安徽省合肥市第一中学2020届高考数学冲刺最后1卷试题 文

合集下载

安徽省合肥市第一中学2024届高三最后一卷数学试题(解析版)

安徽省合肥市第一中学2024届高三最后一卷数学试题(解析版)

合肥一中2024届高三最后一卷数学试题(考试时间:150分钟满分:120分)注意事项:1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答题时、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答题时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效.4.考试结束,务必将答题卡和答题卷一并上交.第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知向量()()2,3,1,3a b ==-,则2a b -=()A.2 B.3C.4D.5【答案】D 【解析】【分析】根据向量坐标进行线性运算,再由模长公式即可求解.【详解】()()()22,32,64,3,25a b a b -=--=--== ,故选:D.2.已知复数z 满足()1i 2i z ⋅+=-,则z =()A.13i 22+B.13i 22-C.13i22-- D.13i22-+【答案】A 【解析】【分析】根据题设求出z ,从而求出z 的值.【详解】由题知,()()()()2i 1i 2i 13i 13i 1i 1i 1i 222z ----====-++-,所以13i 22z =+.故选:A.3.已知焦点在x轴上的椭圆的离心率为3,焦距为,则该椭圆的方程为()A.2213x y += B.2219x y +=C.22197x y += D.2213628x y +=【答案】C 【解析】【分析】根据离心率和焦距可得3a c =⎧⎪⎨=⎪⎩,进而可得2b ,即可得方程.【详解】由题意可知:232c a c ⎧=⎪⎨⎪=⎩,可得3a c =⎧⎪⎨=⎪⎩,则2927b =-=,所以该椭圆的方程为22197x y +=.故选:C.4.已知等比数列{}n a 的前n 项和为n S ,且3314,2S a ==,则4a =()A.1B.23或-1 C.23-D.23-或1【答案】D 【解析】【分析】根据等比数列基本量的计算即可求解公比,进而可求解.【详解】依题意,10a ≠,因为314,S =2312a a q ==,12112(1),a a a q ∴+==+故2610q q --=,故12q =或1,3q =-当12q =时,431a a q ==;当1,3q =-4323a a q ==-;423a ∴=-或1.故选:D5.已知α为三角形的内角,且15cos 4α-=,则sin 2α=()A.14-+ B.14 C.38- D.354-【答案】B 【解析】【分析】利用降幂公式得到答案.【详解】因为α为三角形的内角,15cos 4α=,所以sin 2α==154+===.故选:B6.甲乙丙丁戊5名同学坐成一排参加高考调研,若甲不在两端且甲乙不相邻的不同排列方式的个数为()A.36种B.48种C.54种D.64种【答案】A 【解析】【分析】利用间接法,先考虑甲乙不相邻的不同排列方式数,再减去甲站在一端且甲乙不相邻的排列方式数,结合排列数运算求解.【详解】先考虑甲乙不相邻的不同排列方式数,再减去甲站在一端且甲乙不相邻的排列方式数,所以总数为3211334233A A A A A 36-=种,故选:A.7.已知四棱锥P ABCD -的各顶点在同一球面上,若2224AD AB BC CD ====,PAB 为正三角形,且面PAB ⊥面ABCD ,则该球的表面积为()A.13π3B.16πC.52π3D.20π【答案】C 【解析】【分析】作辅助线,找到球心的位置,证明O 到四棱锥所有顶点距离相等;根据勾股定理,求出球的半径,进而求出球的表面积.【详解】如图,取AD 的中点E ,取AB 的中点G ,连接EG 、PG ,在线段PG 上取一点F ,使13FG PG =,过点E 作平面ABCD 的垂线OE ,使OE FG =,连接OF ,易知四边形ABCD 是等腰梯形,ABE 、BCE 、CDE 均为等边三角形,所以2AE BE CE DE ====,因为OE ⊥平面ABCD ,所以90OEA OEB OEC OED ∠=∠=∠=∠=︒,所以OA OB OC OD ===,因为PAB 为正三角形,G 为AB 的中点,所以PG AB ⊥,又因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,PG ⊂平面PAB ,所以PG ⊥平面ABCD ,因为OE ⊥平面ABCD ,所以//PG OE ,即//FG OE又因为OE FG =,所以四边形OEGF 为平行四边形,所以//OF EG ,因为ABE 为正三角形,G 为AB 的中点,所以EG AB ⊥,又因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,EG ⊂平面ABCD ,所以EG ⊥平面PAB ,所以OF ⊥平面PAB ,又因为F 是ABP 的外心,所以FA FB FP ==,所以OA OB OP ==,所以O 即为四棱锥外接球的球心,因为1333OE FG PG ===,2AE =,所以393R OA ====所以2239524π4π)π33S R ==⋅=,故选:C.8.过()0,M p 且倾斜角为π,π2αα⎛⎫⎛⎫∈⎪ ⎪⎝⎭⎝⎭的直线l 与曲线2:2C x py =交于,A B 两点,分别过,A B 作曲线C 的两条切线12,l l ,若12,l l 交于N ,若直线MN 的倾斜角为β.则()tan αβ-的最小值为()A.2B.C. D.【答案】C 【解析】【分析】首先画出平面图形,求出tan tan 2k k αβ'⋅=⋅=-的结论,再利用两角和与差的正切公式以及前面的结论将()tan αβ-化简为()2k k ⎛⎫-+-⎪⎝⎭的形式,由基本不等式即可求得最值.【详解】如图,设()00,N x y ,1122(,),(,)A x y B x y ,由于曲线2:2x C y p=,则x y p '=,所以在A 点的切线方程为111()x y y x x p-=-,同理在B 点的切线方程为222()x y y x x p-=-,由于N 点是两切线的交点,所以1010120202()()x y y x x px y y x x p⎧-=-⎪⎪⎨⎪-=-⎪⎩,则AB l 为()000000()2xx xy y x x y y y x x p y y p p-=-⇒-=-⇒=+,且过()0,M p ,0y p ∴=-且0tan x k p α==,设2tan ,2p k k k x β''==-∴⋅=-,()tan tan tan 1tan tan αβαβαβ-∴-=+()21k k k k k k -⎛⎫==-+-≥ ⎪+⋅⎝⎭''当且仅当k =时“=”成立,故选:C.二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.9.下表是某人上班的年收入(单位:万元)与上班年份的一组数据:年份x 1234567收入y2.93.33.64.44.85.25.9则下列命题正确的有()A.年收入的均值为4.3B.年收入的方差为1.2C.年收入的上四分位数为5D.若y 与x 可用回归直线方程0.5ˆˆyx a =+来模拟,则ˆ 2.3a =【答案】AD 【解析】【分析】对于A :根据平均数定义运算求解;对于B :根据方差公式分析求解;对于C :根据百分位数的定义分析求解;对于D :根据线性回归方程必过样本中心点分析求解.【详解】对于选项A :由题意可得:年收入的均值 2.9 3.3 3.6 4.4 4.8 5.2 5.94.37y ++++++==,故A正确;对于选项B :由题意可得:年份x 1234567收入y2.93.3 3.64.4 4.85.2 5.9()2y y - 1.9610.490.010.250.812.56所以年收入的方差21.9610.490.010.250.812.567.081.277s ++++++==≠,故В错误;对于选项C :因为70.75 5.25⨯=,所以年收入的上四分位数为第6个数据,是5.2,故C 错误;对于选项D :因为年份的平均数123456747++++++==x ,即样本中心点为()4,4.3,所以0.5 4.30.523ˆ4.ay x =-=-⨯=,故D 正确;故选:AD.10.已知函数()2cos sin f x x x x ωωω=-(0)>ω,则下列命题正确的有()A.当2ω=时,5π24x =是()y f x =的一条对称轴B.若()()122f x f x -=,且12minπx x -=,则12ω=C.存在()0,1ω∈,使得()f x 的图象向左平移π6个单位得到的函数为偶函数D.若()f x 在[]0,π上恰有5个零点,则ω的范围为72,3⎡⎫⎪⎢⎣⎭【答案】BD 【解析】【分析】首先对函数表达式进行化简,A 选项,将2ω=,5π24x =代入发现此处有对称中心,没有对称轴;B 选项,由题设知,π为半个周期;C 选项,对函数进行平移变换,再判断奇偶性;D 选项,求出π26x ω+的范围,再确定区间右端点π2π6ω+的范围,从而求出ω的范围.【详解】()31cos 2311π1sin2=cos 2=sin 22222262x f x x x x x ωωωωω-⎛⎫=-+-+-⎪⎝⎭对于A ,当2ω=时,()π1sin 462f x x ⎛⎫=+- ⎪⎝⎭,所以55ππ11πsin 246622f ⎛⎫⎛⎫=+-=- ⎪ ⎪⎝⎭⎝⎭,所以5π24x =不是()y f x =的一条对称轴,故A 错误;对于B ,由题意知,2πT =,所以22π2πω=,又因为0ω>,所以12ω=,故B 正确;对于C ,()f x 向左平移π6个单位后,得到()ππ1ππ1sin 2sin 2662362g x x x ωωω⎡⎤⎛⎫⎛⎫=++-=++- ⎪ ⎢⎝⎭⎝⎭⎣⎦,假设()g x 为偶函数,则ππππ362k ω+=+,Z k ∈,解得13k ω=+,Zk ∈而(0,1)ω∈,所以假设不成立,故C 错误;对于D ,[]0,πx ∈时,πππ2,2π666x ωω⎡⎤+∈+⎢⎥⎣⎦,令()π1=sin 2062f x x ω⎛⎫+-= ⎪⎝⎭,则π1sin 262x ω⎛⎫+= ⎪⎝⎭,因为()f x 在[]0,π上恰有5个零点,所以π25π29π2π,666ω⎡⎫+∈⎪⎢⎣⎭,解得72,3ω⎡⎫∈⎪⎢⎣⎭,故D 正确.故选:BD.11.已知函数()()e ,ln xf xg x x ==-,则下列命题正确的有()A.若()g x ax ≥恒成立,则1a e≤-B.若()y f x =与1y ax =-相切,则2ea =C.存在实数a 使得()y f x ax =-和()y g x ax =+有相同的最小值D.存在实数a 使得方程()f x x a -=与()x g x a +=有相同的根且所有的根构成等差数列【答案】ACD 【解析】【分析】对于A :原题意等价于ln xa x ≤-在()0,∞+内恒成立,令()ln ,0x h x x x=->,利用导数求其最值,结合恒成立问题分析求解;对于B :对()y f x =求得,结合导数的几何意义列式分析可得()1ln 1a a -=-,代入2e a =检验即可;对于C :取1a =,利用导数求最值,进而分析判断;对于D :结合选项C 可知:()(),h x x ϕ的图象,设交点为()(),M m h m ,结合图象分析可知从左到右的三个交点的横坐标依次为ln ,,e m m m ,进而可得结果.【详解】对于选项A ,若()g x ax ≥,则ln x ax -≥,且0x >,可得ln xa x≤-,可知原题意等价于ln xa x≤-在()0,∞+内恒成立,令()ln ,0x h x x x =->,则()2ln 1x h x x ='-,令()0h x '>,解得0e x <<;令()0h x '<,解得e x >;可知()y h x =在()0,e 内单调递减,在()e,∞+内单调递增,则()()1e eh x h ≤=-,所以1a e≤-,故A 正确;对于选项B :因为()e xf x =,则()e xf x '=,设切点为()00,ex P x ,则切线斜率()0=ex k f x '=,可得切线方程为()000ee x x y x x -=-,即()000e e 1x x y x x =+-,由题意可得()000e e 11xx a x ⎧=⎪⎨-=-⎪⎩,整理得()1ln 1a a -=-,显然2e a =不满足上式,故B 错误;对于选项C :例如1a =,构建()()e xh x f x x x =-=-,则()e 1xh x '=-,令()0h x '>,解得0x >;令()0h x '<,解得0x <;可知()y h x =在(),0∞-内单调递减,在()0,∞+内单调递增,可知()y h x =的最小值为()01h =;构建()()ln ,0x g x x x x x ϕ=+=-+>,则()111x x x xϕ-=-+=',令()0x ϕ'>,解得1x >;令()0x ϕ'<,解得01x <<;可知()y x ϕ=在()0,1内单调递减,在()1,∞+内单调递增,可知()y x ϕ=的最小值为()11G =,可知()y f x ax =-和()y g x ax =+有相同的最小值1,故C 正确;对于选项D :结合选项C 可知:()(),h x x ϕ的图象大致如下:设交点为()(),M m h m ,易知01m <<,由图象可知:当直线y a =与曲线()y h x =和曲线()y x ϕ=共有三个不同的交点时,直线y a =必经过点()(),M m h m ,即()a h m =.因为()()h m m ϕ=,所以e ln m m m m -=-,即e 2ln 0m m m -+=.令()()()h x x a h m ϕ===,得e ln e x m x x x m -=-=-,解得x m =或e m x =,由01m <<得1e m m <<.所以当直线y a =与曲线()y h x =和()y x ϕ=共有三个不同的交点时,从左到右的三个交点的横坐标依次为ln ,,e m m m .因为e 2ln 0m m m -+=,即e ln 2m m m +=,所以ln ,,e m m m 成等差数列,故D 正确;故选:ACD.【点睛】关键点点睛:对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域;(2)求导数,得单调区间和极值点;(3)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.第Ⅱ卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}220A x x x =∈--≤N∣,集合(){}22210B x x a x a a =-+++=∣,若B A ⊆,则=a __________.【答案】0或1【解析】【分析】根据题意先求集合,A B ,结合包含关系分析求解.【详解】由题意可知:{}{}{}220120,1,2A x x x x x =∈--≤=∈-≤≤=NN ∣∣,(){}{}22210,1B x x a x a a a a =-+++==+∣,因为B A ⊆,可知{}0,1B =或{}1,2B =,可得0a =或1a =.故答案为:0或1.13.过()1,2P 的直线l 被曲线2240x x y -+=所截得的线段长度为l 的方程为__________.【答案】1x =或34110x y +-=【解析】【分析】根据曲线的方程确定曲线为圆,再根据直线与圆的位置,分2种情况讨论:①当直线的斜率不存在,②当直线的斜率存在时,每种情况下先设出直线的方程,利用直线被圆所截得的线段长度,求解直线的方程可得出答案.【详解】由曲线2240x x y -+=知,该曲线为圆()2224x y -+=且圆心为()2,0,半径为2r =.当直线斜率不存在时,直线方程为1x =,此时圆心到直线的距离为1d =.根据垂径定理,直线截圆所得线段长为:l ==,满足题意.当直线的斜率存在时,设直线方程为:()12y k x =-+,即20kx y k --+=圆心到直线的距离为d =,当直线截圆所得线段长度l =根据垂径定理2222l d r ⎛⎫+= ⎪⎝⎭可得,22222⎛⎫+= ⎪ ⎪⎝⎭,解得34k =-此时直线方程为34110x y +-=.故答案为:1x =或34110x y +-=.14.在ABC 中,设,,A B C 所对的边分别为,,a b c ,且,tan sin sin b c A B C ≠=+,则以下结论正确的有__________.①20,11a b c ⎛⎫ ⎪∈ ⎪ ⎪+⎝⎭;②211a b c ⎛⎫∈ +⎝⎭;③2b c a +⎫∈⎪⎭;④2b c a ⎛+∈ ⎝;⑤a ∞⎫∈+⎪⎪⎭.【答案】⑤【解析】【分析】依题意可得sin sin sin cos A B C A =+,利用正弦定理将角化边得到cos ab c A=+,将上式两边平方,再由余弦定理得到2220cos a b c A+-=,最后由余弦定理及基本不等式计算可得.【详解】因为tan sin sin A B C =+,即sin sin sin cos AB C A=+,由正弦定理可得cos ab c A=+,所以22222cos a b c bc A=++,又2222cos bc A b c a +-=,所以()()22222222cos 2cos cos cos a b c A bc A b c A b c a A=++=+++-,所以()2221cos 0cos a b c A A ⎛⎫+-+= ⎪⎝⎭,因为()0,πA ∈,所以()cos 1,1A ∈-,则1cos 0A +≠,所以2220cos a b c A+-=,()222cos a b c A =+,又b c ≠,所以222b c bc +>,所以()222222cos 2cos a b cA bc A bc a =+>=+-,所以2222b c a +>,则a >a ∞⎫∈+⎪⎪⎭.故答案为:⑤【点睛】关键点点睛:本题关键是余弦定理的灵活应用,第一次得到2220cos a b c A+-=,再由基本不等式得到()222222cos 2cos a b cA bc A bc a =+>=+-.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.正方体1111ABCD A B C D -的棱长为2,P 是线段1AB 上的动点.(1)求证:平面11BDD B ⊥平面11A BC ;(2)1PB 与平面11A BC 所成的角的正弦值为3,求PB 的长.【答案】(1)证明见解析(2)PB =【解析】【分析】(1)根据题意可得111A C DD ⊥,1111AC B D ⊥,进而可证11A C ⊥平面11BDD B ,即可得结果;(2)设1B 在平面11A BC 上的射影点为E ,连接1,EP EB ,利用等体积法可得13EB =,结合线面夹角可得13EB =,进而可得结果.【小问1详解】因为1DD ⊥平面1111D C B A ,且11AC ⊂平面1111D C B A ,可得111AC DD ⊥,四边形1111D C B A 为正方形,则1111AC B D ⊥,且111111,B D DD D B D ⋂=,1DD ⊂平面11BDD B ,可得11A C ⊥平面11BDD B ,且11AC ⊂平面11A BC ,所以平面11BDD B ⊥平面11A BC .【小问2详解】设1B 在平面11A BC 上的射影点为E ,连接1,EP EB,可知11A BC V是以边长为1134A BC S =⨯=V ,因为111111B A BC B A B C V V --=,即1111222332EB ⨯=⨯⨯⨯⨯,解得1233EB =,设1PB 与平面11A BC 所成的角的大小为θ,则111233sin 3EB PB PB θ===,可得1PB =,在1BPB △中,由余弦定理得,222111π2cos 4PB BB PB BB PB =+-⨯⨯,即224PB =+-,解得PB =.16.甲和乙进行中国象棋比赛,每局甲赢的概率为0.8,甲输的概率为0.2,且每局比赛相互独立.(1)若比赛采取三局两胜制,且乙已经赢得比赛,则比赛需要的局数X 的数学期望()E X 为多少?(保留小数点后一位)(2)由于甲、乙实力悬殊,乙提出“甲赢5局之前乙赢2局,则乙胜”,求乙胜的概率.【答案】(1)2.6(2)0.34464【解析】【分析】(1)分析可知X 的可能取值为2,3,结合条件概率求()()2,3P X P X ==,进而可得期望;(2)根据题意分析乙胜的情况,结合独立事件概率乘法公式分析求解.【小问1详解】记“乙已经赢得比赛”为事件A ,则()120.20.2C 0.20.80.20.104P A =⨯+⨯⨯⨯=,由题意可知:X 的可能取值为2,3,则有:()()12C 0.20.20.80.20.2582,30.104130.10413P X P X ⨯⨯⨯⨯======,所以X 的数学期望()583423 2.6131313E X =⨯+⨯=≈.【小问2详解】由题意可知:每局乙赢的概率00.2p =,则()()()()2321110200030004000C 1C 1C 1P A p p p p p p p p p p ⎡⎤⎡⎤⎡⎤=+-+-+-⎣⎦⎣⎦⎣⎦()415000C 1p p p ⎡⎤+-⎣⎦()()()()234200000121314151p p p p p ⎡⎤=+-+-+-+-⎣⎦()()()()()22340.21210.2310.2410.2510.2⎡⎤=+-+-+-+-⎣⎦0.048.6160.34464=⨯=,所以乙胜的概率0.34464.17.()()ex af x a -=∈R .(1)若()f x 的图象在点()()00,A x f x 处的切线经过原点,求0x ;(2)对任意的[)0,x ∈+∞,有()sin f x x ≥,求a 的取值范围.【答案】(1)1(2)πln2,42∞⎛⎤-+ ⎥⎝⎦【解析】【分析】(1)求得()ex af x -'=,得到()00ex af x -='且()00ex af x -=,根据题意,列出方程,即可求解;(2)根据题意,转化为e sin 0x a x --≥在[)0,x ∈+∞恒成立,令()e sin x ag x x -=-,当0a ≤时,符合题意;若0a >,求得()ecos x ag x x --'=,令()()h x g x '=,利用导数求得()g x '的单调性,结合()π00,02g g ⎛⎫<> '⎪⎝⎭',得到存在唯一的0π0,2x ⎛⎫∈ ⎪⎝⎭,使得()00g x '=,得出()g x 的单调性和极小值,进而求得a 的取值范围.【小问1详解】由函数()e x af x -=,可得()e x af x -'=,所以()00ex af x -='且()00ex af x -=,即切线的斜率为0e x a -,切点为()00e,x aA x -因为()f x 的图象在点()()00,A x f x 处的切线经过原点,可得000e 0ex a x ax ---=-,解得01x =.【小问2详解】任意的[)0,x ∈+∞,有()sin f x x ≥,即e sin 0x a x --≥在[)0,x ∈+∞恒成立,令()[)esi ,0,n x ag x x x -=∈-+∞,若0a ≤,则0x a -≥,可得e 1x a -≥,所以()e sin 1sin 0x ag x x x -=-≥-≥,符合题意;若0a >,可得()ecos x ag x x --'=,令()()h x g x '=,则()e sin x a h x x -+'=,当0πx ≤≤时,()0h x '>,()g x '在[]0,π递增,而()π2π0e 10,e02a ag g --⎛⎫=-<=> ⎪⎝⎭'',所以,存在唯一的[]0π0,0,π2x ⎛⎫∈⊆ ⎪⎝⎭,使得()000e cos 0x ag x x --'==,所以,当00x x <<时,()0g x '<,()g x 在()00,x 递减,当0πx x <<时,()0g x '>,()g x 在区间()0,πx 递增,故当0x x =,函数()g x 取得极小值()00000e sin cos sin 0x ag x x x x -=-=-≥,所以0π04x <≤,此时,00lncos x a x -=,可得00πlncos ln 42a x x =-≤-,即πln2042a <≤+;当πx >时,()πln 2142e sin e1e1e 10x x ax ag x x ---=-≥-≥-≥->,因而πln2042a <≤+,符合题意,综上所述,实数a 的取值范围是求πln2,42∞⎛⎤-+ ⎥⎝⎦.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:1、合理转化,根据题意转化为两个函数的最值之间的比较,列出不等式关系式求解;2、构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;3、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.4、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.18.已知双曲线2222:1(0,0)y x C a b a b-=>>的上焦点为(,下顶点为A,渐近线方程是y =,过20,3B ⎛⎫ ⎪⎝⎭点的直线交双曲线上支于,P Q 两点,,AP AQ 分别交直线23y =于,M N 两点,O 为坐标原点.(1)求C 的方程;(2)求证:,,,M N O A 四点共圆;(3)求(2)中的圆的半径r 的取值范围.【答案】(1)22142-=y x (2)证明见解析(3)5.3⎛ ⎝【解析】【分析】(1)根据题意得到关于,,a b c 的方程组,解出即可;(2)方法一:设直线2:3PQ y kx =+,联立双曲线方程得到韦达定理式,求出11836M x x y =+,22836N x x y =+,最后计算并证明出BO BA BM BN =即可;方法二:转化为证明出1OM AN k k =,同法一设线联立得到韦达定理式,再整体代入计算出1OM AN k k =即可;(3)设圆心为T ,计算出(),1T k -,根据r =k 的范围即可.【小问1详解】由题,222ac a b c b==+=,解得224,2a b ==,所以C 的方程为22142-=y x .【小问2详解】(方法一)设()()11222,,,,:3P x y Q x y PQ y kx =+,代入22142-=y x ,化简整理得()224322039k x kx -+-=,有()22212201632Δ420990k k k x x ⎧-≠⎪⎪⎛⎫=--->⎨ ⎪⎝⎭⎪⎪>⎩,解得21629k <<,且()()1212222243243239,223292k k x x x x k k kk -+====----,112:2y AP y x x +=-,令23y =得11836M x x y =+,同理22836N x x y =+,()()1212121288643636922x x x x BM BN y y y y =⨯=++++()()()121221212126464864922939x x x x y y k x x k x x ==+++++()()()22223292641632846499399232k k k k k k -==⋅+⋅+--,22162339BO BA ⎛⎫=⨯+= ⎪⎝⎭,则BO BA BM BN =,所以,,,M N O A 四点共圆.(方法二)设,OM AN 的倾斜角分别为,αβ.由对称性,不妨设PQ 的斜率0k >,此时,αβ均为锐角,所以,,,M N O A 四点共圆πAOM ANM ∠∠⇔+=,ππ2αβ⎛⎫⇔++= ⎪⎝⎭ππ,,0,22αβαβ⎛⎫⇔+=∈ ⎪⎝⎭tan tan 1αβ⇔=1OM AN k k ⇔=设()()11222,,,,:3P x y Q x y PQ y kx =+,代入22142-=y x ,化简整理得()224322039k x kx -+-=,有()22212201632Δ420,990k k k x x ⎧-≠⎪⎪⎛⎫=--->⎨ ⎪⎝⎭⎪⎪>⎩解得21629k <<,()()121222324,9232kx x x x k k =-+=---,112:2y AP y x x +=-,令23y =得11836M x x y =+,同理22836N x x y =+,121222,4OM AN AQ y y k k k x x ++===()21212121212121288864223339444OM ANkx kx k x x k x x y y k k x x x x x x ⎛⎫⎛⎫+++++ ⎪⎪++⎝⎭⎝⎭=⋅==()()()2222328464399232132492kk k k k k ⎡⎤⎡⎤⎢⎥⎢⎥-+-+--⎢⎥⎢⎥⎣⎦⎣⎦=⎡⎤⎢⎥--⎢⎥⎣⎦所以,,,M N O A 四点共圆.【小问3详解】设圆心为T ,则1T y =-,121212124448823636333M N T x x x x x x x y y kx kx ⎛⎫⎪+==+=+ ⎪++ ⎪++⎝⎭()()()()()()221212221212223284822392324438643284643339399232kk kx x x x k k k k k x x k x x k k k k⋅+⋅++--==⋅=+++⋅+⋅+--,(),1T k ∴-,因为21629k <<,则5.3r ⎛= ⎝【点睛】关键点点睛:本题第二问的关键是采用设线法得到韦达定理式,然后利用四点共圆的充要条件代入计算证明即可,第三问的关键是得到圆心坐标,从而得到r =19.给定自然数n 且2n ≥,设12,,,n x x x 均为正数,1ni i x T ==∑(T 为常数),11n i ni i nx x T x T x -==--∑.如果函数()f x 在区间I 上恒有()0f x ''>,则称函数()f x 为凸函数.凸函数()f x 具有性质:()1111n n i i i i f x f x n n ==⎛⎫≥ ⎪⎝⎭∑∑.(1)判断()1xf x x=-,()0,1x ∈是否为凸函数,并证明;(2)设()1,2,,ii x y i n T == ,证明:111111n ny y n -≤---;(3)求nnx T x -的最小值.【答案】(1)()f x 在()0,1上为凸函数,证明见解析(2)证明见解析(3)()5128221nn --.【解析】【分析】(1)对()f x 求导之后,再求二阶导数,证明()0f x ''>即可得出结论;(2)根据凸函数的性质得,()11111111n n i i i i f y f y n n --==⎛⎫≥ ⎪--⎝⎭∑∑;将11n i n i i nx x T x T x -==--∑中的分子、分母同时除以T ,得到()111n ni i n y f y y -==-∑;加上1111n ni i n n i i y y y y -===-=-∑∑,利用以上条件得到一个关于n y 与n 的不等式,变形后即可得出结论.(3)设i i x y T=,将n n x T x -转化为1n n y y -,判断其单调性,将问题转化为求n y 的最小值;利用(2)的结论,求出n y 的最小值,代入1n ny y -即可得出答案.【小问1详解】()f x 在()0,1上为凸函数.证明:由题知,()22(1(1)())(11)x f x x x x ==-'----,所以()43(1)(11)2()2f x x x x =-'=--',因为()0,1x ∈,所以10x ->,()0f x ''>,所以()f x 在()0,1上为凸函数.【小问2详解】证明:因为i i x y T =()1,2,,i n = ,所以11111n n n i i i i i i x T y x TT T =======∑∑∑,由题知11n i n i i n x x T x T x -==--∑,分子分母同时除以T ,得1111i n n i n i x x TT x x T T -==--∑,所以1111n i n i i n y y y y -==--∑,即()111n n i i n y f y y -==-∑,根据凸函数的性质得,()11111111n n i i i i f y f y n n --==⎛⎫≥ ⎪--⎝⎭∑∑,所以111111111111n i n i n n i i y y n n y y n -=-=-⋅≥----∑∑,又因为1111n n i i n n i i y y yy -===-=-∑∑,所以1(11111))111(11(11)n n n n n n y y y n n y n y y n ⋅---⋅≥=------⋅--,两边同时乘以n 1-,得(1)(111()1)n n n n y n y y n y --≥----,因为()1,2,,i x n T i <= ,所以(0,1)i i x y T =∈,又因为2n ≥,所以(1)(1011(1))n n n n y n y y n y --≥>----,两边同时取倒数,得11(11(1))1)(111n n n n n y n y y n y y n ----≤=-----,所以111111n n y y n -≤---,即111111n n y y n -≤---.【小问3详解】设i i x y T =()1,2,,i n = ,则n n x y T =,且()0,1n y ∈,所以11111n n n n n n n x x y T x T x y y T ===-----,随n y 增大而增大,由(2)知,111111n n y y n -≤---,所以()2111n n n n y y y n n y -⋅--≤--,所以()2(34)210n n y n n y n --+-≤-,当2n =时,120n y -+≤,12n y ≥,所以1111n n n x T x y =-≥--,当且仅当1212y y ==时,等号成立,当3n ≥时,()()3451283451282222n n n y n n ---+≤≤--,所以1n n n n x y T x y =≥--22(5128)(34)(24)4128n n n n nn n--++-+-=-+()22288(22412821n n n nn n n-+-+--==-+-,当且仅当()()121151281221nny ny y yn n n--=====---时,等号成立,当2n=时,最小值为1,满足上式,所以nnxT x-的最小值是()5128221nn--.【点睛】关键点点睛:第2问的关键是将条件中x转化为y,紧紧围绕凸函数的性质来做文章;第3问关键是将nnxT x-转化为1nnyy-,利用第2问的结论,求出ny的最小值.。

【附加15套高考模拟试卷】安徽省合肥一中2020届高三冲刺高考最后1卷数学(理)试卷含答案

【附加15套高考模拟试卷】安徽省合肥一中2020届高三冲刺高考最后1卷数学(理)试卷含答案

安徽省合肥一中2020届高三冲刺高考最后1卷数学(理)试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.天气预报说,今后三天每天下雨的概率相同,现用随机模拟的方法预测三天中有两天下雨的概率,用骰子点数来产生随机数。

依据每天下雨的概率,可规定投一次骰子出现1点和2点代表下雨;投三次骰子代表三天;产生的三个随机数作为一组。

得到的10组随机数如下:613,265,114,236,561,435,443,251,154,353。

则在此次随机模拟试验中,每天下雨的概率和三天中有两天下雨的概率的近似值分别为( )A .13,28B .11,28C .11,35 D .12,392.下列四个命题:存在与两条异面直线都平行的平面;(2)过空间一点,一定能作一个平面与两条异面直线都平行;(3)过平面外一点可作无数条直线与该平面平行;(4)过直线外一点可作无数个平面与该直线平行.其中正确的命题的个数是 A .1B .2C .3D .43.将函数的图象向右平移个单位后得到函数的图象,若对于任意都有,则( ) A .B .C .D .4.如果复数(2)()ai i a R +∈的实部与虚部互为相反数,则a =( ) A .2B .1C .-2D .-15.设i 为虚数单位,m R ∈,“复数()1m m i -+是纯虚数”是“1m =”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6.已知21nx x ⎛⎫ ⎪⎝⎭+的二项展开式的各项系数和为32,则二项展开式中x 的系数为( ) A .5B .10C .20D .407.已知向量44sin,cos 22x x a ⎛⎫= ⎪⎝⎭r ,向量()1,1b =r ,函数()f x a b =r r g ,则下列说法正确的是( ) A .()f x 是奇函数B .()f x 的一条对称轴为直线4x π=C .()f x 的最小正周期为2πD .()f x 在,42ππ⎛⎫⎪⎝⎭上为减函数8.记椭圆221441x ny n +=+围成的区域(含边界)为n Ω(12n =L ,,),当点()x y ,分别在1Ω,2Ω,…上时,x y +的最大值分别是1M ,2M ,…,则lim n n M →+∞=( ) A .0B .14 C .2 D .229.已知某程序框图如图所示,则执行该程序后输出的a 的值是( )A .1-B .12 C .1D .210.已知集合{}|12A x a x a =-≤≤+,{}|35B x x =<<,则能使A B ⊇成立的实数a 的取值范围是( ) A .{}|34a a <≤B .{}|34a a <<C .{}|34a a ≤≤D .∅11.已知双曲线()222210,0x y a b a b-=>>的两个顶点分别为,A B ,点P 为双曲线上除,A B 外任意一点,且点P 与点,A B 连线的斜率分别为1k 、2k ,若123k k =,则双曲线的渐近线方程为 ( ) A .y x =± B .2y x =C .3y x =D .2y x =±12.在区间[]0π,上随机取一个数x ,则事件2“sin cos 2x x +≥发生的概率为( ) A .12 B .13 C .23 D .712二、填空题:本题共4小题,每小题5分,共20分。

安徽省合肥市第一中学高三最后一卷数学答案和解析

安徽省合肥市第一中学高三最后一卷数学答案和解析

合肥一中2023届高三最后一卷数学参考答案1.解析:因为][0,2,2,0A B ⎡⎤==-⎣⎦所以{}(){}0,0R A B A B x Rx ⋂=⋂=∈≠∣ð.故选:C .2.解析:因为1z =+,所以1z =,故z 的虚部是.故选:A .3.解析:5x =,故0.155 5.75 6.5y =⨯+=,经计算可得被污损的数据为6.4,答案选B .4.解析:曲线1:sin 2cos22C y x x π⎛⎫=+=⎪⎝⎭,把1:cos2C y x =上各点的横坐标缩短到原来的23,纵坐标不变,可得cos3y x =的图象;再把得到的曲线向左平移18π个单位长度,可以得到曲线25:cos 3cos 366C y x x ππ⎛⎫⎛⎫=--=+ ⎪ ⎪⎝⎭⎝⎭的图象,故选:C.5.解析:设直线1y =与y 轴交点为M ,由对称性,易知MFA 为直角三角形,且1602AFM AFB ∠∠== ,2AF FM ∴=,即1212p +=,去绝对值,解得23p =或6,p =∴抛物线的准线方程为13y =-或3y =-.故选:C.6.解析:一方面,考虑{}Ω,,,a b c d =含有等可能的样本点,{}{}{},,,,,A a b B a c C a d ===.则()()()()()()11,24P A P B P C P AB P BC P AC ======,故,,A B C 两两独立,但()1148P ABC =≠,故此时,()()()()P ABC P A P B P C =不成立.另一方面,考虑{}Ω1,2,3,4,5,6,7,8=含有等可能的样本点,{}{}{}1,2,3,4,3,4,5,6,4,6,7,8A B C ===.则()()()()11,28P A P B P C P ABC ====()111822P AC =≠⨯,故,A C 不独立,也即,,A B C 两两独立不成立.综上,“,,A B C 两两独立”是“()()()()P ABC P A P B P C =”的既不充分也不必要条件.故选D.7.解析:作AQ 垂直下半平面于,作AH x ⊥轴于H ,连接,HQ QB .设11,,,(0)A m B m m m m ⎛⎫⎛⎫--> ⎪ ⎪⎝⎭⎝⎭由题可知60AHQ ∠= ,则11,,22AH QH AQ m m m ===,两点间距离公式可得222144QB m m =+.22222144AB AQ QB m m =+=+≥,当且仅当22m =时,AB 取最小值2.故选A.8.解析:因为()1f x +为偶函数,所以()()11f x f x +=-+①,所以()f x 的图象关于直线1x =轴对称,因为()()11f x g x --=等价于()()11f x g x --=②,又()()31f x g x -+=③,②+③得()()132f x f x -+-=④,即()()132f x f x +++=,即()()22f x f x +=-,所以()()4f x f x +=,故()f x 的周期为4,又()()13g x f x =--,所以()g x 的周期也为4,故选项B 正确,①代入④得()()132f x f x ++-=,故()f x 的图象关于点()2,1中心对称,且()21f =,故选项A 正确,易得()()01,41f f ==,且()()132f f +=,故()()()()12344f f f f ++==,故20221()5054(1)(2)2021(1)i f i f f f ==⨯++=+∑,因为()1f 与()3f 值不确定,故选项C 错误,因为()()31f x g x -+=,所以()()()()()()10,30,013,211g g g f g f ===-=-,所以()()()()022130g g f f ⎡⎤+=-+=⎣⎦,故()()()()01230g g g g +++=,故2023()50600i g i ==⨯=∑,所以选项D 正确,故选C .9.解析:A.()()22AD AF AB AF ED =+=+,故A 错误;B.因为()()2,22||AB EA AB EA FA AB FA AB EB AB ⊥⋅+=⋅=⋅= ,故B 正确;C.()()11,22BC CD FE BC BC CD FE FE ⋅=⋅= ,又BC FE =,所以()()BC CD FE BC CD FE ⋅=⋅ ,故C正确;D.AE 在CB方向上的投影向量为()3322AE CB CB AE CB CB CB e CB CB⋅=⋅=-=,故D 错误.故选BC .10.解析:由切线长定理易得12l r r =+,A 正确.由勾股定理知()()222121212(2)4R r r r r r r =+--=,解得R =,B 正确.()()()222122222221212121212124422S R R R S r r r r r r r r l r r r r ππππ===+++++++.()()33212222222121212121212442331233R R V R R V r r r r r r r r h r r r r ππππ===++++++.所以1122,C S V S V =正确.1122212212122122231S r r r r S r r r r r r ==≤++++,当且仅当12r r =时等号成立,这与圆台的定义矛盾,故D 错误.综上,答案为ABC .11.解析:以BC 为x 轴,DA 为y 轴建系,则()(0,0,D A 可以求得动点M 的轨迹方程:22302x y y +-=.这是一个圆心在点0,4P ⎛⎫ ⎪ ⎪⎝⎭,半径为34的圆(不含原点)D A 项:()1,0B -,所以max 193||4BM BP r =+=.故A 错误B项:2222||1||11424CB MB MC MD MD ⎛⎫⋅=-=-≤-=- ⎪ ⎪⎝⎭ .故B 正确C 项:易知直线:10AB x y -+=,故1328ABM M AB S AB d -=≤.故C 错误D 项:易知cos MBC ∠取最小值,当且仅当MBC ∠取最大值,也即BM 与P 相切时.此时3tan 24MBC ∠=,故221tan 132cos 191tan2MBCMBC MBC ∠∠∠-==+.故D 正确.故选:BD.12.解析:由sin 0,cos 0x x >>得()f x 的定义域为2,2,2k k k Z πππ⎛⎫+∈ ⎪⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,3,2x πππ⎛⎫+∈ ⎪⎝⎭不在定义域内,故()()f x f x π+=不成立,易知()f x 的最小正周期为2π,故选项A 错误,又()22222cos log cos 2sin log sin 2f x x x x x f x π⎛⎫-=⋅+⋅=⎪⎝⎭,所以()f x 的图象关于直线4x π=对称,所以选项B 正确,因为()222222sin log sin cos log cos f x x x x x =⋅+⋅,设2sin t x =,所以函数转化为()()()()()()2222log 1log 1,0,1,log log 1g t t t t t t g t t t =⋅+-⋅-∈='--,所以()0g t '>得,()0g t '<得102t <<,所以()g t 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,12⎛⎫ ⎪⎝⎭上单调递增,故min 1()12g t g ⎛⎫==- ⎪⎝⎭,即min ()1f x =-,故选项C 正确,因为()g t 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,12⎛⎫ ⎪⎝⎭上单调递增,由2sin t x =,令210sin 2x <<得20sin 2x <<,又()f x 的定义域为2,2,2k k k Z πππ⎛⎫+∈ ⎪⎝⎭,解得22,4k x k k Z πππ<<+∈,因为2sin t x =在2,24k k πππ⎛⎫+ ⎪⎝⎭上单调递增,所以()f x 的单调递减区间为2,2,4k k k Z πππ⎛⎫+∈ ⎪⎝⎭,同理函数的递增区间为2,2,42k k k Z ππππ⎛⎫++∈⎪⎝⎭,所以选项D 正确,故选BCD.13.解析:因为22(1)y x =-',所以曲线11xy x+=-在点()2,3-处的切线斜率为2,所以切线方程为()322y x +=-,即27y x =-,即270x y --=.14.解析:法1:()tan tan tan 1,tan tan tan tan 11tan tan αβαβαβαβαβ++==-∴+=-- .()()()cos sin 1tan tan tan tan 2cos cos βααβαβαβαβ--+∴=-++=.法2:(特殊值法)令38παβ==,易得答案.15.解析:0.255205.2550.250.0025510.0199=+++=+=- .16.解析:设双曲线的右焦点为2F ,根据双曲线方程知,2c =.直线过原点,由对称性,原点O 平分线段原点AB ,又原点O 平分线段2,FF ∴四边形2AFBF 为平行四边形.ABF 和2ABF 中,分别有中位线,,OP BF OQ AF ∥∥,,,OP OQ AF BF ⊥∴⊥∴ 四边形2AFBF 为矩形,2BFF ∴ 为直角三角形.不妨设B 在第一象限,设直线AB 倾斜角为2θ,则2,32ππθ⎡⎫∈⎪⎢⎣⎭,且OFB OBF ∠∠θ==,在Rt 2BFF中可得:22124cos 4sin ,2cos 2sin 4c a BF BF e a θθπθθθ∴=-=-∴===-⎛⎫- ⎪⎝⎭,2,,,3264ππππθθ⎡⎫⎡⎫∈∴∈⎪⎪⎢⎢⎣⎭⎣⎭ ,易知()14f θπθ=⎛⎫- ⎪⎝⎭在,64ππθ⎡⎫∈⎪⎢⎣⎭上为增函数,)11,4e ∞πθ∴=∈+⎛⎫- ⎪⎝⎭17.解析:(1)因为1cos 3B =,所以2222sin 1cos 2costan 222cos 2A CB AC B A C ++++=++()()1cos 1cos 21cos A C B A C -++=+++1cos 1cos 821cos 3B B B ++=+=-.(2)因为ABC S =1122sin 223ac B ac =⋅=,所以6ac =再由余弦定理知,2222cos b a c ac B =+-,即222614263c c ⎛⎫=+-⨯⨯ ⎪⎝⎭,也即4220360c c -+=,解得c =c =.18.解析:(1)因为21342n n n n S S S a +++=-,所以()21132n n n n n S S S S a +++-=--,即2132n n na a a ++=-所以()()()()()()21111111223222220n n n n n n n n n n n n n a a a a a a a a a a a a a ++++++++---=----=---=(为常数)所以数列{}12n n a a +-是等差数列.(2)由(1)知121221n n a a a a +-=-=,即121n n a a +=+.也即()1121n n a a ++=+,又112a +=,所以11222n n n a -+=⋅=..所以()()()()1222112122121n n n n n n n b n n n n n n a +⎡⎤++===-⎢+⋅+⋅++⎢⎥⎣⎦.∴数列{}n b 的前n 项和()12231111111212222232212n n n T n n +⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪ ⎪⋅⋅⋅⋅⋅+⋅⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()1111121121212n n n n +⎡⎤=-=-⎢⎥⋅+⋅+⋅⎢⎥⎣⎦19.(1)补全四面体PQRS 如图,即证:PQ SR ⊥取SR 的中点M ,正四面体中各个面均为正三角形,故,PM SR QM SR ⊥⊥,又PM QM M ⋂=,所以SR ⊥面PQM .又PQ ⊂面PQM ,所以PQ SR ⊥.(2)在QSR 的中心建系如图:则()(33,,,0,,02222S P R Q ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1,0,,,33623A C ⎛⎛- ⎪ ⎪⎝⎭⎝⎭,31,,022K ⎛⎫-- ⎪ ⎪⎝⎭,.设面ACK 的法向量为(),,n x y z = ,则00n AC n AK ⎧⋅=⎪⎨⋅=⎪⎩,解得()n =- ,又33,,22PQ ⎛=- ⎝ ,所以22sin cos ,11n PQ θ== .20.解析:(1)设事件A 为“小周在这三个月集齐三款模型”,则()3333111034500A P A ⎛⎫== ⎪⎝⎭.(2)1,2,,12X = ,由题意得()()1911,2,,111010k P X k k -⎛⎫=== ⎪⎝⎭ ,()1191210P X ⎛⎫== ⎪⎝⎭11111199()12101010k k k E X -=⎛⎫⎛⎫=+⋅ ⎪⎪⎝⎭⎝⎭∑,错位相减求得最后结果为()11910910E X ⎛⎫=-⋅ ⎪⎝⎭.21.解析:(1)将()1,1M 代入,可以求得243b =.联立22314410x y x y ⎧+=⎪⎨⎪+-=⎩,得24610x x --=.设()()1122,,,A x y B x y ,则12262AB x =-=,又易知点M 到直线l的距离为2,故ABM的面积4ABM S = ..(2)设()()1122,,,A x y B x y ,联立22314410x y x ty ⎧+=⎪⎨⎪+-=⎩得()223230t y ty +--=,则1221222333t y y t y y t ⎧+=⎪⎪+⎨-⎪=⎪+⎩,11sin ,sin 22ABM PQM S AM BM AMB S PM QM PMQ ∠∠== ,又sin sin PMQ AMB∠∠=所以5PQM ABM S S = 等价于5PM QM AM BM =,也即5QM AM BMPM=5QM AMBMPM =即1251313x x -=-,也即129115x x --=,也即1295ty ty --=,也即223935t t =+,解得322t =±.22.解析:(1)()ln f x x ax =-'在()0,∞+上有两个变号零点,即ln xa x=有两个不等实根,设()()2ln 1ln ,x x g x g x x x-'==,故()g x 在()0,e 上单调递增,在(),e ∞+上单调递减,所以max 1()g x e=,且()10g =,又(),0x g x ∞+→+→,故10a e<<,且121x e x <<<,所以()2111111ln 12f x x x ax x =--+,又11ln x a x =,所以()21111111111ln 11ln 1ln 122x f x x x x x x x x x =-⋅⋅-+=-+,设()()1ln 1,1,2h x x x x x e =-+∈,所以()()1ln 102h x x =-<',所以()h x 在()1,e 上单调递减,所以()1,02e h x ⎛⎫∈-⎪⎝⎭,所以()11,02e f x ⎛⎫∈- ⎪⎝⎭.(2)法一:ln 0x ax -=的两个实根12,x x ,所以1122ln ,ln x ax x ax ==,所以()2121ln ln x x a x x -=-,得:2121ln ln x x a x x -=-,设21x t x =,又1202x x <<,所以2t >,要证:2128x x <,即证:123ln2ln 2ln x x +<,即证:123ln22ax ax +<,即证:()2123ln2a x x ->,即证:()212121ln ln 23ln2x x x x x x -->-,即证:2211212ln 3ln2x x xx x x -⋅>-,即证:22121121ln 3ln21x x x x x x -⋅>-,即证:21ln 3ln21t t t -⋅>-,设()()212ln 321ln ,(2),,(2)1(1)t t t t t t t t t t t ϕϕ+---=⋅>-'=>-,设()()()()222111112ln 3,(2),20t t F t t t t F t tt t t+-=+-->=--=>',所以()F t 在()2,∞+上单调递增,所以()()32ln202F t F >=->,所以()0t ϕ'>,所以()t ϕ在()2,∞+上单调递增,所以()()23ln2t ϕϕ>=,所以21ln 3ln21t t t -⋅>-,所以2128x x <成立.法二:ln 0x ax -=的两个实根12,x x ,所以1122ln ,ln x ax x ax ==,所以2211ln ln x x x x =,设21x t x =,又1202x x <<,所以2t >,.由2211ln ln x x x x =可得:12ln ln ln ,ln 11t t tx x t t ==--,.要证:2128x x <,即证:123ln2ln 2ln x x +<,即证:ln 2ln 3ln211t t t t t +<--,即证:21ln 3ln21t t t -⋅>-设()()212ln 321ln ,(2),,(2)1(1)t t t t t t t t t t t ϕϕ+---=⋅>-'=>-,设()()()()222111112ln 3,(2),20t t F t t t t F t tt t t+-=+-->=--=>',所以()F t 在()2,∞+上单调递增,所以()()32ln202F t F >=->,所以()0t ϕ'>,所以()t ϕ在()2,∞+上单调递增,所以()()23ln2t ϕϕ>=,所以21ln 3ln21t t t -⋅>-,所以2128x x <成立.法三:由(1)知:10a e<<,且121x e x <<<,()ln xg x x=在()0,e 上单调递增,在(),e ∞+上单调递减,又1122x x x <<,且()()12g x g x a ==,所以()()()2112g x g x g x =<,所以1111ln ln22x x x x <,所以211ln ln2x x <,所以2112x x <,所以112x <<,又()ln222g =,所以ln202a <<,又ln2ln424=,即()()24g g =,所以24x >,因为122x x <,所以212284x x x <<,故2128x x <.。

2020届安徽省合肥市第一中学高三下学期最后一卷数学(理)试题(解析版)

2020届安徽省合肥市第一中学高三下学期最后一卷数学(理)试题(解析版)
【详解】
散点从左下到右上分布,所以销售额y与序号x呈正相关关系,故A正确;
令 ,由三次多项式函数得2684.54,
所以2019年“双11”当天的销售额约为2684.54亿元,故B正确;
用三次多项式曲线拟合的相关指数 ,而一次归直线拟合的相关指数 ,相关指数 越大拟合效果越好,故C正确;
因为相关系数 非常接近1,
解得 .
故选:A.
【点睛】
本题考查抛物线的几何性质,注意利用定义构造与焦半径相关的几何图形(如三角形、直角梯形等)来沟通已知量与 的关系,本题属于中档题.
【详解】
,令 ,
, ,则 为偶函数,
令 ,
则 ,若 ,
所以 在 单调递增
又 在 上为增函数,
所以 在 上为增函数,
原不等式 ,即 ,
所以 ,所以 或 ,
故选:D.
【点睛】
本题考查利用函数的单调性求解不等式,本题难点在于构造函数 并判断函数的单调性,考查分析能力、观察能力以及判断能力,属中档题.
7.2020年春节期间,一场突如其来的疫情席卷全国,但在灾难面前中国人民体现出来的民族凝聚力和“一方有难八方支援”的民族优良传统也是空前的.某医院从传染科选出5名医生和4名护士对口支援湖北省某市的A、B、C三所医院开展新型冠状病毒肺炎防治工作,其中A、B医院都至少需要1名医生和1名护士,C医院至少需要2名医生和2名护士,则不同的分派方法共有()
故销售额y与年份序号x线性相关显著,故D错误,
故选:D.
【点睛】
本题考查散点图的应用以及相关系数的应用,识记概念,考查观察能力,属基础题.
4. 的展开式中 的系数为()
A.-352B.-32C.32D.352
【答案】B

2025届合肥市第一中学高三六校第一次联考数学试卷含解析

2025届合肥市第一中学高三六校第一次联考数学试卷含解析

2025届合肥市第一中学高三六校第一次联考数学试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知b a bc a 0.2121()2,log 0.2,===,则,,a b c 的大小关系是( ) A .a b c <<B .c a b <<C .a c b <<D .b c a <<2.下图所示函数图象经过何种变换可以得到sin 2y x =的图象( )A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位 3.在ABC ∆中,“tan tan 1B C >”是“ABC ∆为钝角三角形”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既不充分也不必要条件4.已知a ,b 是两条不同的直线,α,β是两个不同的平面,且a β⊂,b αβ=,则“//a α”是“//a b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.给出下列三个命题:①“2000,210x x x ∃∈-+≤R ”的否定;②在ABC 中,“30B ︒>”是“3cos B <的充要条件; ③将函数2cos2y x =的图象向左平移6π个单位长度,得到函数π2cos 26y x ⎛⎫=+ ⎪⎝⎭的图象. 其中假命题的个数是( )A .0B .1C .2D .36.已知抛物线2:4C y x =和点()2,0D ,直线2x ty =-与抛物线C 交于不同两点A ,B ,直线BD 与抛物线C 交于另一点E .给出以下判断:①直线OB 与直线OE 的斜率乘积为2-; ②//AE y 轴;③以BE 为直径的圆与抛物线准线相切. 其中,所有正确判断的序号是( ) A .①②③B .①②C .①③D .②③7.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表: 黄赤交角 2341︒'2357︒'2413︒'2428︒'2444︒'正切值 0.439 0.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( ) A .公元前2000年到公元元年 B .公元前4000年到公元前2000年 C .公元前6000年到公元前4000年D .早于公元前6000年8.在区间[]1,1-上随机取一个实数k ,使直线()3y k x =+与圆221x y +=相交的概率为( )A .12B .14C .22D .249.定义在上的函数满足,且为奇函数,则的图象可能是( )A .B .C .D .10.在直三棱柱111ABC A B C -中,己知AB BC ⊥,2AB BC ==,122CC =,则异面直线1AC 与11A B 所成的角为( ) A .30︒B .45︒C .60︒D .90︒11.设12,F F 分别是双曲线22221(0,0)x y a b a b-=>>的左右焦点若双曲线上存在点P ,使1260F PF ∠=︒,且122PF PF =,则双曲线的离心率为( ) A .3B .2C .5D .612.已知l 为抛物线24x y =的准线,抛物线上的点M 到l 的距离为d ,点P 的坐标为()4,1,则MP d +的最小值是( ) A .17B .4C .2D .117+二、填空题:本题共4小题,每小题5分,共20分。

安徽省合肥市合肥第一中学2022-2023学年高一下学期期末考试数学试题

安徽省合肥市合肥第一中学2022-2023学年高一下学期期末考试数学试题

安徽省合肥市合肥第一中学2022-2023学年高一下学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________四、解答题17.“一切为了每位学生的发展”是新课程改革的核心理念.新高考取消文理分科,采用选科模式,赋予了学生充分的自由选择权.新高考模式下,学生是否选择物理为高考考试科目对大学专业选择有着非常重要的意义.某校为了解高一年级600名学生物理科目的学习情况,将他们某次物理测试成绩(满分100分)按照[4050),,[5060),,[6070),,[7080),,[8090),,[90100],分成6组,制成如图所示的频率分布直方图.(1)求这600名学生中物理测试成绩在[5060),内的频数,并且补全这个频率分布直方图;(2)学校建议本次物理测试成绩不低于a 分的学生选择物理为高考考试科目,若学校希21.已知锐角ABC V 的三个内角满足sin sin B C =222(sin sin sin )tan B C A A +-.(1)求角A 的大小;(2)若ABC V 的外接圆的圆心是O ,半径是1,求()OA AB AC ×+uuu r uuu r uuu r 的取值范围.22.在多面体ABCDE 中,BC BA =,//DE BC ,^AE 平面BCDE ,2BC DE =,F 为AB 的中点.(1)求证://EF 平面ACD ;(2)若EA EB CD ==,求二面角B AD E --的平面角正弦值的大小.【分析】由线面垂直的判定定理和性质定理可判断A ;连接11B C C B 、相交于点O ,可得四边形ADEO 为平行四边形,//DE AO ,再由线面平行的判定定理可判断B ;由B 选项知AB与DE 所成角即AB 与AO 所成角为BAO Ð或其补角,求出AO BO 、,在ABO V 中由余弦定理得cos BAO Ð,再求出sin BAO Ð可判断C ;由1C AB △、1C CB △均为直角三角形可得点O 是三棱锥1C ABC -的外接球的球心,求出外接球的半径可判断D.【详解】对于A ,在堑堵111ABC A B C -中,1CC ^平面ABC ,、、AC BC AB Ì平面ABC ,所以1CC AC ⊥,1CC BC ^,1CC AB ^,所以1C AC V 、1C CB △均为直角三角形,因为AB AC ^,所以ABC V 为直角三角形,且1CC AC C =I ,1CC AC Ì、平面1ACC ,所以AB ^平面1ACC ,1AC Ì平面1ACC ,所以1AB AC ^,所以1ABC V 为直角三角形,所以四面体1C ABC -为鳖臑,故A 错误;对于B ,如图,连接11B C C B 、相交于点O ,所以点O 为1C B 的中点,连接、EO AO ,设1O O x =,则()221664x x +=-+,解得2x =,所以2222420R =+=,所以三棱锥P BCD -外接球的表面积为24π80πR =,故答案为:80π【点睛】关键点点睛:此题考查多面体外接球问题,考查球的表面积公式的应用,解题的关键是根据题意找出棱锥外接球的球心的位置,从而可求出球的半径,考查空间想象能力和计算能力,属于难题.17.(1)频数为90,作图见解析(2)66.7a »【分析】(1)根据频率分布直方图的小矩形面积之和为1求得成绩在[5060),内的频率,再求频数,然后根据数据补全的频率分布直方图如图;(2)根据恰有65%的学生选择物理为高考考试科目,先确定a 所在区间,再求解.【详解】(1)解:由频率分布直方图可知,成绩在[5060),内的频率为:110(0.0100.0150.0300.0250.005)0.15-´++++=,,PA PD PE AD =\^,又60DAB Ð=,PE BE Ì平面PBE ,,PE BE E AD =\I答案第241页,共22页。

2020届安徽省合肥市第一中学高三下学期最后一卷数学(文)试题(解析版)

2020届安徽省合肥市第一中学高三下学期最后一卷数学(文)试题(解析版)

2020届安徽省合肥市第一中学高三下学期最后一卷数学(文)试题一、单选题1.记全集U =R ,集合{}2|16A x x =≥,集合{}|22xB x =≥,则()UA B =( )A .[)4,+∞B .(]1,4C .[)1,4D .()1,4【答案】C【解析】求得集合{|4A x x =≤-或4}x ≥,{|1}B x x =≥,求得{|44}UA x x =-<<,再结合集合的交集运算,即可求解.【详解】由题意,全集U =R ,集合{}2|16{|4A x x x x =≥=≤-或4}x ≥, 集合{}|22{|1}xB x x x =≥=≥, 所以{|44}UA x x =-<<,所以()[){|14}1,4U AB x x =≤<=.故选:C . 【点睛】本题主要考查了集合的混合运算,其中解答中正确求解集合,A B ,再结合集合的补集和交集的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题. 2.若复数z 的共轭复数满足()112i z i -=-+,则z =( )A .B .32C D .12【答案】C【解析】根据复数的乘法、除法运算求出z ,再由复数的模的求法即可求出z 【详解】由题意()112i z i -=-+, 所以()()()()1211231112i i i iz i i i -++-+-+===--+,所以22311022z z ⎛⎫⎛⎫==-+= ⎪ ⎪⎝⎭⎝⎭,故选:C 【点睛】本题主要考查复数的乘法、除法运算,考查复数的模的求法以及复数与共轭复数的模相等,属于基础题.3.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n 等于( )A .2B .3C .4D .5【答案】C【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】当1n =时,1542a b ==,,满足进行循环的条件; 当2n =时,45,84a b == 满足进行循环的条件; 当3n =时,135,168a b ==满足进行循环的条件; 当4n =时,405,3216a b ==不满足进行循环的条件, 故输出的n 值为4. 故选:C . 【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.4.从区间[0,1]内随机抽取2n 个数1x ,2x ,…n x ,1y ,.. ,n y 构成n 个数对(1x ,1y ),…,(n x ,n y ),其中两数的平方和不小于1的数对共有m 个,则用随机模拟的方法得到圆周率π的近似值为( ) A .m nB .4mnC .n mn- D .4()n m n- 【答案】D【解析】以面积为测度,建立方程,即可求出圆周率π的近似值. 【详解】由题意,从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),对应的区域的面积为12.而两数的平方和不小于1,对应的区域的面积为1-14π•12, ∴2211141m n π-⋅==1-21π41, ∴π()4n m n-=.故选D .【点睛】本题考查了几何概型的应用,几何概型的概率的值是通过长度、面积和体积的比值得到,本题属于基础题.5.已知x ,y 满足不等式组2402030x y x y y +-≥⎧⎪--≤⎨⎪-≤⎩,则yz x =的最大值为( )A .0B .35C .53D .6【答案】D【解析】画出约束条件的可行域,利用目标函数的几何意义,求出最优解,然后求解目标函数的最大值即可. 【详解】由x ,y 满足不等式组2402030x y x y y +-≥⎧⎪--≤⎨⎪-≤⎩,作出可行域如图,由可行域可知()5,3A ,()2,0B ,1,32C ⎛⎫⎪⎝⎭, y z x =可以看作是可行域内的点和点()0,0的最大值,显然在1,32C ⎛⎫⎪⎝⎭处都最大值6, 故选:D .【点睛】本题主要考查简单线性规划求解分式型目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题. 6.已知235log log log 0x y z ==<,则2x 、3y、5z 的大小排序为A .235x y z<<B .325y x z <<C .523z x y <<D .532z y x<<【答案】A【解析】x y z ,, 为正实数,且235log log log 0x y z ==<,111235235k k k x y z---∴===,,, 可得:1112352131,51k k k x y z,.---=>=>=> 即10k -> 因为函数1kf x x -=() 单调递增,∴235x y z<<.故选A.7.正方体1111ABCD A B C D -棱长为1,点,M N 分别是棱1,BC CC 的中点,动点P 在正方形11BCC B (包括边界)内运动,且1//PA 面AMN ,则1PA 的长度范围为( )A .51,2⎡⎤⎢⎥⎣⎦B .325,42⎡⎤⎢⎥⎣⎦ C .323,42⎡⎤⎢⎥⎣⎦D .31,2⎡⎤⎢⎥⎣⎦【答案】B【解析】取11B C 的中点E ,1BB 的中点F ,EF 中点O ,根据面面平行的判定可证得平面//AMN 平面1A EF ,由此可确定P 点轨迹为EF ,进而确定1PA 取得最大值和最小值时P 的位置,进而得到所求取值范围. 【详解】取11B C 的中点E ,1BB 的中点F ,连结1A E ,1A F ,EF , 取EF 中点O ,连结1A O ,点,M N 分别是棱长为1的正方体1111ABCD A B C D -中棱1,BC CC 的中点,1//AM A E ∴,//MN EF ,AMMN M =,1A E EF E ⋂=,,AM MN ⊂平面AMN ,1,A E EF ⊂平面1A EF ,∴平面//AMN 平面1A EF ,动点P 在正方形11BCC B (包括边界)内运动,且1//PA 面AMN ,∴点P 的轨迹是线段EF ,221115122A E A F ⎛⎫==+=⎪⎝⎭,22121122EF =+=, 1AO EF ∴⊥,∴当P 与O 重合时,1PA 的长度取最小值1A O ,14AO ==, 当P 与E (或F )重合时,1PA 的长度取最大值1A E 或1A F ,112A E A F ==. 1PA ∴的长度范围为⎣⎦. 故选:B . 【点睛】本题考查立体几何中动点轨迹问题的求解,关键是能够通过面面平行关系确定动点所形成的轨迹,进而通过轨迹确定最值点.8.已知双曲线()2222:10,0x y C a b a b-=>>的离心率3e =,过焦点F 作双曲线C 的一条渐近线的垂线,垂足为M ,直线MF 交另一条渐近线于N ,则MF NF=( )A .2B .12CD【答案】B【解析】画出图象,利用已知条件、双曲线的几何性质和点到直线的距离公式,即可求解. 【详解】解:由题意双曲线的离心率为:3e =,可得3c a =22243a b a +=,所以b a =y x =,如图:30MOF ∠=︒,(),0F c 则MF b==,OM a=,所以MN =,所以,31323333aMF bNF a ba a===--.故选:B【点睛】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,着重考查了转化思想,数形结合思想,以及推理与计算能力.9.已知函数()()sinf x A x=+ωϕ,π0,0,2Aωϕ⎛⎫>><⎪⎝⎭的部分图象如图所示,则使()2f a x++()0f x-=成立的a的最小正值为()A.π6B.π4C.5π12D.π2【答案】C【解析】首先由图象先求函数的解析式,由关系式()2f a x++()0f x-=可知,函数关于(),0a对称,再由函数解析式求函数的对称中心.【详解】由()()20f a x f x++-=,得()()2f a x f x+=--,得函数关于(),0a对称,由图象知2A=,()02sin1fϕ==,得1sin2ϕ=,得π6ϕ=,则()π2sin6f x xω⎛⎫=+⎪⎝⎭,由五点对应法得11ππ2π126ω+=,得2ω=, 则()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭, 由π2π6x k +=,得ππ212k x =-, 即函数的对称中心为ππ,0212k ⎛⎫-⎪⎝⎭, 当0x >时,当1k =时,x 为最小值, 此时5π12x =,即此时5π12a =. 故选:C 【点睛】本题考查三角函数的图象和性质,解析式,重点考查分析图象的能力,属于基础题型,本题的关键是求函数的解析式.10.已知数列{}n a 的前n 项和为n S ,22n n S a =-,若存在两项,n m a a ,使得64n m a a ⋅=,则12m n+的最小值为( )A .123+B .1C .3+D .75【答案】B【解析】运用数列的递推式和等比数列的定义、通项公式可得a n =2n .求得m +n =6,1216m n +=(m +n )(12m n +)16=(32n m m n ++),运用基本不等式,检验等号成立的条件,即可得到所求最小值. 【详解】S n =2a n ﹣2,可得a 1=S 1=2a 1﹣2,即a 1=2, n ≥2时,S n ﹣1=2a n ﹣1﹣2,又S n =2a n ﹣2, 相减可得a n =S n ﹣S n ﹣1=2a n ﹣2a n ﹣1,即a n =2a n ﹣1, {a n }是首项为2,公比为2的等比数列. 所以a n =2n .a m a n =64,即2m •2n =64, 得m +n =6,所以1216m n +=(m +n )(12m n +)16=(32n m m n ++)16≥(),当且仅当2n m m n=时取等号,即为m 6=,n 12=-因为m 、n 取整数,所以均值不等式等号条件取不到,则1216m n +>(,验证可得,当m =2,n =4,或m =3,n =3,,12m n+取得最小值为1.故选:B . 【点睛】本题考查数列的通项公式的求法,注意运用数列的递推式和等比数列的定义、通项公式,考查基本不等式的运用,注意检验等号成立的条件,考查化简运算能力,属于中档题. 11.已知函数()1e xf x -=,()1ln 22xg x =+,若()()f a g b =成立,则b a -的最小值为( ) A .1ln 22-B .1ln 22+C .1ln2+D .1ln2-【答案】C【解析】首先根据()()y f a g b ==,先求,a b ,再表示122ln 1y b a e y --=--,通过设函数()122ln 1x h x e x -=--,0x >,利用导数求函数的最小值.【详解】 设1a y e-=,则1ln a y =+,1ln 22by =+,则122y b e -=, 则122ln 1y b a e y --=--,令()122ln 1x h x ex -=--,0x >,则()1212x h x e x-'=-,∴()h x '递增, ∴12x =时,()0h x '=, ∴()h x '有唯一零点, ∴12x =时,()h x 取最小值, 即b a -取最小值,11ln 22h ⎛⎫=+ ⎪⎝⎭. 故选:C 【点睛】本题考查导数与函数的最值,通过构造函数求函数的最值,重点考查转化与化归的思想,计算能力,属于中档题型.12.已知点A ,B 关于坐标原点O 对称,1AB =,以M 为圆心的圆过A ,B 两点,且与直线210y -=相切,若存在定点P ,使得当A 运动时,MA MP -为定值,则点P 的坐标为( ) A .104⎛⎫ ⎪⎝⎭, B .102⎛⎫ ⎪⎝⎭,C .14⎛⎫- ⎪⎝⎭0,D .102,⎛⎫- ⎪⎝⎭【答案】C【解析】设M 的坐标为(x ,y ),然后根据条件得到圆心M 的轨迹方程为x 2=﹣y ,把|MA |﹣|MP |转化后再由抛物线的定义求解点P 的坐标. 【详解】解:∵线段AB 为⊙M 的一条弦O 是弦AB 的中点,∴圆心M 在线段AB 的中垂线上, 设点M 的坐标为(x ,y ),则|OM |2+|OA |2=|MA |2, ∵⊙M 与直线2y ﹣1=0相切,∴|MA |=|y 12-|, ∴|y 12-|2=|OM |2+|OA |2=x 2+y 214+, 整理得x 2=﹣y , ∴M 的轨迹是以F (0,14-)为焦点,y 14=为准线的抛物线, ∴|MA |﹣|MP |=|y 12-|﹣|MP | =|y 14-|﹣|MP |14+=|MF |﹣|MP |14+, ∴当|MA |﹣|MP |为定值时,则点P 与点F 重合,即P 的坐标为(0,14-), ∴存在定点P (0,14-)使得当A 运动时,|MA |﹣|MP |为定值. 故选:C. 【点睛】本题主要考查了点轨迹方程的求解,抛物线的定义,属于一般题.二、填空题13.设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________. 【答案】12【解析】因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则{12,k k λ==,所以12λ=.【考点】向量共线.14.若圆()()22341x y -+-=上存在两点A 、B ,使得60APB ∠=︒,P 为圆外一动点,则P 点到原点距离的最小值为__________. 【答案】3【解析】首先由条件求出点P 的轨迹,再求两点间距离的最小值. 【详解】对于点P ,若圆上存在两点A ,B 使得60APB ∠=︒, 只需由点P 引圆的两条切线所夹的角不小于60︒即可, 当正好是60︒时,圆心到点P 的距离2d =,故动点P 在以()3,4为圆心,半径为1与2的圆环内运动, 由()3,4到原点的距离为5,所以P 点到原点距离的最小值为523-= 故答案为:3 【点睛】本题考查直线与圆的位置关系,重点考查转化与化归,临界思想,属于中档题型,本题大概重点是求出点P 的轨迹.15.如图,在正四棱锥P ABCD -中,PO ⊥面ABCD 且22AB =,设点M ,N 分别为线段PD ,PO 上的动点,已知当AN MN +取得最小值时,动点M 恰为PD 的中点,则该四棱锥的外接球的表面积为__________.【答案】64π3【解析】如图,在PC 上取点M ',使得PM PM '=,求出4PA AC ==,PO =,解方程()224r r =+得该四棱锥的外接球的半径,即得该四棱锥的外接球的表面积. 【详解】如图,在PC 上取点M ',使得PM PM '=, ∵顶点P 在底面的投影O 恰为正方形ABCD 的中心, ∴POC POD POA POB ≌≌≌, ∴PA PB PC PD ===, ∴MN MN '=,∴||||||||AN MN AN NM '+=+, ∴当AM PC '⊥时AM '最小, ∵M 为PD 的中点, ∴M '为PC 的中点, ∴4PA AC ==,∴PO =,又∵顶点P 在底面的投影O 恰为正方形ABCD 的中心, ∴外接球的球心在PO 上,设外接球的半径为r ,则()224r r =+.解得r =. 故外接球的表面积为264π4π3r =. 故答案为:64π3.【点睛】本题主要考查几何体的外接球问题,考查几何体的表面积的计算,意在考查学生对这些知识的理解掌握水平.16.设数列{}n a 的前n 项和为n S ,若存在实数A ,使得对于任意的*n ∈N ,都有n S A <,则称数列{}n a 为“T 数列”.则以下{}n a 为“T 数列”的是__________.①若{}n a 是等差数列,且10a >,公差0d <; ②若{}n a 是等比数列,且公比q 满足1q <; ③若()212n nn a n n +=+;④若11a =,()210nn n a a ++-=. 【答案】②③【解析】根据“T 数列”的定义,分别判断四个数列是否满足存在实数A ,使得对任意的*n ∈N ,都有n S A <,从而可选出答案. 【详解】①若{}n a 是等差数列,且10a >,公差0d <, 则2122n d d S n a n ⎛⎫=+- ⎪⎝⎭, 当n →+∞时,n S →+∞, 所以数列{}n a 不是“T 数列”;②若{}n a 是等比数列,且公比q 满足1q <,所以()11111112111111n n n n a q a a q a a q a S qq q q q q-==-≤+<------, 所以数列{}n a 是“T 数列”; ③若()()121112212n n n n n a n n n n ++==-+⋅+⋅,所以()1223111111112222232212n n n S n n +=-+-++-⨯⨯⨯⨯⋅+⋅ ()11112122n n +=-<+⋅, 则数列{}n a 是“T 数列”;④在数列{}n a 中,11a =,()210nn n a a ++-=,当n 是奇数时,20n na a +-=,数列{}n a 中奇数项构成常数列,且各项均为1; 当n 是偶数时,20nna a ,即任意两个连续偶项和为0,显然当n →+∞时,n S →+∞, 所以数列{}n a 不是“T 数列”; 故答案为:②③. 【点睛】本题考查数列新定义,考查等差数列、等比数列的前n 项和公式的应用,考查裂项相消求和法的运用,考查学生的推理能力与计算求解能力,属于中档题.三、解答题17.已知ABC 的内角,,A B C 的对边分别为,,a b c ,且99cos c a b A -=. (1)求cos B ;(2)若角B 的平分线与AC 交于点D ,且1BD =,求11a c+的值. 【答案】(1)19;. 【解析】【详解】试题分析:()1方法一:根据余弦定理可得222992b c a c a b bc+--=⋅,化简求出结果即可;方法二:利用正弦定理得99sinC sinA sinBcosA -=,化简即可求得结果()2先求出23sin ABD ∠=,利用面积法,12S S S +=,结合面积公式求出结果 解析:(1)方法一:由99cos c a b A -=及余弦定理得222992b c a c a b bc +--=⋅,整理得22229a c b ac +-=,所以2221cos 29a cb B ac +-==.方法二:由99cos c a b A -=及正弦定理得9sin 9sin cos sinC A B A -=, 又()sinC sin A B sinAcosB cosAsinB =+=+, 所以1909sinAcosB sinA cosB -=⇒=. (2)由(1)可知21cos cos212sin 9ABC ABD ABD ∠=∠=-∠=,且sin 0ABD ∠>,所以2sin 3ABD ∠=, 同理可得2sin 3CBD ∠=,设,,ABC ABD CBD 的面积分别为12,,S S S ,则22111125sin 1cos 12229S ac ABC ac ABC ac ac ⎛⎫=∠=-∠=-= ⎪⎝⎭, 111sin 23S c BD ABD c =⋅∠=,211sin 23S a BD CBD a =⋅∠=,由12S S S +=得112533c a ac +=,所以1125a c +=. 18.某公司为了提高职工的健身意识,鼓励大家加入健步运动,要求200名职工每天晚上9:30上传手机计步截图,对于步数超过10000的予以奖励.图1为甲乙两名职工在某一星期内的运动步数统计图,图2为根据这星期内某一天全体职工的运动步数做出的频率分布直方图.(1)在这一周内任选两天检查,求甲乙两人两天全部获奖的概率;(2)请根据频率分布直方图,求出该天运动步数不少于15000的人数,并估计全体职工在该天的平均步数;(3)如果当天甲的排名为第130名,乙的排名为第40名,试判断做出的是星期几的频率分布直方图.【答案】(1)27,(2)80人,13.25千步,(3)星期二【解析】(1)根据统计图统计出甲乙两人合格的天数,再计算全部获奖概率; (2)根据频率分布直方图求出人数及平均步数;(3)根据频率分布直方图计算出甲乙的步数从而判断出星期几. 【详解】(1)由统计图可知甲乙两人步数超过10000的有星期一、星期二、星期五、星期天设事件A 为甲乙两人两天全部获奖,则24272()7C P A C ==(2)由图可知()0.020.030.040.0651m ++++⨯=,解得0.05m = 所以该天运动步数不少于15000的人数为()0.050.03520080+⨯⨯=(人) 全体职工在该天的平均步数为:2.50.1+7.50.2+12.50.317.50.2522.50.1513.25⨯⨯⨯+⨯+⨯=(千步)(3)因为402000.2,1302000.65÷=÷= 假设甲的步数为x 千步,乙的步数为y 千步 由频率分布直方图可得:10.650.3(10)0.06x --=-⨯,解得656x =0.20.15(20)0.05y -=-⨯,解得19y =所以可得出的是星期二的频率分布直方图. 【点睛】本题考查利用频率分布直方图来求平均数和概率,要注意计算的准确性,较简单. 19.如图,三棱柱111ABC A B C -中,平面11ACC A ⊥平面ABC ,1AA AC =,90ACB ∠=︒.(1)求证:平面11AB C ⊥平面11A B C ;(2)若160A AC ∠=︒,22AC CB ==,求四棱锥11A BCC B -的体积. 【答案】(1)见解析;(223【解析】(1)根据面面垂直性质可证得BC ⊥平面11ACC A ,从而可得1BC A C ⊥,利用平行关系可得111AC B C ⊥;根据四边形11ACC A 是菱形,可得11A C AC ⊥;根据线面垂直判定定理可得1A C ⊥平面11AB C ,根据面面垂直判定定理可证得结论;(2)由图形可知11111122A BCC B A CC B B ACC V V V ---==,可利用三棱锥体积公式求得11B ACC V -,代入可求得结果. 【详解】 (1)平面11ACC A ⊥平面ABC ,平面11ACC A 平面ABC AC =,BC ⊂平面ABC ,90ACB ∠= BC ∴⊥平面11ACC A1A C ⊂平面11ACC A 1BC AC ∴⊥ 11//B C BC 111AC B C ∴⊥ 四边形11ACC A 是平行四边形,且1AA AC = ∴四边形11ACC A 是菱形11AC AC ∴⊥ 1111AC B C C = 1A C ∴⊥平面11AB C又1AC ⊂平面11A B C ∴平面11AB C ⊥平面11A B C (2)四边形11ACC A 是菱形,160A AC ∠=,2AC =1122sin 6032ACC S ∆∴=⨯⨯⨯=11//B C BC ,11B C BC =,BC ⊥平面11ACC A ,1BC =11111111333B ACC ACC V S B C -∆∴=⨯⨯==,111111223A BCCB A CC B B ACC V V V ---∴===即四棱锥11A BCC B -【点睛】本题考查面面垂直关系的证明、四棱锥体积的求解问题,涉及到面面垂直判定定理和性质定理、线面垂直判定定理和性质定理、棱锥体积公式、体积桥求解体积的问题,属于常规题型.20.已知椭圆C :22221x y a b +=(0a b >>)的左焦点为(2,0)F -,离心率为3.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设O 为坐标原点,T 为直线3x =-上一点,过F 作TF 的垂线交椭圆于P ,Q .当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积.【答案】(1)22162x y +=;(2)【解析】【详解】试题分析:(1)由已知得:c a =2c =,所以a =再由222a b c =+可得b ,从而得椭圆的标准方程. 椭圆方程化为2236x y +=.设PQ 的方程为2x my =-,代入椭圆方程得:22(3)420m y my +--=.面积121222OPTQ OPQ S S OF y y ==⨯⋅-,而12y y -==所以只要求出m 的值即可得面积.因为四边形OPTQ 是平行四边形,所以OP QT =,即1122(,)(3,)x y x m y =---.再结合韦达定理即可得m 的值.试题解析:(1)由已知得:c a =2c =,所以a =又由222a b c =+,解得b =22162x y +=.(2)椭圆方程化为2236x y +=.设T 点的坐标为(3,)m -,则直线TF 的斜率03(2)TF m k m -==----.当0m ≠时,直线PQ 的斜率1PQ k m=,直线PQ 的方程是2x my =- 当0m =时,直线PQ 的方程是2x =-,也符合2x my =-的形式. 将2x my =-代入椭圆方程得:22(3)420m y my +--=. 其判别式22168(3)0m m ∆=++>. 设1122(,),(,)P x y Q x y , 则121212122224212,,()4333m y y y y x x m y y m m m --+==+=+-=+++. 因为四边形OPTQ 是平行四边形,所以OP QT =,即1122(,)(3,)x y x m y =---.所以1221221233{43x x m my y mm -+==-++==+,解得1m =±.此时四边形OPTQ 的面积121222OPTQ OPQ S S OF y y ==⨯⋅-==【考点定位】1、直线及椭圆的方程;2、直线与圆锥曲线的位置关系;3、三角形的面积.21.已知函数()()()2ln 11af x x a x a=++>+. (1)()f x 的导函数记作f x ,且fx 在()1,-+∞上有两不等零点,求a 的取值范围;(2)若()f x 存在两个极值点,记作1x ,2x ,求证:()()124f x f x +>. 【答案】(1)1,2;(2)证明见解析. 【解析】(1)先求fx ,令0f x ,转化为二次方程根的分布问题,结合二次函数的性质即可得出结论;(2)由(1)知,12a <<,1x ,2x 是0fx的两个不同实根,由韦达定理可得1x ,2x 的关系式,把要证明的结论()()124f x f x +>等价化简变形后换元转化为证明不等式()22ln 1201a a -+->-,构造函数()22ln 2g t t t=+-,利用导数判断单调性即可证明结论成立. 【详解】解:(1)()()()()()22221211x a a af x x x a x x a +-=-=+'+++,1x >-, ()()()()22201x a a f x x x a +-==++',令()()22h x x a a =+-.由题意,()0{10h ∆>->,解得:12a <<.所以a 的取值范围为1,2. (2)由(1)知,12a <<, 由()()()()22201x a a f x x x a +-==++',即()220x a a +-=,得()12120{2x x x x a a +==-,()()()()12121222ln 11a af x f x x x a x a x ⎡⎤+=++++⎣⎦++ ()()()1212122121222ln 1a x x a x x x x x x a x x a ++=++++++()()2224ln 12a a a a a =-+-+()22ln 121a a ⎡⎤=-++⎣⎦-,要证明()()124f x f x +>,则只需证明()22ln 1201a a -+->-, 令1a t -=,由()1,2a ∈可得()0,1t ∈, 当()0,1t ∈时,()22ln 2g t t t =+-,()()2210t g t t-'=<, 所以g t 在0,1上是减函数,所以()()10g t g >=,适合题意. 综上,()()124f x f x +>. 【点睛】本题考查函数的零点分布和极值不等式证明,关键在于等价变形转化为常见的问题,属于难题.22.在平面直角坐标系xOy 中,曲线C 的参数方程为cos 1sin x r y r ϕϕ⎧=⎪⎨=+⎪⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的坐标方程为sin 13πρθ⎛⎫-= ⎪⎝⎭,若直线l 与曲线C 相切. (1)求曲线C 的极坐标方程;(2)在曲线C 上取两点M 、N 于原点O 构成MON ∆,且满足6MON π∠=,求面积MON ∆的最大值.【答案】(1)4sin 3πρθ⎛⎫=+ ⎪⎝⎭; (2)2.【解析】(1)求出直线l 的直角坐标方程为y =+2,曲线C ,1),半径为r 的圆,直线l 与曲线C 相切,求出r =2,曲线C 的普通方程为(x 2+(y ﹣1)2=4,由此能求出曲线C 的极坐标方程.(2)设M (ρ1,θ),N (ρ2,6πθ+),(ρ1>0,ρ2>0),由126MON S OM ON sin π==2sin (23πθ+)MON 面积的最大值.【详解】(1)由题意可知将直线l 的直角坐标方程为2y =+,曲线C 是圆心为),半径为r 的圆,直线l 与曲线C 相切,可得:2r ==;可知曲线C 的方程为(()2214x y +-=,∴曲线C 的极坐标方程为2cos 2sin 0ρθρθ--=,即4sin 3πρθ⎛⎫=+ ⎪⎝⎭. (2)由(1)不妨设()1,M ρθ,2,6N πρθ⎛⎫+ ⎪⎝⎭,()120,0ρρ>>21211sin ?4sin ?sin 2sin cos 26432MON S OM ON πππρρθθθθθ∆⎛⎫⎛⎫===++=+ ⎪ ⎪⎝⎭⎝⎭sin22sin 23πθθθ⎛⎫=+=++ ⎪⎝⎭当12πθ=时,2MON S ∆≤MON ∴∆面积的最大值为2+.【点睛】本题考查曲线的极坐标方程的求法,考查三角形的面积的最大值的求法,考查参数方程、极坐标方程、直角坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.23.已如函数()()2,f x x ax b a b =++∈R . (1)2a =,0b =,解不等式()4f x x >-;(2)m ,n 是()f x 的两个零点,若1a b +<,求证:1m <,1n <.【答案】(1){4x x <-或1}x >;(2)证明见解析.【解析】(1)由条件可知不等式等价于224x x x +>-,根据公式去绝对值解不等式;(2)根据韦达定理表示,m n a mn b +=-=,代入1a b +<后,利用含绝对值三角不等式变形证明不等式.【详解】(1)当2a =,0b =时,224x x x +>-⇔22242x x x x x --<-<+, 222424x x x x x x⎧--<-⎨+>-⎩ 不等式的解集为{}41x x x <->或. (2)依题意得m n a mn b +=-⎧⎨=⎩, ∴m n a +=,mn b =.∵1a b +<,∴1m n mn ++<.又∵m n m n -≤+, ∴10m n mn -+-<,()()110m n -+<. ∴1m <. 同理可证,1n <.【点睛】本题考查解含绝对值不等式,含绝对值三角不等式的应用,重点考查转化与化归的思想,计算能力,属于中档题型.。

2024年安徽省合肥市中考模拟考试最后一卷语文题

2024年安徽省合肥市中考模拟考试最后一卷语文题

2024年合肥市中考“最后一卷”(模拟卷)语文试题注意事项:1.你拿到的试卷满分为150分(其中卷面书写占5分),考试时间150分钟。

2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页(因报纸出版需要,页数有调整)3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的;4.考试结束后,请将“试题卷”和“答题卷”一并交回。

—、语文积累与综合运用(35分)1.默写。

(10分)(1)中国人用中国人的眼睛,欣赏中国美景。

其中不乏有奇美壮丽的塞外风光“ , ”(王维《使至塞上》);绚丽多彩的江南秀美画卷“ , ”(白居易《忆江南 江南好》)。

(2)君子修行,道阻且长。

真正的君子,面对不良诱惑,坚守本心,洁身自好,不与世俗同流合污“ , ”(周敦颐《爱莲说》);即使身处困境,仍初心不改,最终峰回路转,出现转机“ , ”(陆游《游山西村》);困难突然降临,依然勇敢攀登高峰,满怀乐观自信、积极向上的豪情“ , ”(杜甫《望岳》)。

2.请运用积累的知识,完成(1)—(3)题。

(12分)因为东关离城远,大清早大家就起来。

昨夜预定好的三道明瓦窗的大船,已经泊在河埠头,船椅、饭菜、茶炊、点心盒子,都在陆续搬下去了。

我笑着跳着,催他们要搬得快。

忽然,工人的脸色很谨肃了,我知道有些qī跷,四面一看,父亲就站在我背后。

"去拿你的书来。

"他慢慢地说。

这所谓"书",是指我开蒙时候所读的《_____》。

因为我再没有第二本了。

我们那里上学的岁数是多拣单数的,所以这使我记住我其时是七岁。

我忐忑着,拿了书来了。

他使我同坐在堂中央的桌子前,教我一句一句地读下去。

我担着心,一句一句地读下去。

两句一行,大约读了二三十行罢,他说:"给我读shú。

背不出,就不准去看会。

"他说完,便站起来,走进房里去了。

我似乎从头上浇了一盆冷水。

但是,有什么法子呢?自然是读着,读着,强记着,——而且要背出来。

第一中学2020高三语文下学期3月限时训练试题含解析

第一中学2020高三语文下学期3月限时训练试题含解析
【答案】①“莘莘学子”改为“学子";②“加冠之年”改为“成年”;③“热切"改为“殷切”;④“垂念"改为“感念”;⑤“希望”改为“祝愿”。
【解析】
【详解】本题考查语言表达得体的能力,这类题目解答时要依据语境,看准对象,注意适应场合,把握语体特征,明确关键词的谦敬和语意轻重,仔细判断.
解答此类题,考生要注意人物关系,以便确定适用对象以及谦称、敬称等.其中,“莘莘学子”,指众多的学生,句中指“一名”学生,可用“学子”。“加冠之年”指男子二十岁,而文中指十八岁,故改为“成年"。用于长辈的期待要用“殷切”。“垂念",敬辞,称对方(多指长辈或上级)对自己的关心挂念,句中指自己感恩师恩,可用“感念”。同学之间是平辈,仪式上的发言稿里这种正式场合,一般不说“希望”对方“取得优异的成绩,考上理想的大学”,而应该说成“祝福”“祝愿"。
二、论述类文本阅读(9 分)
阅读下面的文字,完成各题。
构建人类命运共同体,是有效解决当今世界和平与发展问题的中国方案。面对世界前所未有之大变局,人类命运共同体理念引起了世界各国日益广泛的关注和日趋深入的讨论。
杜维明从儒家道德与“文明对话”的角度讨论了建立共同体的可能性。在他看来, 共同体”这个词的理想含义在于,“人们在一起共同生活、分享一种共同价值和实实在在的公民道德,并通过致力于实现公善而联合为一体。然而,这样一种统一体允许生活方式的多样性和信仰差异,只要这种多样性和差异不致侵害他者的基本自由和权利”。对于儒家而言,道徳是形成一个良好社会的必要前提。因此,在儒家“修齐治平”的语境下,“人类命运共同体”的概念首先展现为一个道德共同体,杜维明称其为“信赖社群".对于一个“信赖社群"而言,人与人的交往不仅基于秩序的建构,更在于内心的彼此信赖与道德的影响。

安徽省合肥市2020届高三高考数学(理科)三模试卷及答案解析

安徽省合肥市2020届高三高考数学(理科)三模试卷及答案解析

安徽省合肥市2020届高三高考数学(理科)三模试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知R 为实数集,集合{}02A x x =<<,{}3B x x =<,则()R C A B =( )A.{}23x x << B.{}23x x ≤<C.{}023x x x <≤<或D.{}023x x x ≤≤<或2.若复数z 1,z 2在复平面内对应的点关于原点对称,z 1=1+i ,则12z z ⋅=( ) A.﹣2B.﹣2iC.2D.2i3.在新冠肺炎疫情联防联控期间,某居委会从辖区内A ,B ,C 三个小区志愿者中各选取2人,随机安排到这三个小区,协助小区保安做好封闭管理和防控宣传工作.若每个小区安排2人,则每位志愿者不安排在自己居住小区,且每个小区安排的志愿者来自不同小区的概率为( ) A.59B.49C.445D.21354.双曲线22221(0,0)x y a b a b -=>>的一个顶点到一条渐近线的距离为2a ,则双曲线的离心率为( )C.2D.35.“关于x 的方程()212xxa +=有实数解”的一个充分不必要条件是( ) A.113a << B.12a ≥C.213a << D.112a ≤<6.已知tan 3πα⎛⎫+= ⎪⎝⎭=( )A.19C.137.公元前1650年的埃及莱因德纸草书上载有如下问题:“十人分十斗玉米,从第二人开始,各人所得依次比前人少八分之一,问每人各得玉米多少斗?”在上述问题中,第一人分得玉米( )A.10101010887⨯-斗B.9101010887⨯-斗C.8101010887⨯-斗 D.91070881⨯-斗 8.已知△ABC 三个内角A ,B ,C 的对边分别为a ,b ,c ,若a +b =2c cos B ,则2b c a b ⎛⎫+ ⎪⎝⎭的最小值为( )A. B.3C. D.49.某校高一年级研究性学习小组利用激光多普勒测速仪实地测量复兴号高铁在某时刻的速度,其工作原理是:激光器发出的光平均分成两束射出,在被测物体表面汇聚,探测器接收反射光.当被测物体横向速度为零时,反射光与探测光频率相同.当横向速度不为零时,反射光相对探测光会发生频移p 2sin f νϕλ=,其中v 为测速仪测得被测物体的横向速度,λ为激光波长,φ为两束探测光线夹角的一半,如图,若激光测速仪安装在距离高铁1m 处,发出的激光波长为1550nm (1nm =10﹣9m ),测得某时刻频移为9.030×109(1/h ),则该时刻高铁的速度约等于( )A.320km/hB.330km/hC.340km/hD.350km/h10.在长方体ABCD ﹣A 1B 1C 1D 1中,AB =AD =6,AA 1=2,M 为棱BC 的中点,动点P 满足∠APD =∠CPM ,则点P 的轨迹与长方体的面DCC 1D 1的交线长等于( )A.23πB.πC.43π11.已知不等式e x ﹣x ﹣1>m [x ﹣ln (x +1)]对一切正数x 都成立,则实数m 的取值范围是( )A.,3e ⎛⎤-∞ ⎥⎝⎦B.,2e ⎛⎤-∞ ⎥⎝⎦C.(﹣∞,1]D.(﹣∞,e ]12.在矩形ABCD 中,AB =4,BC =G ,H 分别为直线BC ,CD 上的动点,AH 交DG 于点P .若2DH DC λ=,12CG CB λ=(0<λ<1),矩形ABCD 的对称中心M 关于直线AD 的对称点是点N ,则PMN 的周长为( )A.12B.16C.24λD.32λ第II 卷(非选择题)二、填空题(题型注释)按年级分层抽样,若抽取该校学生80人中,高二学生有27人,则表中a =_____.14.在544x x ⎛⎫-+ ⎪⎝⎭的展开式中,x 2的系数为______. 15.已知数列{}n a 中n a n =,数列{}n b 的前n 项和21nn S =-.若数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T M <对于n N *∀∈都成立,则实数M 的最小值等于_____.16.已知三棱锥A ﹣BCD 的三条侧棱AB ,AC ,AD 两两垂直,其长度分别为a ,b ,c .点A 在底面BCD 内的射影为O ,点A ,B ,C ,D 所对面的面积分别为S A ,S B ,S C ,S D .在下列所给的命题中,正确的有______.(请写出所有正确命题的编号) ①三棱锥A ﹣BCD 外接球的表面积为(a 2+b 2+c 2)π; ②S A •S △BCO =S D 2; ③S A 3<S B 3+S C 3+S D 3;④若三条侧棱与底面所成的角分别为α1,β1,γ1,则sin 2α1+sin 2β1+sin 2γ1=1; ⑤若点M 是面BCD 内一个动点,且AM 与三条侧棱所成的角分别为α2,β2,γ2,则cos 2α2+cos 2β2+cos 2γ2=1.三、解答题(题型注释)17.已知函数()cos (sin )f x x x x ωωω=+(ω>0). (1)求函数f (x )的值域;(2)若方程f (x [0,π]上恰有两个实数解,求ω的取值范围. 18.如图,边长为2的等边ABC 所在平面与菱形11A ACC 所在平面互相垂直,11AC ,M 为线段AC 的中点.(1)求证:平面1BMC ⊥平面11A BC ; (2)求点C 到平面11A BC 的距离.19.某市积极贯彻落实国务院《“十三五”节能减排综合工作方案》,空气质量明显改善.该市生态环境局统计了某月(30天)空气质量指数,绘制成如下频率分布直方图.已知空气质量等级与空气质量指数对照如下表:(1)根据频率分布直方图估计,在这30天中,空气质量等级为优或良的天数; (2)根据体质检查情况,医生建议:当空气质量指数高于90时,市民甲不宜进行户外体育运动;当空气质量指数高于70时,市民乙不宜进行户外体育运动(两人是否进行户外体育运动互不影响).①从这30天中随机选取2天,记乙不宜进行户外体育运动,且甲适宜进行户外体育运动的天数为X ,求X 的分布列和数学期望;②以该月空气质量指数分布的频率作为以后每天空气质量指数分布的概率(假定每天空气质量指数互不影响),甲、乙两人后面分别随机选择3天和2天进行户外体育运动,求甲恰有2天,且乙恰有1天不宜进行户外体育运动的概率.20.已知函数()x x f x e e ax -=--(e 为自然对数的底数),其中a ∈R. (1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 21.在平面直角坐标系xOy 中,已知点P 是椭圆E :2214x y +=上的动点,不经过点P 的直线l 交椭圆E 于A ,B 两点.(1)若直线l 经过坐标原点,证明:直线P A 与直线PB 的斜率之积为定值;(2)若0OA OB OP ++=,直线l 与直线PO 交于点Q ,试判断动点Q 的轨迹与直线P A 的位置关系,并说明理由.22.在平面直角坐标系中,直线m 的参数方程为 cos sin x t y t αα=⎧⎨=⎩(t 为参数,0≤α<π).以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系.曲线E 的极坐标方程为ρ2+2ρcos θ﹣3=0,直线m 与曲线E 交于A ,C 两点.(1)求曲线E 的直角坐标方程和直线m 的极坐标方程;(2)过原点且与直线m 垂直的直线n ,交曲线E 于B ,D 两点,求四边形ABCD 面积的最大值.23.已知函数()|22||1|f x x x =--+的最小值为m . (1)求m 的值;(2)若0a b c m +++=,证明:2222420a b c b c ++-++.参考答案1.D【解析】1.先求得集合{|0R C A x x =≤或2}x ≥,再结合集合的交集运算,即可求解. 由题意,集合{}02A x x =<<,{}3B x x =<, 则{|0R C A x x =≤或2}x ≥,所以()R C A B ={0x x ≤或23}x ≤<.故选:D. 2.B【解析】2.首先求2z ,再根据运算法则求12z z ⋅的值. 由条件可知21z i =--()()12112z z i i i ∴⋅=+--=-,故选:B 3.C【解析】3.基本事件总数222364233390C C C n A A =⋅=,每位志愿者不安排在自己居住小区,且每个小区安排志愿者来自不同小区包含的基本事件个数为1111112221118m C C C C C C ==,由此能求出每位志愿者不安排在自己居住小区,且每个小区安排志愿者来自不同小区的概率.解:从辖区内A ,B ,C 三个小区志愿者中各选取2人,随机安排到这三个小区,每个小区安排2人,则基本事件总数222364233390C C C n A A =⋅=, 每位志愿者不安排在自己居住小区,且每个小区安排志愿者来自不同小区包含的基本事件个数为1111112221118m C C C C C C ==,则每位志愿者不安排在自己居住小区,且每个小区安排的志愿者来自不同小区的概率为:849045m P n ===, 故选:C 4.D【解析】4.写出其中一条渐近线方程by x a=,整理成一般式0bx ay -=,顶点(),0a 到直线0bx ay -=的距离公式即可求解.渐近线方程为by x a=,即0bx ay -=, 所以顶点(),0a 到直线0bx ay -=的距离2a d ==即12b c =,所以a c =离心率c e a ==故选:D 5.C【解析】5.首先根据题意得到221xxa =+,令2x t =,()111f t t =-+,再根据()f t 的范围结合选项即可得到答案.由题知:()212xxa +=,221xxa =+,令21x t =≥,()1111t f t t t ==-++, 因为1t ≥,11012t <≤+,所以()1,12f t ⎡⎫∈⎪⎢⎣⎭. 故关于x 的方程()212xxa +=有实数解”的一个充分不必要条件是213a <<. 故选:C 6.B【解析】6.到1tan 3πα⎛⎫ ⎪ ⎪-⎛⎫ ⎪- ⎪ ⎪⎝⎭⎝⎭,进而注意到2tan tan 333πππαα⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,并利用两角和差的正切公式计算.11tan 3πα-⎛⎫⎪⎪=-=-⎛⎫ ⎪- ⎪ ⎪⎝⎭⎝⎭2tan tan 333πππαα+⎡⎤⎛⎫⎛⎫-=+-==- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ ,故选:B. 7.B【解析】7.直接根据等比数列的求和公式求解即可. 由题意可知,每人所得玉米数构成公比为78的等比数列;且数列的前10 项和为10; 设首项为a ;则1071810718a ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝=-⎭-;∴910101010110108878718a ⨯⨯==--. 故选:B . 8.B【解析】8.应用余弦定理化角为边,然后变形后应用基本不等式可得最小值.由余弦定理得2222cos 22a c b a b c B c ac +-+==⨯,21c ab b⎛⎫=+ ⎪⎝⎭,∴2113b a b c b a b a =+⎛⎫+ ⎭+⎝⎪≥=,当且仅当b a a b =即a b =时等号成立,所以2b c a b ⎛⎫+ ⎪⎝⎭的最小值为3.故选:B . 9.D【解析】9.先计算sin ϕ,再根据所给公式计算v 即可.3sin ϕ-==故99.03010⨯=即9.03=故349982.48v =≈米/小时350km /h ≈,故选:D 10.A【解析】10.根据∠APD =∠CPM ,求出在平面11DCC D 内P 点性质,确定其轨迹后可计算出交线长. 显然在长方体1111ABCD A B C D -中,AD ⊥平面11DCC D ,PD ⊂平面11DCC D ,∴AD PD ⊥,同理MC PC ⊥,tan tan AD CMAPD CPM PD PC∠==∠=, 因为M 是BC 中点,所以1122CM BC AD ==,∴2PD PC =,在平面11DCC D 内以DC 中x 轴,棱DC 的中垂线为y 轴建立平面直角坐标系,如下图,则(3,0),(3,0)D C -,设(,)P x y ,由2PD PC =得2222(3)4(3)x y x y ⎡⎤++=-+⎣⎦,整理得22(5)16x y -+=,所以P 为在以(5,0)H 为圆心,4为半径的圆上,由于14HC =<,因此该圆与11C D 交点,设交点为Q ,圆与CD 交于点K ,则P 点在侧面11DCC D 的轨迹就是圆弧QK ,作QN CD ⊥于N ,则12QN CC ==, 又4HQ =,∴6QHN π∠=,QK 的长度为2463ππ⨯=, 故选:A .11.C【解析】11.设()()1ln 1xf x e x m x x =----+⎡⎤⎣⎦,求出函数的导数,通过讨论m 的取值范围,结合函数的单调性判断.由题意可知,当0x >时,()1ln 10xe x m x x ----+>⎡⎤⎣⎦恒成立,设()()1ln 1xf x e x m x x =----+⎡⎤⎣⎦,则()1111xf x e m x ⎛⎫'=--- ⎪+⎝⎭,()()21x m f x e x ''=-+, ①当0m ≤时,()0f x ''>恒成立,()f x '∴单调递增,()00f '=,0x ∴>时,()()00f x f ''>=,()f x ∴单调递增,又()00f =,0x ∴>时,()()00f x f >=,符合题意,②0m >时,()()321x mf x e x '''=++,()0f x '''∴>恒成立,()f x ''单调递增,()01f m ''=- ,(ⅰ)当10m -≥,即01m <≤时,与①同理,符合题意; (ⅱ)当10m -<,即1m 时,()00f ''<, 当x →+∞时,()0f x ''>,且()f x ''连续,∴由零点存在性定理可知,存在()00x ∈+∞,,使得()00f x ''=00x x ∴<<时,()0f x ''<,()f x '递减,又()00f '=,00x x ∴<<时,()0f x '<,()f x 递减,()00f =,00x x ∴<<时,()0f x <,不合题意,综上,m 的范围是(],1-∞. 故选:C 12.A【解析】12.分别以MN 和AD 所在的直线为,x y 轴建立平面直角坐标系,利用点斜式可写出直线AH 的方程和直线DG 的方程,然后将其联立成方程组求出点P 的坐标,进一步得到点P 的坐标满足2211612x y +=,最后结合椭圆的定义,求得PMN 的周长.解:分别以MN 和AD 所在的直线为,x y 轴建立如图所示的平面直角坐标系,则(0,(0,(2,0),(2,0)A D M N --,因为2DH DC λ=,12CG CB λ=(0<λ<1),所以(8,(4,))H G λλ-, 所以直线AH的方程为82y x x λλ=-=- 直线DG的方程为y x =+=+,联立这两条件直线方程可得点28(1P λλ+ 所以2222224222222222228()6412(1)412(1)111161216(1)12(1)(1)(1)λλλλλλλλλλλλ-+-+++++=+===++++即点P 的坐标满足2211612x y +=,所以点P 的轨迹是以O 为对称中心,,N M分别为左右焦点的椭圆,其中4,2a b c ===,则椭圆的定义可知,28PM PN a +==所以PMN 的周长为8412PM PN MN ++=+= 故选:A 13.480;【解析】13.根据分层抽样满足每个个体被抽到的概率是相等的,建立等量关系式,求得结果. 根据题意,由分层抽样方法得8027592528563517520563517a =++++++,解得480a =, 故答案为:480. 14.﹣960【解析】14.把式子化为二项式,然后写出二项展开式通项公式,令x 的指数为2,求得项数后得系数.10544x x =⎛⎫ ⎪⎝-+⎭,10511010(2)rr r r r rr T C C x --+⎛==- ⎝,令52r ,3r =,所求系数为3310(2)960C -=-.故答案为:960-. 15.4【解析】15.由数列{}n b 的前n 项和21nn S =-得,12n nb -=,则112n n n a n b -⎛⎫=⋅ ⎪⎝⎭,利用错位相减法得到12442n n n T -+=-<,即可得出结论. 由数列{}n b 的前n 项和21nn S =-得,当2n ≥时,有()()11121212nn n n n n b S S ---=-=---=,当1n =时,有11211S b =-==也适合上式, 故12n nb -=,n a n =,112n n n a n b -⎛⎫∴=⋅ ⎪⎝⎭,()0121111112312222n n T n -⎛⎫⎛⎫⎛⎫⎛⎫∴=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()12311111123222222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,由()()12-得:1231111111111211222222212nn n nn T n n -⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=+++++-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-()1222nn ⎛⎫=-+⋅ ⎪⎝⎭,即12442n n n T -+=-<. 又n T M <对于n N *∀∈都成立, 所以4M ≥,故实数M 的最小值等于4. 故答案为:4. 16.①②④⑤【解析】16.建立空间直角坐标系,利用坐标法可以得到⑤正确;当M 与O 重合时,注意线面角与线线角的关系,即可得到④正确;由'Rt O OA 与'Rt O AD 相似,进而可得②正确;构造长方体,可得①正确;特殊排除可知③错误.如图所示建立空间直角坐标系,设(),,M x y z ,并构造如图所示的长方体.ABFC DGHE - 连接DO 并延长交BC 于O',则'AO BC ⊥,则AM =222222222222cos cos cos 1x y z AM AM AM αβγ⎛⎫⎪++=++= ⎪⎝⎭,故⑤正确; 当M 与O 重合时,结论仍然正确,由于各侧棱与底面所成的角与侧棱与AO 所成的角互为余角,故④正确;由于'Rt O OA 与'Rt O AD 相似,∴2'O A O O O D '=⨯',∴2A BCOD S S S ⋅=,故②正确;三棱锥A ﹣BCD 外接球的的直径是长方体ABFC DGHE -的对角线2222,,AH AH a b c =++外接球的表面积为()()2222242R R a b c πππ==++,故①正确;当1a b c ===时,33331128BCDS S S ⎛⎫==== ⎪⎝⎭, 可得33338B C D S S S ++=,而33A S ==⎭3333A B C D S S S S >++,故③错误, 综上,正确的是①②④⑤, 故答案为:①②④⑤.17.(1);(2)5463ω≤<.【解析】17.(1)利用二倍角公式和两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得值域;(2)解方程()2f x =,由第二小的正数解[0,]π∈,第三小的正数解大于π可得出ω的范围.(1)2()cos (sin )sin cos f x x x x x x xωωωωωω==+)1sin 2cos 2122x x ωω=++sin(2)32x πω=++, 因为sin(2)[1,1]3x πω+∈-,所以()f x的值域是22,]22. (2)()sin(2)3f x x πω=+=,sin(2)03x πω+=,23x k πωπ+=,显然0x ≠,32k x ππω-=,k Z ∈,因为方程在[0,]π上只有两个解,又0>ω,所以232332πππωπππω⎧-⎪≤⎪⎪⎨⎪-⎪>⎪⎩,解得5463ω≤<.18.(1)证明见解析;(2【解析】18.(1)首先根据四边形11A ACC为菱形,11AC 得到1ACC ∠△为等边三角形,从而易证1AC C M ⊥,AC BM ⊥,得到AC ⊥平面1BMC ,又因为11//AC A C ,所以11A C ⊥平面1BMC ,再利用面面垂直的判定即可得到平面1BMC ⊥平面11A BC .(2)首先根据平面11A ACC ⊥平面ABC AC =,且1C M AC ⊥得到1C M ⊥平面ABC .再以M 为原点,MB ,MC ,1MC 分别为x ,y ,z 轴建立空间直角坐标系,利用向量法求解点到面的距离即可.(1)因为四边形11A ACC 为菱形,所以11A C AC ⊥.又因为11AC =,所以160ACC ∠=,即1ACC ∠△为等边三角形. 因为11AC CC =,M 为线段AC 的中点,所以1AC C M ⊥. 因为AB BC =,M 为线段AC 的中点,所以AC BM ⊥.又因为1C M BM M =,所以AC ⊥平面1BMC .又因为11//AC A C ,所以11A C ⊥平面1BMC .又11A C ⊂平面11A BC ,所以平面1BMC ⊥平面11A BC . (2)因为平面11A ACC ⊥平面ABC AC =,且1C M AC ⊥, 所以1C M ⊥平面ABC .以M 为原点,MB ,MC ,1MC 分别为x ,y ,z 轴建立空间直角坐标系, 如图所示:()0,1,0C,)B,(1C,(10,A -,则()110,2,0AC =,(1BC =-,(10,CC =-,设平面11A BC 的法向量(),,n x y z =,则1112030n AC y n BC ⎧⋅==⎪⎨⋅=-=⎪⎩,令1x =,则()1,0,1n = 所以点C到平面11A BC 的距离1322CC n d n⋅===. 19.(1)28天;(2)①分布列见解析,25;②56750000.【解析】19.(1)利用频率分布直方图求出轻度污染的天数,然后说明空气质量等级为优或良的天数; (2)①在这30天中,乙不宜进行户外体育运动,且甲适宜进行户外体育运动的天数共6天,求出概率,得到分布列,然后求期望;②甲不适宜进行户外体育运动的概率为110,乙不宜进行户外体育运动的概率为310,然后求解概率即可.解:(1)由频率分布直方图可得,空气质量指数在(]90,110的天数为2天,所以估计空气质量指数在(]90,100的天数为1天,故在这30天中空气质量等级属于优或良的天数为28天.(2)①在这30天中,乙不宜进行户外体育运动,且甲适宜进行户外体育运动的天数共6天,∴()224230920145C P X C ===,()11624230481145C C P X C ⋅===,()262301229C P X C ===, ∴X 的分布列为∴2()012145145295E X =⨯+⨯+⨯=. ②甲不宜进行户外体育运动的概率为110,乙不宜进行户外体育运动的概率为310, ∴2223219375671010101050000P C C ⎛⎫=⋅⋅⋅⋅⋅=⎪⎝⎭. 20.(1)答案见解析(2)证明见解析.【解析】20.(1)求导后,对a 分类讨论,利用导数符号可得函数的单调性; (2)根据1()(ln )2ln g x f x x x x==--在(0,)+∞上为增函数,可得当*n N ∈且2n ≥时,111ln 11n n n n >--+,再利用裂项求和可证不等式. (1)因为()x xf x e e a -'=+-,且2x x e e -+≥,所以当2a ≤时,()0f x '≥,所以()f x 在R 上为增函数,当2a >时,由()0f x '>,得0x x e e a-+->,所以2()10x xe ae -+>,所以22()124x a a e ->-,所以22x ae ->或22xa e -<-,所以xe >xe <所以24ln2aa x 或24ln2aa x ,由()0f x '<,得0x x e e a -+-<,解得2244ln22a a aa x,所以()f x 在⎛⎝⎭上递减,在,ln ⎛-∞ ⎝⎭和⎛⎫+∞ ⎪ ⎪⎝⎭上递增. (2)由(1)知,当2a =时,()2x xf x e e x -=--在R 上为增函数,所以1()(ln )2ln g x f x x x x==--在(0,)+∞上为增函数, 所以当*n N ∈且2n ≥时,13()(2)22ln 2ln 422g n g ≥=--=-=32ln 04e >,即12ln 0n n n-->,所以212211ln 1(1)(1)11n n n n n n n >==---+-+, 所以211111ln 2ln 23ln 34ln 4ln ni i i n n==++++∑ 1111111121213131414111n n >-+-+-++--+-+-+-+ 111121n n =+--+2322(1)n n n n --=+, 所以22132ln 2(1)ni n n i i n n =-->+∑. 21.(1)证明详见解析;(2)动点Q 的轨迹方程是2241x y +=,直线PA 与动点Q 的轨迹相切.【解析】21.(1)根据对称性设点,A B 的坐标,再设()00,P x y ,代入斜率公式,化简即可;(2)由条件可知2OP OQ =-,利用点()00,P x y 的坐标满足220014x y +=,代入可得点Q 的轨迹方程,设()22,B x y ,直线OB 与直线PA 交于点M ,则由条件可知22,22xy M ⎛⎫-- ⎪⎝⎭,然后分类讨论两种情况,当20y ≠和20y =,分别求直线PA 的方程,判断直线与曲线的位置关系.(1)设()00,P x y ,()11,A x y ,()11,B x y --1010PA y y k x x -=-,1010PB y y k x x --=-- ()()()()()222210101010222210101101144PA PB x x y y y y y y k k x x x x x x x x ------⋅=⨯===------, 所以直线PA 与直线PB 的斜率之积为定值14-; (2)设(),Q x y ,()00,P x y0OA OB OP ++=,∴点O 是ABP △的重心,且2OA OB OQ +=,2OP OQ ∴=-,即02x x =-,02=-y y ,220014x y +=,即2241x y +=, ∴动点Q 的轨迹方程是2241x y +=设()22,B x y ,直线OB 与直线PA 交于点M ,则点M 为线段PA 的中点,且22,22xy M ⎛⎫-- ⎪⎝⎭,①当20y ≠时,220022111414x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减得:()()22221010104x x y y -+-=,化简得1010210102144y y x x x x x y y y -+=-⋅=--+,1021024PAy y x k x x y -∴==--, ∴直线PA 的方程为2222242y x x y x y ⎛⎫+=-+ ⎪⎝⎭,整理得2224x x y y +=-,将2224x x y y +=-代入动点Q 的轨迹方程得()()2222222244410x y x x x y +++-=,(Δ) 将222214x y +=代入(Δ),整理得2222440x x x x ++= ,222216160x x ∆=-=,∴直线PA 与动点Q 的轨迹相切;②当20y =时,()2,0B 或()2,0-,且PA k 不存在,即直线PA ⊥x 轴, 若()2,0B ,则()00,P x y ,()00,A x y -,002,22x y Q +⎛⎫∴- ⎪⎝⎭ 2OP OQ =-,00222x x +∴=-⨯,解得:01x =-, 同理可得,若()2,0B -,解得01x =,因此直线PA 的方程为1x =±,∴直线PA 与动点Q 的轨迹相切,综上所述,直线PA 与动点Q 的轨迹相切.22.(1)()2214x y ++=,()R θαρ=∈;(2)7【解析】22.(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用极径的应用和三角函数关系式的恒等变换求出结果.(1)曲线E 的极坐标方程为22cos 30ρρθ+-=,所以曲线E 的直角坐标方程为()2214x y ++=,因为直线m 的参数方程为 cos sin x t y t αα=⎧⎨=⎩(t 为参数,0απ≤<) 所以tan y x α=⋅,所以直线m 的极坐标方程为()R θαρ=∈ .(2)设点,A C 的极坐标分别为()()12,,,ραρα. 由22cos 30θαρρθ=⎧⎨+-=⎩ 可得22cos 30ρρα+-=, 12122cos ,3ρραρρ∴+=-=-,12AC ρρ∴-==同理得BD =设四边形ABCD 面积为S ,221cos 3sin 372S AC BD αα=⋅=≤+++=,当且仅当22cos 3sin 3αα+=+,即4πα=或3 4π时,等号成立,∴四边形ABCD 面积的最大值为7.23.(1)2m =-;(2)证明见解析;【解析】23. (1)写出分段函数解析式,画图求得函数最小值;(2)结合(1)可得2a b c ++=,然后配凑柯西不等式证明2222420a b c b c ++-++.(1)解:3,1()22113,113,1x x f x x x x x x x -<-⎧⎪=--+=--<⎨⎪-⎩,作出函数的图象如图:根据函数图象得,()f x 的最小值为2-,2m ∴=-;(2)证明:由(1)知,2a b c ++=,22222222[(1)(2)](111)[1(1)1(2)1](1)9a b c a b c a b c ∴+-+++++-++=+++=, 222(1)(2)3a b c ∴+-++,当且仅当12a b c =-=+,2a b c ++=,即1a =,2b =,1c =-时等号成立, 2222420a b c b c ∴++-++.。

安徽省合肥市第一中学2025届高三上学期第二次教学检测数学试卷(含解析)

安徽省合肥市第一中学2025届高三上学期第二次教学检测数学试卷(含解析)

合肥一中2024~2025学年度高三第二次教学质量检测数学试题(考试时间:120分钟 满分:150分)注意事项:1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答题时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效.4.考试结束,务必将答题卡和答题卷一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合,,则图中阴影部分所表示的集合是( )A .B .C .D .2.命题“,使”的否定是( )A .,使B .不存在,使C .,使D .,使3.函数的部分图象大致为( )A .B.{}2,1,0,1,2M =--(){}22log 1N y y x ==+{}2,1--{}2,1,0--{}0,1,2{}1,0-x ∃∈R 210x x +-≠x ∃∈R 210x x +-=x ∈R 210x x +-≠x ∀∉R 210x x +-=x ∀∈R 210x x +-=()3sin 1x x f x x =+C .D .4.“曲线恒在直线的下方”的一个充分不必要条件是( )A .B .C .D .5.当阳光射入海水后,海水中的光照强度随着深度增加而减弱,可用表示其总衰减规律,其中是消光系数,(单位:米)是海水深度,(单位:坎德拉)和(单位:坎德拉)分别表示在深度处和海面的光强.已知某海域6米深处的光强是海面光强的,则该海域消光系数的值约为( )(参考数据:,)A .0.2B .0.18C .0.15D .0.146.在中,内角,,的对边分别为,,,已知,,则外接圆的面积为( )A .B .C .D .7.已知函数的图象关于直线对称,且在上没有最小值,则的值为( )A .B .4C .D .8.已知是内一点,且,点在内(不含边界),若,则的取值范围是( )A .B .C .D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.已知平面向量,,且,则( )ln y x =y x b =+1b >-1e b -<<-10b -<<0b <0e KD D I I -=K D D I 0I D 40%K ln 20.7≈ln 5 1.6≈ABC △A B C a bc a =()(()sin sin sin sin A B b c B C -+=+ABC △π3π4π5π()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭π6x =()f x π0,4⎛⎫ ⎪⎝⎭ω3292152O ABC △0OA OB OC ++= M OBC △AM xAB y AC =+ 2x y +1,12⎛⎫ ⎪⎝⎭2,13⎛⎫ ⎪⎝⎭()1,251,2⎛⎫ ⎪⎝⎭()2,a m = ()1,1b =- 22a b a b +=-A .B .C .D .10.已知,若对任意的,不等式恒成立,则( )A .B .C .的最小值为32D .的最小值为11.已知函数的定义域为,函数为偶函数,函数为奇函数,则下列说法正确的是( )A .函数的一个对称中心为B .C .函数为周期函数,且一个周期为4D .三、填空题:本题共3小题,每小题5分,共15分.12.已知,则______.13.已知函数,方程有四个不同根,,,,且满足,则的最大值为______.14.定义表示实数,中的较大者,若,,是正实数,则的最小值是______.四、解答题:本题共5小题,第15题满分13分,第16题、第17题满分15分,第18题、第19题满分17分,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)的内角,,的对边分别为,,,已知.(1)若,,求的面积;2m =π,3a b = a b ⊥ a =1b >()1,x ∈+∞32440ax x abx b +--≤0a <216a b =216a b +24a ab a b +++8-()f x R ()()()11F x f x x =+-+()()231G x f x =+-()f x ()2,1()01f =-()f x ()()()()()012345f f f f f ++++=π4tan 43α⎛⎫+=- ⎪⎝⎭cos 2α=()22log ,012,04x x f x x x x ⎧>⎪=⎨++≤⎪⎩()f x a =1x 2x 3x 4x 1234x x x x <<<()2312432x x x x x +-{}max ,x y x y a b c 123max ,max ,max ,a b c b c a ⎧⎫⎧⎫⎧⎫++⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭ABC △A B C a b c ()2222cos 02a b c c b A b+--+=4a =8b c +=ABC △(2)若角为钝角,求的取值范围.16.(15分)已知函数.(Ⅰ)当时,关于的方程在区间内有两个不相等的实数根,求实数的取值范围;(Ⅱ)求函数在区间上的最小值.17.(15分)摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.如图,某摩天轮最高点距离地面高度为120m ,转盘直径为110m ,设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min .(1)游客甲坐上摩天轮的座舱,开始转动后距离地面的高度为,求在转动一周的过程中,关于的函数解析式;(2)若甲、乙两人分别坐在两个相邻的座舱里,在运行一周的过程中,求两人距离地面的高度差(单位:m )关于的函数解析式,并求高度差的最大值(精确到0.1m ).参考公式:.参考数据:,.18.(17分)已知函数.(1)当时,,求实数的取值范围;(2)若,求证:;(3)若,,为正实数,且,求证:.19.(17分)已知实数集,定义:(与可以相同).记为集合C c b()()()ln 1f x x x a x a R =+-∈0a =x ()f x m =1,32⎡⎤⎢⎥⎣⎦m ()f x 1,e e⎡⎤⎢⎥⎣⎦min t m H H t h t sin sin 2sincos 22θϕθϕθϕ+-+=πsin 0.207915≈πsin 0.065448≈()sin f x x =0x ≥()f x ax ≤a π02αβ<<<()()()cos f f βαβαα-<-*n ∈N 00a =12,,,n a a a 121n a a a +++= 1π12n i =≤<{}12,,,n X x x x = {},i j i j X X x x x x X ⊗=∈i x j x X中的元素个数.(1)若,请直接给出和;(2)若均为正数,且,求的最小值;(3)若,求证:.合肥一中2024~2025学年度高三第二次教学质量检测数学参考试卷1.A【详解】,所以阴影部分.故选:A .2.D【详解】命题“,使”的否定是,使.故选:D .3.A【详解】易知函数的定义域为,故可排除C ,D ;又,,所以可排除B ,故选:A .4.C【详解】由曲线恒在直线下方,可得,恒成立,即所以“曲线恒在直线的下方”的充要条件是,故选:C .5.C 【详解】依题意得,,化成对数式,,解得,.故选:C .6.C【详解】因为,且,所以,由正弦定理,可得,即,X {}1,2,3,6X =X X ⊗X X ⊗12,,,n x x x 300X X ⊗=X 11X =17X X ⊗≥{}0N y y =≥(){}2,1M N =--R ðx ∃∈R 210x x +-≠x ∀∈R 210x x +-=()3sin 1x x f x x =+{}1x x ≠-π14->-3ππsin π4404ππ1144f ⎛⎫-- ⎪⎛⎫⎝⎭-==> ⎪⎝⎭⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭ln y x =y x b =+ln x x b <+ln b x x >-1b >-ln y x =y x b =+1b >-6040%e K D I I -==26ln ln 2ln 50.95K -==-≈-0.15K ≈a =()(()sin sin sin sin A B b c B C -+=+()()()sin sin sin sin A B a b c B C -+=+()()()a b a b c b c -+=+222a b c bc =++所以,又因,所以,所以外接圆的半径为..故选:C .7.A【详解】由的图象关于直线对称可得,,解得或,,由于在上没有最小值,所以,所以,故选:A .8.C【详解】因为内一点,,所以为的重心,又在内(不含边界),且当与重合时,最小,此时所以,即,当与重合时,最大,此时,所以,,即,因为在内且不含边界,所以取开区间,即,故选:C .二.多选题9.ACD【详解】由,,可得,,2221cos 22b c a A bc +-==-()0,πA ∈2π3A =ABC △22sin a A ==2π24πS =⋅=()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭π6x =ππππ642k ω+=±+k ∈Z 362k ω=+962k ω=-+k ∈Z ()f x π0,4⎛⎫ ⎪⎝⎭π5π0544ωω≤⇒<≤32ω=ABC △0OA OB OC ++= O ABC △M OBC △M O 2x y +()21113233AM AB AC AB AC AB AC λμ⎡⎤=+=⨯+=+⎢⎥⎣⎦ 13x y ==21x y +=M C 2x y +AM AC = 0x =1y =22x y +=M OBC △()21,2x y +∈()2,a m = ()1,1b =- ()24,2a b m +=- ()20,2a b m -=+由,可得,解得,故A 正确;由,可得,故D 正确;又,则,,故B 错误,C 正确.故选:ACD .10.ABD【详解】因为,即恒成立,又因为,,所以当,当时,,因为对任意的,不等式恒成立,所以当时,,当时,,所以对于函数,必有,单调递减,且零点为,所以,所以,所以A 正确,B 正确;对于C ,因为,所以所以,当且仅当,即时取等号,与条件不符,所以C 错误;对于D ,,令,当且仅当时,等号成立.则原式,22a b a b +=- ()()221622m m +-=+2m =()2,2a = a == cos ,0a b a b a b ⋅=== π,2a b = a b ⊥ 32440ax x abx b +--≤()()240ax x b +-≤1b >1x >1x <<20x b -<x >20x b ->()1,x ∈+∞32440ax x abx b +--≤0x <<40ax +≥x >40ax +≤4y ax =+0a <x =40+=216a b =40=a =216161632a b b b +=+≥=1616b b=1b =216164a ab a b b b b b ⎛⎛⎫+++=-=+- ⎪ ⎝⎭⎝216448b b ⎛⎫=+-=-- ⎪⎝⎭m =4m ≥4b =()2484m m m =--≥由二次函数的性质可得的最小值为,此时,,所以D 正确,故选:ABD .11.ABD【详解】对于A ,因为为奇函数,所以,即,所以,所以,所以函数的图象关于点对称,所以A 正确,对于B ,在中,令,得,得,因为函数为偶函数,所以,所以,所以,令,则,所以,得,所以B 正确,对于C ,因为函数的图象关于点对称,,所以,所以,所以4不是的周期,所以C 错误,对于D ,在中令,则,令,则,因为,所以,因为,所以,所以D 正确,故选:ABD .三.填空题(共1小题)12..【详解】因为,所以,可得,则.故答案为:.()2484y m m m =--≥8-4b =2a =-()()231G x f x =+-()()G x G x -=-()()231231f x f x ⎡⎤--=-+-⎣⎦()()23232f x f x -++=()()222f x f x -++=()f x ()2,1()()222f x f x -++=0x =()222f =()21f =()()()11F x f x x =+-+()()F x F x -=()()()()1111f x x f x x ---=+-+()()112f x f x x +--=1x =()()202f f -=()102f -=()01f =-()f x ()2,1()01f =-()43f =()()04f f ≠()f x ()()222f x f x -++=1x =()()132f f +=2x =()()042f f +=()01f =-()43f =()21f =()()()()()012345f f f f f ++++=2425-π4tan 43α⎛⎫+=- ⎪⎝⎭tan 141tan 3αα+=--tan 7α=22222222cos sin 1tan 1724cos 2cos sin 1tan 1725ααααααα---====-+++2425-13..【详解】作出函数图像可得,从而得,且,从而得,原式,令,,,令,则,,在单调递增,,最大值为.14.【详解】按和分类:记,当时,当且仅当,,时,等号成立;当时,,12981222x x +=-2324log log x x -=341x x =(]23log 1,2x -∈(]312,4x ∈∴()23122322331122x x x x x x +=-=+ 232312y x x =+(]312,4x ∈ (]2314,16x ∴∈231t x =()2f t t t=+(]4,16t ∈()f t )+∞()9129,28f t ⎛⎤∴∈ ⎥⎝⎦∴12983c a ≤3c a ≥123max ,max ,max ,M a b c b c a ⎧⎫⎧⎫⎧⎫=++⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭3c a ≤23235333a a M a a c a a a ≥++≥++=+≥=a =b =c =3c a ≥2325M a c c c c c c c ≥++≥++=+≥=当且仅当,,时,等号成立.综上所述,的最小值是四.解答题15.(13分)【详解】(1)由和正弦定理得,,因,则有,因,,则,又,故.由余弦定理,,代入得,,因,则有,即得,故的面积(2)由正弦定理,可得,因,代入化简得:.因为钝角,故由可得,则,即,故的取值范围是.16.(15分)【详解】(Ⅰ)当时,,,由,,故可列表:a =b =c =M ()2cos cos 0c b A a C -+=()sin 2sin cos sin cos 0C B A A C -+=()()sin cos sin cos sin sin πsin C A A C A C B B +=+=-=()sin 12cos 0B A -=0πB <<sin 0B >1cos 2A =0πA <<π3A =2222cos a b c bc A =+-2216b c bc +-=8b c +=()2316b c bc +-=16bc =ABC △11sin 1622S bc A ==⨯=sin sin b c B C =sin sin c C b B =2π3C B =-2πsin sin 13sin sin 2B cC b B B ⎛⎫- ⎪⎝⎭====C π022ππ32B B ⎧<<⎪⎪⎨⎪->⎪⎩π06B <<0tan B <<32>2c b >c b ()2,+∞0a =()ln f x x x x =-()ln 11ln f x x x =+-='∴()0132f x x ⎧>⎪⎨≤≤⎪⎩'ln 013132x x x >⎧⎪⇔⇔<≤⎨≤≤⎪⎩()0111232f x x x ⎧'<⎪⇔≤<⎨≤≤⎪⎩13,关于的方程在区间内有两个不相等的实数根时;(Ⅱ),由得.①当,即时,,在上为增函数,;②当,即时,在上,为减函数,在上,为增函数,;③当,即时,,在上为减函数,.综上所述,.17.【详解】如图,设座舱距离地面最近的位置为点,以轴心为原点,与地面平行的直线为轴建立直角坐标系.x121,12⎛⎫ ⎪⎝⎭()1,3y '-+y11ln222--]1-Z3ln33-11ln 203ln 3322--<<- ∴x ()f x m =1,32⎡⎤⎢⎥⎣⎦111ln 222m -<≤--()()ln 0f x x a x =+>'()0f x '=ax e -=1aee -<1a >()0f x '>()f x 1,e e ⎡⎤⎢⎥⎣⎦()min 12a f x f e e -⎛⎫== ⎪⎝⎭1a e e e -≤≤11a -≤≤1,a e e -⎡⎤⎢⎥⎣⎦()0f x '<()f x ,a e e -⎡⎤⎣⎦()0f x '>()f x ()()mina af x f e e --==-aee ->1a <-()0f x '<()f x 1,e e ⎡⎤⎢⎥⎣⎦()()min e f x f ea ==()min2,1,11,1a a a e f x e a ea a --⎧>⎪⎪=--≤≤⎨⎪<-⎪⎩P O x(1)设时,游客甲位于点,以为终边的角为;根据摩天轮转一周大约需要30min ,可知座舱转动的角速度约,由题意可得,.(2)如图,甲、乙两人的位置分别用点,表示,则.经过后甲距离地面的高度为,点相对于点始终落后,此时乙距离地面的高度为.则甲、乙距离地面的高度差,利用,可得,.当(或),即(或22.8)时,的最大值为.所以,甲、乙两人距离地面的高度差的最大值约为7.2m .18.(17分)【详解】(1)首先,,故,设,则,,由,可知当时,,在区间上单调递增,故,满足;当时,由在区间上单调递增,且,,故存在,使得,且时,,单调递减,此时,,与题设矛盾.综上所述,实数的取值范围.0min t =()0,55P -OP π2-πrad min 15ππ55sin 65152H t ⎛⎫=-+⎪⎝⎭030t ≤≤A B 2ππ4824AOB ∠==min t 1ππ55sin 65152H t ⎛⎫=-+⎪⎝⎭B A πrad 242π13π55sin 651524H t ⎛⎫=-+ ⎪⎝⎭12πππ13πππ13ππ55sin sin 55sin sin 15215241522415h H H t t t t ⎛⎫⎛⎫⎛⎫⎛⎫=-=---=-+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭sin sin 2sincos22θϕθϕθϕ+-+=πππ110sinsin 481548h t ⎛⎫=- ⎪⎝⎭030t ≤≤πππ15482t -=3π27.8t ≈h π110sin 7.248≈ππ122f a ⎛⎫=≤⎪⎝⎭2πa ≥()sin g x ax x =-0x ∀≥()0g x ≥()cos g x a x =-'1a ≥()0g x '≥()g x []0,+∞()()00g x g ≥=21πa ≤<()g x 'π0,2⎛⎫ ⎪⎝⎭()010g a =-<'π02g a ⎛⎫=> ⎪⎝⎭'0π0,2x ⎛⎫∈ ⎪⎝⎭()00g x '=()00,x x ∈()0g x '<()g x ()()00g x g <=a [)1,+∞(2)由,可知,即故只要证设,,则,在区间上单调递增,即,,故原不等式成立.(3)一方面,由于,故可令,其中,,结合第(2)问的结论,,另一方面,()()()()()cos cos cos f f f f βαβααββαααα-<-⇔-<-π02αβ<<<cos cos βαββ>()()cos cos f f ββαβββ-<-()()cos cos f f βββααα-<-()()cos g x f x x x =-π0,2x ⎛⎫∈ ⎪⎝⎭()()cos cos sin sin 0g x x x x x x x =--=>'()g x π0,2⎛⎫⎪⎝⎭()()g g αβ<()()cos cos f f βββααα-<-01121201n a a a a a a a =<<+<<+++= 012π02n θθθθ=<<<<= 12sin i i a a a θ=+++ 1,2,,i n =1ni =1ni ==111sin sin cos ni i i i θθθ-=--=∑()()1110111cos πcos 2nni i i i i n i i i θθθθθθθθ---==--<=-=-=∑∑1ni =()()1011112nii i i i n a a a a a a a =-+≥++++++++∑1011121nii i i i na a a a a a a =-+=++++++++∑,综上可得,.19.(17分)【详解】(1),;(2)一方面,积有个,另一方面,积有个,故,当中所有元素互素时,等号成立.要使得时,最小,可令中所有元素互素,此时,,解得:,故的最小值为24;(3)考虑集合中所有元素变为原来的相反数时,集合不改变,不妨设中正数个数不少于负数个数.①当中元素均为非负数时,设,于是,,此时,集合中至少有,,,…,,,,…,这18个元素,即;②当中元素至少有一个为负数时,设是中全体元素,且,于是,.由是中的个元素,且非正数;又是中的7个元素,且为正数,故中元素不少于17个,即;另外,当时,满足,11ni i a ===∑1π12i n=≤<{}1,2,3,4,6,9,12,18,36X X ⊗=9X X ⊗=i i x x ⋅n ()i j i j x x x x ⋅≠()21C 2nn n -=()()1122n n n n X X n -+⊗≤+=X 300X X ⊗=X X ()13002n n +=24n =X X X X ⊗X X 12110x x x ≤<<< 1223242113111011x x x x x x x x x x x x <<<<<<< X X ⊗12x x 23x x 24x x 211x x 311x x 411x x 1011x x 18X X ⊗≥X 11120l l k z z z y y y -<<<<<<< …X ()11k l k l +=≥6k ≥1112123k k k l k z y z y z y z y z y z y >>>>>>> X X ⊗110k l +-=23242526364656y y y y y y y y y y y y y y <<<<<<X X ⊗X X ⊗17X X ⊗≥{}2340,1,2,2,2,2X =±±±±±{}23456780,1,2,2,2,2,2,2,2,2X X ⊗=-±±±±±±±-17X X ⊗=故.17X X ⊗≥。

2020年安徽省合肥一中高考数学最后一卷(文科) (解析版)

2020年安徽省合肥一中高考数学最后一卷(文科) (解析版)

2020年安徽省合肥一中高考数学最后一卷(文科)一、选择题(共12小题).1.记全集U=R,集合A={x|x2≥16},集合B={x|2x≥2},则(∁U A)∩B=()A.[4,+∞)B.(1,4]C.[1,4)D.(1,4)2.若复数z的共轭复数满足(1﹣i),则|z|=()A.B.C.D.3.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n=()A.5B.4C.3D.24.从区间[0,1]内随机抽取2n个数x1,x2,…x n,y1,…,y n构成n个数对(x1,y1),…,(x n,y n),其中两数的平方和不小于1的数对共有m个,则用随机模拟的方法得到圆周率π的近似值为()A.B.C.D.5.已知x,y满足不等式组,则的最大值为()A.0B.C.D.66.已知log2x=log3y=log5z<0,则、、的大小排序为()A.B.C.D.7.点M,N分别是棱长为1的正方体ABCD﹣A1B1C1D1中棱BC,CC1的中点,动点P在正方形BCC1B1(包括边界)内运动,且PA1∥面AMN,则PA1的长度范围为()A.B.C.D.8.已知双曲线C的离心率,过焦点F作双曲线C的一条渐近线的垂线,垂足为M,直线MF交另一条渐近线于N,则=()A.2B.C.D.9.已知函数f(x)=A sin(ωx+φ),(A>0,)的部分图象如图所示,则使f(2a+x)+f(﹣x)=0成立的a的最小正值为()A.B.C.D.10.已知数列{a n}的前n项和为S n,S n=2a n﹣2,若存在两项a n,a m,使得a n•a m=64,则的最小值为()A.B.1C.3+2D.E.【无选项】111.已知函数f(x)=e x﹣1,,若f(a)=g(b)成立,则b﹣a的最小值为()A.B.C.1+ln2D.1﹣ln212.已知点A,B关于坐标原点O对称,|AB|=1,以M为圆心的圆过A,B两点,且与直线2y﹣1=0相切,若存在定点P,使得当A运动时,|MA|﹣|MP|为定值,则点P的坐标为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分.13.设向量,不平行,向量与平行,则实数λ=.14.若圆(x﹣3)2+(y﹣4)2=1上存在两点A、B,使得∠APB=60°,P为圆外一动点,则P点到原点距离的最小值为.15.如图,在四棱锥P﹣ABCD中,顶点P在底面的投影O恰为正方形ABCD的中心且,设点M,N分别为线段PD,PO上的动点,已知当AN+MN取得最小值时,动点M恰为PD的中点,则该四棱锥的外接球的表面积为.16.设数列{a n}的前n项和为S n,若存在实数A,使得对于任意的n∈N*,都有|S n|<A,则称数列{a n}为“T数列”.则以下{a n}为“T数列”的是.①若{a n}是等差数列,且a1>0,公差d<0;②若{a n}是等比数列,且公比q满足|q|<1;③若;④若a1=1,.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知△ABC的内角A,B,C的对边分别为a,b,c,且9c﹣a=9b cos A.(1)求cos B;(2)若角B的平分线与AC交于点D,且BD=1,求的值.18.某公司为了提高职工的健身意识,鼓励大家加入健步运动,要求200名职工每天晚上9:30上传手机计步截图,对于步数超过10000的予以奖励,图1为甲乙两名职工在某一星期内的运动步数统计图,图2为根据这星期内某一天全体职工的运动步数做出的频率分布直方图.(1)在这一周内任选两天检查,求甲乙两人两天全部获奖的概率(2)请根据频率分布直方图,求出该天运动步数不少于15000的人数,并估计全体职工在该天的平均步数;(3)如果当大甲的排名为第130名,乙的排名为第40名,试判断做出的是星期几的频率分布直方图.19.如图,三棱柱ABC﹣A1B1C1中,平面ACC1A1⊥平面ABC,AA1=AC,∠ACB=90°.(1)求证:平面AB1C1⊥平面A1B1C;(2)若∠A1AC=60°,AC=2CB=2,求四棱锥A﹣BCC1B1的体积.20.已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.21.已知函数.(1)f(x)的导函数记作f'(x),且f'(x)在(﹣1,+∞)上有两不等根,求a的取值范围;(2)若f(x)存在两个极值点,记作x1,x2,求证:f(x1)+f(x2)>4.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(r>0,φ为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为,若直线l与曲线C相切;(Ⅰ)求曲线C的极坐标方程;(Ⅱ)在曲线C上取两点M,N与原点O构成△MON,且满足,求面积△MON的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=x2+ax+b(a,b∈R).(1)a=2,b=0,解不等式f(x)>|4﹣x|;(2)m,n是f(x)的两个零点,若|a|+|b|<1,求证:|m|<1,|n|<1.参考答案一、选择题(共12小题).1.记全集U=R,集合A={x|x2≥16},集合B={x|2x≥2},则(∁U A)∩B=()A.[4,+∞)B.(1,4]C.[1,4)D.(1,4)【分析】求出集合A,集合B,从而求出∁U A,由此能求出(∁U A)∩B.解:∵全集U=R,集合A={x|x2≥16}={x|x≥4或x≤﹣4},集合B={x|6x≥2}={x|x≥1},∴(∁U A)∩B={x|1≤x<4}=[7,4).故选:C.2.若复数z的共轭复数满足(1﹣i),则|z|=()A.B.C.D.【分析】把已知等式变形求得,再由,结合商的模等于模的商求解.解:由(1﹣i),得,则|z|=||=||=.故选:B.3.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n=()A.5B.4C.3D.2【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:当n=1时,a=,b=4,满足进行循环的条件,当n=2时,a=,b=8满足进行循环的条件,当n=4时,a=,b=32不满足进行循环的条件,故选:B.4.从区间[0,1]内随机抽取2n个数x1,x2,…x n,y1,…,y n构成n个数对(x1,y1),…,(x n,y n),其中两数的平方和不小于1的数对共有m个,则用随机模拟的方法得到圆周率π的近似值为()A.B.C.D.【分析】以面积为测度,建立方程,即可求出圆周率π的近似值.解:由题意,两数的平方和小于1,对应的区域的面积为π•12,从区间[7,1】随机抽取2n个数x1,x2,…,x n,y6,y2,…,y n,∴=故选:D.5.已知x,y满足不等式组,则的最大值为()A.0B.C.D.6【分析】作出不等式组对应平面区域,利用z的几何意义即可得到结论.解:作出不等式组对应的平面区域如图:则则的几何意义为动点Q到原点连线的斜率,由图象可知当P位于A(,3)时,直线AP的斜率最大,故选:D.6.已知log2x=log3y=log5z<0,则、、的大小排序为()A.B.C.D.【分析】设k=log2x=log3y=log5z<0,0<x,y,z<1.x=2k,y=3k,z=5k.可得=21﹣k,=31﹣k,=51﹣k.由函数f(x)=x1﹣k在(0,1)上单调递增,即可得出.解:设k=log2x=log3y=log5z<8,∴0<x,y,z<1.则=27﹣k,=31﹣k,=58﹣k.∴21﹣k<31﹣k<51﹣k.故选:A.7.点M,N分别是棱长为1的正方体ABCD﹣A1B1C1D1中棱BC,CC1的中点,动点P在正方形BCC1B1(包括边界)内运动,且PA1∥面AMN,则PA1的长度范围为()A.B.C.D.【分析】取B1C1的中点E,BB1的中点F,连结A1E,A1F,EF,取EF中点O,连结A1O,推导出平面AMN∥平面A1EF,从而点P的轨迹是线段EF,由此能求出PA1的长度范围.解:取B1C1的中点E,BB1的中点F,连结A1E,A1F,EF,取EF中点O,连结A6O,∵点M,N分别是棱长为1的正方体ABCD﹣A1B1C1D1中棱BC,CC1的中点,∵AM∩MN=M,A1E∩EF=E,∵动点P在正方形BCC1B7(包括边界)内运动,且PA1∥面AMN,∵A1E=A1F==,EF==,∴当P与O重合时,PA1的长度取最小值:A1O==,∴PA1的长度范围为[,].故选:B.8.已知双曲线C的离心率,过焦点F作双曲线C的一条渐近线的垂线,垂足为M,直线MF交另一条渐近线于N,则=()A.2B.C.D.【分析】画出图形,利用已知条件转化求解即可.解:由题意双曲线的离心率为:,可得,可得,所以=,渐近线方程为:y=,如图:所以MN=,故选:B.9.已知函数f(x)=A sin(ωx+φ),(A>0,)的部分图象如图所示,则使f(2a+x)+f(﹣x)=0成立的a的最小正值为()A.B.C.D.【分析】根据条件求出函数的解析式,由f(2a+x)+f(﹣x)=0得f(2a+x)=﹣f(﹣x),得函数关于(a,0)对称,利用三角函数的对称性进行求解即可.解:由f(2a+x)+f(﹣x)=0得f(2a+x)=﹣f(﹣x),得函数关于(a,0)对称,则f(x)=2sin(ωx+),得ω=7,由2x+=kπ,得x=﹣,即函数的对称中心为(﹣,0),即此时a=,故选:C.10.已知数列{a n}的前n项和为S n,S n=2a n﹣2,若存在两项a n,a m,使得a n•a m=64,则的最小值为()A.B.1C.3+2D.E.【无选项】1【分析】首先求出数列的通项公式,进一步利用基本不等式的应用求出结果.解:由S n=2a n﹣2,当n≥2时,可得S n﹣5=2a n﹣1﹣8,故(常数),所以,,但是mn都为整数解得当m=n=3时,最小值为1.故选:B.11.已知函数f(x)=e x﹣1,,若f(a)=g(b)成立,则b﹣a的最小值为()A.B.C.1+ln2D.1﹣ln2【分析】求出b﹣a=2﹣lny﹣1,根据函数的单调性求出b﹣a的最小值即可.解:设y=e a﹣1,则a=1+lny,则b=2,则(b﹣a)′=2﹣,∴y=时,(b﹣a)′=6,∴y=时,b﹣a取最小值,故选:C.12.已知点A,B关于坐标原点O对称,|AB|=1,以M为圆心的圆过A,B两点,且与直线2y﹣1=0相切,若存在定点P,使得当A运动时,|MA|﹣|MP|为定值,则点P的坐标为()A.B.C.D.【分析】设M的坐标为(x,y),然后根据条件得到圆心M的轨迹方程为x2=﹣y,把|MA|﹣|MP|转化后再由抛物线的定义求解点P的坐标.解:∵线段AB为⊙M的一条弦O是弦AB的中点,∴圆心M在线段AB的中垂线上,设点M的坐标为(x,y),则|OM|2+|OA|2=|MA|2,∴|y﹣|2=|OM|7+|OA|2=x2+y2+,∴M的轨迹是以F(7,﹣)为焦点,y=为准线的抛物线,=|y﹣|﹣|MP|+=|MF|﹣|MP|+,∴存在定点P(0,﹣)使得当A运动时,|MA|﹣|MP|为定值.故选:C.二、填空题:本题共4小题,每小题5分,共20分.13.设向量,不平行,向量与平行,则实数λ=.【分析】利用向量平行即共线的条件,列出关系式,利用向量相等解答.解:因为向量,不平行,向量与平行,所以=μ(),所以,解得λ=μ=;故答案为:.14.若圆(x﹣3)2+(y﹣4)2=1上存在两点A、B,使得∠APB=60°,P为圆外一动点,则P点到原点距离的最小值为5﹣2.【分析】根据题意,点P在以(3,4)为圆心,半径为(,2)的圆环内运动,求出P到原点的最小距离即可.解:对于点P,若圆上存在两点A,B使得∠APB=60°,只需由点P引圆的两条切线所夹的角不小于60°即可,故动点P在以(3,4)为圆心,半径为(,2)的圆环内运动,故答案为:5﹣3.15.如图,在四棱锥P﹣ABCD中,顶点P在底面的投影O恰为正方形ABCD的中心且,设点M,N分别为线段PD,PO上的动点,已知当AN+MN取得最小值时,动点M恰为PD的中点,则该四棱锥的外接球的表面积为..【分析】将折线转化为直线外一点与直线上一点的连线段,求出侧棱的长度解:如图,在PC上取点M',使得|PM'|=|PM|∵顶点P在底面的投影O恰为正方形ABCD的中心,∴PA=PB=PC=PD,∴AN+MN=AN+NM'∵M为PD的中点,∴PA=AC=4又∵顶点P在底面的投影O恰为正方形ABCD的中心,设外接球的半径为r,则.解得.故答案为:.16.设数列{a n}的前n项和为S n,若存在实数A,使得对于任意的n∈N*,都有|S n|<A,则称数列{a n}为“T数列”.则以下{a n}为“T数列”的是②③.①若{a n}是等差数列,且a1>0,公差d<0;②若{a n}是等比数列,且公比q满足|q|<1;③若;④若a1=1,.【分析】写出等差数列的前n项和结合“T数列”的定义判断①;写出等比数列的前n 项和结合“T数列”的定义判断②;利用裂项相消法求和判断③;由数列递推式分n为奇数与偶数判断数列的特性,再求前n项和判断④.解:①若{a n}是等差数列,且a1>0,公差d<0,则,当n→+∞时,|S n|→+∞,②若{a n}是等比数列,且公比q满足|q|<1,∴数列{a n}是“T数列”;③若=,∴|S n|=|+…+|=||<,④若a1=2,,当n为偶数时,有a n+2+a n=3,即数列{a n}中任意两个连续偶数项的和为0.∴数列{a n}不是“T数列”.故答案为:②③.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知△ABC的内角A,B,C的对边分别为a,b,c,且9c﹣a=9b cos A.(1)求cos B;(2)若角B的平分线与AC交于点D,且BD=1,求的值.【分析】(1)方法一:由已知利用余弦定理可求cos B的值;方法二:由已知及正弦定理,两角和的正弦函数公式,诱导公式,三角形内角和定理化简可求cos B的值.(2)由已知利用二倍角公式可求,,设△ABC,△ABD,△CBD的面积分别为S,S1,S2,利用三角形的面积公式,根据S1+S2=S,化简可求.解:(1)方法一:由9c﹣a=9b cos A,及余弦定理得:,整理得:,方法二:由9c﹣a=9b cos A,及正弦定理得:9sin C﹣sin A=9sin B cos A,所以:.所以:,设△ABC,△ABD,△CBD的面积分别为S,S1,S7,由S1+S2=S,得:,所以:.18.某公司为了提高职工的健身意识,鼓励大家加入健步运动,要求200名职工每天晚上9:30上传手机计步截图,对于步数超过10000的予以奖励,图1为甲乙两名职工在某一星期内的运动步数统计图,图2为根据这星期内某一天全体职工的运动步数做出的频率分布直方图.(1)在这一周内任选两天检查,求甲乙两人两天全部获奖的概率(2)请根据频率分布直方图,求出该天运动步数不少于15000的人数,并估计全体职工在该天的平均步数;(3)如果当大甲的排名为第130名,乙的排名为第40名,试判断做出的是星期几的频率分布直方图.【分析】(1)根据统计图统计出甲乙两人合格的天数,再计算全部获奖概率;(2)根据频率分布直方图求出人数及平均步数;(3)根据频率分布直方图计算出甲乙的步数从而判断出星期几.解:(1)由统计图可知甲乙两人步数超过10000的有星期一、星期二、星期五、星期天设事件A为甲乙两人两天全部获奖,则P(A)=∴(0.05+0.03)×5×200=80(人),2.5×0.1+8.5×0.2+12.5×0.3+17.5×3.25+22.5×0.15=13.25(千步)由频率分布直方图可得0.2﹣0.15=(20﹣y)×3.05,∴y=19.(1﹣0.65)﹣0.3=(x﹣10)×3.06,∴x=.19.如图,三棱柱ABC﹣A1B1C1中,平面ACC1A1⊥平面ABC,AA1=AC,∠ACB=90°.(1)求证:平面AB1C1⊥平面A1B1C;(2)若∠A1AC=60°,AC=2CB=2,求四棱锥A﹣BCC1B1的体积.【分析】(1)推导出BC⊥平面ACC1A1,BC⊥A1C,A1C⊥B1C1.从而ACC1A1是菱形,A1C⊥AC1.进而A1C⊥平面AB1C1.由此能证明平面AB1C1⊥平面A1B1C.(2)由,能求出四棱锥A﹣BCC1B1的体积.【解答】证明:(1)因为平面ACC1A1⊥平面ABC,平面ACC1A1∩平面ABC=AC,BC⊂平面ABC,∠ACB=90°,因为A1C⊂平面ACC8A1,所以BC⊥A1C.因为ACC1A1是平行四边形,且AA5=AC,所以ACC1A1是菱形,A1C⊥AC1.又A5C⊂平面A1B1C,所以平面AB1C1⊥平面A1B6C.所以,所以,即四棱锥A﹣BCC3B1的体积为.20.已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.【分析】(Ⅰ)由题意可得,解出即可;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),可得直线TF的斜率k TF=﹣m,由于TF⊥PQ,可得直线PQ的方程为x=my﹣2.设P(x1,y1),Q(x2,y2).直线方程与椭圆方程可得根与系数的关系.由于四边形OPTQ是平行四边形,可得,即可解得m.此时四边形OPTQ的面积S=.解:(Ⅰ)由题意可得,解得c=2,a=,b=.(Ⅱ)由(Ⅰ)可得F(﹣3,0),∵TF⊥PQ,可得直线PQ的方程为x=my﹣2.联立,化为(m2+3)y2﹣4my﹣7=0,∴x1+x2=m(y1+y2)﹣4=.∴,∴(x1,y1)=(﹣3﹣x8,m﹣y2),此时四边形OPTQ的面积S=═=.21.已知函数.(1)f(x)的导函数记作f'(x),且f'(x)在(﹣1,+∞)上有两不等根,求a的取值范围;(2)若f(x)存在两个极值点,记作x1,x2,求证:f(x1)+f(x2)>4.【分析】(1)求出函数的导数,结合函数的性质得到关于a的不等式组,解出即可;(2)求出f(x1)+f(x2)的解析式,问题转化为证明ln(a﹣1)2+﹣2>0,令a ﹣1=t,由a∈(1,2)可得t∈(0,1),当t∈(0,1)时,g(t)=2lnt+﹣2,根据函数的单调性证明即可.解:(1),x>﹣1,,令h(x)=x2+a(a﹣2).由题意,,解得:7<a<2,(2)证明:由(1)知,a的取值范围是(1,2),即x2+a(a﹣2)=6,得,==,令a﹣1=t,由a∈(1,2)可得t∈(0,2),所以g(t)在(0,1)上是减函数,综上,f(x1)+f(x2)>4.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(r>0,φ为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为,若直线l与曲线C相切;(Ⅰ)求曲线C的极坐标方程;(Ⅱ)在曲线C上取两点M,N与原点O构成△MON,且满足,求面积△MON的最大值.【分析】(Ⅰ)求出直线l的直角坐标方程为y=+2,曲线C是圆心为(,1),半径为r的圆,直线l与曲线C相切,求出r=2,曲线C的普通方程为(x﹣)2+(y ﹣1)2=4,由此能求出曲线C的极坐标方程.(Ⅱ)设M(ρ1,θ),N(ρ2,),(ρ1>0,ρ2>0),由=2sin(2)+,由此能求出△MON面积的最大值.解:(Ⅰ)∵直线l的极坐标方程为,∴由题意可知直线l的直角坐标方程为y=+2,可得r==2,∴曲线C的普通方程为(x﹣)2+(y﹣1)7=4,即.=sin2θ+=2sin(8)+,所以△MON面积的最大值为2+.一、选择题23.已知函数f(x)=x2+ax+b(a,b∈R).(1)a=2,b=0,解不等式f(x)>|4﹣x|;(2)m,n是f(x)的两个零点,若|a|+|b|<1,求证:|m|<1,|n|<1.【分析】(1)利用绝对值不等式的解法,可得不等式的解集;(2)由函数的零点与方程实数根的关系,以及根与系数的关系得出m+n=﹣a,mn=b;再利用绝对值与不等式证明出结论即可.解:(1)a=2,b=0,则f(x)=x2+2x>|4﹣x|,﹣x6﹣2x<4﹣x<x2+2x,解得不等式的解集为{x|x<﹣4或x>1}.∴|m+n|=|a|,|mn|=|b|.∴|m+n|+|mn|<1.∴|m|﹣|n|+|mn|﹣1<4,(|m|﹣1)(|n|+1)<0.同理可证,|n|<1.。

安徽省合肥市第一中学2024-2025学年高三上学期第四次素质拓展数学试题

安徽省合肥市第一中学2024-2025学年高三上学期第四次素质拓展数学试题

安徽省合肥市第一中学2024-2025学年高三上学期第四次素质拓展数学试题一、单选题1.设集合R U =,集合()22{|20},{|log 1}M x x x N x y x =-≥==-,则{|2}x x <=()A .M N ⋃B .()U N M ðC .U ()M N ðD .()U M N ð2.函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是()A .B .C .D .3.已知△ABC 满足AB 2=AB ·AC +BA·BC +CA ·CB ,则△ABC 是()A .等边三角形B .锐角三角形C .直角三角形D .钝角三角形4.已知直线1y kx =+与曲线3y x ax b =++切于点()1,3,则b 的值为()A .3B .3-C .5D .5-5.下列叙述中正确的个数是:()①若a ,b ,c 为平面向量,则()()a b c a b c ⋅=⋅ ;②向量()()a b c a c b ⋅-⋅ 与a垂直;③()3,a m =-,()4,3b = ,若a 与b 的夹角是钝角,则实数m 的取值范围是4m <④.记b e b= ,则向量a 在向量b 上的投影向量为()a e e⋅ A .0B .1C .2D .36.若一元二次不等式21110a x b x c ++>,22220a x b x c ++<的解集分别为M 、N ,1a 、1b 、1c 、2a 、2b 、2c 均不为0,M 、N 既不是R 也不是∅,则“M N =”是“111222a b c a b c ==”的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要7.已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是()A .15[,24B .13[,]24C .1(0,2D .(0,2]8.定义域在上的奇函数()1222x x af x +-+=+.若存在π,04θ⎡⎤∈-⎢⎥⎣⎦,使得)()2cos cos 0ff k θθθ+->成立,则实数k 的取值范围为().A .()2,∞+B .3,2∞⎛⎫+ ⎪⎝⎭C .(),2∞-D .3,2∞⎛⎫- ⎪⎝⎭二、多选题9.已知22log log a b >,则下列不等式一定成立的有()A .²²a b >B .2b a a b+>C .11a b b a->-D .()()11baa b +>+10.已知函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,则()A .()π2cos 26f x x ⎛⎫=+ ⎪⎝⎭B .函数f (x )的图象关于7π12x =对称C .函数f (x )的图象关于π,03⎛⎫- ⎪⎝⎭对称D .函数f (x )在π5π,26⎡⎤⎢⎥⎣⎦上单调递增11.已知实数x ,y 满足e0x yyx++=,则()A .当0y <时,0x y +=B .当0x <时,0x y +=C .当0x y +≠时,2y x ->D .当0x y +≠时,10xy -<<三、填空题12.已知α是三角形的内角,若2cos cos2sin2ααα=-,则tan α=.13.已知函数2()()f x x x a =+在1x =处有极小值,则实数a =.14.圆1O 与圆2O 半径分别为1和2,两圆外切于点P ,点A ,B 分别为圆12,O O 上的动点,120APB ∠=︒,则PA PB ⋅的最小值为.四、解答题15.已知函数()πππsin cos sin 632f x x x x ⎛⎫⎛⎫⎛⎫=+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求函数()f x 的最小值,及()f x 取最小值时的x 的值;(2)将函数()f x 图象上所有点的横坐标缩短为原来的12(纵坐标不变),再向右平移π6个单位,得到函数()g x 的图象,若()65g α=-,且π5π,612α⎛⎫∈- ⎪⎝⎭,求cos 2α的值.16.在平面四边形ABCD 中,,1,30BC CD AC AD ACD ∠⊥===︒.(1)求CD 的长;(2)若ABC V 为锐角三角形,求BC 的取值范围.17.已知函数()()ln 1f x a x x=+-(1)讨论()f x 的单调性;(2)证明:当0a >时,()()21ln f x a a a <-+.18.如图,半圆O 的直径为4cm ,A 为直径延长线上的点,4cm OA =,B 为半圆上任意一点,以AB 为一边作等边三角形ABC .设AOB α∠=.(1)问:B 在什么位置时,四边形OACB 的面积最大,并求出面积的最大值.(2)克罗狄斯·托勒密(Ptolemy )所著的《天文集》中讲述了制作弦表的原理,其中涉及如下定理:任意凸四边形中,两条对角线的乘积小于或等于两组对边乘积之和,当且仅当对角互补时取等号,根据以上材料,则当线段OC 的长取最大值时,求AOC ∠.(3)求AOC △面积的最大值.19.意大利画家达⋅芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是什么这就是著名的“悬链线问题”,通过适当建立坐标系,悬链线可为双曲余弦函数()e e ch 2x x x -+=的图象,定义双曲正弦函数()e e sh 2x xx --=,类比三角函数的性质可得双曲正弦函数和双曲余弦函数有如下性质①平方关系:()()22ch sh 1x x -=,②倍元关系:()()()sh 22sh ch x x x =⋅.(1)求曲线()ch x 在2x =处的切线斜率;(2)若对任意0x >,都有()()()()()1sh ch 2sin 2cos x a x x x x a x --+≥--恒成立,求实数a 的取值范围:(3)(i )证明:当0x >时,()sh x x >;(ii )证明:()()()*22sh sh sh 2sh 1432N 111tan121tan tan tan23n nn n n n⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭++++>-∈+ .。

2020年安徽省合肥市第一中学高考最后一卷数学试题(附答案解析)

2020年安徽省合肥市第一中学高考最后一卷数学试题(附答案解析)

2020年安徽省合肥市第一中学高考最后一卷数学试题一、单选题1.已知复数z 满足()12z i i +=,其中i 为虚数单位,则复数z 的模||z =( )A .1BC .2D .2.已知数列{}n a 的前n 项和为n S ,11a =,12n n a a +=,2155n n S a +-=,则正整数n 的值为( ) A .6B .4C .3D .23.设{}{}22,340,|40U R A x x x B x x ==--=-<,则()UA B = ( )A .{|1x x ≤-或}2x ≥B .{}|12x x -≤<C .{}|14x x -≤≤D .{}|4x x ≤4.已知 1.22a =,0.43b =,8ln 3=c ,则( ) A .b a c >>B .a b c >>C .b c a >>D .a c b >>5.已知一只蚂蚁在边长为4的正三角形内爬行,则此蚂蚁到三角形三个顶点的距离均超过1的概率为( ) A .3112π-B .3124π-C .312π D .324π 6.已知三条互不相同的直线l m n ,,和三个互不相同的平面αβγ,,,现给出下列三个命题: ①若l 与m 为异面直线,l m αβ⊂⊂,,则αβ∥; ②若αβ∥,l m αβ⊂⊂,,则l m ;③若l m n l αβγβγαγ⋂=⋂=⋂=,,,∥,则m n . 其中真命题的个数为( ) A .3B .2C .1D .07.已知函数()sin 6f x x π⎛⎫=-⎪⎝⎭,则下列说法正确的是( ) A .()f x 在20,3π⎛⎫⎪⎝⎭上单调递增 B .()f x 图象关于直线6x π=对称C .()f x 的最小正周期为πD .()f x 的图象关于2,03π⎛⎫⎪⎝⎭对称8.曲线4y x =上的点到直线81670x y --=的距离的最小值为( )ABCD9.已知实数x ,y 满足约束条件1010240x y x y x y -+⎧⎪+-⎨⎪--⎩,则11y x +-的取值范围是( )A .1(2]2,,⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .1[2)2⎛⎤-∞-⋃+∞ ⎥⎝⎦,, C .122⎡⎤-⎢⎥⎣⎦,D .122⎡⎤-⎢⎥⎣⎦,10.已知函数3x f x =(),函数g x ()是f x ()的反函数,若正数122018x x x ⋯,,,满足12201881x x x ⋯=⋅,则22221220172018g x g x g x g x +++()()()()的值等于( )A .4B .8C .16D .6411.执行如图所示程序框图,则输出的结果为( )A .-4B .4C .-6D .612.已知双曲线22212y x a -=的两个焦点分别为12F F 、分别为直线12l l 、;若点A B 、分别在12l l 、上,12||AB F F =,则线段AB 的中点M 的轨迹C 的方程为( )A .2214x y +=B .2213x y +=C .2216x y +=D .2212x y +=二、填空题13.已知124a e e =-,122b e ke =+,向量1e 、2e 不共线,则当k =______时,//a b .14.设三棱柱的侧棱垂直于底面,所有棱长都为3,顶点都在一个球面上,则该球的表面积为______.15.已知圆22:9O x y +=,点()5,0A -,若在直线OA 上(O 为坐标原点),存在异于A 的定点B ,使得对于圆O 上的任意一点P ,都有PB PA为同一常数.则点B 的坐标是________.16.设数列{}n a 为等差数列,其前n 项和为n S ,已知14760a a a ++=,25851a a a ++=,若对任意n N *∈,都有n S ≤k S 成立,则正整数k 的值为_______.三、解答题17.已知正四棱台1111ABCD A B C D -上、下底面的边长分别为4、10,侧棱长为6.(1)求正四棱台的表面积; (2)求三棱锥1B AC D -的体积.18.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,且cos cos 2B bC a c=-+. (1)求B 的大小;(2)若2a =,3c =,求cos A 和()sin 2A B -的值.19.在平面直角坐标系xOy 中,直线l的参数方程为122x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为24cos 3ρρθ-=.(Ⅰ)求直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)直线l 与圆C 交于,A B 两点,点(1,2)P ,求||||PA PB ⋅的值.20.已知函数f (x )=|x ﹣a |﹣|x ﹣5|. (1)当a =2时,求证:﹣3≤f (x )≤3;(2)若关于x 的不等式f (x )≤x 2﹣8x +20在R 恒成立,求实数a 的取值范围.21.已知焦点在y 轴上的椭圆E 的中心是原点O ,离心率等于√32,以椭圆E 的长轴和短轴为对角线的四边形的周长为4√5,直线l:y =kx +m 与y 轴交于点P ,与椭圆E 交于A 、B 两个相异点,且AP ⃗⃗⃗⃗⃗ =λPB⃗⃗⃗⃗⃗ . (Ⅰ) 求椭圆E 的方程;(Ⅱ)若AP⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求m 2的取值范围. 22.已知函数2()1,x f x e x x =--∈R .(1)求函数()f x 的图象在点(0,(0))f 处的切线方程;(2)当x ∈R 时,求证:2()f x x x ≥-+;(3)若()f x kx >对任意的(0,)x ∈+∞恒成立,求实数k 的取值范围.23.某鲜花店根据以往某品种鲜花的销售记录,绘制出日销售量的频率分布直方图,如图所示.将日销售量落入各组区间的频率视为概率,且假设每天的销售量相互独立.(1)求在未来的连续4天中,有2天的日销售量低于100枝且另外2天不低于150枝的概率; (2)用ξ表示在未来4天里日销售量不低于100枝的天数,求随机变量ξ的分布列和数学期望.【答案与解析】1.B对等式()12z i i +=的两边求模,然后进行运算求解即可. 复数z 满足(1)2i z i +=,则|(1)||||2|i z i +=,|2z =,||z ∴=故选:B.本题考查复数模的求法,考查基本运算求解能力,求解时直接对等式两边取模可使运算过程更简洁. 2.C由12n n a a +=可知{}n a 为等比数列,根据等比数列的通项公式和求和公式,代入即可得解. 由12n na a +=得数列{}n a 是以1为首项, 2为公比的等比数列,故1,122n n n nS a -==-由2155n n S a +-=得222560n n --=, 解得28n =,即3n =.本题考查了由数列的递推关系证明等比数列,考查了等比数列的通项公式和等比数列的求和公式,同时考查了计算能力,属于简单题. 3.B{}{23404A x x x x x =--=或}1x <-,{}{}2|40|22B x x x x =-<=-<<,则()[]()[)1,42,21,2UA B ⋂=-⋂-=-,故选B.4.B 容易得出 1.20.4822132013ln ><<<,,<,从而得出a ,b ,c 的大小关系.1.210.50.40822223331013a b c ln lne =>=>>==<==,>,<;∴a >b >c . 故选B .本题考查指数函数、对数函数的单调性,考查了比较大小的方法:中间量法.5.B边长为4的正三角形为ABC ,面积为分别以,,A B C 为圆心,1为半径在ABC 中作扇形,除去三个扇形剩下的部分即表示蚂蚁距三角形三个顶点距离超过1的区域,其面积为1π31232π-⨯⨯⨯=.故所求概率π3P 124π==-.故选B.点睛:对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 6.C通过线面平行的性质与判定,以及线面关系,对三个命题进行判断,得到答案. ①中,两平面也可能相交,故①错误; ②中,l 与m 也可能异面,故②错误;③中,易知l β⊂,又l m γγβ⋂=∥,,所以由线面平行的性质定理知l m ,同理ln ,所以m n ,故③正确.本题考查线面平行的判定和性质,线面关系,属于简单题. 7.A根据三角函数的单调性,对称性和周期公式依次判断每个选项得到答案. 当20,3x π⎛⎫∈ ⎪⎝⎭时,,662x πππ⎛⎫-∈- ⎪⎝⎭,函数单调递增,A 正确; 当6x π=时,06x π-=,故6x π=不是三角函数对称轴,B 错误;函数的最小正周期为2π,C 错误; 当23x π=时,62x ππ-=,故2,03π⎛⎫⎪⎝⎭不是对称中心,D 错误. 故选:A.本题考查了三角函数的单调性,对称性和周期,意在考查学生对于三角函数性质的综合应用. 8.B作一条和81670x y --=平行的切线,斜率12k =,则两直线间的距离就是最小距离. 作一条和81670x y --=平行的切线,斜率12k =,则两直线间的距离就是最小距离.曲线4y x =,3142y x '∴==,解得12x =,411()216y ==, ∴切点坐标为1(2,1)16,切点1(2,1)16到81670x y --=的距离1|4167|d -⨯-==. ∴曲线4y x =上的点到直线81670x y --=的距离d的最小值为10.故选:B .本题考查曲线上的点到直线的最小距离的求法,是中档题,解题时要注意导数的应用和点到直线的距离公式的合理运用. 9.A先作出不等式组对应的可行域,则11y x +-的取值范围是定点11P -(,)与可行域内的点连线的斜率k 的取值范围,且PC k k ≤或PA k k ≤.再求斜率即得解.由实数x ,y 满足约束条件1010240x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,作出可行域,得到如图所示的阴影部分,则11y x +-的取值范围是定点11P -(,)与可行域内的点连线的斜率k 的取值范围,且PC k k ≤或PA k k ≤.由1010x y x y -+=⎧⎨+-=⎩,解得(0,1)A ,由10240x y x y +-=⎧⎨--=⎩,解得52,33C ⎛⎫- ⎪⎝⎭,而11201PA k +==--,21135213PCk -+==-,∴12k ≥或2k ≤-, 即11y x +-的取值范围是1(,2],2⎡⎫-∞-⋃+∞⎪⎢⎣⎭. 故选:A .本题主要考查线性规划求最值,考查斜率的应用,意在考查学生对这些知识的理解掌握水平和分析能力. 10.B函数3x f x =(),由反函数的求法得3log g x x ()=, 由对数的运算得:()2222122017201831220182log g x g x g x g x x x x +++=⋅()()()(),代值可得解.解:由函数3x f x =(),函数g x ()是f x ()的反函数, 则3log g x x ()=, 所以222221220172018312201831220183log 2log 2log 818g x g x g x g x x x x x x x +++=⋅=⋅==()()()()(),故选B .本题考查了反函数的求法及对数的运算求值,属中档题 11.B分析:根据已知中的程序框图可得,该程序的功能是计算并输出S 的值,模拟程序的运行过程,即可得答案.详解:模拟程序的运行可得:0S =,1n =.第1次执行循环后,10(1)212S =+-⨯⨯=-,112n =+=,满足循环条件;第2次执行循环后,22(1)222S =-+-⨯⨯=,213n =+=,满足循环条件;第3次执行循环后,32(1)234S =+-⨯⨯=-,314n =+=,满足循环条件;第4次执行循环后,44(1)244S =-+-⨯⨯=,415n =+=,不满足循环条件,退出循环,输出4S =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省合肥市第一中学2020届高考数学冲刺最后1卷试题 文第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{|2},{|340}S x x T x x x =>-=+-≤,则()R C S T ⋃=( ) A .(,1]-∞ B .(,4]-∞- C .(2,1]- D .[1,)+∞2.已知,a R i ∈是虚数单位,复数z 的共轭复数为z ,若3,4z a i z z =+⋅=,则a =( ) A .3 B .3- C .7或7- D .1或1-3.阅读下面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为( )A .0B .1C .2D .34.设,a b r r 为向量,则“||||||a b a b ⋅=r rr r ”是“//a b r r ”的( )A .充分不必要条件B .必要不充分条件 C.充分必要条件 D .既不充分也不必要条件5.函数sin (1cos 2)y x x =+在区间[2,2]-内的图像大致为( )A .B .C. D .6. 在正方形网格中,某四面体的三视图如图所示. 如果小正方形网格的边长为1,那么该四面体的体积是( )A .643 B .323C. 16 D .32 7.观察下图:则第( )行的各数之和等于22017.A .2010B .2018 C. 1005 D .10098.已知,,,S A B C 是球O 表面上的点,SA ⊥平面,,1,2ABC AB BC SA AB BC ⊥===则球O 的表面积等于( )A .4πB .3π C. 2π D .π9.如图所示,点,A B 分别在x 轴与y 轴的正半轴上移动,且2AB =,若点A 从(3,0)移动到(2,0),则AB 的中点D 经过的路程为( )A .3π B .4π C. 6πD .12π10.设集合{(,)|||||1},{(,)|()()0},A x y x y B x y y x y x M A B =+≤=-+≤=⋂,若动点(,)P x y M ∈,则22(1)x y +-的取值范围是( )A .110[2 B .210[ C. 15[,]22D .25]2 11.已知函数221,20(),0x x x x f x e x ⎧--+-≤<⎪=⎨≥⎪⎩,若函数()()g x f x ax a =-+存在零点,则实数a 的取值范围为( )A .21[,]3e - B .21(,][,)3e -∞-⋃+∞ C. 11[,]3e- D .1(,][,)3e -∞-⋃+∞12.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且||2||PA AB =,则称点P 为“δ点”.下列结论中正确的是( )A .直线l 上的所有点都是“δ点”B .直线l 上仅有有限个点是“δ点” C. 直线l 上的所有点都不是“δ点”D .直线l 上有无穷多个点(点不是所有的点)是“δ点”第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+已知101011ˆ225,1600,4ii i i xy b =====∑∑.该班某学生的脚长为24,据此估计其身高为.14.从区间[0,2]随机抽取2n 个数1212,,...,,,,...,n n x x x y y y ,构成n 个数对1122(,),(,),...,(,)n n x y x y x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 .15.如图所示,B 地在A 地的正东方向4km 处,C 地在B 地的北偏东30o方向2km 处,河流的沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2km .现要再曲线PQ 上任一处M 建一座码头,向,B C 两地转运货物.经测算,从M 到B 和M 到C 修建公路的费用均为a 万元/km ,那么修建这两条公路的总费用最低是 万元.16.已知数列{}n a 满足*113,(3)(6)18()n n a a a n N +=-+=∈,则11ni ia =∑的值是 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. ABC ∆的内角,,A B C 的对边分别为,,abc ,已知2cos (cos cos )3B a B b A c +=. (1)求B ;(2)若,,a b c 成等差数列,且ABC ∆的周长为35,求ABC ∆的面积.18. 在如图所示的几何体ACBFE 中,,,AB BC AE EC D ==为AC 的中点,//EF DB . (1)求证:AC FB ⊥;(2)若,4,3,3,2AB BC AB AE BF BD EF ⊥====,求该几何体的体积.19. 某企业生产的某种产品被检测出其中一项质量指标存在问题. 该企业为了检查生产该产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(195,210]内,则为合格品,否则为不合格品.表 1是甲流水线样本的频数分布表,如图所示是乙流水线样本的频率分布直方图.表1 甲流水线样本的频数分布表质量指标值频数(190,195]2(195,200]13(200,205]23(205,210]8(210,215]4(1)若将频率视为概率,某个月内甲、乙两条流水线均生产了6万件产品,则甲、乙两条流水线分别生产出不合格品约多少件?(2)在甲流水线抽取的样本的不合格品中随机抽取两件,求两件不合格品的质量指标值均偏大的概率;列联表,并判断在犯错误概率不超过0.1的前提下能否认为(3)根据已知条件完成下面22“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”?甲生产线乙生产线合计合格品不合格品合计附:22()()()()()n ad bcKa b c d a c b d-=++++(其中n a b c d=+++为样本容量)2()P K k≥0.150.100.050.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.6357.87910.828 20. 如图所示,在平面直角坐标系xOy中,已知椭圆2222:1(0)x yC a ba b+=>>的离心率为22,短轴长为42.(1)求椭圆C的标准方程;(2)设A为椭圆C的左顶点,P为椭圆C上位于x轴上方的点,直线PA交y轴于点M,点N在y轴上,且0MF FN→→⋅=,设直线AN交椭圆C于另一点Q,求APQ∆的面积的最大值.21. 已知函数2()ln,()(1)f x x xg x xλ==-(λ为常数).(1)若函数()y f x=与函数()y g x=在1x=处有相同的切线,求实数λ的值;(2)当1x≥时,()()f xg x≤,求实数λ的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知曲线1C的参数方程为cos3xyαα=⎧⎪⎨=⎪⎩(α为参数),在同一平面直角坐标系中,将曲线1C 上的点按坐标变换323232x xy⎧'=+⎪⎨⎪'=+⎩得到曲线2C,以原点为极点、x轴的正半轴为极轴,建立极坐标系.(1)求曲线1C 的极坐标方程和曲线2C 的直角坐标方程; (2)若直线()3R πθρ=∈与曲线1C 交于,M N 两点,与曲线2C 交于,P Q 两点,求||||MN PQ 的值.23.选修4-5:不等式选讲 已知函数()|||2|f x x a x =-++. (1)当1a =时,解不等式()4f x ≥;(2)00,()|21|x R f x a ∃∈≤+,求a 的取值范围.试卷答案一、选择题1-5:ADCCB 6-10:BDADC 11、12:BA 二、填空题13. 166 14. 16m n 15. 2)a 16. 11(22)3n n +-- 三、解答题17.解:(1)已知2cos (cos cos )B a B b A +=,由正弦定理得2cos (sin cos sin cos )B A B B A C +=,即2cos sin(),B A B C ⋅+=cos B B ∴=Q 为ABC ∆的内角,6B π∴=.(2),,a b c Q 成等差数列,2b a c ∴=+,又ABC ∆的周长为,即a b c b ++=∴=2222222cos ()(2,b a c ac B a c a c ac =+-=+-=+-ac ∴=111sin 15(2222ABC S ac B ∆∴==⨯⨯=. 18.(1)证明://,EF BD EF ∴Q 与BD 确定平面EFBD .连接,,DE AE EC D =Q 的为AC的中点,DE AC ∴⊥.同理可得BD AC ⊥,又,BD DE D BD ⋂=⊂Q 平面,EFBD DE ⊂平面,EFBD AC ∴⊥平面,BDEF FB ⊂Q 平面,EFBD AC FB ∴⊥. (2)由(1)可知AC ⊥平面1,,3ABCEF A BDEF C BDEF BDEF BDEF V V V S AC --∴=+=⋅⋅,,4,AB BC AB BC AB BD AC =⊥=∴==Q3,1AE DE =∴==.在梯形BDEF 中,取BD 的中点M ,连接MF ,则//EF DM 且,EF DM =∴四边形FMDE 为平行四边形,//FM DE ∴且FM DE =.又222,BF BF FM BM ==+11,142232ABCEF BDEF FM BM S V ∴⊥=⨯⨯=∴=⨯⨯=梯形.19. (1)由甲、乙两条流水线各抽取的50件产品可得,甲流水线生产的不合格品有6件,则甲流水线生产的产品为不合格品的概率635025P ==甲,乙流水线生产的产品为不合格品的概率6(0.0160.32)525P =+⨯=乙.于是,若某个月内甲、乙两条流水线均生产了6万件产品,则甲、乙两条流水线生产的不合格品件数分别为360000720025⨯=(件),6600001440025⨯=(件).(2)在甲流水线抽取的样本中,不合格品共有6件,其中质量指标值偏小的有2件,记为,A B ;质量指标值偏大的有4件,记为,,,C D E F ,则从中任选2件有,,,,,,,AB AC AD AE AF BC BD ,BE ,BF ,,CD CE,,,CF DE DF EF 共15种结果,其中质量指标值都偏大有6种结果.故所求概率为62155P ==. (3)22⨯列联表如下:则22100(4412386) 2.439 2.70650508218K ⨯⨯-⨯=≈<⨯⨯⨯,所以在犯错误概率不超过0.1的前提下不能认为“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”.20.解:(1)由题意得22222c a b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得4a b c =⎧⎪=⎨⎪=⎩,所以椭圆C 的标准方程为221168x y +=. (2)由题可设直线PA 的方程为(4),0y k x k =+>,则(0,4)M k,又F 且0MF FN →→⋅=,所以MF FN ⊥,所以直线FN的方程为y x =-,则2(0,)N k-,联立22(4)216y k x x y =+⎧⎨+=⎩消去y 并整理得2222(12)1632160k x k x k +++-=,解得14x =-或2224812k x k -=+,则222488(,)1212k k P k k -++,直线AN 的方程为1(4)2y x k =-+,同理可得222848(,)1212k k Q k k --++,所以,P Q 关于原点对称,即PQ 过原点,所以APQ ∆的面积211632||212122P Q k S OA y y k k k=⋅-=⋅=≤++12k k =,即2k =时,等号成立,所以APQ ∆的面积的最大值为21.解:(1)由题意得()ln 1,()2f x x g x x λ''=+=,又(1)(1)0f g ==,且函数()y f x =与()y g x =在1x =处有相同的切线,(1)(1)f g ''∴=,则21λ=,即12λ=. (2)设2()ln (1)h x x x x λ=--,则()0h x ≤对[1,)x ∀∈+∞恒成立.()1ln 2h x x x λ'=+-Q ,且(1)0,(1)0h h '=∴≤,即1120,2λλ-≤∴≥.另一方面,当12λ≥时,记()()x h x ϕ'=,则112()2xx x xλϕλ-'=-=.当[1,)x ∈+∞时,()0,()x x ϕϕ'≤∴在[1,)+∞内为减函数,∴当[1,)x ∈+∞时,()(1)120x ϕϕλ≤=-≤,即()0,()h x h x '≤∴在[1,)+∞内为减函数,∴当[1,)x ∈+∞时,()(1)0h x h ≤=恒成立,符合题意.当12λ<时,①若0λ≤,则()1ln 20h x x x λ'=+-≥对[1,)x ∀∈+∞恒成立,()h x ∴在[1,)+∞内为增函数,∴当[1,)x ∈+∞时,()(1)0h x h ≥=恒成立,不符合题意.②若102λ<<,令()0x ϕ'>,则11,()2x x ϕλ<<∴在1(1,)2λ内为增函数,∴当1(1,)2x λ∈时,()(1)120x ϕϕλ>=->,即()0,()h x h x '>∴在1(1,)2λ内为增函数,∴当1(1,)2x λ∈时,()(1)0h x h >=,不符合题意,综上所述12λ≥.22.解:(1)已知曲线1C的参数方程为2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),消去参数α得22143x y +=.又cos ,sin ,x y ρθρθ==22223cos 4sin 12ρθρθ∴+=,即曲线1C 的极坐标方程为22(3sin )12ρθ+=.又由已知322x x y ⎧'=+⎪⎨⎪'=+⎩得2(32)x x y y ⎧'=-⎪⎪⎨⎪'=-⎪⎩代入22143x y +=得2(2)1,9y '-=∴曲线2C的直角坐标方程为22((2)9x y -+-=.(2)将3πθ=代入22(3sin )12ρθ+=,得216,||555MN ρρ=∴=±∴=.又直线的参数方程为122x t y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),代入22((2)9x y -+-=,整理得270t -+=,分别记,P Q 两点对应的参数为12,t t,则121212||4||||||57t t MN PQ t t PQ t t ⎧+=⎪=-==∴=⎨⋅=⎪⎩. 23.解:(1)当1a =时,()4f x ≥,即2214x x <-⎧⎨--≥⎩或2134x -≤≤⎧⎨≥⎩或1214x x >⎧⎨+≥⎩解得52x ≤-或x ∈∅或32x ≥,故此不等式的解集为53(,][,)22-∞-⋃+∞. (2)因为()|||2||()(2)||2|f x x a x x a x a =-++≥--+=+,因为0x R ∃∈,有0()|21|f x a ≤+成立,所以只需|2||21|a a +≤+,化简得210a -≥,解得1a ≤-或1a ≥,所以a 的取值范围为(,1][1,)-∞-⋃+∞.。

相关文档
最新文档