不是普通意义上的 含有多种任意杂质的半导体。
在本征半导体中掺入五价杂质元素,例如磷, 可形成N型半导体,也称电子型半导体。
本征浓度
• 载流子复合:自由电子与空穴在热运动中相遇, 使自由电子空穴对消失的现象。
• 载流子的动态平衡:在一定温度下,单位时间 内本征激发所产生地自由电子空穴对的数目与 复合而消失的自由电子空穴对的数目相等,就 达到了载流子的动态平衡状态,使本征半导体 中载流子的浓度一定。
本征载流子的浓度
3 Eg
ni 本征浓度
思考?
• 本征半导体的热激发效率是很低的,所以本 征载流子浓度远远小于本征半导体的原子浓 度。 • 若掺入很小比例的施主杂质,在室温下,可 认为每个施主原子在半导体中产生一个多数 载流子,这样,即使施主原子的浓度远小于 本征半导体的原子浓度,但仍然远大于本征 载流子的浓度。 • 这时,本征激发产生的多数载流子虽然有,
3、本征半导体中的两种载流子
运载电荷的粒子称为载流子。 外加电场时,带负电的自由电子 和带正电的空穴均参与导电,且运 动方向相反。由于载流子数目很少, 故本征半导体导电性很差。
温度升高,热运动加剧,载 流子浓度增大,导电性增强。
热力学温度0K时不导电。
两种载流子
为什么要将半导体变成导电性很差的本征半导体?