力矩平面力偶.ppt

合集下载

工程力学I-第3章 力矩与平面力偶系

工程力学I-第3章 力矩与平面力偶系

D
x
§3-2 关于力偶的概念

力偶:一对等值、反向而不共线的平行力,用 符号(F ,F′)表示。

力偶臂:两个力作用
线之间的垂直距离d。

F’
F
力偶的作用面:两个 力作用线所决定的平 面
§3-2 关于力偶的概念
F F
d
d
F
d
F
F
F
转动游戏方向盘
拧水龙头
扳手拧螺母
§3-2 关于力偶的概念

Q AABD AABC 显然, 并注意到力偶矩的转向也相同, 则有M ( F , F ) M ( P, P) P
M (P 1, P 1 ) M ( P, P ) 显然, 1, P 1) 从而有M ,( F , F ) M ( P
P1
力偶等效
M ( F , F ) M ( P 1, P 1)
(1)力对点之矩,不仅取决于力的大小,还与矩心的位置有关。
(2)力对任一点之矩,不因该力的作用点沿其作用线移动而改变。 *(3)力的大小等于零或其作用线通过矩心时,力矩等于零。 (4)互成平衡的两个力对同一点之矩的代数和为零。
Mo(F)=±Fd
§3-1 关于力矩的概念及其计算

合力矩定理:
y Fy
(3)将力P和P’沿各自的作用 线移至任意点A’,B’,根 据力的可传性原理,有 (P,P’) =(P1,P1’) 。
§3-2 关于力偶的概念
(4) A′
P1′ b F′ A A F B Q′ D P′ B′ C
M (F , F ) AB BD 2 AABD ,
M(P, P') AB BC 2 AABC

第三章 力偶与平面力偶理论)

第三章  力偶与平面力偶理论)

M 0 F F h
力对点之矩(力矩)是一个代数量,它的绝 对值等于力的大小与力臂的乘积;
它的正负:力使物体绕矩心逆时针转向时为正,反之为负。 常用单位为 N· m 或 kN· m。 注意:力矩在下列几种情况下等于零 (1)力的大小等于零;
(2)力的作用线通过矩心,即力臂等于零;
(3) 互成平衡的二力对同一点之矩为零。
78.93N m
按合力矩定理 M O F M O Ft M O Fr



F cos θ r 78.93N m
例3-2 已知:q,l; 求: 合力及合力作用线位置. 解: 取微元如图
x q q l l x 1 P q dx ql 0 l 2
M Mi Mi
i 1 n
平面力偶系平衡的充要条件 M = 0,有如下平衡方程
Mi
0
平面力偶系平衡的必要和充分条件是:所有各力 偶矩的代数和等于零。
例3-1
已知: F=1400N, θ 20 , r 60mm
求: M O F .
解:直接按定义
MO

F F h F r cos θ
M1 F1 d M2 F2 d
M1 F1d
M 2 F2d
Mn Fn d
M n Fnd
=
=
FR F1 F2 Fn
F1 F2 Fn FR
=
=
=
M FRd F1d F2d Fnd M1 M 2 M n
定理:同平面内的两个力偶,如果力偶矩相等,则两力偶 彼此等效。 推论: 任一力偶可在它的作用面内任意转移,而不改变它对刚体 的作用。因此力偶对刚体的作用与力偶在其作用面内的位置无 关。 只要保持力偶矩不变,可以同时改变力偶中力的大小与 力偶臂的长短,对刚体的作用效果不变.

第三章-力矩和平面力偶系-第四章-平面任意力系

第三章-力矩和平面力偶系-第四章-平面任意力系

例3-1 试计算力对A点之矩。
解 本题有两种解法。 方法一: 按力矩的定义计算 由图中几何关系有:
d=ADsinα =(AB-DB)sinα =(AB- BCctgα)sinα =(a- bctgα)sinα =asinα-bcosα
所以
mA(F)=F•d =F(asinα-bcosα)
方法二:
解:
图(a):
MA = - 8×2 = -16 kN ·m
MB = 8×2 = 16 kN ·m
图(b): MA = - 4×2×1 = -8 kN · m
MB = 4×2×1 = 8 kN ·m
第二节 力偶
▪ 一、力偶 力偶矩

在日常生活和工程实际中经常见到物体受动两个大小相等、方向相反,
但不在同一直线上的两个平行力作用的情况。例如
2.力偶矩:
▪ 作为力偶对物体转动效应的量度,称为力偶矩,
用m或m( F ,F′)表示。在平面问题中,将力偶中
的一个力的大小和力偶臂的乘积冠以正负号,如图:
即m(F)=F•d=±2ΔABC
通常规定:力偶使物体逆时针方 向转动时,力偶矩为正,反之为 负。
在国际单位制中,力矩的单位 是牛顿•米(N•m)或千牛顿•米 (kN•m)。

在同一平面内的两个力偶,只要两力偶的
力偶矩的代数值相等,则这两个力偶相等。这
就是平面力偶的等效条件。
▪ 根据力偶的等效性,可得出下面两个推论:
▪ 推论1 力偶可在其作用面内任意移动和转动, 而不会改变它对物体的效应。
▪ 推论2 只要保持力偶矩不变,可同时改变力 偶中力的大小和力偶臂的长度,而不会改变它 对物体的作用效应。
主矩: Mo=m1+m2+···+mn

力矩与平面力偶系

力矩与平面力偶系
变化规律
在非平衡状态下,平面力偶中的两个力将不再保持大小相等、方向相反的关系。它们的大小和方向将发生变化, 以适应物体转动的需要。同时,随着物体转动的进行,作用于物体的力矩也将发生变化,以满足物体转动加速度 的要求。
04
实际应用案例分析
工程领域应用举例
桥梁设计
在桥梁设计中,力矩与平面力偶系的概念对于确定桥梁结构的稳定性和安全性至关重要。 通过计算和分析桥梁各部分的受力情况,工程师可以确保桥梁能够承受各种荷载和外部环 境因素的影响。
当平面力偶系处于平衡状态时,若受到微小扰动而偏离平衡位置,若系统能自动 恢复到原平衡状态,则称该系统是稳定的;若不能自动恢复,则称该系统是不稳 定的。稳定性与系统的结构、刚度、阻尼等因素有关。
03
力矩与平面力偶系关系探讨
相互作用原理阐述
力矩与平面力偶相互作用
力矩是力对物体产生的转动效应,而平面力偶是一对大小相等、方向相反且作用线平行的力,它们共 同作用在物体上,使物体产生转动。
力矩方向判断步骤
首先确定力的作用点和方向,然后确定转动轴的位置,最后根据右手螺旋定则 判断力矩的方向。
02
平面力偶系简介
定义及性质
定义
平面力偶系是由两个大小相等、方向相反且不共线的平行力 组成的力系。
性质
力偶系中的两个力不产生合力,只产生转动效应,即力偶矩 。力偶矩的大小与两力的大小和两力之间的距离有关,而与 力的作用点位置无关。
力矩与平面力偶系
汇报人:XX
contents
目录
• 力矩基本概念 • 平面力偶系简介 • 力矩与平面力偶系关系探讨 • 实际应用案例分析 • 实验设计与操作演示 • 知识拓展与前沿动态
01
力矩基本概念

项目二 平面力系 任务二 力矩与力偶

项目二 平面力系  任务二 力矩与力偶
• 设在一物体的同一平面内有两个力偶,(Fl, F'1)和(F2,F'2),力偶臂分别为d1和d2,力偶 矩分别为M1和M2,如图2-15a所示。于是有
• M1=F1d1,M2=F2 d2
• 现求其合成结果。在力偶作用面内任取一线段AB=d, 根据力偶的等效性推论,在不改变力偶矩M1和M2的条 件下,将它们的力偶臂都改为d,于是得到与原力偶等 效的两个力偶。(Fpl,F'p1)和(Fp2,F'p2),FP1和 FP2的大小可由下列等式算出:
• 所以 F= M/2AC= 2.5/0.3kN= 8.33kN
§2–6 力偶及其性质
一、 力偶和力偶矩
1、力偶——大小相等的二反向平行力。
d
⑴、作用效果:引起物体的转动。 F2
F1
⑵、力和力偶是静力学的二基本要素
力。偶特性一:
力偶中的二个力,既不平衡,也不可能合成为 一个力。 力偶特性二:
力偶只能用力偶来代替(即只能和另一力偶 等效),因而也只能与力偶平衡。
图2-15
• 通常把O点称为矩心,把h称为力臂,把力的大小与 力臂的乘积称为力对矩心的矩,简称力矩,用它来衡 量力F使物体绕矩心转动的效应。力矩用符号mO(F)表 示。
• 人为约定:使物体产生逆时针转动(或转动趋势)的力 矩为正(图2-17(a));使物体产生顺时针转动(或转动趋 势)的力矩为负(图2-17(b))。在平面问题中力对点的 矩可表示为
量纲:力×长度,牛顿•米(N•m).
§2–6 力偶及其性质
二、力偶的等效条件 1. 同一平面上力偶的等效条件
作用在刚体内同一平面上的两个力偶相互等 效的充要条件是二者的力偶矩代数值相等。
因此,以后可用力偶的转向箭头来代替力偶。

工程力学第三章力矩与平面力偶系_图文

工程力学第三章力矩与平面力偶系_图文
反力也必须组成一个同平面的力偶 ( , )与 之平衡。
例题讲解
【解】作 AB 梁的受力图,如图( b )所示。AB梁上作用 有二个力偶组成的平面力偶系,在 A 、B 处的约束
反力也必须组成一个同平面的力偶 ( , ) 与之平衡。 由平衡方程
() RA 、RB为正值,说明图中所示RA 、RB 的指向正确。
力臂d
=
1m
×
sinα
=
1m
×
。 sin45 =
m
MB(F)=+F×d= +15kN×0.5 m = +7.5 kN ·m
注意:负号必须标注,正号可标也可不标。一般不标注。
§3-1力矩的概念和计算
(二)合力矩定理
表达式: 证明: 由图得
而 则
Fy
F
A
Fx
()
§3-1力矩的概念和计算
()
若作用在 A 点上的是一个汇交力系( 、 、 ),则可将每个力对 o 点之矩相加,有
2. 力偶的三要素 (2)力偶的方向; (3)力偶的作用面。
3. 力偶的性质 (1)力偶在任何坐标轴上的投影等于零;
(2)力偶不能合成为一力,或者说力 偶没有合 力,即它不能与一个力等效, y
因而也不能被一个力平衡;
(3)力偶对物体不产生移动效应,只 产生转动 效应,既它可以也只能改变物
体的转动状 态。
例题讲解
【例题5】在一钻床上水平放置工件,在工件上同时钻四个等 直径的孔,每个钻头的力偶矩为 求工件的总切削力偶矩和A 、B端水平反力?
解: 各力偶的合力偶距为
根据平面力偶系平衡方程有:
由力偶只能与力偶平衡的性质 ,力NA与力NB组成一力偶。
例题讲解

力矩平面力偶

力矩平面力偶

30◦
B RB
∑ mi = 0
R A ⋅ L sin 30o = M 2M 方向如图所示 R A = RB = L
15
16
NB =
60 = 300N 0.2
N A = N B = 300 N
14
平衡时, 处和 处的反力 处和B处的反力? [例2] 已知M 和 L,图示梁AB平衡时,A处和 处的反力? 解: BC 杆为二力杆
C M A L M RA
RB 沿BC 杆方向
由力偶只能与力偶平衡的性质, 由力偶只能与力偶平衡的性质, 与力R 组成一力偶。 力RA与力 B组成一力偶。 根据平面力偶系平衡方程有: 根据平面力偶系平衡方程有:
1
第三章 平面汇交力系 §3–1 力对点之矩 §3–2 力偶与力偶矩 §3–3 力偶的等效 §3–4 平面力偶系的合成与平衡
2
§3-1 力对点之矩
一、平面上力对点之矩 力对物体可以 产生运动效应 移动效应——取决于力的大小、方向 取决于力的大小、 移动效应 取决于力的大小
转动效应——取决于力矩的大小、转向 取决于力矩的大小、 转动效应 取决于力矩的大小 r 点的矩, 力F 对O 点的矩,简称力矩 M O F = ± F ⋅ d + O 点称为力矩中心(简称矩心) 点称为力矩中心(简称矩心)
(
)
现沿力偶臂AB方向 现沿力偶臂 方向 r r 加一对平衡力 Q, Q′ r r r r r r 将Q, F合成R, 将Q′, F ′合成R′, r r 得到新力偶 R, R′ r r r r r r 将R和R′移到 A′, B′点, 则 R , R′ 取代了原力偶 F , F ′ ,
(
)
(
( )
( )

力矩与平面力偶系课件

力矩与平面力偶系课件
- F22d =M2
FR=F11-F22
d2F1有作偶个一力设用两平同内成系偶合力平的一.
FR' = F11 '-F22 '
MR = FR d= ( F11- F22 )d
=F1 1d- F22 d= M 1 - M2
F1
F
d1
2
d2
F1'
F'
2
F2
2
F11'
d
F11
F22
'
FR' d
F
R
? MR为合力F R ,F R '组成的力偶(F R ,F R ' ) (称 为合力偶)的力偶矩, 称为合力偶矩; 也是原来两个力 偶的力偶矩的和。
作偶对该力用面)内偶力的‘,F物体有作偶臂一力设用为(
力偶对作用面内任一点的矩之大小恒等于力偶中 一力的大小和力偶臂的乘积,而与矩心的位置无关。
力偶对物体的转动效应可用力与力偶臂的乘积Fd 及转向来度量,该物理量称为力偶矩。
?力偶矩用符号M (F ,F')或M表示;即 M (F ,F') = ±Fd 规定:逆时针转动时,力偶矩取正号;
?力的作用线如通过矩心,则力矩为零; 反之,如一个大小不为零的力对一点之 矩为零,则此力的作用线必通过该点。
?互成平衡的二力对同一点的力矩之和为 零
虽然力矩概念由力对物体上固定点的 作用引出。实际上,作用于物体上的力 可以对任意点取矩,即矩心可是空间中 的任意点。
二.力对轴的矩
力对轴的矩用来度量力对 所作用的刚体绕某一固定轴转 动的效应。
a
,力偶矩为 -
4
3
Fa F1y与F2y组成一个力偶,力偶臂为1

力矩与平面力偶

力矩与平面力偶
1.1 力矩的概念及其计算
Mo(F)= + Fd 平面力矩为代数量
大小:Fd 逆时针转动为正,反之为负.
(O点:矩心) (垂直距离d:力臂)
7
力矩与平面力偶
1.1 力矩的概念及其计算
B
空间力对点的矩是矢量
mo(F)
z
F
A
mo(F) = r×F 力矩矢是定位矢
力矩的大小: mo(F) =2OAB面积=Fd
静力学分析基础
力矩与平面力偶
• 掌握力矩饿概念及其计算。 • 掌握力偶和力偶矩的概念及力偶
的性质。
2
力矩与平面力偶
空间一般力系:
F1 F2
F3
Fn
平面一般力系: Fn
F1
F2
3
力矩与平面力偶
1.1 力矩的概念及其计算
● 力对点的矩的概念 作用于刚体的力 F 对空间任意一点 O 的力矩定义为:
M0 (F) =r × F
(1பைடு நூலகம்Fd
(2) 力偶作用 面的方位
(3) 在力偶作用 面内,力偶
的转向
力矩与平面力偶
1.2 力偶和力偶矩
力偶矩是组成一给定力偶的两个 力对空间任意一点之矩的矢量和。
力偶矩
力矩与平面力偶
1.2 力偶和力偶矩
(1)
力偶对其所在 的平面内任意一点 的矩恒等于力偶矩 矢 ,而与矩心的位 置无关。
(2)
力矩的方向:右手螺旋法则
r
Od
y
x
力矩的三要素:力矩的大小;力矩平面的方位; 力矩在力矩平面内的转向.
力矩与平面力偶
1.2 力偶和力偶矩
大小相等、方向相反、作用线平 行但不重合的两个力称为力偶。

力矩与平面力偶系 PPT课件

力矩与平面力偶系 PPT课件
F1 d A F 1 B A F2 D ABD , M ( P , P ) 2 S ABC S ABD S ABC M ( F , F ) M ( P , P ) M ( P , P ) M ( P1 , P1) M ( F , F ) M ( P1 , P1)
F′ F
F2 F O F1
o 图 3-2 (b)
图 3-2 (c)
2. 合力矩定理 表达式: M O ( FR ) M O ( F ) 证明:由图得 y
M O ( F ) F d F r sin( ) F r (sin cos sin cos ) F r sin cos
图 3-4
图3-5
(2) 力偶的性质 (a) 力偶在任何坐标轴上的投影等于零; (b)力偶不能合成为一力,或者说力偶没有合力, 即它不能与一个力等效,因而也不能被一个力平 衡; (c) 力偶对物体不产生移动效应,只产生转动效 应,即它可以也只能改变物体的转动状态。
F d F′ 力偶作用面 力偶臂
图3-6

O x r Fy F
A

y Fx x

F r sin cos
F cos Fx , F sin Fy r cos x A , r sin y A
d
M

图 3-3

MO (F) xA Fy yA Fx
(a)
MO (F) xA Fy yA Fx
谁曾经想过用杠杆来移动地球? 古希腊科学家阿基米德曾说过“如果给我一个支点,我就能
撬起地球”。这句名言从理论上讲是完全正确的,
因为杠杆能使力变大,只要杠杆足够长,就 能产生足够大的力来“搬动”地球。

2.2 力矩和力偶

2.2 力矩和力偶

∑Fx=0 ∑Fy=0 ∑MO(F)=0
上述三组方程是平面一般力系平 衡方程的三种表达形式,实际计算时 应根据问题的具体条件来选择其中的 一组方程。但不论采用哪种形式,都 只有写出三个独立的平衡方程才可以 求解三个未知量。
建筑力学与结构基础
第二章 平面力系
例1-8
已知F=15kN,M=3kN.m,求A、B处支座反力 解:
y
Fx
F

(二)合力矩定理
合力对平面内任意一点之矩, F 等于所有分力对同一点之矩的代数 和。
o
r
d
x
A
y

Fy
x
M O F M O F1 M O F2 M O Fn
即:
Mo (FR ) Mo (F )
利用合力矩定理可以简化力矩的计算
建筑力学与结构基础
第二章 平面力系
• 【例2.1】如图所示每1m长挡土墙
• 所受的压力的合力为F,它的大小为 • 160kN,方向如图所示。求土压力F
• 使墙倾覆的力矩。
• 【解】土压力F 可使墙绕点A倾覆, • 故求F 对点A的力矩。 • 采用合力矩定理进行计算比较方便。 • MA(F) =MA(F1)+MA(F2)=F1×h/3-F2b
§2-2 力矩和力偶
一、 力矩
(一)力对点之矩
实践经验告诉我们:力F使物体绕某点O转动的效应,不仅与 力F的大小成正比,而且还与力F的作用线到O点的垂直距离d 成正比。
建筑力学与结构基础
第二章 平面力系
§2-2 力矩和力偶
一、 力矩
(一)力对点之矩
l
d
A
o
将力F与O点到力F作用线的垂直距离d的乘积Fd并加上 正负号称为力F对O点的力矩,用MO(F)表示,即

第2章平面汇交力系与第3章平面力偶系

第2章平面汇交力系与第3章平面力偶系
2- 6
合力的大小:R Rx2 Ry2
X2 Y2
方向:
tg

Ry Rx
∴ tg1 Ry tg1 Y
Rx
X
作用点: 为该力法 从前述可知:平面汇交力系平衡的必要与充分条件是该力系
的合力为零。 即: R 0 Rx2 Ry2 0
FC M / a
M C
FC
D
A
a
D
B
FB
FD
取T形杆ADC为研究对象
FX 0 FA cos 45 FC 0
FA 2M / a
C
M
B
a
a
C
FC
A
FA
2-34
[例4] 起重机用绕过滑轮B的钢绳吊起重为G=20KN的重物, 试求杆AB、BC所受的力。
解:取B点为研究对象,受力分析
2-21
2. 力偶可搬家;
F1
d1
F1
F1
F1
d1
3. 力偶的表示方法。 F1
d1

=
F1
F1
d1
F1
d1
F1
F1

F1

F1
d1
=m
2-22
四、力偶系的合成和平衡 平面力偶系:作用在物体同一平面的许多力偶叫平面力偶系 设有两个力偶
d
d
m1 F1d1;
一、力偶 d
定义:作用于同一个物体上大小 相等,方向相反且作用线不重合 的两个力。
力偶的两个力F'、F所在的平面称为力偶作用面。 力偶的两个力F 、F作用线之间的距离d称为力偶臂。 作用效果:使刚体产生纯转动。

建筑力学课件 第四章 力矩与平面力偶系

建筑力学课件 第四章  力矩与平面力偶系
力矩的概念可以推广到普遍的情形。在具 体应用时,对于矩心的选择无任何限制, 作用于物体上的力可以对平面内任一点取 矩。
4.1力对点之矩、合力矩定理
3.力矩的性质 综上所述,得出如下力矩性质:
(1)力F对点O的矩,不仅决定于力的大 小,同时与矩心的位置有关。矩心的位 置不同,力矩随之而异。
(2)力F对任一点的矩,不因为F的作用 点沿其作用线移动而改变,因为力和力 臂的大小均未改变。
2.力矩的计算
在平面问题中,我们把乘积Fd加上适当的正负号,
作为力F使物体绕点O转动效应的度量,并称为
力F对点O的矩,简称力矩,用Mo(F) 或MO表示
即 MO (F)=± Fd
(4-1)
点O称为矩心,力作用线到矩心的垂直距离d称
为力臂。正负号通常用来区别力使物体矩心
转动的方向,并规定:若力使物体绕矩心作
4.1力对点之矩、合力矩定理
(3)力的大小等于零或力的作用线通过 矩心,即公式(4-1)中的F=0或者d = 0,则 力矩等于零。
(4)相互平衡的两个力对同一点的矩的 代数和等于零。(相互抵消)
4.关于力矩的量纲单位:
在国际单位制中,力矩的单位是牛·米( N·m)或千牛·米(kN·m)。
4.1力对点之矩、合力矩定理
M1 = F1 d1 M2 = F2 d2 M3 = -F3d3
4.3 平面力偶系
在力偶作用面内取任意线段AB = d,在保持力偶 矩不改变的条件下将各力偶的臂都化为d,于是 各力偶的力的大小应改变为
4.3 平面力偶系
然后移转各力偶,使它们的臂都 与AB重合,则原平面力偶系变换 为作用在点A及B的两个共线力 系。
在同一平面内的两个力偶,只要两力 偶的力偶矩(包括大小和转向)相等 ,则此两力偶的效应相等。这就是平 面力偶的等效条件。

平面力偶系ppt课件

平面力偶系ppt课件

7
1
8
二、力偶的性质
1、力偶虽然由两个力组成,但是这两个力既不能用一个力等效,也不能用一 个力与之平衡。
2、只要保持力偶矩不变(包括大小和转向),力偶可以在其作用面内任意移转,而
不改变其对刚体的作用效果。
F' D
F1'
F'
A
B
F
C
F
F1
3、只要保持力偶矩不变(包括大小和转向),可以同时改变力偶中力的大小和力偶 臂的长短,而不改变力偶对刚体的作用效果。
Mi 0
i 1
上式为平面力偶系的平衡方程。
15
例3-1:如图3-9(a)所示,已知长为l的梁AB上作用一矩为 M的力偶,不计梁的自重。求支座A、B的约束力。
解:
(1)以梁AB为研究对象
分析得,梁AB受力如图 3-10所示
根据方程
n
Mi 0
i 1
FAl M 0
FA

FB

M l
解:①用力对点的矩法
l
mO (F ) F d F sin
mo (Q ) Ql ②应用合力矩定理
mO(F)Fx lFy lctg
mo (Q ) Ql
6
§3-2 平面力偶及其性质
一、力偶的定义 1、定义:两个大小相等、方向相反、不共线的平行力组成的 力系称为力偶。记作(F,F′)。
16
所以:
FA

FB


M l
FAl M 0
(2) 比较图3-9(a)、图3-9(b)可知: 除了力偶M在梁 AB上的位置不同,梁的约束和尺寸均一样。
M1=F1d1 M2=-F2d2

理论力学--力矩-平面力偶系

理论力学--力矩-平面力偶系

F
d d
F
F
F
M F d
M O1 F , F M O1 F M O1 F




F d x1 F x1 Fd
§2-2 平面力对点之矩 · 平面力偶
平面力偶的等效定理: 在同平面内的两个力偶,若 力偶矩相等,则两力偶彼此等效。 两个推论:
M F
O i
平面汇交力系: M O FR M O Fi


平面汇交力系的合力矩定理:合力对平面内任一点 的矩,等于所有各分力对同一点的矩的代数和。
§2-2 平面力对点之矩 · 平面力偶 力矩与合力矩的解析表达式
(1)力矩的解析表达式 y
M O F M O Fx M O Fy
F
y
l M O (F ) F d F sin
O
MO (Q) Q l
② 应用合力矩定理
Fy
Fx A
d
x
l

Q
M O (F ) Fx l Fy l cot
F sin l F cos lcot l F sin
③ 应用合力矩公式
§2-2 平面力对点之矩 · 平面力偶 平面力偶系的合成证明:
已知:M 1 , M 2 ,
Mn;
求:它们的合成结果。
证明:
任选一段距离d:
M 1 F1d , F1 M 1 / d
M 2 F2 d , F2 M 2 / d
M2 Mn
M1
M n Fn d , Fn M n / d
第二章
平面力系
第二章 平面力系(之二)
§2-2 平面力对点之矩 · 平面力偶

理论力学--力矩-平面力偶系

理论力学--力矩-平面力偶系

示位置处于平衡。已知OA=r,DB=2r,α=30°,不计
杆重。试求:M1和M2间的关系。
B
A O
α
M1 M2
D
§2-2 平面力对点之矩 · 平面力偶 解:(1)先以杆OA为研究对象。
M1 FAB rcos 0 (a)
(2)再取杆DB为研究对象。 A O
FBA FAB
A
B α
M1 M2
M 2 2 FBA rcos 0 (b)



O
O i
Fy

A (x,y)
F
Fx y Fy x yF cos xF sin
(2)合力矩的解析表达式 上式代入 M O FR 得,
Fx
x
M F
M O FR xi Fyi yi Fxi

§2-2 平面力对点之矩 · 平面力偶 例 2-5 已知:如图 F, Q, α, l , 求: MO (F ) 和 MO (Q)。 解:① 用力对点的矩法
受力分析:主动力— M
约束力— FA , FB 列平衡方程:
D
45
M A B
l
M 0,
M FA l cos 45 0

FA
A
M B
解得: FA FB 2M
l
d
FB
§2-2 平面力对点之矩 · 平面力偶 例 2-10
图示的铰接四连杆机构OABD,在杆OA和
BD上分别作用着矩为M1和M2的力偶,而使机构在图
C


F d x F x Fd M 2 S ABC

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的孔,每个钻头的力偶矩为 m1 m2 m3 m4 15Nm 求工件的总切削力偶矩和A、B端水平反力?
解: 各力偶的合力偶距为
M m1 m2 m3 m4 4( 15 ) 60Nm
由力偶只能与力偶平衡的性
质,力NA与力NB组成一力偶。 根据平面力偶系平衡方程有:


将Q, F合 成R, 将 Q, F合 成R,
得到新力偶 R, R



将R和R移到A,B点, 则 R,R 取代了原力偶F ,F ,
并与原力偶等效。 10



偶R
,R

F
,F





NB 0.2 m1 m2 m3 m4 0
NB

60 0.2

300N
N A NB 300 N
14
[例2] 已知M 和 L,图示梁AB平衡时,A处和B处的反力?
解: BC 杆为二力杆
C
RB 沿BC 杆方向
由力偶只能与力偶平衡的性质,A 力RA与力RB组成一力偶。
根据平面力偶系平衡方程有:
1
第三章 平面汇交力系 §3–1 力对点之矩 §3–2 力偶与力偶矩 §3–3 力偶的等效 §3–4 平面力偶系的合成与平衡
2
§3-1 力对点之矩
一、平面上力对点之矩
力对物体可以 移动效应——取决于力的大小、方向
产生运动效应 转动效应——取决于力矩的大小、转向

力F 对O 点的矩,简称力矩 MO F F d +
mo(Q ) Ql
6
§3-2 力偶与力偶矩
力偶:大记小为相等F、,方F向相反、作用线互相平行的二个力。
力偶中二力所在的平面称为力偶作用平面 力偶中二力作用线间的垂直距离称为力偶臂
F
d F'
性质1:力偶无合力,即力偶对 物体不产生移动效应,只能使 物体产生转动效应。力偶是一个 基本力学量。
12
结论:
n
M m1 m2 mn mi
i1
平面力偶系合成结果还是一个力偶,其力偶矩为
各力偶矩的代数和。
二、平面力偶系的平衡 平面力偶系平衡的充要条件是: 所有各力偶矩的代数和等于零。
n
即: M mi 0
i 1
13
[例1] 在钻床上水平放置工件,在工件上同时钻四个等直径
mi 0
M
30◦
B
L
RB
M
RA
RA Lsin 30 M
RA

RB

2M L
方向如图所示
15
16
-
O 点称为力矩中心(简称矩心)
O 点到力F 作用线的垂直距离d ,
称为力臂
工程实例:
扳手拧螺母,拧水龙头, 汽车转方向盘等
3
平面上力对点的矩说明:

① MO F 是代数量。 ② F↑,d↑转动效应明显。

③ MO F 是影响转动的独立因素。

当F=0或d=0时,MO F =0。
F
F( x d ) F'x
F d mo R
B Ad
x
O
由于O点是任取的
m F d + —
F'
(1)力偶矩的大小
力偶的三要素 (2)力偶的转向
(3)力偶的作用平面
8
力偶矩的说明:
① m是代数量,有“+”、“-”表示力偶的转动方

m F d



现mO( R ) mO( F1 ) mO( F2 )证毕
5


[例] 已知:如图 F、Q、l, 求:mo F 和 mo Q
解:①用力对点的矩法
mo( F

)

F
d

F
l sin

mo(Q ) Ql
②应用合力矩定理

mo( F ) Fx l Fy l cot

m F ,F 2ABD m R,R
2ABC
即△ABD= △ABC,
且它们转向相同。
由上述证明可得下列两个推论: ①力偶可以在其作用面内任意移动,而不影响它对刚体的
作用效应。
②在保持力偶矩大小和转向不改变的条件下,可以任意改变 力偶臂的大小、力的大小,而不影响它对物体的用。
11
②F、 d 都不独立,只有力偶矩
是独立量;
③m的值m=±2⊿ABC ; ④单位:N• m
CF
B Ad
F'
9
§3-3 力偶的等效
平面力偶的等效定理:
作用在同一平面内的两个力偶,只要它的力偶矩的大小 相等,转向相同,则该两个力偶彼此等效。
[证]
设物体的某一平面
上作用一力偶

F, F
现加沿一力对偶平臂衡力B方Q,向Q
④单位Nm,工程单位kgfm。

⑤ MO F =2⊿AOB=Fd ,2倍⊿形面积。
4
二、合力矩定理 定理:平面汇交力系的合力对平面内任一点的矩,等于
所有各分力对同一点的矩的代数和 即:
[证] 由合力投影定理有: Od=Ob+Oc

MO( F1 ) 2OAB OAOb MO( F2 ) 2OAC OAOc MO( R ) 2OAD OAOd
力偶矩是度量力偶对物体的转动效应
的物理量。
7

力偶矩用符号 m F, F 或 m 表示
mF, F F d 或 m F d
性质2:力偶对其所在平面内任一点的矩恒等于力偶矩,而
与矩心的位置无关,因此力偶对刚体的效应用力偶矩度量。
F


mo
F
mo
§3-4 平面力偶系的合成与平衡
平面力偶系:作用在物体同一平面的许多力偶叫平面力偶系。 一、平面力偶系的合成
设有两个力偶
d
d
m1 F1 d1
m1 P1 d
RA P1 P2
m2 F2 d2
m2 P2 d
RB P1 P2
合力矩 M RA d P1 P2' d P1 d P2' d m1 m2
相关文档
最新文档