七年级数学代数式综合测试卷(word含答案)

合集下载

最新苏科版数学七年级上册 代数式综合测试卷(word含答案)

最新苏科版数学七年级上册 代数式综合测试卷(word含答案)

一、初一数学代数式解答题压轴题精选(难)1.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。

【解析】【分析】(1)方案一:由图形可得S石子路=两条石子路面积-中间重合的正方形的面积;方案二:由题意可得S石子路= S长方形-S四分之一圆-S半圆;(2)把a、b的值的代入(1)中的两种方案计算即可判断求解.2.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.(1)补全例题解题过程;(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).【答案】(1)解:101×50(2)解:原式=50×(2a+99b)=100a+4950b.【解析】【分析】(1)根据算式可得共有50个101,据此解答即可.(2)仿照(1)利用加法的交换律和结合律进行计算即可.3.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.(1)每个盒子需________个长方形,________个等边三角形;(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).现有相同规格的 19 张正方形硬纸板,其中的 x 张按方法一裁剪,剩余的按方法二裁剪.①用含 x 的代数式分别表示裁剪出的侧面个数,底面个数;②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.【答案】(1)3;2(2)解:①∵裁剪x张时用方法一,∴裁剪(19−x)张时用方法二,∴侧面的个数为:6x+4(19−x)=(2x+76)个,底面的个数为:5(19−x)=(95−5x)个;②由题意,得解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为:答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.【解析】【解答】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;故答案为3,2.【分析】(1)由图可知两个底面是等边三角形,侧面是长方形,所以需要2个等边三角形和3个长方形。

初中数学代数式求值综合测试卷(含答案)

初中数学代数式求值综合测试卷(含答案)

初中数学代数式求值综合测试卷
一、单选题(共7道,每道10分)
1.化简的结果为( )
A. B.
C.9m-2
D.-9m-2
答案:D
试题难度:三颗星知识点:整式的加减
2.若关于x的多项式的值与x无关,则m2-2m2-2(2m-4)+4m的值为( )
A.-28
B.28
C.-32
D.44
答案:A
试题难度:三颗星知识点:整式的加减;化简求值
3.已知a-b=1,则代数式2a-2b-3的值是()
A.-1
B.1
C.-5
D.5
答案:A
试题难度:三颗星知识点:整体代入
4.已知代数式的值是8,那么代数式的值为()
A.1
B.2
C.3
D.4
答案:B
试题难度:三颗星知识点:整体代入
5.当x=2时,代数式ax3+bx+1的值为6,那么当x=-2时这个式子的值为()
A.-4
B.1
C.5
D.6
答案:A
试题难度:三颗星知识点:整体代入
6.一个三位数,中间的数字为a,个位上的数字比十位上的数字大2,百位上的数字比个位上的数字小3,用代数式表示这个三位数为()
A.3a+1
B.111a-98
C.111a+199
D.111a-298
答案:B
试题难度:三颗星知识点:数位表示
7.若a表示一个两位数,b也表示一个两位数,要把b放在a的右边,那么所组成的四位数应表示为()
A.100a+b
B.100a+10b
C.100b+a
D.1000b+10a
答案:A
试题难度:三颗星知识点:数位表示。

苏科版数学七年级上册 代数式单元测试题(Word版 含解析)

苏科版数学七年级上册 代数式单元测试题(Word版 含解析)

一、初一数学代数式解答题压轴题精选(难)1.用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C 型钢板和3块D型钢板.现购买A、B型钢板共100块,并全部加工成C、D型钢板.设购买A型钢板x块(x为整数)(1)可制成C型钢板块(用含x的代数式表示);可制成D型钢板块[用含x的代数式表示).(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D型钢板全部出售,通过计算说明此时获得的总利润.(3)在(2)的条件下,若20≤x≤25,请你设计购买方案使此时获得的总利润最大,并求出最大的总利润.【答案】(1)解:设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据题意得:可制成C型钢板2x+(100﹣x)=(x+100)块,可制成D型钢板x+3(100﹣x)=(﹣2x+300)块.故答案为:x+100;﹣2x+300(2)解:设获得的总利润为w元,根据题意得:w=100(x+100)+120(﹣2x+300)=﹣140x+46000(3)解:∵k=﹣140<0,∴w值随x值的增大而减小,又∵20≤x≤25,∴当x=20时,w取最大值,最大值为43200,∴购买A型钢板20块、B型钢板80块时,可获得的总利润最大,最大的总利润为43200元.【解析】【分析】(1)设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据“ 用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板”从而用含x的代数式表示出可制成C型钢板及D型钢板的数量.(2)设获得的总利润为w元,根据总利润=100×制成C型钢板的数量+120×制成D型钢板的数量,从而得出结论.(3)利用一次函数的性质求出最大利润及购买方案即可.2.如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.(1)若AB=6千米,老王开车从A到D共需多少时间?(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)【答案】(1)解:若AB=6千米,则BC=22千米,CD=44千米,从A到D所需时间为:=2.4(小时)(2)解:从A到D所需时间不变,(答案正确不回答不扣分)设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,t===2.4(小时)【解析】【分析】(1)根据题意可以求出AB,BC,CD的长,然后根据路程除以速度等于时间,即可分别算出老王开车行三段的时间,再求出其和即可;(2)从A到D所需时间不变,设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,,然后根据路程除以速度等于时间,即可分别表示出老王开车行三段的时间,再根据异分母分式加法法则求出其和,再整体代入即可得出结论;3.已知A=2x2+3xy-2x-1,B=x2-xy-1(1)化简:4A-(2B+3A),将结果用含有x、y的式子表示(2)若式子4A-(2B+3A)的值与字母x的取值无关,求的值【答案】(1)解:∵A=2x2+3xy-2x-1,B=x2-xy-1,∴4A-(2B+3A)=A-2B=2x2+3xy-2x-1-2(x2-xy-1)=5xy-2x+1(2)解:根据(1)得4A-(2B+3A)= 5xy-2x+1;∵4A-(2B+3A)的值与字母x的取值无关,∴4A-(2B+3A)=5xy-2x+1=(5y-2)x+1,5y-2=0,则y= .则y3+ A- B= y3+ (A-2B)= y3+ ×1= + = = .【解析】【分析】(1)先将4A-(2B+3A)化简,再将A,B的值分别代入代数式,去括号合并同类项化为最简形式即可;(2)根据(1)化简的结果,由4A-(2B+3A)的值与字母x的取值无关,得出5y-2=0,求解得出y的值,再将代数式中含A,B的项,逆用乘法分配律最后整体代入即可算出代数式的值。

苏科版七年级数学上册 代数式单元测试题(Word版 含解析)

苏科版七年级数学上册 代数式单元测试题(Word版 含解析)

一、初一数学代数式解答题压轴题精选(难)1.任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。

”请你帮助小明说明理由.(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.【答案】(1)解:10y+x(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。

(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。

(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。

(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。

2.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。

人教版数学七年级上册 代数式综合测试卷(word含答案)

人教版数学七年级上册 代数式综合测试卷(word含答案)

一、初一数学代数式解答题压轴题精选(难)1.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。

【解析】【分析】(1)方案一:由图形可得S石子路=两条石子路面积-中间重合的正方形的面积;方案二:由题意可得S石子路= S长方形-S四分之一圆-S半圆;(2)把a、b的值的代入(1)中的两种方案计算即可判断求解.2.解答题:(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.(2)10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,﹣1,﹣1.5,﹣2,+1,﹣1,﹣1,﹣0.5.这10箱苹果的总质量是多少千克?(3)小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2.1,9,0.9.①这10枝钢笔的最高的售价和最低的售价各是几元?②当小亮卖完钢笔后是盈还是亏?【答案】(1)解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴a+b+x2﹣cdx=x2﹣x∵|x|=1,∴x=±1∴当x=1时,x2﹣x=0;当x=﹣1时,x2﹣x=2(2)解:2+1+0﹣1﹣1.5﹣2+1﹣1﹣1﹣0.5=﹣330×10+(﹣3)=897答:这10箱苹果的总质量是897千克.(3)解:①最高售价为6+9=15元最低售价为6﹣2.1=3.9元②6×10+0.5+0.7﹣1﹣1.5+0.8+1﹣1.5﹣2.1+9+0.8﹣50=16.3元答:小亮卖完钢笔后盈利16.3元.【解析】【分析】(1)根据相反数及倒数的性质即可得出a+b=0,cd=1,再根据绝对值的意义,由|x|=1,得x=±1,然后分别将a+b=0,cd=1,x=1与x=-1代入代数式,即可算出答案;(2)首先列出加法算式,算出10箱苹果,超过的千克数或不足的千克数,然后用10乘以标准质量再加上超过或不足的千克数即可算出答案;(3)用6元的基准价加上超过基准价的最大值即可得出这10枝钢笔的最高的售价,用6元的基准价加上超过基准价的最小值即可得出这10枝钢笔的最低的售价,用这十支钢笔的总售价减去进价和为正数则小亮赚钱,和为负数则小亮亏钱。

【精选】七年级数学代数式单元检测(基础+提高,Word版 含解析)

【精选】七年级数学代数式单元检测(基础+提高,Word版 含解析)

一、初一数学代数式解答题压轴题精选(难)1.如图,在数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB.(1)求a,c的值;(2)若数轴上有一点D满足CD=2AD,则D点表示的数为________;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t 秒.①若点A向右运动,点C向左运动,AB=BC,求t的值;②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,直接写出m的值.【答案】(1)解:∵多项式x3﹣3xy29﹣20的常数项是a,次数是c.∴a=-20,c =30(2)-70或(3)解:①如下图所示:当t=0时,AB=21,BC=29. 下面分两类情况来讨论: a.点A,C在相遇前时,点A,B之间每秒缩小1个单位长度,点B,C每秒缩小4个单位长度. 在t=0时,BC -AB=8, 如果AB=BC,那么AB-BC=0,此时t= 秒, b.点A,C在相遇时,AB=BC,点A,C之间每秒缩小5个单位长度,在t=0时,AC=50,秒, c.点A,C在相遇后,BC 大于AC,不符合条件. 综上所述,t= ②当时间为t时,点A表示得数为-20+2t,点B表示得数为1+t,点C表示得数为30+3t,2AB-m×BC=2[(1+t)-(-20+2t)]-m[(30+3t)-(1+t)],=(6-2m)t+(42-29m),当6-2m=0时,上式的值不随时间t的变化而改变,此时m=3.【解析】【解答】解:(2)分三种情况讨论,•当点D在点A的左侧,∵CD=2AD,∴AD=AC=50,点C点表示的数为-20-50=-70,‚当点D在点A,C之间时,∵CD=2AD,∴AD= AC= ,点C点表示的数为-20+ =- ,ƒ当点D在点C的右侧时,AD>CD与条件CD=2AD相矛盾,不符合题意,综上所述,D点表示的数为-70或 ;【分析】(1)根据多项式 x3﹣3xy29﹣20的常数项是a,次数是c.就可得出a、c的值。

七年级代数式综合测试卷(word含答案)

七年级代数式综合测试卷(word含答案)

一、初一数学代数式解答题压轴题精选(难)1.|a|的几何意义是数轴上表示数a的点与原点O的距离,例如:|3|=|3﹣0|,即|3﹣0|表示3、0在数轴上对应两点之间的距离.一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|,解决下面问题:(1)数轴上表示﹣1和2的两点之间的距离是________;数轴上P、Q两点的距离为6,点P表示的数是2,则点Q表示的数是________;(2)点A在数轴上表示数为x,点B、C在数轴上表示的数分别为多项式2m2n+mn﹣2的常数项和次数.________①若B、C两点分别以3个单位长度/秒和2个单位长度/秒的速度同时向右运动t秒.当OC =2OB时,求t的值;________②用含x的绝对值的式子表示点A到点B、点A到点C的距离之和为________,直接写出距离之和的最小值为________.【答案】(1)3;8或﹣4(2)解:∵多项式2m2n+mn﹣2的常数项是﹣2,次数是3,∴点B、C在数轴上表示的数分别为﹣2、3.;运动t秒,B点表示的数为﹣2+3t,C点表示的数为3+2t,∵OC=2OB,∴3+2t=2× ,∴3+2t=2(﹣2+3t),或3+2t=2(2﹣3t),解得t=,或t=,故所求t的值为或;;5.【解析】【解答】(1)解:数轴上表示﹣1和2的两点之间的距离是|2﹣(﹣1)|=3;设点Q表示的数是m,则|m﹣2|=6,解得m=8或﹣4,即点Q表示的数是8或﹣4.故答案为3,8或﹣4。

(2)解:②AB+AC=|﹣2﹣x|+|3﹣x|,其最小值为5.故答案为|﹣2﹣x|+|3﹣x|,5.【分析】(1)根据数轴上A、B两点之间的距离为|AB|=|a−b|,代入数值运用绝对值的性质即可求数轴上表示−1和2的两点之间的距离;设点Q表示的数是m,根据P、Q两点的距离为6列出方程|m−2|=6,解方程即可求解;(2)根据多项式的常数项与次数的定义求出点B、C在数轴上表示的数;①根据OC=2OB列出方程,解方程即可求解;②根据数轴上A、B两点之间的距离为|AB|=|a−b|即可表示AB+AC,然后可得距离之和的最小值.2.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.3.请观察图形,并探究和解决下列问题:(1)在第n个图形中,每一横行共有________个正方形,每一竖列共有________个正方形;(2)在铺设第n个图形时,共有________个正方形;(3)某工人需用黑白两种木板按图铺设地面,如果每块黑板成本为8元,每块白木板成本6元,铺设当n=5的图形时,共需花多少钱购买木板?【答案】(1)(n+3);(n+2)(2)(n+2)(n+3)(3)解:当n=5时,有白木板5×(5+1)=30块,黑木板7×8-30=26块,共需花费26×8+30×6=388(元).【解析】【解答】⑴第n个图形的木板的每行有(n+3)个,每列有n+2个,故答案为:(n+3)、(n+2);⑵所用木板的总块数(n+2)(n+3),故答案为:(n+2)(n+3);【分析】本题主要考查的是探索图形规律,并根据所找到的规律求值;根据所给图形找出正方形个数的规律是解决问题的关键.4.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地台,杭州厂可支援外地台.现在决定给武汉台,南昌台.每台机器的运费(单位:百元)如表.设杭州运往南昌的机器为台.南昌武汉温州厂杭州厂(1)用的代数式来表示总运费(单位:百元).(2)若总运费为元,则杭州运往南昌的机器应为多少台?(3)试问有无可能使总运费是元?若有可能,请写出相应的调运方案;若无可能,请说明理由.【答案】(1)解:设总费用为W百元,由杭州运往南昌x台,运往武汉(4-x)台,温州运往南昌(6-x)台,运往武汉(4+x)台,根据题意得:W=4(6-x)+8(4+x)+3x+5(4-x)=2x+76,∴总运费为(2x+76)百元(2)解:当W=8200元=82百元时,76+2x=82,解得x=3.答:总运费为8200元,杭州运往南昌的机器应为3台(3)解:当W=7400元=74百元时,74=2x+76,解得:x=-1,∵0≤x≤4,∴x=-1不符合题意,总运费不可能是7400元.【解析】【分析】(1)设总费用为W百元,由杭州运往南昌x台,运往武汉(4-x)台,温州运往南昌(6-x)台,运往武汉(4+x)台,杭州运往南昌x台需要的运费为:3x百元,杭州运往武汉(4-x)台需要的运费为:5(4-x)百元,温州运往南昌(6-x)台需要的运费为4(6-x)百元,温州运往武汉(4+x)台需要的运费为:8(4+x)百元,根据总运费等于各条线路的运费之和即可列出W与x之间的函数关系式;(2)把W=8200元=82百元代入(1)列的函数关系式即可算出x的值,从而得出答案;(3)把W=7400元=74百元代入(1)列的函数关系式即可算出x的值,根据x的取值范围进行检验即可得出结论。

最新七年级代数式综合测试卷(word含答案)

最新七年级代数式综合测试卷(word含答案)

一、初一数学代数式解答题压轴题精选(难)1.电话费与通话时间的关系如下表:通话时间a(分)电话费b(元)10.2+0.820.4+0.830.6+0.840.8+0.8……;(2)计算当a=100时,b的值.【答案】(1)解:依题可得:通话1分钟电话费为:0.2×1+0.8,通话2分钟电话费为:0.2×2+0.8,通话3分钟电话费为:0.2×3+0.8,通话4分钟电话费为:0.2×4+0.8,……∴通话a分钟电话费为:0.2×a+0.8,即b=0.8+0.2a.(2)解:∵a=100,∴b=0.8+0.2×100=20.8.【解析】【分析】(1)观察表格可知通话a分钟电话费为:0.2×a+0.8,即b=0.8+0.2a.(2)将a=100代入(1)中代数式,计算即可得出答案.2.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数:________ ;点P表示的数用含t的代数式表示为________ .(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN 的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.【答案】(1)解:8-14=-6;因此B点为-6;故答案为:-6;解:因为时间为t,则点P所移动距离为4t,因此点P为8-4t ;故答案为:8-4t(2)解:由题意得,Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;所以①P在Q的右侧时8-4t-(-2t-6)=2解得x=6②P在Q左侧时-2t-6-(8-4t)=2解得x=8答:动点P、Q同时出发,问点P运动6或8秒后与点Q的距离为2个单位.故答案为:6或8秒(3)解:①当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=7-2tMN=MP+NP=2t+7-2t=7②当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=2t-7MN=MP-NP=2t-(2t-7)=7因此在点P的运动过程中,线段MN的长度不变, MN=7【解析】【分析】(1)①由数轴上两点之间距离的规律易得B的值为8-14=16;②因为时间为t,则点P所移动距离为4t,因此易得P为8-4t(2)由题易得:Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;分别讨论P在Q 左侧或右侧的情况,由此列方程,易得结果为6或8秒;(3)结合(1)(2)易得当P在AB间以及P在B左边时的两种情况;当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t;当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14;利用中点性质,易得结果不变,为7.3.如图,正方形ABCD与正方形BEFG,且A,B,E在一直线上,已知AB=a,BE=b(b<a).(1)用a、b的代数式表示△ADE的面积.(2)用a、b的代数式表示△DCG的面积.(3)用a、b的代数式表示阴影部分的面积.【答案】(1)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,A,B,E在一直线上,∴AB=AD=a,∠A=90°,∠EBG=∠ABC=90°,AE=AB+BE=a+b,∴S△ADE= AD·AE=(2)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,∴AB=DC=BC=a,∠C=90°,BG=BE=b,∴CG=BC-BG=a-b,∴S △DCG= DC·CG=(3)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,∴S正方形ABCD+S正方形BEFG= .又∵S△ADE= ,S△DCG= ,S△EFG= EF·FG= ,∴S阴影= -S△ADE-S△GEF-S△CDG== .【解析】【分析】(1)根据题意可得△ADE的两直角边AD、AE,再由三角形的面积公式求出即可;(2)先求出CG=BC-BG=a-b,再根据三角形的面积公式求出即可;(3)分别求出△ADE、△EFG、△DCG的面积和两个正方形的面积,即可得出阴影部分的面积.4.阅读:将代数式x2+2x+3转化为(x+m)2+k的形式(其中m,k为常数),则x2+2x+3=x2+2x+1﹣1+3=(x+1)2+2,其中m=1,k=2.(1)仿照此法将代数式x2+6x+15化为(x+m)2+k的形式,并指出m,k的值.(2)若代数式x2﹣6x+a可化为(x﹣b)2﹣1的形式,求b﹣a的值.【答案】(1)解:∵ x2+6x+15=x2+6x+32+6=(x+3)2+6,∴m=3.k=6;(2)解:∵x2﹣6x+a=x2﹣6x+9﹣9+a=(x﹣3)2+a﹣9=(x﹣b)2﹣1,∴b=3,a﹣9=﹣1,即a=8,b=3,∴b﹣a=﹣5.【解析】【分析】(1)根据完全平方公式的结构,按照要求x2+6x+15=x2+6x+32+6=(x+3)2+6,可知m=3.k=6,从而得出答案.(2)根据完全平方公式的结构,按照要求x2-6x+a=x2-6x+9-9+a=(x-3)2+a-9=(x-b)2-1,即可知b=3,a-9=-1,然后将求得的a、b的值代入b-a,并求值即可.注意完全平方公式:(a±b)2=a2±2ab+b25.已知:a是﹣1,且a、b、c满足(c﹣6)2+|2a+b|=0,请回答问题:(1)请直接写出b、c的值:b=________,c=________(2)在数轴上,a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,①当点P在AB间运动(不包括A、B),试求出P点与A、B、C三点的距离之和.②当点P从A点出发,向右运动,请根据运动的不同情况,化简式子:|x+1|﹣|x﹣2|+2|x﹣6|(请写出化简过程)【答案】(1)2;6(2)解:①∵PA=x﹣(﹣1)=x+1,PB=2﹣x,PC=6﹣x,∴PA+PB+PC=x+1+2﹣x+6﹣x=9﹣x;|x+1|﹣|x﹣2|+2|x﹣6|②当﹣1≤x<2时,原式=x+1+x﹣2﹣2(x﹣6)=11;当2≤x<6时,原式=x+1﹣(x﹣2)﹣2(x﹣6)=﹣2x+15;当x≥6时,原式=x+1﹣(x﹣2)+2(x﹣6)=2x﹣9【解析】【解答】解:(1)∵(c﹣6)2+|2a+b|=0,∴c=6,2a+b=0,即b=﹣2a,又∵a=﹣1,∴b=2,故答案为:2,6;【分析】(1)根据非负数的性质可得;(2)①根据两点间距离公式列出算式,化简可得;②分别根据﹣1≤x<2、2≤x<6、x≥6结合绝对值性质,去绝对值符号后化简可得.6.小方家住户型呈长方形,平面图如下(单位:米),现准备铺设地面,三间卧室铺设木地板,其它区城铺设地砖.(1)求a的值.(2)铺设地面需要木地板和地砖各多少平方米(用含x的代数式表示)?(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米,装修公司有A、B两种活动方案,如表:活动方案木地板价格地砖价格总安装费A8折8.5折2000元B9折8.5折免收料费及安装费)更低?【答案】(1)解:根据题意,可得a+5=4+4,解得a=3;(2)解:铺设地面需要木地板:4×2x+a[10+6−(2x−1)−x−2x]+6×4=8x+3(17−5x)+24=75−7x;铺设地面需要地砖:16×8−(75−7x)=128−75+7x=7x+53;(3)解:∵卧室2的面积为21平方米,∴3[10+6−(2x−1)−x−2x]=21,∴3(17−5x)=21,∴x=2,∴铺设地面需要木地板:75−7x=75−7×2=61,铺设地面需要地砖:7x+53=7×2+53=67.A种活动方案所需的费用:61×300×0.8+67×100×0.85+2000=22335(元),B种活动方案所需的费用:61×300×0.9+67×100×0.85=22165(元),22335>22165,所以小方家应选择B种活动方案,使铺设地面总费用(含材料费及安装费)更低.【解析】【分析】(1)根据长方形的对边相等可得a+5=4+4,即可求出a的值;(2)根据三间卧室铺设木地板,其它区域铺设地砖,可知将三间卧室的面积的和为木地板的面积,用长方形的面积−三间卧室的面积,所得的差为地砖的面积;(3)根据卧室2的面积为21平方米求出x,再分别求出所需的费用,然后比较即可.7.如图是用长度相等的小棒按一定规律摆成的一组图案.(1)第1个图案中有6根小棒;第2个图案中有________根小棒;第3个图案中有________根小棒;(2)第n个图案中有多少根小棒?(3)第25个图案中有多少根小棒?(4)是否存在某个符合上述规律的图案,由2032根小棒摆成?如果有,指出是滴几个图案;如果没有,请说明理由.【答案】(1)11;16(2)解:由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…,因此第n个图案中有5n+n-(n-1)=5n+1根(3)解:令n=25,得出,故第25个图案中有126根小棒(4)解:令,得出n=406.2,不是整数,故不存在符合上述规律的图案,由2032根小棒摆成【解析】【解答】(1)第2个图案中有11根小棒;第3个图案中有16根小棒;【分析】(1)(2)由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…由此得出第n个图案中有5n+n-(n-1)=5n+1根小棒;(3)把数据代入(2)中的规律求得答案即可;(4)利用(2)中的规律建立方程求得答案即可.8.已知多项式,,其中,马小虎同学在计算“ ”时,误将“ ”看成了“ ”,求得的结果为.(1)求多项式;(2)求出的符合题意结果;(3)当时,求的值.【答案】(1)解:∵,,∴;(2)解:∵,,∴(3)解:当时,【解析】【分析】(1)因为,所以,将代入即可求出;(2)将(1)中求出的与代入,去括号合并同类项即可求;(3)根据(2)的结论,把代入求值即可.9.已知:b是最小的正整数,且a、b满足,请回答问题:(1)请直接写出a、b、c的值: a=________; b=________; c=________.(2)a、b、c所对应的点分别为A、B、C,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC—AB的值.(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和x(x>3)个单位长度的速度向右运动,请问:是否存在x,使BC-AB的值随着时间t的变化而不变,若存在求出x;不存在请说明理由.【答案】(1)-1;1;4(2)解:BC-AB=(4-1)-(1+1)=3-2=1.故此时BC-AB的值是1(3)解:t秒时,点A对应的数为-1-t,点B对应的数为3t+1,点C对应的数为xt+4.∴BC=(xt+4)-(3t+1)=(x-3)t+3,AB=(3t+1)-(-1-t)=4t+2,∴BC-AB=(x-3)t+3-(4t+2)=(x-7)t+1,∴BC-AB的值不随着时间t的变化而改变时,其值为7【解析】【解答】解:(1)∵b是最小的正整数,∴b=1,∵|c-4|+(a+b)2=0,∴c-4=0,a+b=0,∴a=-1,c=4【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据两点间的距离公式可求BC、AB的值,进一步得到BC-AB的值;(3)先求出BC=4t+3,AB=4t+2,从而得出BC-AB,从而求解.10.如图:在数轴上A点表示数,B点示数,C点表示数c,b是最小的正整数,且a、b满足|a+2|+ (c-7)2=0.(1)a=________,b=________,c=________;(2)若将数轴折叠,使得A点与C点重合,则点B与数________表示的点重合;(3)点A.B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=________,AC=________,BC=________.(用含t的代数式表示)(4)请问:3BC-2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)-2;1;7(2)4(3)3t+3;5t+9;2t+6(4)解:不变.3BC-2AB=3(2t+6)-2(3t+3)=12【解析】【解答】解:(1)∵|a+2|+(c-7)2=0,∴a+2=0,c-7=0,解得a=-2,c=7,∵b是最小的正整数,∴b=1;故答案为:-2,1,7.( 2 )(7+2)÷2=4.5,对称点为7-4.5=2.5,2.5+(2.5-1)=4;故答案为:4.( 3 )AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.【分析】(1)根据绝对值的非负性,偶次幂的非负性,由几个非负数的和为0,则这几个数都为0,列出方程组a+2=0,c-7=0,求解得出a,c的值,再根据最小的正整数是1,得出b的值;(2)根据(1)可知A、C两点间的距离为2+7=9,根据折叠的性质得出折迹处到A、C两点的距离是(7+2)÷2=4.5,折叠处表示的数是7-4.5=2.5,B点距离折叠处的距离是 2.5-1=1.5,根据对称的性质即可得出与点B重合的点所表示的数是2.5+1.5=4;(3)根据路程等于速度乘以时间得出:A点运动的路程为t,B点运动的路程为2t,C点运动的路程为4t,由AB=A点运动的路程加上B点运动的路程再加上一开始AB两点间的距离得出AB=t+2t+3=3t+3,由AC=A点运动的路程加上C点运动的路程再加上一开始AC两点间的距离得出AC=t+4t+9=5t+9,由BC=C点运动的路程减去B点运动的路程再加上一开始BC两点间的距离得出BC=4t-2t+6=2t+6;(4)将(3)中得出的BC,AB的长度分别代入3BC-2AB ,即可列出一个整式的加减法算式,再去括号合并同类项后发现是一个常数,于是得出 3BC-2AB 的值与字母t无关。

七年级数学(上册)第二章《代数式》综合测试卷(含答案)

七年级数学(上册)第二章《代数式》综合测试卷(含答案)

七年级数学(上册)第二章《代数式》测试卷(含答案)一、选择题(30分)1、下列数量关系中,用代数式表示,结果为单项式的是( )A. a 与b 的平方差。

B. 比a 的倒数大9的数。

C. a 与b 的和的2倍。

D. A 的3倍的相反数。

2、在式子bc a +,2m ,πbxa xy ++2,a ,5,34xyz ,a b ,mn b a +中,有( ) A. 5个多项式,3个单项式 B. 4个单项式,2个多项式C. 7个整式D. 8个整式3、在下列代数式中,次数为3的单项式是( )A. xy 2B. x 3+y 3C. x 3yD. 3xy4、下列说法正确的是( )A. 5a 2b 与-3ba 2是同类项。

B. x1与3x 是同类项。

C. xyz 43与xy 43是同类项。

D. 325.0y x -与2x 3y 2是同类项。

5、下列运算正确的是( )A. 5a +7b =12abB. 3y 2-2y 2=1C. 05.123=-ab ab D. 3x 3+5x 2=8x 5 6、若243y x 与n m y x 231-是同类项,则9m 2-5mn -17的值是( ) A. -1 B. -2 C. -3 D. -47、一个多项式减去x 2-y 2等于x 2+y 2,则这个多项式是( )A. 2y 2B. 2x 2C. -2y 2D. -2x 28、计算a+(-a)的结果是( )A. 2aB. 0C. -a 2D. -2a9、如右图,阴影部分的面积是( )A. 2xyB. 4xyC. xy 27D. xy 29 10、当x =5,y =4时,式子2y x -的值是( ) A. 3 B. 21 C. -3 D. 23- 二、填空题:(24分)11、单项式3221y x -的次数是 。

12、一个关于x 的二次三项式的二次项系数和常数项都是1,一次项系数为31-,则这个二次三项式是 。

13、若y x y x y x b a 2234-=+-,则a+b = .14、“x 与y 的差”用代数式表示为 。

初中数学专项练习题:代数式(五)(Word版,含答案)

初中数学专项练习题:代数式(五)(Word版,含答案)

初中数学专项练习题:代数式(五)姓名:__________ 班级:__________学号:__________一、单选题1.如图,一根起点为0的数轴,现有同学将它弯折,弯折后虚线上第一行的数是0,第二行的数是6,第三行的数是21,第六行的数是()A. 78B. 120C. 145D. 1712.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是()A. 183B. 157C. 133D. 913.将正偶数按下表排成5列:根据上面规律,2020应在()A. 125行,3列B. 125行,2列C. 253行,2列D. 253行,3列4.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2018次得到的结果为()A. 1B. 2C. 3D. 45.下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数为( )A.55B.42C.41D.296.如图,将一枚跳棋放在七边形ABCDEFG 的顶点A 处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k 次移动k 个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D 处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( )A. C 、EB. E 、FC. G 、C 、ED. E 、C 、F7.求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012 , 则2S=2+22+23+24+…+22013 , 因此2S-S=22013-1.仿照以上推理,计算出1+5+52+53+…+52012的值为( )A. 52012﹣1B. 52013﹣1C. 52013−14D. 52012−148.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点P 的坐标是( )A. (2018,2)B. (2019,0)C. (2019,1)D. (2019,2)9.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是第1个图案经过平移而得,那么第n 个图案中有白色六边形地面砖( )块.A. 6+4(n+1)B. 6+4nC. 4n -2D. 4n +2二、填空题10.考查下列式子,归纳规律并填空:1=(-1)2×1;1-3=(-1)3×2;1-3+5=(-1)4×3;… ……… … ……1-3+5-7+…+(-1)n+1(2n-1)=________(n≥1且为整数).11.如图,在平面直角坐标系中,直线l为正比例函数y=x的图像,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x 轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3;…;按此规律操作下去,所得到的正方形A n B n C n D n的面积是________.12.观察下列等式:1.42−12=3×5;2.52−22=3×7;3.62−32=3×94.72−42=3×11;…………则第n(n是正整数)个等式为________.13.数轴上O,A两点的距离为4,一动点P从点A出发,按以下规律跳动:第1次跳动到AO的中点A1处,第2次从A1点跳动到A1O的中点A2处,第3次从A2点跳动到A2O的中点A3处,按照这样的规律继续跳动到点A4,A5,A6,…,A n.(n≥3,n是整数)处,那么线段A n A的长度为________(n≥3,n是整数).14.观察下列等式:39×41=402−12,48×52=502−22,56×64=602−42,65×75= 702−52,83×97=902−72…请你把发现的规律用字母表示出来:m·n=________.三、计算题15.已知:11×2=11−12;12×3=12−13;112×13=112−113;解答下列问题:(1)计算:11×2+12×3+13×4+14×5;(2)计算: 11×2+12×3+13×4+⋅⋅⋅+12012×2013 .16.观察 11×2 + 12×3 =(1- 12 )+( 12 - 13 )=1- 13 = 23(1)计算: 11×2 + 12×3 + 13×4 +……+ 12013×2014(2)计算: 11×3+13×5+15×7+⋯…+199×101四、解答题17.阅读:能够成为直角三角形三条边长的三个正整数a ,b ,c ,称为勾股数,世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为: {a =12(m 2−n 2)b =mnc =12(m 2+n 2),其中m>n>0,m ,n 是互质的奇数应用:当n=1时,求有一边长为5的直角三角形的另外两条边长。

最新人教版七年级数学上册 代数式单元练习(Word版 含答案)

最新人教版七年级数学上册 代数式单元练习(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.如图,在数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB.(1)求a,c的值;(2)若数轴上有一点D满足CD=2AD,则D点表示的数为________;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t 秒.①若点A向右运动,点C向左运动,AB=BC,求t的值;②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,直接写出m的值.【答案】(1)解:∵多项式x3﹣3xy29﹣20的常数项是a,次数是c.∴a=-20,c =30(2)-70或(3)解:①如下图所示:当t=0时,AB=21,BC=29. 下面分两类情况来讨论: a.点A,C在相遇前时,点A,B之间每秒缩小1个单位长度,点B,C每秒缩小4个单位长度. 在t=0时,BC -AB=8, 如果AB=BC,那么AB-BC=0,此时t= 秒, b.点A,C在相遇时,AB=BC,点A,C之间每秒缩小5个单位长度,在t=0时,AC=50,秒, c.点A,C在相遇后,BC 大于AC,不符合条件. 综上所述,t= ②当时间为t时,点A表示得数为-20+2t,点B表示得数为1+t,点C表示得数为30+3t,2AB-m×BC=2[(1+t)-(-20+2t)]-m[(30+3t)-(1+t)],=(6-2m)t+(42-29m),当6-2m=0时,上式的值不随时间t的变化而改变,此时m=3.【解析】【解答】解:(2)分三种情况讨论,•当点D在点A的左侧,∵CD=2AD,∴AD=AC=50,点C点表示的数为-20-50=-70,‚当点D在点A,C之间时,∵CD=2AD,∴AD= AC= ,点C点表示的数为-20+ =- ,ƒ当点D在点C的右侧时,AD>CD与条件CD=2AD相矛盾,不符合题意,综上所述,D点表示的数为-70或 ;【分析】(1)根据多项式 x3﹣3xy29﹣20的常数项是a,次数是c.就可得出a、c的值。

【新教材】人教版(2024)七年级上册数学第三章 代数式 综合素质评价试卷(Word版,含答案)

【新教材】人教版(2024)七年级上册数学第三章 代数式 综合素质评价试卷(Word版,含答案)

【新教材】人教版(2024)七年级上册数学第三章代数式 综合素质评价试卷时间:90分钟 满分:120分一、选择题(每题3分,共30分)1.下列数与式子:①2x -y +1;②1a +1b ;③2x +1=3;④ 3>2;⑤ a ;⑥ 0,其中是代数式的有( ) A .2个B .3个C .4个D .6个2.如果a ÷b =c ,那么当a 一定时,b 与c ( ) A .成正比例 B .成反比例 C .不成比例 D .无法确定比例关系 3.代数式x -y 2的意义是( )A . x 与y 的一半的差B . x 的一半与y 的差C . x 与y 的差的一半D .以上答案均不对4.如果某种药降价40%后的价格是a 元,那么此药的原价是( ) A .(1+40%)a 元B .(1-40%)a 元C .a1+40%元 D .a1-40%元5.下列表示图中阴影部分面积的代数式是( )(第5题)A . ad +bcB . c (b -d )+d (a -c )C . ad +c (b -d )D . ab -cd6.[情境题 生活应用]某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( ) A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )7.[2024烟台莱州市期末]有长为l 的篱笆,利用它和房屋的一面墙围成如图所示的长方形园子,园子的宽为t ,则所围成的园子面积为( )(第7题)A .(l -2t )tB .(l -t )tC . (l2-t)tD . (l -t2)t8.[新考法 整体代入法]若代数式2x 2+3x 的值是5,则代数式4x 2+6x -9的值是( )A .10B .1C .-4D .-89.如果|5-a |+(b +3)2=0,那么代数式1a(1-2b )的值为( ) A .57B .58C .75D .8510.[新视角 规律探究题 2024 北京西城区月考]如图为手的示意图,在各个手指间标记字母A ,B ,C ,D ,请你按图中箭头所指方向(即A ⇒B ⇒C ⇒D ⇒C ⇒B ⇒A ⇒B ⇒C ⇒…)从A 开始数连续的正整数1,2,3,4,…,当字母C 第2 024次出现时,恰好数到的数是( )(第10题)A .6 072B .6 071C .6 065D .6 066二、填空题(每题4分,共24分) 11.[2024锦州凌海市期中]下列书写:①1y ;②123x 2y ;③7m 2n 3;④n 23;⑤2 024×a ×b ;⑥m+3千克,其中正确的是 (填序号). 12.写出7(a -3)的意义: .13.一台电脑原价为a 元,降价20%后,又降低m 元,现售价为 元.14.[2024佛山顺德区期中]某地海拔高度h (km)与温度T (℃)的关系可用T =20-6h 来表示,则该地某海拔高度为2 000 m 的山顶上的温度为 .15.[教材P7习题T10变式 2024泰州兴化市期中]一个两位数x ,还有一个两位数y ,若把x 放在y 前面,组成一个四位数,则这个四位数为 (用含x ,y 的代数式表示). 16.[新视角 程序计算题]按如图所示的程序流程计算,若开始输入的值为x =3,则最后输出的结果是 .三、解答题(共66分)17.(6分)表中的两个量是否成比例关系,成什么比例关系? (1)每支圆珠笔的价钱/元 3 2 1.5 1.2 购买圆珠笔的支数10152025(2)每天的运货量/吨 100 120 150 200 需要的天数60504030(3)。

人教版(2024新版)七年级上册数学第二章《代数式》学情评估测试卷(含答案)

人教版(2024新版)七年级上册数学第二章《代数式》学情评估测试卷(含答案)

人教版(2024新版)七年级上册数学第二章《代数式》学情评估测试卷(时间:120分钟满分:150分)一、选择题(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.用代数式表示“a 的2倍与b的平方的和”,正确的是 ( )A.(2a+b)²B.2(a+b)²C.2a+b²D.(a+2b)²2.下列各式中,最符合代数式书写要求的是 ( )mnA.3mB.123C.-1mnD.2÷3n3.下列对代数式3a-b的意义叙述错误的是 ( )A. a的3倍与b的差B. a的3倍减去bC. a 与b的差的3倍D.3与a 的积减去b4.一个三位数,个位数字是a,十位数字是b,百位数字是c,则这个三位数用代数式表示为 ( )A. abcB. a+10b+100cC.100a+10b+cD. a+b+c5.下列表述中,不能用代数式5a 表示的是 ( )A.5的a倍B. a的5倍C.5个a的和D.5个a 的积6.当a=-2时,式子a²−2a+1的值为 ( )A.1B.9C.-9D.-17.小亮今年n岁,小亮比小丽大2岁,小丽今年的岁数为 ( )A.(n+2)岁B.(n-2)岁岁C.2n岁D.n28.定义一种新运算:a★b=2a-3b.若a★b=10,则-2(2a-3b)-3的值为 ( )A.17B.-17C.-23D.239.下列赋予4a 实际意义的例子中错误的是 ( )A.若葡萄的价格是4元/ kg,则4a表示买a kg葡萄的金额B.若a 表示一个正方形的边长,则4a 表示这个正方形的周长C.若4和a分别表示一个两位数中的十位数字和个位数字,则4a 表示这个两位数D.某款凉鞋的进价为每双a元,销售这款凉鞋盈利100%,则销售两双的销售额为4a元10.航空公司规定,每位乘客登机时免费携带的行李质量不能超过20kg.若超过20kg,则超出的部分每千克要按照飞机票原价的1.25%购买行李票.已知某航班从长沙飞往成都的机票价格为b元,如果一位旅客携带了 40kg 的行李,那么他乘坐该航班从长沙飞往成都的总费用为 ( )A.1.35b元B.1.15b元C.1.25b元D. b元二、填空题(本题共5小题,每小题5分,共25分)11.“比x的2倍小3的数”用代数式表示是 .12.当x分别为1和-1时,代数式5x⁴−6x²−2的两个值的差是x+1的值为0,那么当x=4时,它的值为 .13.已知当x=2时,代数式nx2−5614.如图,在一个长方形广场的中央设计一个圆形音乐喷泉.若圆形音乐喷泉的半径为 r m,广场的长为a m、宽为 bm,则广场空地的面积为;m².15.如图,用相同的圆点按照一定的规律拼出图形.第1幅图4个圆点,第2幅图7个圆点,第3幅图10个圆点,第4幅图 13个圆点……按照此规律,第100幅图中圆点的个数是三、解答题(本题共8小题,共75分.解答时应写出文字说明、演算步骤或推理过程)16.(10分)设甲数为x,用含x的代数式表示乙数:(1)乙数比甲数大5;(2)乙数比甲数的4倍小3;(3)乙数比甲数大甲数的16%.17.(8分)当x=1时,代数式ax³+bx+3的值为20,当x=−1时,求该代数式的值.18.(8分)判断下面各题中的两个量是否成反比例关系,并说明理由.(1)三角形的面积一定,三角形的底与高;(2)一辆汽车匀速从甲地行驶到乙地,路程一定时,行驶时间与行驶速度.19.(8分)王大伯在庭院里整理出一块长方形菜园,为方便种植,王大伯把它分为宽度不等的四块小长方形菜地,各部分的长度如图所示.(1)用S 表示这块长方形菜园的面积,请你用两种不同的方法求这块菜园的面积;(2)根据(1)中的结果,你能得到什么结论? 这个结论验证了有理数的哪个运算律?。

苏教版七年级上数学代数式单元测试卷含答案.docx

苏教版七年级上数学代数式单元测试卷含答案.docx

七年级上数学代数式单元测试班级姓名一、选择题1.计算 -2x 2+3x 2 的结果是 () A.-5x 2B.5x 2C.-x 2D.x 22. 足球每个 m 元 , 篮球每个 n 元 , 桐桐为学校买了 4 个足球 ,7 个篮球共需要 ()A.(7m+4n) 元B.28mn 元C.(4m+7n) 元D.11mn 元3. 已知代数式 -3x m-1y 3与 y n x n+1 是同类项 , 那么 m,n 的值分别是()A. n=-3,m=-1B. n=-3,m=-3C. n=3,m=5D. n=2,m=34.下列各组代数式中,是同类项的是 ( )A . 5x 2y 与 1xyB .- 5x 2y 与 1yx2C. 5ax 2与 1yx 2D . 83 与 x 35555.下列式子合并同类项正确的是 ( )A . 3x +5y = 8xyB . 3y 2- y 2= 3C . 15ab - 15ba =0D . 7x 3- 6x 2= x 6.同时含有字母 a 、 b 、 c 且系数为1 的五次单项式有 ( )A . 1 个B . 3 个C . 6 个D . 9 个7.右图中表示阴影部分面积的代数式是()A . ab +bcB. c(b - d) + d(a - c)C . ad +c(b - d)D . ab - cd8.圆柱底面半径为 3 cm ,高为2 cm ,则它的体积为()A .97π cm 2B .18π cm 2C .3π cm 2D .18π 2 cm 29.下面选项中符合代数式书写要求的是 ()A . 2 1cb 2 aB .ay ·3C . a 2bD .a ×b + c3410. 已知 a,b 两数在数轴上的位置如图所示,则化简代数式a b a 1 b 2 的结果是( )A.1B. 2b3C. 2a3D. - 111. 在排成每行七天的月历表中取下一个3 3 方块( 如图所示). 若所有日期数之和为189,则n 的值为()A.21B.11C.15D.912. 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形 中第 11题图一共有 6 个小 圈,第②个 形中一共有9 个小 圈,第③个 形中一共有 12 个小 圈,⋯,按此 律排列, 第⑦个 形中小 圈的个数 ()A.21B.24C.27D.30二、填空13. 体育委 了 500 元 去 体育用品 , 已知一个足球 a 元 , 一个 球 b 元 , 代数式500-3a-2b 表示的意。

最新七年级上册数学 代数式综合测试卷(word含答案)

最新七年级上册数学 代数式综合测试卷(word含答案)

一、初一数学代数式解答题压轴题精选(难)1.在一个m(m≥3,m为整数)位的正整数中,若从左到右第n(n≤m,n为正整数)位上的数字与从右到左第n位上的数字之和都等于同一个常数k(k为正整数),则称这样的数为“对称等和数”.例如在正整数3186中,因为3+6=1+8=9,所以3186是“对称等和数”,其中k=9.再如在正整数53697中,因为5+7=3+9=6+6=12,所以53697是“对称等和数”,其中k=12.(1)已知在一个能被11整除的四位“对称等和数”中k=4.设这个四位“对称等和数”的千位上的数字为s(1≤s≤9,s为整数),百位上的数字为t(0≤t≤9,t为整数),是整数,求这个四位“对称等和数”;(2)已知数A,数B,数C都是三位“对称等和数”.A= (1≤a≤9,a为整数),设数B 十位上的数字为x(0≤x≤9,x为整数),数C十位上的数字为y(0≤y≤9,y为整数),若A+B+C=1800,求证:y=﹣x+15.【答案】(1)解:设这个四位数为(1≤s≤9,0≤t≤9,0≤a≤9,0≤b≤9,且s、t、a、b 为整数),由题意得:s+b=t+a=4,∴b=4﹣s,a=4﹣t,∵四位数为能被11整除,∴ =1000s+100t+10a+b,=1000s+100t+10(4﹣t)+4﹣s,=999s+90t+44,=1001s+88t+44+2t﹣2s,=11(91s+8t+4)+2(t﹣s),∵91s+8t+4是整数,∴2(t﹣s)是11的倍数,即t﹣s是11的倍数,∵1≤s≤9,∴﹣9≤﹣s≤﹣1,∵0≤t≤9,∴﹣9≤t﹣s≤8,∴t﹣s只能为0,即t=s,∵是整数,4﹣s≥0,4﹣t≥0,∴s=t=2或s=t=4,当s=t=2时,a=b=2,当s=t=4时,a=b=0,综上所述,这个四位“对称等和数”有2个,分别是:2222,4400(2)解:证法一:证明:∵数A是三位“对称等和数”,且A= (1≤a≤9,a为整数),∴2a=1+5,a=3,∴A=135,由题意设:B= ,C= ,则b+c=2x,d+e=2y,∵A+B+C=1800,∴B+C=1800﹣135=1665,∴ =1665,∴15≤b+d≤16,①当b+d=15时,x+y=16,c+e=5,∴b+d+c+e=15+5=20,即2x+2y=20,x+y=10≠16,不符合题意;②当b+d=15时,x+y=15,c+e=15,∴b+d+c+e=15+15=30,即2x+2y=30,x+y=15,符合题意;∴y=﹣x+15,③当b+d=16时,x+y=6,c+e=5,∴b+d+c+e=16+5=21,即2x+2y=21,x+y=10.5≠6,不符合题意;④当b+d=16时,x+y=5,c+e=15,∴b+d+c+e=16+15=31,即2x+2y=31,x+y=15.5≠5,不符合题意;综上所述,则y=﹣x+15.证法二:证明:∵数A是三位“对称等和数”,且A= (1≤a≤9,a为整数),∴2a=1+5,a=3,∴A=135,由题意设:B= ,C= ,∵A+B+C=1800,即135+ + =1800,+ =1665,100m+10x+2x﹣m+100n+10y+2y﹣n=1665,99(m+n)+12(x+y)=1665,33(m+n)+4(x+y)=555,x+y= =139﹣8(m+n)+ ,∵0≤x≤9,0≤y≤9,且x、y是整数,∴是整数,∵1≤m≤9,1≤n≤9,∴2≤m+n≤18,∴3≤1+m+n≤19,则1+(m+n)=4,8,12,16,∴m+n=3,7,11,15,当m+n=3时,x+y=139﹣8×3+ =114(舍),当m+n=7时,x+y=139﹣8×7+ =81(舍),当m+n=11时,x+y=139﹣8×11+ =48(舍),当m+n=15时,x+y=139﹣8×15+ =15,∴y=﹣x+15【解析】【分析】(1)设这个四位数为(1≤s≤9,0≤t≤9,0≤a≤9,0≤b≤9,且s、t、a、b为整数),根据“对称等和数”的意义可得s+b=t+a=4,变形得b=4﹣s,a=4﹣t,再由这个四位数能被11整除和这个四位数的构成可得=11(91s+8t+4)+2(t﹣s),易得t ﹣s是11的倍数,结合s、t的范围即可求解;(2)根据“对称等和数”的意义和A=可得2a=1+5,a=3,则数A可求解,由题意可设B=,C=,因为A+B+C=1800,所以将A、B、C代入上式,再根据三位数的构成=100百位上的数字+10十位上的数字+个位上的数字可得100m+10x+2x﹣m+100n+10y+2y﹣n=1665,整理可得33(m+n)+4(x+y)=555,则x+y可用含m、n的代数式表示,结合x、y的取值范围和x、y、m、n是正整数分析即可求解。

苏科版七年级上数学第三章代数式综合测试卷含答案

苏科版七年级上数学第三章代数式综合测试卷含答案

第三章 代数式 综合测试卷一、选择题1. 2019年我国启动“家电下乡”工程,国家对购买家电补贴13%.若某种品牌彩电每台售价a 元,则购买时国家需要补贴 ( ) A .a 元 B .13%a 元 C .(1-13%)a 元 D .(1+13%)a 元 2.代数式2(y -2)的正确含义 ( ) A .2乘y 减2 B .2与y 的积减去2 C .y 与2的差的2倍 D .y 的2倍减去2 3.下列代数式中,单项式共有 ( ) a ,-2ab ,3x,x +y ,x 2+y 2,-1 ,ab 2c 3A .2个B .3个C .4个D .5个4.下列各组代数式中,是同类项的是 ( )A .5x 2y 与15xy B .-5x 2y 与15yx 2 C .5ax 2与15yx 2D .83与x 35.下列式子合并同类项正确的是 ( ) A .3x +5y =8xy B .3y 2-y 2=3 C .15ab -15ba =0 D .7x 3-6x 2=x6.同时含有字母a 、b 、c 且系数为1的五次单项式有 ( ) A .1个 B .3个 C .6个 D .9个 7.右图中表示阴影部分面积的代数式是 ( ) A .ab +bcB .c(b -d)+d(a -c)C .ad +c(b -d)D .ab -cd8.圆柱底面半径为3 cm ,高为2 cm ,则它的体积为 ( ) A .97π cm 2 B .18π cm 2 C .3π cm 2 D .18π2 cm 2 9.下面选项中符合代数式书写要求的是 ( )A .213cb 2aB .ay ·3C .24a bD .a ×b +c10.下列去括号错误的共有 ( ) ①a +(b +c)=ab +c ②a -(b +c -d)=a -b -c +d③a +2(b -c)=a +2b -c ④a 2-[-(-a +b)]=a 2-a -b A .1个 B .2个C .3个D .4个1211.a 、b 互为倒数,x 、y 互为相反数,且y ≠0,则(a +b )(x +y)-ab -xy的值是 ( ) A .0 B .1 C .-1 D .不确定12.随着计算机技术的迅速发展,电脑价格不断降低.某品牌电脑按原价降低m 元后,又降价20%,现售价为n 元,那么该电脑的原价为 ( ) A .(45n +m )元 B .(54n +m )元 C .(5m +n )元 D .(5n +m )元 二、填空题13.计算:-4x -3(x +2y)+5y =_______.14.一个长方形的一边为3a +4b ,另一边为a +b ,那么这个长方形的周长为_______. 15.若-5ab n-1与13a m -1b 3是同类项,则m +2n =_______.16.a 是某数的十位数字,b 是它的个位数字,则这个数可表示为_______. 17.若A =x 2-3x -6,B =2x 2-4x +6,则3A -2B =_______ 18.单项式5.2×105a 3bc 4的次数是_______,单项式-23πa 2b 的系数是_______. 19.代数式x 2-x 与代数式A 的和为-x 2-x +1,则代数式A =_______. 20.已知21×2=21+2,32×3=32+3,43×4=43+4,…,若a b ×10=ab+10(a 、b 都是正整数),则a +b 的值是_______.21.已知m 2-mn =2,mn -n 2=5,则3m 2+2mn -5n 2=_______.22.观察单项式:2a ,-4a 2,8a 3,-16a 4,…,根据规律,第n 个式子是_______. 三、解答题23.合并同类项.(1)5(2x -7y)-3(4x -10y); (2) (5a -3b)-3(a 2-2b);(3)3(3a 2-2ab)-2(4a 2-ab) (4) 2x -[2(x +3y)-3(x -2y)]24.化简并求值.(1)4(x -1)-2(x 2+1)-(4x 2-2x),其中x =-3.12(2)(4a 2-3a)-(2a 2+a -1)+(2-a 2+4a),其中a =2.(3)5x 2-(3y 2+7xy)+(2y 2-5x 2) ,其中x =1,y =-2.25.如图1,从边长为a 的正方形纸片中剪去一个边长为b 的小正方形,再沿着线段AB剪开,把剪成的两张纸片拼成如图2的等腰梯形.(1)设图1中阴影部分面积为S 1,图2中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1 和S 2;(2)请写出上述过程所揭示的乘法公式.26.有这样一道计算题:“计算(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)的值,其中x =,y =-1”,甲同学把x =看错成x =-,但计算结果仍正确,你说是怎么一回事?27.某市出租车收费标准:3 km 以内(含3 km)起步价为8元,超过3 km 后每1 km 加收1.8元.(1)若小明坐出租车行驶了6 km ,则他应付多少元车费?(2)如果用s 表示出租车行驶的路程,m 表示出租车应收的车费,请你表示出s 与m 之121212间的数量关系(s>3).28.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n 个最小的连续偶数相加时,它们的和S 与n 之间有什么样的关系,用公式表示出来;(2)并按此规律计算:①2+4+6+…+300的值;②162+164+166+…+400的值.29.已知()()11f x x x =⨯+,则()()11111112f ==⨯+⨯()()11222123f ==⨯+⨯……已知()()()()1412315f f f f n ++++=,求n 的值。

人教版七年级上册数学 代数式综合测试卷(word含答案)

人教版七年级上册数学 代数式综合测试卷(word含答案)

一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。

某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。

(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。

(3)根据一共花费712元,列方程求解即可。

2.如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.(1)若AB=6千米,老王开车从A到D共需多少时间?(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)【答案】(1)解:若AB=6千米,则BC=22千米,CD=44千米,从A到D所需时间为:=2.4(小时)(2)解:从A到D所需时间不变,(答案正确不回答不扣分)设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,t===2.4(小时)【解析】【分析】(1)根据题意可以求出AB,BC,CD的长,然后根据路程除以速度等于时间,即可分别算出老王开车行三段的时间,再求出其和即可;(2)从A到D所需时间不变,设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,,然后根据路程除以速度等于时间,即可分别表示出老王开车行三段的时间,再根据异分母分式加法法则求出其和,再整体代入即可得出结论;3.根据数轴和绝对值的知识回答下列问题(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│表示。

最新七年级数学代数式综合测试卷(word含答案)

最新七年级数学代数式综合测试卷(word含答案)

一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.(1)一个两位正整数,a表示十位上的数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为(含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被整除,这两个两位数的差一定能被整除.(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;①直接判断123是不是“友好数”?②直接写出共有个“和平数”;③通过列方程的方法求出既是“和平数”又是“友好数”的数.【答案】(1)解:这个两位数用多项式表示为10a+b,(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),∵11(a+b)÷11=a+b(整数),∴这个两位数的和一定能被数11整除;(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b),∵9(a﹣b)÷9=a﹣b(整数),∴这两个两位数的差一定能被数9整除,故答案为:11,9(2)解:①123不是“友好数”.理由如下:∵12+21+13+31+23+32=132≠123,∴123不是“友好数”;②十位数字是9的“和平数”有198,297,396,495,594,693,792,891,一个8个;十位数字是8的“和平数”有187,286,385,584,682,781,一个6个;十位数字是7的“和平数”有176,275,374,473,572,671,一个6个;十位数字是6的“和平数”有165,264,462,561,一个4个;十位数字是5的“和平数”有154,253,352,451,一个4个;十位数字是4的“和平数”有143,341,一个2个;十位数字是3的“和平数”有132,231,一个2个;所以,“和平数”一共有8+(6+4+2)×2=32个.故答案为32;③设三位数既是“和平数”又是“友好数”,∵三位数是“和平数”,∴y=x+z.∵是“友好数”,∴10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,∴22x+22y+22z=100x+10y+z,∴12y=78x﹣21z.把y=x+z代入,得12x+12z=78x﹣21z,∴33z=66x,∴z=2x,由②可知,既是“和平数”又是“友好数”的数是396,264,132.【解析】【分析】(1)分别求出两数的和与两数的差即可求解;(2)①根据“友好数”的定义即可判断求解;②根据“和平数”的定义列举出所有的“和平数”即可求解;③设三位数既是“和平数”又是“友好数”,根据“和平数”的定义,得出y=x+z.再由“友好数”的定义,得出10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,化简即为12y=78x−21z.把y=x+z代入,整理得出z=2x,然后从②的数字中挑选出符合要求的数即可.3.如图(1)2020年9月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右相邻的三个数,设最小的数为x,用含x的式子表示这三个数的和为________;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,用含y的式子表示这三个数的和为________(2)如图2,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为96?如果存在,请求出这四个数中的最小的数字;如果不存在,请说明理由(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a1,最后一行3个数的和为a2.若|a1﹣a2|=6,请求出正方形框中位于最中心的数字m的值.【答案】(1)3x+3;3y+21(2)解:设所框出的四个数最小的一个为a,则另外三个分别是:(a+1)、(a+7)、(a+8),则a+(a+1)+(a+7)+(a+8)=96,解得,a=20,由图2知,所框出的四个数存在,故存在被框住的4个数的和为96,其中最小的数为20(3)解:根据题意得,a1=m+(m﹣1)+(m+1)+(m﹣7)+(m﹣6)+(m﹣8)=6m ﹣21,a2=(m+7)+(m+6)+(m+8)=3m+21,∵|a1﹣a2|=6,∴|(6m﹣21)﹣(3m+21)|=6,即|3m﹣42|=6,解得,m=12(因12位于最后一竖列,不可能为9数的中间一数,舍去)或m=16,∴m=16.【解析】【解答】(1)解:如果任意圈出一横行左右相邻的三个数,设最小的数为x,则三数的和为:x+(x+1)+(x+2)=x+x+1+x+2=3x+3;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,则三数和为:y+(y+7)+(y+14)=y+y+7+y+14=3y+21.故答案为:3x+3;3y+21【分析】(1)由三个数的大小关系,表示另两个数,再求和并化简即可;(2)设最小数为a,并用a的代数式表示所框出的四个数的和,再根据四个数和为96可列方程,解方程,若方程有符合条件的解,则存在,反之不存在;(3)且m表示出a1和a2,再由|a1−a2|=6列方程求解.4.A和B两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差别:A公司,年薪20000元,每年加工龄工资200元;B公司,半年薪10000元,每半年加工龄工资50元.(1)第二年的年待遇:A公司为________元,B公司为________元;(2)若要在两公司工作n年,从经济收入的角度考虑,选择哪家公司有利(不考虑利率等因素的影响)?请通过列式计算说明理由.【答案】(1)20200;20250(2)解:A公司:20000+200(n-1)=200n+19800B公司:10000+50(2n-2)+10000+50(2n-1)=200n+19850,∴从应聘者的角度考虑的话,选择B家公司有利.【解析】【解析】(1)解:A公司招聘的工作人员第二年的工资收入是:20000+200=20200元;B公司招聘的工作人员第二年的工资收入是:1000+50×2+1000+50×3=20250元;【分析】(1)根据第二年的年待遇等于年薪+工龄工资,即可算出;(2)分别表示出第n年在A,B两家公司工作的年收入,再比较大小即可。

第3章 代数式 单元练习题 2021-2022学年 苏科版七年级数学上册(word版含答案)

第3章    代数式  单元练习题 2021-2022学年 苏科版七年级数学上册(word版含答案)

第3章 代数式 单元综合练习题 2021-2022学年苏科版七年级数学上册一、选择题1、下列各式:①113x ;②2•3;③20%x ;④a -b ÷c ;⑤323m n ;⑥x -5;其中,不符合代数式书写要求的有( )A .5个B .4个C .3个D .2个2、下列说法:①23xy -的系数是2-;②1π不是单项式;③1132x y -是多项式;④225mn 次数是3次;⑤3221x x --的次数是5次;⑥23ab 与29b a 是同类项.正确的有( )A .2个B .3个C .4个D .5个3、下列判断中错误的是( )A .1-ab-a 是二次三项式B .-a 2b 2c 是单项式C .3a b 是多项式 D .235x π中,系数是354、已知2x n +1y 3与x 4y 3是同类项,则n 的值是( )A .2B .3C .4D .55、下列合并同类项正确的是( )①325a b ab += ;②33a b ab += ;③33a a -= ;④235325a a a +=;⑤330ab ab -=; ⑥23232332a b a b a b -= ;⑦235--=- A .①②③④ B .④⑤⑥ C .⑥⑦ D .⑤⑥⑦ 6、下列计算正确的是( )A .()x y z x y z --=+-B .()x y z x y z --+=--+C .()333x y z x z y +-=-+D .()()a b c d a c d b -----=-+++7、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面:2222153324222x xy y x xy y ⎛⎫⎛⎫-+---+-= ⎪⎪⎝⎭⎝⎭2552xy y -+,阴影部分即为被墨迹弄污 的部分.那么被墨汁遮住的一项应是( )A .245x y -B .2y x -C .5xD .24x8、已知实数a ,b ,c 在数箱正的位置如图所示,则代数式a a b c a b c -++-++=( )A .2-c aB .22a b -C .a -D .a9、已知m 2+2mn =384,2n 2+3mn =560,则代数式2m 2+13mn +6n 2﹣430的值是( )A .2018B .2019C .2020D .202210、如图,长为y ,宽为x 的大长方形被分割为5小块,除D 、E 外,其余3块都是正方形,若阴影E 的周长为8,下列说法中正确的是( )①x 的值为4;②若阴影D 的周长为6,则正方形A 的面积为1; ③若大长方形的面积为24,则三个正方形周长的和为24.A .①②③B .①②C .①③D .②③二、填空题11、如图,三棱柱的每条棱上放置相同数目的小球,设每条棱上的小球数为m ,用含m 的代数式表示三棱柱的棱上小球总数为 .(11) (20)12、对于式子:23521,,,,22222,,0,x y a x ym x c xx b b a +-++,其中有______个多项式. 13、已知多项式﹣πx 2y m +1+xy 2﹣4x 3﹣8是五次多项式,单项式3x 2n y 6﹣m 与该多项式的次数相同,则m = ,n = .14、多项式||223(2)1m x y m x y ++-是关于x 、y 的四次三项式,则m 的值为 . 15、()[]{}()[]{}b a b a ----+--去掉括号得________________. 16、当k = 时,多项式22(32)378x k xy y xy ---+-中不含xy 项.17、若多项式322x 8x +x 1--与多项式323x +2mx 5x+3-相减后不含二次项,则m 的值为______ . 18、当x =﹣2021时,代数式ax 7+bx 5+cx 3+3的值为7,其中a 、b 、c 为常数,当x =2021时,这个代数式的值是 .19、已知:55432(2)x ax bx cx dx ex f +=+++++,求b d +的值为 _________.20、如图,已知图①是一块边长为1,周长记为C 1的等边三角形卡纸,把图①的卡纸剪去一个边长为12的等边三角形纸板后得到图②,然后沿同一底边再剪去一个边长为14的等边三角形后得到图③,依次剪去一个边长为18、116、132…的等边三角形后,得到图④、⑤、⑥、…,记图n (n ≥3)中的卡纸的周长为C n ,则C n ﹣C n ﹣1=_____. 三、解答题21、已知多项式2123536m x y xy x +-+--是六次四项式,且253n m x y -的次数跟它相同.(1)求m 、n 的值;(2)求多项式各项的系数和.22、先化简,再求值:)31(623)21(222xy y x y x xy y x --++-,其中x =1,y =﹣2.23、设A =33-ax bx ,B =328--+ax bx ,(1)求A+B ;(2)当x =-1时,A+B=10,求代数式962b a -+的值24、根据等式和不等式的性质,可以得到:若0a b ->,则a b >;若0a b -=,则a b =;若0a b -<,则a b <.这是利用“作差法”比较两个数或两个代数式值的大小. (1)试比较代数式2542m m -+与2447m m --的值之间的大小关系;解:()()222225424475424479m m m m m m m m m -+---=-+-++=+,因为20m ≥所以290m +>所以2542m m -+_______2447m m --.(用“>”或“<”填空)(2)已知2715442A m m ⎛⎫=-- ⎪⎝⎭,()273B m m =-+,请你运用前面介绍的方法比较代数式A 与B 的大小.(3)已知()22642,321A m m B m m =++=++,比较A ,B 的大小.25、(1)生活中我们常用的是十进制计数法,即满十进一,比如:3516可表示为3×1000+5×100+1×10+6.有一个三位数,个位上的数字是a ,十位上的数字是b ,百位上的数字是c ,这个三数位可用式子表示为 .(2)中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满五进一,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是 .(3)如果按照《易经》中的“满五进一”计数,即五进制计数,有一个三位数,从右到左每个数位上的数分别为a ,b ,c ,这个三数位可用式子表示为 .26、对于任意实数a ,b ,定义一种新的运算公式:3a b a b ⊕=-,如()()616319⊕-=-⨯-=.(1)计算()124⎛⎫-⊕- ⎪⎝⎭; (2)已知()15103a b b a ⎛⎫+⊕-=- ⎪⎝⎭,求+a b 的值.27、先阅读下面例题的解答过程,再解答后面的问题.例:已知代数式264y y +的值为2,求2237y y ++的值.解:由2642y y +=得2321y y +=,所以2237178y y ++=+=.问题:(1)已知代数式223a b +的值为6,求2352a b +-的值;(2)已知代数式214521x x +-的值为2-,求2645x x -+的值.28、某商场购进一批西服,进价为每套250元,原定每套以290元的价格销售,这样每天可销售200套,如果每套比原销售价降低10元销售,则每天可多销售100套,该商场为了确定销售价格,作了如下测算,请你参加测算,并由此归纳得出结论.(每套西服的利润=每套西服的销售价-每套西服的进价). (1)按原销售价销售,每天可获利润______ 元;(2)若每套降低10元销售,每天可获利润______ 元;(3)如果每套销售价降低10元,每天就多销售100套,每套销售价降低20元,每天就多销售200套,按这种方式:若每套降低10x 元(04,x x ≤≤为正整数). ①则每套的销售价格为_______ 元(用代数式表示); ②则每天可销售_______ 套西服(用代数式表示); ③则每天共可以获利润________ 元(用代数式表示);④根据以上的测算,如果你是该商场的经理,你将如何确定商场的销售方案,使每天的获利最大?29、特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:4a x 4+3a x 3+2a x 2+1a x +0a =6x ,则:(1)取x =0时,直接可以得到0a =0;(2)取x =1时,可以得到4a +3a +2a +1a +0a =6; (3)取x =﹣1时,可以得到4a ﹣3a +2a ﹣1a +0a =﹣6.(4)把(2),(3)的结论相加,就可以得到24a +22a +20a =0,结合(1)0a =0的结论,从而得出4a +2a =0.请类比上例,解决下面的问题:已知6a (x ﹣1)6+5a (x ﹣1)5+4a (x ﹣1)4+3a (x ﹣1)3+2a (x ﹣1)2+1a (x ﹣1)+0a =4x , 求(1)0a 的值;(2)6a +5a +4a +3a +2a +1a +0a 的值; (3)6a +4a +2a 的值.30、如图,在数轴上有三个不同的点A ,B ,C ,点C 对应有理数10;原点O 为线段AB 的中点,且线段AB 的长度是BC 的3倍.(1)求点A ,B 所对应的有理数;(2)动点P 从A 出发,以每秒1个单位的速度向右移动,设运动时间为t 秒,求在点P 开始运动后第几秒时,点P 到点A 的距离是到点B 距离的2倍,并求出此时点P 所对应的有理数.第3章 代数式 单元综合练习题(解析) 2021-2022学年苏科版七年级数学上册一、选择题1、下列各式:①113x ;②2•3;③20%x ;④a -b ÷c ;⑤323m n ;⑥x -5;其中,不符合代数式书写要求的有( ) A .5个 B .4个C .3个D .2个【答案】C【分析】根据代数式的书写规则:分数不能为带分数,不能出现除号,单位名称前面的代数式不是单项式要加括号,数与字母相乘,乘号省略或者用“.”表示,对各项代数式逐一判定即可.【详解】①113x 中分数不能为带分数;②2•3中数与数相乘不能用“.”;③20%x ,书写正确;④a -b ÷c 中不能出现除号;⑤323m n 书写正确;⑥x -5书写正确;不符合代数式书写要求的有①②④共3个.故选:C.2、下列说法:①23xy -的系数是2-;②1π不是单项式;③1132x y -是多项式;④225mn 次数是3次;⑤3221x x --的次数是5次;⑥23ab 与29b a 是同类项.正确的有( ) A .2个 B .3个 C .4个 D .5个【答案】B【分析】根据单项式的定义,单项式的系数、次数的定义,多项式的次数的定义,同类项的定义逐个判断即可. 【详解】解:23xy -的系数是23-,故①错误;1π是单项式,故②错误;1132x y -是多项式,故③正确;225mn 次数是3次,故④正确; 3221x x --的次数是2次,故⑤错误;23ab 与29b a 是同类项,故⑥错误;即正确的个数是3个.故选:B3、下列判断中错误的是( )A .1-ab-a 是二次三项式B .-a 2b 2c 是单项式C .3a b 是多项式D .235x π中,系数是35【答案】D【分析】直接利用单项式及多项式的有关定义分别分析得出答案.【详解】解:A 、1ab a --是二次三项式,正确;B 、22a b c -是单项式,正确;C 、3a b 是多项式,正确;D 、在235x π中,系数是35π,故D 错误;故选:D .4、已知2x n +1y 3与x 4y 3是同类项,则n 的值是( ) A .2B .3C .4D .5【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值. 解:∵2x n +1y 3与是同类项,∴n +1=4, 解得,n =3, 故选:B .5、下列合并同类项正确的是( )①325a b ab += ;②33a b ab += ;③33a a -= ;④235325a a a +=;⑤330ab ab -=;⑥23232332a b a b a b -= ;⑦235--=- A .①②③④ B .④⑤⑥C .⑥⑦D .⑤⑥⑦【答案】D【分析】先观察是不是同类项,如果是按照合并同类项的法则合并.【解析】解:①32a b +不是同类项,不能合并,故错误;②3a b +不是同类项,不能合并,故错误;③32a a a -=,故错误;④235325a a a +=不是同类项,不能合并,故错误;⑤330ab ab -=,故正确; ⑥23232332a b a b a b -=,故正确;⑦235--=-,故正确.⑤⑥⑦正确,故选:D .6、下列计算正确的是( )A .()x y z x y z --=+-B .()x y z x y z --+=--+C .()333x y z x z y +-=-+D .()()a b c d a c d b -----=-+++【答案】D【分析】按照去括号的基本法则,仔细去括号求解即可. 【详解】∵()x y z x y z --=-+,∴选项A 错误; ∵()x y z x y z --+=-+-,∴选项B 错误; ∵()333x y z x z y +-=--,∴选项C 错误;∵()()a b c d a c d b -----=-+++,∴选项D 正确.故选D.7、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面:2222153324222x xy y x xy y ⎛⎫⎛⎫-+---+-= ⎪⎪⎝⎭⎝⎭2552xy y -+,阴影部分即为被墨迹弄污 的部分.那么被墨汁遮住的一项应是( ) A .245x y - B .2y x -C .5xD .24x【答案】D【分析】根据题意易得22222153532452222x xy y x xy y xy y ⎛⎫⎛⎫-+---+-+- ⎪ ⎪⎝⎭⎝⎭,然后进行求解即可. 【详解】解:由题意得:22222153532452222x xy y x xy y xy y ⎛⎫⎛⎫-+---+-+- ⎪ ⎪⎝⎭⎝⎭ =22222515335282x xy y x xy y xy y +--+-++-=24x ; 故选D .8、已知实数a ,b ,c 在数箱正的位置如图所示,则代数式a a b c a b c -++-++=( )A .2-c aB .22a b -C .a -D .a【答案】C【分析】首先利用数轴得出a +b <0,c -a >0,b +c <0,进而利用绝对值的性质化简求出即可. 【详解】解:由数轴可得:b <a <0<c ,∴a +b <0,c -a >0,b +c <0, ∴a a b c a b c +-+-++=()()()-+++--+a a b c a b c =-+++---a a b c a b c=a故选C.9、已知m2+2mn=384,2n2+3mn=560,则代数式2m2+13mn+6n2﹣430的值是()A.2018 B.2019 C.2020 D.2022【分析】先将题干中第一个式子乘以2,再将第二个式子乘以3,然后将得到的两个式子相加,即可得到2m2+13mn+6n2的值,则2m2+13mn+6n2﹣430的值便易得出.【答案】解:∵m2+2mn=384,∴2(m2+2mn)=2×384,即2m2+4mn=768①又∵2n2+3mn=560,∴上式乘以3得:9mn+6n2=1680②①+②得:2m2+13mn+6n2=2448,∴2m2+13mn+6n2﹣430=2018.故选:A.10、如图,长为y,宽为x的大长方形被分割为5小块,除D、E外,其余3块都是正方形,若阴影E的周长为8,下列说法中正确的是()①x的值为4;②若阴影D的周长为6,则正方形A的面积为1;③若大长方形的面积为24,则三个正方形周长的和为24.A.①②③B.①②C.①③D.②③【答案】B【分析】设正方形A的边长为a,正方形B的边长为b,正方形C的边长为c,表示出阴影E的长和宽,阴影D的长和宽,然后结合图形逐项分析即可.【详解】设正方形A的边长为a,正方形B的边长为b,正方形C的边长为c,则x=a+b,y=b+c,阴影E的长为c,宽为a+b-c,阴影D的长为a,宽为b-a,①∵阴影E的周长为8,∴2(c+a+b-c)=8,∴a+b=4,即x=4,故①正确;②∵阴影D的周长为6,∴2(a+b-a)=6,∴b=3,∵a+b=4,∴a=1,∴正方形A的面积为1,故②正确;③∵大长方形的面积为24,∴x y=24,∵x=4,∴y=6,∴b+c=6,假设三个正方形周长的和为24,则4a+4b+4c=24,∴a+b+c=6,∴a=0,不合题意,故③错误;故选B.二、填空题11、如图,三棱柱的每条棱上放置相同数目的小球,设每条棱上的小球数为m,用含m的代数式表示三棱柱的棱上小球总数为.【分析】根据三棱柱的棱的条数,顶点的个数,进而得出答案.解:三棱柱有9条棱,6个顶点,因为每条棱上有m 个小球,9条棱上就有9m 个小球,这样每个顶点处的小球多计算了2次,因此多计算2×6=12个,所以小球的总个数为9m ﹣12,故答案为:9m ﹣12.12、对于式子:23521,,,,22222,,0,x yax ym x c x x b b a +-++,其中有______个多项式.【答案】2【分析】利用多项式的定义分析得出答案.【详解】解:在23521,,,,22222,,0,x yax ym x c x x b b a +-++中,多项式为:22,3522x yx x ++-,故答案为:2.13、已知多项式﹣πx 2y m +1+xy 2﹣4x 3﹣8是五次多项式,单项式3x 2n y 6﹣m 与该多项式的次数相同,则m = ,n = .【分析】直接利用多项式的次数与项数确定方法分析得出答案.解:∵多项式﹣πx 2y m +1+xy 2﹣4x 3﹣8是五次多项式,∴2+m +1=5,解得:m =2,∵单项式3x 2n y 6﹣m 与该多项式的次数相同,∴2n +6﹣m =2n +6﹣2=5,解得:n =.故答案为:2,.14、多项式||223(2)1m x y m x y ++-是关于x 、y 的四次三项式,则m 的值为 .【思路点拨】直接利用绝对值的性质以及多项式的次数与系数确定方法分析得出答案.【答案】解:∵关于x 、y 的多项式3x |m |y 2+(m +2)x 2y ﹣1是四次三项式,∴|m |+2=4,m +2≠0,解得:m =2,故答案为:2.15、()[]{}()[]{}b a b a ----+--去掉括号得________________.【答案】2b16、当k = 时,多项式22(32)378x k xy y xy ---+-中不含xy 项.【思路点拨】先将多项式合并同类项,不含xy 项即系数为0,列出方程求得k 的值.【答案】解:x 2﹣(3k ﹣2)xy ﹣3y 2+7xy ﹣8=x 2﹣3y 2+(9﹣3k )xy ﹣8,由于不含xy 项,故9﹣3k =0,解得k =3.17、若多项式322x 8x +x 1--与多项式323x +2mx 5x+3-相减后不含二次项,则m 的值为______ .【答案】-4【分析】由题意可以得到关于m 的方程,解方程即可得到问题答案.【详解】解:由题意可得:-8-2m=0,解之可得:m=-4,故答案为-4.18、当x =﹣2021时,代数式ax 7+bx 5+cx 3+3的值为7,其中a 、b 、c 为常数,当x =2021时,这个代数式的值是 .【分析】由当x =﹣2021时,代数式ax 7+bx 5+cx 3+3的值为7,可求出关于a 、b 、c 的多项式的值,将x =2021代入代数式,再整体代入.【解答】解:∵当x =﹣2021时,代数式ax 7+bx 5+cx 3+3的值为7,∴ax 7+bx 5+cx 3+3=7,即:(﹣2021)7a +(﹣2021)5b +(﹣2021)3c =4,∴﹣20217a ﹣20215b ﹣20213c =4,∴20217a +20215b +20213c =﹣4,∴当x =2021时,ax 7+bx 5+cx 3+3=20217a +20215b +20213c +3=﹣4+3=﹣1.故答案为:﹣1.19、已知:55432(2)x ax bx cx dx ex f +=+++++,求b d +的值为 _________.【答案】90【分析】先令x =1,即可求出a +b +c +d +e +f =243①;再令x =﹣1,得到﹣a +b ﹣c +d ﹣e +f =1②,①+②可得b +d +f =122,最后令x =0,可得f =32,由此即可求得b +d 的值.【详解】解:令x =1,得:a +b +c +d +e +f =243①;令x =﹣1,得﹣a +b ﹣c +d ﹣e +f =1②,①+②得:2b +2d +2f =244, 即b +d +f =122,令x =0,得f =32,则b +d =b +d +f ﹣f =122﹣32=90,故答案为:90.20、如图,已知图①是一块边长为1,周长记为C 1的等边三角形卡纸,把图①的卡纸剪去一个边长为12的等边三角形纸板后得到图②,然后沿同一底边再剪去一个边长为14的等边三角形后得到图③,依次剪去一个边长为18、116、132…的等边三角形后,得到图④、⑤、⑥、…,记图n (n ≥3)中的卡纸的周长为C n ,则C n ﹣C n ﹣1=_____.【答案】112n - 【分析】利用等边三角形的性质(三边相等)求出等边三角形的周长C 1,C 2,C 3,C 4,根据周长相减的结果能找到规律即可求出答案.【详解】解:∵C 1=1+1+1=3,C 2=1+1+12=52,C 3=1+1+14×3=114,C 4=1+1+14×2+18×3=238,…∴C 3﹣C 2= 12,C 3﹣C 2=114﹣52=14=(12)2;C 4﹣C 3=238﹣114=18=(12)3,…则C n ﹣C n ﹣1=(12)n ﹣1=112n -. 故答案为:112n -.三、解答题21、已知多项式2123536m x y xy x +-+--是六次四项式,且253n m x y -的次数跟它相同.(1)求m 、n 的值;(2)求多项式各项的系数和.【答案】(1)3m =,2n =;(2)-13【分析】(1)根据多项式2123536m x y xy x +-+--是六次四项式,可求m ,根据253n m x y -的次数也是6可求n ;(2)把各项系数相加即可.【详解】解:(1)∵多项式2123536m x y xy x +-+--是六次四项式,∴216m ++=,解得,3m =,5-m=5-3=2,253n m x y -的次数与多项式的次数相同,226n +=,解得,2n =.(2)各项的系数之和为:51(3)(6)13-++-+-=-.22、先化简,再求值:)31(623)21(222xy y x y x xy y x --++-,其中x =1,y =﹣2.【分析】直接去括号合并同类项,再把已知数据代入得出答案.解:原式=﹣x 2y +xy +x 2y ﹣6x 2y +2xy=﹣5x 2y +3xy ,当x =1,y =﹣2时,原式=﹣5×12×(﹣2)+3×1×(﹣2)=10﹣6=4.23、设A =33-ax bx ,B =328--+ax bx ,(1)求A+B ;(2)当x =-1时,A+B=10,求代数式962b a -+的值【答案】(1)32ax 3bx 8-+;(2)8【分析】(1)根据合并同类项的性质计算,即可得到答案;(2)根据含乘方的有理数混合运算、代数式的性质计算,即可得到答案.【详解】(1)∵A =33-ax bx ,B =328--+ax bx∴333328238ax bx ax bx ax A B bx +---+=-+=;(2)∵x =-1时,A+B=10 ∴()()32131823810a b a b ---+=-++=∴322b a -=∴()96233223228b a b a -+=-+=⨯+=.24、根据等式和不等式的性质,可以得到:若0a b ->,则a b >;若0a b -=,则a b =;若0a b -<,则a b <.这是利用“作差法”比较两个数或两个代数式值的大小.(1)试比较代数式2542m m -+与2447m m --的值之间的大小关系;解:()()222225424475424479m m m m m m m m m -+---=-+-++=+, 因为20m ≥所以290m +>所以2542m m -+_______2447m m --.(用“>”或“<”填空)(2)已知2715442A m m ⎛⎫=-- ⎪⎝⎭,()273B m m =-+,请你运用前面介绍的方法比较代数式A 与B 的大小. (3)已知()22642,321A m m B m m =++=++,比较A ,B 的大小.【答案】(1)>;(2)A <B ;(3)当m >1时,A >B ;当m =1时,A =B ;当m <1时,A <B【分析】(1)根据之差大于0,即可做出判断;(2)利用作差法判断即可;(3)利用作差法计算,再根据m 值判断即可.【详解】解:(1)(5m 2-4m +2)-(4m 2-4m -7)=5m 2-4m +2-4m 2+4m +7=m 2+9,∵m 2≥0,∴m 2+9>0,∴5m 2-4m +2>4m 2-4m -7;故答案为:>;(2)∵2715442A m m ⎛⎫=-- ⎪⎝⎭,()273B m m =-+, ∴A -B =()2271547342m m m m ⎛⎫----- ⎪⎝⎭=5m 2-7m +2-7m 2+7m -3=-2m 2-1≤-1<0,则A <B ; (3)∵()22642,321A m m B m m =++=++, ∴A -B =()22642321m m m m ++-++=22642633m m m m ++---=1m -当m >1时,1m ->0,则A >B ;当m =1时,1m -=0,A =B ;当m <1时,1m -<0,A <B .25、(1)生活中我们常用的是十进制计数法,即满十进一,比如:3516可表示为3×1000+5×100+1×10+6.有一个三位数,个位上的数字是a ,十位上的数字是b ,百位上的数字是c ,这个三数位可用式子表示为 .(2)中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满五进一,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是 .(3)如果按照《易经》中的“满五进一”计数,即五进制计数,有一个三位数,从右到左每个数位上的数分别为a ,b ,c ,这个三数位可用式子表示为 .【分析】(1)结合十进制计数法,从右往左每个数字依次表示1,10,100,1000,……,(2)五进制计数法,从右往左每个数字依次表示1,5,25,125,……;(3)按照五进制计数法要求列代数式即可.解:(1)a ×1+b ×10+c ×100=100c +10b +a ;(2)4×1+3×5+1×25+2×125=294(天);(3)a ×1+b ×5+c ×25=25c +5b +a .故答案为:(1)100c +10b +a ;(2)294天;(3)25c +5b +a .26、对于任意实数a ,b ,定义一种新的运算公式:3a b a b ⊕=-,如()()616319⊕-=-⨯-=. (1)计算()124⎛⎫-⊕- ⎪⎝⎭;(2)已知()15103a b b a ⎛⎫+⊕-=- ⎪⎝⎭,求+a b 的值.【答案】(1)234;(2)-5【分析】(1)结合题意,根据有理数混合运算的性质计算,即可得到答案;(2)结合题意,通过合并同类项计算,即可得到答案.【详解】(1)()124⎛⎫-⊕- ⎪⎝⎭()1324=--⨯-164=-+=234;(2)∵()15103a b b a ⎛⎫+⊕-=- ⎪⎝⎭ ∴153103a b b a ⎛⎫+--=- ⎪⎝⎭∴2210a b +=-∴5a b +=-.27、先阅读下面例题的解答过程,再解答后面的问题.例:已知代数式264y y +的值为2,求2237y y ++的值.解:由2642y y +=得2321y y +=,所以2237178y y ++=+=.问题:(1)已知代数式223a b +的值为6,求2352a b +-的值; (2)已知代数式214521x x +-的值为2-,求2645x x -+的值.【思路点拨】(1)变形已知直接整体代入计算求值;(2)由已知得方程,把已知变形后代入计算即可求出值.【答案】解:(1)由2a 2+3b =6得a 2+b =3,所以a 2+b ﹣5=3﹣5=﹣2;(2)由14x +5﹣21x 2=﹣2得﹣7(3x 2﹣2x )=﹣7,即3x 2﹣2x =1,所以6x 2﹣4x +5=2(3x 2﹣2x )+5=2+5=7.28、某商场购进一批西服,进价为每套250元,原定每套以290元的价格销售,这样每天可销售200套,如果每套比原销售价降低10元销售,则每天可多销售100套,该商场为了确定销售价格,作了如下测算,请你参加测算,并由此归纳得出结论.(每套西服的利润=每套西服的销售价-每套西服的进价). (1)按原销售价销售,每天可获利润______ 元;(2)若每套降低10元销售,每天可获利润______ 元;(3)如果每套销售价降低10元,每天就多销售100套,每套销售价降低20元,每天就多销售200套,按这种方式:若每套降低10x 元(04,x x ≤≤为正整数).①则每套的销售价格为_______ 元(用代数式表示);②则每天可销售_______ 套西服(用代数式表示);③则每天共可以获利润________ 元(用代数式表示);④根据以上的测算,如果你是该商场的经理,你将如何确定商场的销售方案,使每天的获利最大?【答案】(1)8000;(2)9000;(3)①(290-10x);②(200+100x);③(40-10x )(200+100x );④每套比原销售价降低10元销售,可使每天的获利最大.【分析】(1)根据题目中数据可以求得按原销售价销售,每天可获得的利润;(2)根据题目中数据可以求得每套降低10元销售,每天可获得的利润;(3)①根据题意可以用代数式表示出每套的销售价格;②根据题意可以用代数式表示出每天的销售量;③根据题意可以用代数式表示出每天获得的利润; ④将x 的取值代入计算,再比较,从而可得结论.【详解】解:(1)按原销售价销售,每天可获利润为:(290-250)×200=8000(元),故答案为:8000; (2)若每套降低10元销售,每天可获利润为:(290-10-250)(200+100)=9000(元),故答案为:9000; (3)①由题意可得,每套的销售价格为:(290-10x )元,故答案为:(290-10x );②每天可销售:(200+100x )套,故答案为:(200+100x );③每天共可以获利润为:(290-10x -250)(200+100x )=(40-10x )(200+100x )元,故答案为:(40-10x )(200+100x );④由题意可知0≤x ≤4,x 为正整数,当x =0时,获利=(40-10×0)(200+100×0)=8000(元),当x =1时,获利=(40-10×1)(200+100×1)=9000(元),当x =2时,获利=(40-10×2)(200+100×2)=8000(元),当x =3时,获利=(40-10×3)(200+100×3)=5000(元),当x =4时,获利=(40-10×4)(200+100×4)=0(元),所以每套降低10元销售时获利最多,作为商场的经理应以每套280元的价格销售.29、特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:4a x 4+3a x 3+2a x 2+1a x +0a =6x ,则:(1)取x =0时,直接可以得到0a =0;(2)取x =1时,可以得到4a +3a +2a +1a +0a =6;(3)取x =﹣1时,可以得到4a ﹣3a +2a ﹣1a +0a =﹣6.(4)把(2),(3)的结论相加,就可以得到24a +22a +20a =0,结合(1)0a =0的结论,从而得出4a +2a =0.请类比上例,解决下面的问题:已知6a (x ﹣1)6+5a (x ﹣1)5+4a (x ﹣1)4+3a (x ﹣1)3+2a (x ﹣1)2+1a (x ﹣1)+0a =4x , 求(1)0a 的值;(2)6a +5a +4a +3a +2a +1a +0a 的值;(3)6a +4a +2a 的值.【分析】(1)观察等式可发现只要令x =1即可求出a(2)观察等式可发现只要令x =2即可求出a 6+a 5+a 4+a 3+a 2+a 1+a 0的值.(3)令x =0即可求出等式①,令x =2即可求出等式②,两个式子相加即可求出来.【解答】解:(1)当x =1时,a 0=4×1=4;(2)当x =2时,可得a 6+a 5+a 4+a 3+a 2+a 1+a 0=4×2=8;(3)当x =0时,可得a 6﹣a 5+a 4﹣a 3+a 2﹣a 1+a 0=0①,由(2)得得a 6+a 5+a 4+a 3+a 2+a 1+a 0=4×2=8②;①+②得:2a 6+2a 4+2a 2+2a 0=8,∴2(a 6+a 4+a 2)=8﹣2×4=0,∴a 6+a 4+a 2=0.30、如图,在数轴上有三个不同的点A ,B ,C ,点C 对应有理数10;原点O 为线段AB 的中点,且线段AB 的长度是BC 的3倍.(1)求点A ,B 所对应的有理数;(2)动点P从A出发,以每秒1个单位的速度向右移动,设运动时间为t秒,求在点P开始运动后第几秒时,点P到点A的距离是到点B距离的2倍,并求出此时点P所对应的有理数.【分析】(1)设点B所对应的有理数为x,列出方程,即可得出A和B所对应的有理数.(2)分两种情况讨论:①点P在AB之间,②点P在AB的延长线上,即可得出答案.解:(1)设点B所对应的有理数为x,因为原点0为线段AB的中点,所以点A所对应的有理数为﹣x则AB=2x,BC=10﹣x,由题意得,2x=3(10﹣x),解得,x=6,则﹣x=﹣6,所以点A,B所对应的有理数分别为﹣6,6.(2)由题意可知,PA=2PB有两种情况:①点P在AB之间,∵AB=12,AP=t,∴t=2(12﹣t),解得:t=8,此时点P所对应的有理数为:﹣6+8=2,②点P在AB的延长线上,∵AB=12,AP=t,∴t=2(t﹣12),解得:t=24,此时点P所对应的有理数为:﹣6+24=18.∴此时点P所对应的有理数是2或18.23。

人教版七年级数学上册 代数式综合测试卷(word含答案)

人教版七年级数学上册 代数式综合测试卷(word含答案)

一、初一数学代数式解答题压轴题精选(难)1.从2开始,连续的偶数相加时,它们的和的情况如下表:S和n之间有什么关系?用公式表示出来,并计算以下两题:(1)2a+4a+6a+…+100a;(2)126a+128a+130a+…+300a.【答案】(1)解:依题可得:S=n(n+1).2a+4a+6a+…+100a,=a×(2+4+6+…+100),=a×50×51,=2550a.(2)解:∵2a+4a+6a+…+126a+128a+130a+…+300a,=a×(2+4+6+…+300),=a×150×151,=22650a.又∵2a+4a+6a+…+124a,=a×(2+4+6+…+124),=a×62×63,=3906a,∴126a+128a+130a+…+300a,=22650a-3906a,=18744a.【解析】【分析】(1)根据表中规律可得出当n个连续偶数相加时,它们的和S=n(n+1);由此计算即可得出答案.(2)根据(1)中公式分别计算出2a+4a+……+300a和2a+4a+……+124a的值,再用前面代数式的值减去后面代数式的值即可得出答案.,2.请观察图形,并探究和解决下列问题:(1)在第n个图形中,每一横行共有________个正方形,每一竖列共有________个正方形;(2)在铺设第n个图形时,共有________个正方形;(3)某工人需用黑白两种木板按图铺设地面,如果每块黑板成本为8元,每块白木板成本6元,铺设当n=5的图形时,共需花多少钱购买木板?【答案】(1)(n+3);(n+2)(2)(n+2)(n+3)(3)解:当n=5时,有白木板5×(5+1)=30块,黑木板7×8-30=26块,共需花费26×8+30×6=388(元).【解析】【解答】⑴第n个图形的木板的每行有(n+3)个,每列有n+2个,故答案为:(n+3)、(n+2);⑵所用木板的总块数(n+2)(n+3),故答案为:(n+2)(n+3);【分析】本题主要考查的是探索图形规律,并根据所找到的规律求值;根据所给图形找出正方形个数的规律是解决问题的关键.3.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.(1)每个盒子需________个长方形,________个等边三角形;(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).现有相同规格的 19 张正方形硬纸板,其中的 x 张按方法一裁剪,剩余的按方法二裁剪.①用含 x 的代数式分别表示裁剪出的侧面个数,底面个数;②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.【答案】(1)3;2(2)解:①∵裁剪x张时用方法一,∴裁剪(19−x)张时用方法二,∴侧面的个数为:6x+4(19−x)=(2x+76)个,底面的个数为:5(19−x)=(95−5x)个;②由题意,得解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为:答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.【解析】【解答】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;故答案为3,2.【分析】(1)由图可知两个底面是等边三角形,侧面是长方形,所以需要2个等边三角形和3个长方形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)1.从2022年4月1日起龙岩市实行新的自来水收费阶梯水价,收费标准如下表所示:(2)某用户8月份用水量为24吨,求该用户8月份应缴水费是多少元.(3)若某用户某月用水量为m吨,请用含m的式子表示该用户该月所缴水费.【答案】(1)解:2.2×10=22元,答:该用户4月份应缴水费是22元,(2)解:15×2.2+(24﹣15)×3.3=62.7元,答:该用户8月份应缴水费是 62.7元(3)解:①当m≤15时,需交水费2.2m元;②当15<m≤25时,需交水费,2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③当m>25时,需交水费2.2×15+10×3.3+(m﹣25)×4.4=(4.4m﹣44)元.【解析】【分析】(1)先根据月用水量确定出收费标准,再进行计算即可;(2) 8月份应缴水费为:不超过15吨的水费+超出的9吨的水费;(3)分①m≤15吨,②15<m≤25吨,③m>25吨三种情况,根据收费标准列式进行计算即可得解。

2.某超市在十一长假期间对顾客实行优惠,规定如下:________元:小明妈妈一次性购300元的衣服,她实际付款________元:如果他们两人合作付款,则能少付________元. (2)小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款________元(用含x的式子表示,写最简结果)(3)如果小芳奶奶两次购物货款合计900元,第一次购物的货款为a元(200<a<300),两次购物小芳奶奶实际付款多少元?(用含a的式子表示)(4)如何能更省钱,请给出一些建议.【答案】(1)190;280;10(2)(0.8x+60)(3)解:100+0.9(a-100)+100+0.9×(500-100)+0.8(900-a-500)=(0.1a+790)元.答:两次购物小芳奶奶实际付款(0.1a+790)元。

(4)解:一次性购物能更省钱。

【解析】【解答】(1)解:小明的爷爷一次性购200元的保健食品,他实际付款100+0.9×(200-100)=190元:小明妈妈一次性购300元的衣服,她实际付款100+0.9×(300-100)=280元:如果他们两人合作付款,则能少付190+280-[100+0.9×(200+300-100)]=10元.故答案为:190;280;10( 2 )解:小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款100+360+0.8(x-500)=(0.8x+60)元.故答案为:(0.8x+60)【分析】(1)根据优惠办法"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠"可球得实际付款;(2)由"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠,超过500元的,超过500元部分给予八折优惠"可列出代数式;(3)分别求出两次购物小芳奶奶实际付款的钱数,相加即可求解;(4)通过计算可知一次性购物能更省钱.3.从2开始,连续的偶数相加时,它们的和的情况如下表:S和n之间有什么关系?用公式表示出来,并计算以下两题:(1)2a+4a+6a+…+100a;(2)126a+128a+130a+…+300a.【答案】(1)解:依题可得:S=n(n+1).2a+4a+6a+…+100a,=a×(2+4+6+…+100),=a×50×51,=2550a.(2)解:∵2a+4a+6a+…+126a+128a+130a+…+300a,=a×(2+4+6+…+300),=a×150×151,=22650a.又∵2a+4a+6a+…+124a,=a×(2+4+6+…+124),=a×62×63,=3906a,∴126a+128a+130a+…+300a,=22650a-3906a,=18744a.【解析】【分析】(1)根据表中规律可得出当n个连续偶数相加时,它们的和S=n(n+1);由此计算即可得出答案.(2)根据(1)中公式分别计算出2a+4a+……+300a和2a+4a+……+124a的值,再用前面代数式的值减去后面代数式的值即可得出答案.,4.电话费与通话时间的关系如下表:;(2)计算当a=100时,b的值.【答案】(1)解:依题可得:通话1分钟电话费为:0.2×1+0.8,通话2分钟电话费为:0.2×2+0.8,通话3分钟电话费为:0.2×3+0.8,通话4分钟电话费为:0.2×4+0.8,……∴通话a分钟电话费为:0.2×a+0.8,即b=0.8+0.2a.(2)解:∵a=100,∴b=0.8+0.2×100=20.8.【解析】【分析】(1)观察表格可知通话a分钟电话费为:0.2×a+0.8,即b=0.8+0.2a.(2)将a=100代入(1)中代数式,计算即可得出答案.5.为了加强公民的节水意识,合理利用水资源,某市采取价格调控手段以达到节水的目的,下表是该市自来水收费价格的价目表.价目表每月用水量单价不超出6 m3的部分2元/m3超出6 m3但不超出10 m3的部分4元/m3超出10 m3的部分8元/m3注:水费按月结算.则应收水费________元;(2)若该户居民3月份用水a m3(其中6<a<10),则应收水费多少元?(用含a的整式表示并化简)(3)若该户居民4,5月份共用水15 m3(5月份用水量超过了4月份),设4月份用水x m3,求该户居民4,5月份共交水费多少元?(用含x的整式表示并化简)【答案】(1)8(2)解:根据题意得,62+4(a-6)=12+4a-24=4a-12(元)答:应收水费(4a-12)元.(3)解:由5月份用水量超过了4月份,可知,4月份用水量少于7.5m3,①当4月份用水量少于5m3时,则5月份用水量超过10m3,该户居民4,5月份共交水费为:2x+[62+44+8(15-x-10)]=2x+(12+16+40-8x)=-6x+68(元);②当4月份用水量不低于5m3,但不超过6m3时,则5月份用水量不少于9m3,但不超过10m3,该户居民4,5月份共交水费为:2x+[62+4(15-x-6)]=2x+(12+36-4x)=-2x+48(元);③当4月份用水量超过6m3,但少于7.5m3时,则5月份用水量超过7.5m3但少于9m3,该户居民4,5月份共交水费为:[62+4(x-6)]+[62+4(15-x-6)]=(12+4x-24)+(12+36-4x)=36.答:该户居民4,5月份共交水费为(-6x+68)元或(-2x+48)元或36元.【解析】【解答】(1)根据题意得,24=8(元)【分析】(1)根据表格中“不超出6 m3的部分”的收费标准,求出水费即可;(2)根据a的范围,求出水费即可;(3)由5月份用水量超过了4月份,可知,4月份用水量少于7.5m3,进而再细分出三种情况:①当4月份用水量少于5m3时,②当4月份用水量不低于5m3,但不超过6m3时,③当4月份用水量超过6m3,但少于7.5m3时,分别求出水费即可.6.甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠一盒乒乓球;乙店的优惠办法是:按定价的9折出售.某班需购买乒乓球拍4副,乒乓球若干盒(不少于4盒).(1)用代数式表示(所填式子需化简):当购买乒乓球的盒数为x盒时,在甲店购买需付款________元;在乙店购买需付款________元.(2)当购买乒乓球盒数为10盒时,到哪家商店购买比较合算?说出你的理由.(3)当购买乒乓球盒数为10盒时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付款几元?【答案】(1)(5x+60);(4.5x+72)(2)解:当x=10时,甲店需付费5×10+60=110元;乙店需付费4.5×10+72=117元,∴到甲商店比较合算(3)解:可在甲店购买4副乒乓球拍子,在乙店购买(10﹣4)盒乒乓球,所需费用为:4×20+(10﹣4)×5×0.9=80+27=107元【解析】【解答】解:(1)甲店需付费:4×20+(x﹣4)×5=80+5x﹣20=(5x+60)元;乙店需付费:(4×20+x×5)×0.9=(4.5x+72)元;故答案为(5x+60);(4.5x+72);【分析】(1)甲店需付费:4副乒乓球拍子费用+(x﹣4)盒乒乓球费用;乙店需付费:(4副乒乓球拍子费用+x盒乒乓球费用)×0.9,把相关数值代入求解即可;(2)把x=10代入(1)得到的式子计算,比较结果即可;(3)可在甲店购买乒乓球拍子,在乙店购买乒乓球.7.某家具厂生产一种课桌和椅子,课桌每张定价180元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子方案二:课桌和椅」都按定价的80%付款某校计划添置100张课桌和把椅子,(1)若,请计算哪种方案划算;(2)若,请用含的代数式分别把两种方案的费用表示出来(3)若,乔亚萍认为用方案一购买省钱,小兰认为用方案二购买省钱,如果两种方案可以同时使用,你能帮助学校设讣·种比乔亚萍和小兰的方案都更省钱的方案吗?若能,请你写出方案,若不能,请说明理由.【答案】(1)解:当x=100时方案一:100×180=18000;方案二:(100×180+100×80)×80%=20800;18000<20800∴方案一划算;(2)解:当x>100时方案一:100×180+80(x-100)=80x+10000;方案二:(100×180+80x)×80%=64x+14400;(3)解:当x=320时按方案一购买:80×320+10000=35600按方案二购买:64×320+14400=3488035600>34880∴方案二更省钱.【解析】【分析】(1)根据两种方案的优惠方式,分别列式计算,再比较大小即可作出判断。

相关文档
最新文档