第三版实变函数论课后答案

合集下载

实变函数与泛函分析基础第三版答案

实变函数与泛函分析基础第三版答案

第七章习题解答1、设(,)X d 为一度量空间,令00(,){|,(,)}U x x x X d x x εε=∈< 00(,){|,(,)}S x x x X d x x εε=∈≤,问0(,)U x ε的闭包是否等于0(,)S x ε。

解答:在一般度量空间中不成立00(,)(,)U x S x εε=,例如:取1R 的度量子空间[0,1][2,3]X =,则X 中的开球(1,1){;(1,)1}U x X d x =∈<的的闭包是[0,1],而(1,1){;(1,)1}[0,1]{2}S x X d x =∈≤=2、设[,]C a b ∞是区间[,]a b 上无限次可微函数全体,定义()()()()01|()()|(,)max 21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑,证明:[,]C a b ∞按(,)d f g 构成度量空间。

证明:(1)显然(,)0d f g ≥且(,)0d f g =⇔()()()()1|()()|,max021|()()|r r r r r a t bf tg t r f t g t ≤≤-∀=+-⇒,[,]r t a b ∀∀∈有()()|()()|0r r f t g t -=,特别当0,[,]r t a b =∀∈时有|()()|0f t g t -=⇒[,]t a b ∀∈有 ()()f t g t =。

(2)由函数()1t f t t=+在[0,)+∞上单调增加,从而对,,[,]f g h C a b ∞∀∈有 ()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max 21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三角不等式成立(,)(,)(,)d f g d f h d h g ≤+。

第三版实变函数论课后答案1

第三版实变函数论课后答案1

习题二 (p18)1. 用解析式给出)(1,1-和)(,-∞∞ 之间的一个11-对应。

解:)(1,1x ∀∈- ,令()tan 2x x πϕ= ,则())(,x ϕ∈-∞∞,且()'22012x x πϕπ=>⎛⎫+ ⎪⎝⎭,故ϕ严格单调于)(1,1-,1lim x→±=±∞, 所以()tan 2x x πϕ= 为)(1,1-和)(,-∞∞ 之间的一个11-对应。

2.证明只需a b <就有)()(,~0,1a b 。

证明:)(,x a b ∀∈,令()x ax x bϕ-=-,则())(0,1x ϕ∈,且显然为11-对应。

第三节习题(P20)1. 证明平面上坐标为有理数的点构成一可数集合。

证明:将全体有理数排成一列 12,n r r r ,则平面上的有理点)({}1,;,jj Q Q r s r Q s Q A ∞=⨯=∈∈= ,其中)({},;1,2,jijAr r i n == 为可列集,故作为可数个j A 的并1j j Q Q A ∞=⨯= 为可数集。

(第20页定理5)。

3. 所有系数为有理数的多项式组成一可数集合. 证明:我们称系数为有理的多项式为有理多项式 任取非负整数n ,全体n 阶有理多项式的集合的势是0ℵ.事实上,∀ n 阶有理数()()120,,,,ni n i i n i X x a x a Q a a a ==∈∑ 令与之对应,这一对应显然是11-的,即0,m mm Q Q Q Q ∀⨯⨯=ℵ的势是,这是因为由第一题:已知2Q Q Q =⨯是可数集,利用归纳法,设k kQ Q Q Q =⨯⨯是可数集,,待证1k k Q Q Q +=⨯是可数集,.将Q 中的点排成一列12,,m γγγ ,将k Q 中的点排成一列12,,m l l l , 则11k kj j Q Q Q A ∞+==⨯= ,其中(){},,,1,2,3,j i j A l i j γ== 显然为可数集,故11k j j QA ∞+== 也是可数集,这表明0,n n ∀≥阶有理多项式全体是一可数集,而全体有理多项式{}0n n ∞= 全体阶有理多项式作为可数集的并也是可数集.P24 习题1. 证明[]0,1上的全体无理数构成一不可数无穷集合.证明:记[]0,1上的全体有理数的集合为 ()12,,,,n Q r r r = . []0,1全体无理数的集合为 R,则[] 0,1Q R = . 由于 Q是一可数集合, R 显然是无穷集合(否则[]0,1为可数集, Q R 是可数集,得矛盾).故从P21定理7得 [] 0,1Q R R = . 所以 R=ℵ, R 为不可数无穷集合. 2. 证明全体代数数(即整系数多项式的零点)构成一可数集合,进而证明必存在超越数(即非代数数). 证明:记全体整系数多项式的全体的集合为z P ,全体有理多项式的集合为Q P . 则上节习题3,已知Q P 是可数集,而z Q P P ⊂,故z P 至多是可数集,()z Q P P ≤, 而z P 显然为无穷集合,故z P 必为可数集.,0z z m m P P ∞== .任取一,0,z f P m ∈∃≥有,z m f P∈. f 的不同零点至多有m 个,故全体,z m f P ∈的零点的并至多为无数.((){},;0z mf P z f z ∈=至多为可数集,所以全体代数数之集(){},0;0z mm f P z f z ∞=∈=也是至多可数集.又{},1;1,2,n N nx n ∀∈+= 是可数集,110nx x n+=⇔=. 带市数显然有无穷个,故全体代数数之集为一可数集.(P29)2.设1nR R =是全体实数,1E 是[]0,1上的全部有理点,求'11,E E .解:[]0,1x ∀∈,由有理数的稠密性知,()()0,,,N x x x εεεε∀>=-+中有无穷个1E 中的点,故'1x E ∈,故[]'10,1E ⊂.而另一方面,[]0,1x ∀∉,必有0δ>,使()[]0,0,1N x δ=∅ ,故'01x E ∉ 故[]'10,1E ⊂,所以[][]'10,10,1E ⊂⊂.表明[]'10,1E =而[][]'11110,10,1E E E E === 故[]'110,1E E ==.3.设2n R R =是普通的xy 平面(){}222,;1E x y xy =+<,求'22,E E .解:(){}'222,;1E x y xy =+≤事实上,若()'0002,p x y E =∈,则由于()22,f x y x y =+是2R 上的连续函数,必存在0δ>,使()()0,,x y N p δ∀∈有()22,1f x y x y =+>.故()02,N p E δ=∅ ,故0p 不是'2E 中的点矛盾. 故22001x y +≤时(){}220,;1p x y xy ∈+≤反过来,若()(){}22000,,;1p x y x y x y =∈+≤则0δ∀>,作[]0,1上的函数()()()()22000000,f t tp p tx x ty y ρ==-+-()22222000011t x y t x y =-+=-+则()f t 是[]0,1上的连续函数,()220001f x y =+≤,()10f =,01δ∀<<,[]0,1t δ∃∈使()f t δδ=现在任取()0,0min 1,ηδη>∃<<,使()()00,,N p N p δη⊂. 由上面的结论,存在01t δ<<,使()1f t δδ=<.故0t p δ满足(1)00t p p δ≠;(2)0001t p t p t p t δδδδ==≤<.故02t p E δ∈ (3)()00,t p p δρδη=<,故()0,t p N p δη∈ 所以(){}020,t p N p E p δη∈- 由习题1的结论知'02p E ∈,所以(){}'222,;1E x y x y =+≤.而(){}''222222,;1E E E E x y xy ===+≤ .第二章第二节习题(P35)1.证明点集F 为闭集的充要条件是F F =.证明:因为'F F F = ,若F 为闭集,则'F F ⊂所以'F F F F F F F =⊂=⊂ 故F F =反过来,若'F F F F =⊂ ,则必有'F F ⊂从而F 为闭集.P42第四节习题1. 证明全体有理数所构成的集合不是G δ集,即不能表成可数多个开集的交. 证明:设1R 上全体有理数为{}123,,,,n r r r r Q =. 则一个{}n r 作为单点集是闭集,所以{}1i i Q r ∞== 是F δ集,但要证Q 不是G δ集,则不容易.这里用到:Baire 定理,设nE R ⊂是F δ集,即1k k E F ∞== .k F ()1,2,k = 是闭集,若每个k F 皆无内点,则E 也无内点(最后再证之)反证设{};1,2,i Q r i == 为G δ集,即1i i Q G ∞== ,(i G 为开集,1,2,i = )1R 上的单调函数的全体所组成的集合的势为c =ℵ.证明:任取1R 上的单调函数f ,则其间断点至多可数个,设其无理数的间断点,为12,,,,m x x x (可为有限)设1R 中的有理数为{}12,,,,,n Q r r r f =∀∈令 ()()()()()()()()(){}21111,,,,,,,,i i i i f x f x r f r x f x r f r R ϕ=⊂ .则()f ϕ为2R 中可数集.若,f g ∈,使()()f g ϕϕ=,则()()(),i i x f x f ϕ∀∈存在()()(),jjx g x g ϕ∈使()()()(),,i i j j x f x x g x =所以 () (),i j i jx x f x g x ==, 从而()(),i i i x Q f r g r ∀∈=.f ∀的无理数间断点i x ,i x 也是g 的无理数间断点,且()()i i g x f x =.反过来也是的,g ∀的无理间断点,i x 也是f ,的无理数间断点,且()()i i g x f x =.故()()f g ϕϕ=表明f 与g 在有理点重合,无理间断点相同,且在无理间断点的值.所以f g =于1R ,所以ϕ是11-的.利用下面结论:Claim :任何其有连续势的集合的全体可数子集所构成的族的势为连续势. 知:c ≤ .另一方面()(){},0,1c c f x x c c ==+∈≤ 证毕.Lemma :设为,X Y 两集合,:X Y ϕ→是一个满射,则Y X ≤.即存在X 的一个子集,A A Y .证明:因为ϕ为满射,()(){}1,;,y Y y x x X x y ϕϕ-∀∈=∈=≠∅ 且,,y z Y y z ∈≠时必有()()11y z ϕϕ--=∅ .令(){}1;y y Y ϕ-Γ=∈,则由选择公理存在一个集合X ,它由Γ中每一个集合()1y ϕ-中恰取一个元素而形成,显 ,X X a X ⊂∀∈,存在唯一一个y Y ∈,使()1a y ϕ-∈.所以 X 与Y 是对等的,故Y X ≤.证毕.选择公理:若Γ是由互不相交的一些非空集合所形成的集合族,则存在集合X ,它由该族的每一个集合中恰取一个元素而形成.2. 证明[]0,1上全体无理数所作成的集合不是F δ集.证明:设[]0,1上全体无理数所作成的集合是 ,则[]0,1Q =- ,(Q 为1R上全体有理数的集合)若 为F δ集,则存在闭集,1,2,i F i = 使1i i F ∞== .所以[]10,1cc i i Q F ∞=== 为G δ集.[][]{}{}110,10,1i k i k Q F r ∞∞==⎛⎫== ⎪⎝⎭ ,{}k r ,i F 为闭集,{}k r 无内点. 1i i F ∞== 显为内点.所以i F 无内点.这说明[]0,1无内点(Baire 定理)得矛盾. 证毕.P452. 证明任何闭集都可表成可数多个开集的交.证明:设F 为任一闭集. ,n N ∀由本节第一题知()1;,n U p d p F n ⎧⎫=<⎨⎬⎩⎭为开集,且(),1,2,n F U n ⊂= ,从而有1n n F U ∞=⊂ .下证1n n F U ∞=⊂ ,这只用证1n n U F ∞=⊂ ,1n n p U ∞=∀∈ .反证设p F ∉则c p F ∈,故从F 为闭集知c F 为开集.故0δ∃>使(),cN P F δ⊂.从而有(),,q F d p q δ∀∈≥(否则(),d pqδ≥(),cq N P F δ⇒∈⊂cq F F ⇒∈=∅矛盾) 这说明()(),inf ,q Fd p F d p q δ∈=≥.另一方面,1n n p U ∞=∈ 表明,n n p U ∀∈,从而有()1,p F nρ=.令n →∞知(),0p F ρ=. 这与(),0d p F δ≥>矛盾. 所以p F ∈,从而1n n p U ∞=∈ 得证.P57第三章第2节习题2.证明:若E 有界,则m E *<∞.证明:若nE R ⊂有界,则存在一个开区间(){}120,,;n M n E R I x x x M x M ⊂=-<< .(0M >充分大)使M E I ⊂.故()()()111inf ;2n nn n m n n i m E I E I I M M M ∞∞*===⎧⎫=⊂≤=--=<+∞⎨⎬⎩⎭∑∏ .P682.举例说明定理6的结果对任m T *=∞的T 可以不成立.解:令[][]1,,,n A n T R =∞==-∞∞,则121n n A A A A +⊃⊃⊃11,0n n n n E A m A ∞∞==⎛⎫==∅= ⎪⎝⎭()()()0m T E m E m ***==∅=而()()lim lim n n n n m T A mA **→∞→∞==∞6Th m T *∴<∞中是必需的.3.证明对任意可测集合A 和B 都有()()()()m A B m A B m A m B +=+ (*)证明:若()m A B =∞ ,则,A B A B ⊂()()()0,,m A B m A m B ⇒==∞=∞()()()()m A B m A B m A m B ∴∞=+=++∞ 成立.若()m A B <∞ 则(*)等价于()()()()m A B m A m B m A B =+-注意到()(),A B A B A A B A =--=∅ 且,A B 可测B A ⇒-可测()()()m A B m A m B A =+- A 可测()()()()()c m B m A B m A B m A B m B A =+=+-()()()(),m A B m B A m B m A B ∴<∞-=- ()()()()m A B m A m B m A B ∴=+-P1032..证明当()f x 既是1E 上又是2E 上的非负可测函数时,()f x 也是12E E ⋃ 上的非负可测函数证明:显然()0f x ≥于1E ,且()0f x ≥于2E 表明()0f x ≥于12E E ⋃ 又1a R ∀∈,{}{}{}1212|()|()|()E E x f x a E x f x a E x f x a ⋃>=>⋃>由于f 在1E ,2E 上分别可测,{}1|()E x f x a >和{}2|()E x f x a >均为可测集,从而由P61推论2,{}{}12|()|()E x f x a E x f x a >⋃>={}12|()E E x f x a ⋃>为可测集,再由P101Th1知f 在12E E ⋃上可测或直接用P104Th4的证明方法.3.设mE <+∞,()f x 是E 上几乎处处有限的非负可测函数,证明对0ε>,都有闭集F E ⊂,使(\)m E F ε<,而在F 上()f x 是有界的证明:令{}0|()0E E x f x ==,{}|()E E x f x E ∞∞==,由条件f 在E 上几乎处处有限,0mE ∞=.由()f x 可测于E 上知,{}{}0|()0|()0E E x f x E x f x =≥⋂≤是可测集(P103Th2,P64Th4可测集的交仍可测)令{};0()E E x f x +=<<+∞,1;()k A E x f x k k ⎧⎫=≤≤⎨⎬⎩⎭,则 {}1;()\;()k A E x f x k E x f x k ⎧⎫=≤<⎨⎬⎩⎭可测,1k k E A +∞+== ,且1k k A A +⊂由P64Th5 ()lim k k m E mA +→+∞=,而mE <+∞,则()m E +<+∞故0ε∀>,0k ∃使00()2k m E mA ε+≤-<,而0k A E +⊂故0(\)2k m E A ε+<由0E ,0k A 可测,∃闭集01k F A ⊂,01(\)8k m A Fε<,∃闭集00F E ⊂使00(\)8m E F ε<令10F F F =⋃,则F 为闭集,且在F 上00()f x k ≤≤由于E F ∞⋂=∅,00\\(\)E F E E E F E E E F ∞+∞+=⋃⋃=⋃⋃ 又000001\\(\)(\)E E F E E F F E F E F +++⋃=⋃⋃⊂⋃ 而0011\(\)(\)k k E F E A A F ++⊂⋃,故00(\)(\)m E F mE m E E F F ∞+≤+⋃⋃0010(\)(\)m E F m E F +≤++ 001(\)(\)882842k k m E A m A F εεεεεεε+≤++≤++=+<证毕.7.设()f x 是1R 可测集E 上的单调函数,证明()f x 在E 上可测.证明:不妨设()f x 在E 上单调不减,即12,x x E ∀∈,若12x x <,则12()()f x f x ≤1a R ∀∈,我们来证明[|()]E x f x a =≤是可测集,这样由本节定理2知()f x 可测于E (P103).若1a R ∈使得[|()]a E x f x a ≤=∅ ,则显然a E 可测若1a R ∈使得a E ≠∅,此时若令0sup a y E =,则要么0y =+∞,要么0y <+∞(1) 若0y =+∞,则,M a M M y E ∀∃<∈,故,x x E M ∀∈∃使x M a y x E >∈, 由()f x 在E 上单调不减,我们有()()x M f x f y a ≤≤,即a E E E ⊂⊂,从而a E E =为可测集(2) 若0y <+∞,则要么0y E ∈,要么0y E ∉若0y E ∈,则0()f y a ≤,此时0(,)x E y ∀∈⋂-∞,0,x a x y E x y y ∃∈<<,由()f x 单调不减于E 知,()()x f x f y a≤< 故0(,)a E y E ⋂-∞⊂,而0a y E ∈,从而有00(,](,]a E y E E y ⋂-∞⊂⊂⋂-∞,故0(,]a E E y =⋂-∞为可测集. 若0y E ∈,而0()f y a >,0a y E ∉,则0(,)x y E ∀∈-∞⋂,0,x a x y E x y y ∃∈<<0x x y y <<,()()x f x f y a ≤<则00(,)(,)a y E E y E -∞⋂⊂⊂-∞⋂ 即0(,)a E y E =-∞⋂为可测集.若0y E∉,则0a y E ∉,同样可证0(,)a E E y E =⋂-∞⋂可测.若()f x 单调不增,则()f x -在E 上单调不减,从而可测,故(())()f x f x --=在E 上可测.P1082.设mE <+∞,(),1,2,n f x n = 都是E 上的几乎处处有限的可测函数,并且lim ()()n n f x f x →+∞= .a e ,|()|f x <+∞ .a e ,必有E 的可测集序列{}n E ,使1n n E E +⊂,1,2,n = ,lim n n mE mE →+∞=,而在每一n E 上{}()m f x 都一致收敛于零.证明:由于mE <+∞,{}1()n n f x +∞=可测于E 且几乎处处有限,l i m ()(n n f x f x →+∞=,|()|f x <+∞ .a e ,由Egoroff 定理:1,,,()\()n nmnn n N e E m e f x fE E e n∀∈∃⊂<=可测集一致收敛于可测 令1nn i i E F ==,则()mfx f 一致收敛于n E显然12n E E E E ⊂⊂⊂⊂⊂ n N∀∈,()(\)n n mE m E m E E =+,而mE <+∞,()n m E mE ≤<+∞故10(\)nn nm E m E m E Em e n≤-≤=< 则lim n n mE mE →+∞= 证毕.P112. §3习题1.若E 是有界可测集,()f x 在E 上几乎处处有限 ,则()f x 在E 上可测的充要条件是有一串在整个空间上连续的函数()n x Φ ,使 l i m()()n n x f x →∞Φ= .a e 于E证明:充分性是显然的,()n x Φ在1R 上连续,从而是可测的,及几乎处处有限,也必在E 上可测必要性:由E 有界可测,()f x 在E 上几乎处处有限,故由Lusin 定理,∃闭集1F E ⊂,1(\)1m E F <,()f x 是1F 上的连续函数,又1E F -有界可测,由Lusin 定理,∃闭集21\F E F ⊂,使121(\\)2m E F F <利用归纳法知,若k F 已选好,则 11\kk ii F E F+=∃⊂ ,111(\\)1ki k i m E F F k +=<+ 且()f x 在1k F +上连续. 由于k ∀,1ki i F = 仍是有界闭集,故由P116Th2的证明方法知f 可扩充为1R 上的连续函数()n x Φ,()()n x f x Φ=于1ki i F = 上且k ∀,111(\)(\)0kk i i i i m E F m E F k ∞→+∞==≤≤→ ,故1(\)0i i m E F ∞==01ii x F ∞=∀∈ ,00()n n x ∃=使n x F ∈ 则01n i i x F =∈000()()n x f x Φ=且当0()n n x ≥时,0011n niii i x F F ==∈⊂故1000()|()()nii n n F x x f x =Φ=Φ= 故00lim ()()n n x f x →∞Φ= 这就证明了01i i x F E ∞=∀∈⊂ 00lim ()()nn x f x →∞Φ=故从1(\)0i i m E F ∞== 知必要性成立注意:本题的困难在于若直接这样用P116定理2,,n n F E ∀∃⊂,1(\)n m E F n<01()n f C R ∃∈,|()n n F f f x =则n ∀,11(\)(\)0i n i m E F m E F n ∞=≤<→ 则1(\)0i i m E F ∞==01i i x F ∞=∀∈ ,00001,n n i i n x F F =∃∈⊂ ,但直接取()()()n n x f x f x Φ==就不知是否有000()()n x f x Φ=,当0n n >,因仅知当n x F ∈时()()n f x f x =,而()n f x 在n i F -(0i >)时的性质不明,因为没有条件保证1n n F F +⊂ 而我们的前面证明是用到111n n iii i F F +==⊂ ,1()()n n x x f +Φ=Φ=于1ni i F = 上.P117. §4习题1. 设()()n f x f x ⇒于E ,()()n g x g x ⇒于E ,证明:()()()n n f x g x f x g x +⇒+于E证明:0ε∀>,[||()()(()())|][||()()|][||()(2n n n n E x f x g x f x g x E x f x f x E x g x g xεε+-+≥⊂-≥⋃- A B εε⋃(否则,若[||()()(()())|]n n x E x f x g x f x g x ε∈+-+≥,而x A Bεε∉⋃,()c c c x A B A B εεεε∈⋃=⋂|()()||()()|22n n f x f x g x g x εε⇒-<-<|()()(()())||()()||()()|22n n n n f x g x f x g x f x f x g x g x εεεε⇒≤+-+≤-+-<+=矛盾),则[||()()(()())|][||()()|][||()()|]022n n n n mE x f x g x f x g x mE x f x f x mE x g x g x εεε+-+≥≤-≥+-≥→(()(),()()n n f x f x g x g x ⇒⇒) 从而()()()()n n f x g x f x g x +⇒+2. 设|()|n f x K ≤.a e 于E ,1n ≥,且()()n f x f x ⇒于E ,证明|()|f x K≤.a e 于E 证明:由本节定理2(Riesz 定理)从()()n f x f x ⇒知∃{}()n f x 的子列{}()k n f x 使()lim ()k n k f x f x →∞=.a e 于E设A E ⊂,(\)0m E A =,()()k n f x f x →于A ,从条件|()|k n f x K ≤.a e 于E ,设k n B E ⊂,(\)0k n m E B =,|()|k n f x K ≤.a e 于k n B 上令1()kn k B BA +∞==⋂ ,则B K ⊂,且11(\)()(()(())k k cccccn n k k m E B m E B m E B A m E A B E +∞+∞===⋂=⋂⋃=⋂⋃⋂111()()(\)(\)00k k ccn n k k k m E A m E B m E A m E B +∞+∞+∞===≤⋂+⋂=+=+∑∑∑故(\)0m E B =,,k n x B k B B A ∀∈∀⊂⋂,则|()|k n f x K ≤令k →∞,|()|f x K ≤故x B ∀∈有|()|f x K ≤,从而命题得证 P131第五章1.试就[0,1]上的D i r i c h l e t 函数()D x 和Riemann 函数()R x 计算[0,1]()D x dx ⎰和[0,1]()R x dx ⎰解:回忆11()0\x Q D x x R Q∈⎧=⎨∈⎩即()()Q D x x χ= (Q 为1R 上全体有理数之集合)回忆:()E x χ可测E ⇔为可测集和P129定理2:若E 是n R 中测度有限的可测集, ()f x 是E 上的非负有界函数,则_()()()EEf x dx f x dx f x =⇔⎰⎰为E上的可测函数显然, Q 可数,则*0m Q =,()Q Q x χ可测,可测,有界,从而Lebesgue可积由P134Th4(2)知[0,1][0,1][0,1][0,1][0,1]()()()10ccQ Q Q QQQ Q x dx x dx x dx dx dx χχχ⋂⋂⋂⋂=+=+⎰⎰⎰⎰⎰1([0,1])0([0,1])100cm Q m Q =⋅⋂+⋅⋂=⋅+⋅=回忆Riemann 函数()R x :1:[0,1]R R11,()0[0,1]n nx m n m R x x x Q⎧=⎪⎪==⎨⎪∈-⎪⎩和无大于的公因子1在数学分析中我们知道, ()R x 在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann 可积, ()0.R x a e =于[0,1]上,故()R x 可测(P104定理3),且[0,1]()R x dx ⎰[0,1]()()QQR x dx R x dx -=+⎰⎰而0()10QQR x dx dx mQ ≤≤==⎰⎰(Q 可数,故*0m Q =)故[0,1][0,1][0,1]()()00QQR x dx R x dx dx --===⎰⎰⎰4.证明:若()f x 是E 上的非负函数,()0Ef x dx =⎰,则()0.f x a e =证明:令[|()1],1,2,n E x n f x n n =<≤+= ,1[|()1]m F x f x m=<≤ 则11[|()0]()()n n n n E x f x E F +∞+∞==>=⋃f 可测,故,,[|()0]n m E F E x f x >(1,2,;1,2,n m == )都是可测集,由P135Th4(2)和()0Ef x dx =⎰,()f x 非负知[;()0]0()()()0nnn EE x f x E E f x dx f x dx f x dx n dx nmE >=≥≥≥=≥⎰⎰⎰⎰故0,(1,2,)n mE n == ;同理0,(1,2,)m mF m == 故11[|()0]0nmn m mE x f x mE mF+∞+∞==>≤+=∑∑故从()f x 非负,[|()0][|E x f x EE x f x ==->,知()0.f x a e =于E .证毕.6.如果(),()f x g x 都是E 上的非负可测函数,并且对于任意常数a 都有 [|()][|()m E x f x a m E x g x a≥=≥ 则()()EEf x dxg x dx =⎰⎰证明:若存在0b >使[|()]E x f x b ≥=+∞,则()()EEf x dx gx dx ==+∞⎰⎰结论成立.故b a ∀>,1,a b R ∈,[|()]E x f x b ≥<+∞,则 [|()][|()][|()E x f x a E x f x b E x a f x b≥-≥=≤< [|()][|()][|()]mE x a f x b mE x f x a mE x f x b ≤<=≥-≥[;()][;()][;()m E x g x a m E x g x b m E x a g x b=≥-≥=≤<m N ∀∈,及0,1,2,,21m k =- ,令,1[|()]22m k m mk k E E x f x +=≤<及,2[|()]m m m E E x f x m =≥则2,0mm m kk E E==,,m k E 互不相交同样 ,,21[|()],[|()]22m m k m m m m k k E E x g x E E x g x m +=≤<=≥, 2,0mm m kk E E == , ,m k E 互不相交 令 ~,,2200()(),()()22mmm km km m m E m m m E k k k k x x x x ψχψχ====∑∑,则()m x ψ, ()m x ψ都是非负简单函数,且 (),()m m x x ψψ 均为单调不减关于m ,()()m x f x ψ→, ()()mx g x ψ→ 注意到,,11()[|()][|()]()2222m k m km m m m k k k k m E mE x f x mE x g x m E ++=≤<=≤<=故 22,,00()()()()22mmm m m m k m k m m m k k E Ek k x dx m E m E x dx ψψ=====∑∑⎰⎰ 故由Levi 定理知()lim ()lim ()()mm n n EEEEf x dx x dx x dxg x dx ψψ→∞→∞===⎰⎰⎰⎰8.设mE <+∞,()f x 是E 上的非负可测函数,()Ef x dx <+∞⎰,[;()]n e E x f x n =≥,证明:lim 0n n n me →∞⋅=证明:由本节习题5知()Ef x dx <+∞⎰,mE <+∞则2[|()2]kkk mE x f x +∞=≥<+∞∑ ,故l i m 2[|()2]k kn mE x f x →∞≥=(1)反证设l i m0n n n m e →∞⋅>,则00,,kk N n ε∃>∀∈∃使0k k n n me ε⋅≥,,k k N i N ∀∈∃∈使122k k i i k n +≤<,所以2i k k n e e ⊂,显然从k n →∞知2k i →+∞10222220()kki i kkki i k n n me me me k ε+≤⋅≤=⋅→→∞得矛盾所以lim 0n n n me →∞⋅=10.证明:若非负可测函数()f x 在E 上的积分()E f x dx <+∞⎰,则对任意c ,0()Ec f x dx ≤≤<+∞⎰都有E 的可测集1E ,使1()E f x dx c =⎰证明:由第9题知,在本题条件下[|||||]()()E x x r F r f x dx <=⎰是(0,)+∞上的连续函数若0c =,则任取一单点0x E ∈,{}10E x =,则{}{}000()()0x f x dx f x m x ==⎰,即1()0E f x dx =⎰若()Ec f x dx =⎰,则取1EE =,则1()E f x dx c =⎰若0()Ec f x dx <<⎰注意到0r ∀>,{}(0,),||||B r x r r ∂== ((0,)B r 的边界) 满足11(0,)((0,)\(0,))m B r B r B r m+∞=∂=+11((0,))(((0,)\(0,)))m m B r m B r B r m+∞=∂=+11lim ((0,)\(0,))lim (())0n nn n n m B r B r w r r m m→∞→∞=+=+-=若[|||||]m E E x x m =≤,[|||||]m E E x x m =<,则(\)((0,))0m m m E E m B m ≤∂=而()f x 非负可测,故11lim ()lim()lim()()m m m m m EE EF m f x dx f x dx f x dx →∞→∞→∞===⎰⎰⎰则m 充分大时,()F m c >另一方面,0lim ()0r F r +→= (当0f M<<有界时,010()()()m rE Frf x d x M m≤=≤≤→⎰) 一般,0ε∀>,()N ε∃,使||3N EEf dx f dx εε-<⎰⎰,min(,)N f f N =,又()()0N F r ε→,当0r +→时,((),)N δδεε∃=当0r δ<<时,()|()|3N F r εε<当0r δ<<时()()()()20()|()()||()||||()|333N N N N EF r F r F r F r f f dx F r εεεεεεε≤≤-+≤-+<+=⎰ 故0lim ()0r F r +→= 由连续函数的中介值定理知,存在00r >使000[|||||]()()E x x r c F r f x dx <==⎰,令10[|||||]E E x x r =<,则1E E ⊂,1E f dx c =⎰,证毕.12. 设mE <+∞,()0f x >且在E 上可测,证明:对任意0δ>,都有0d >,使只要1E E ⊂,1mE δ≥,便有1E f dx d ≥⎰证明:反证,设000,,,k k k E E mE δδ∃>∀∃⊂≥,但1kE f dx k<⎰令11[|()]1n F E x f x n n=≤<+ 1,2,n = ;[|()1]F E x f x =≥则n F ,F 都是可测集,且从()0f x >知1[|()0]n n E E x f x F F +∞==>=⋃1nn mE mFmF +∞=+∞>=+∑ (n F ,F 互不相交)所以0n ∃使00011()2n nn n n n mE mFmF mF δ+∞==+-+=<∑∑1()2n n n mE m F F δ=-⋃<,01(\)2n n n m E F F δ=⋃<0111(())((\))(())2n n n k k n k n k n n n n mE m E F F m E E F F m E F F δδ===≤=⋂⋃+⋂⋃<⋂⋃+ 故01(())2n k nn m E FF δ=⋂⋃≥在01n k n n E F F =⋂⋃ 上,01()1f x n ≥+所以0111000()()1111()()(())1112n n kk n k n n n n k n n EE F F E F F f x dx f x dx dx m E F F k n n n δ===⋂⋃⋂⋃>≥≥=⋂⋃≥+++⎰⎰⎰ k →+∞,得0010012n δ≥>+得矛盾,故结论不成立0mE =时,1E E ∀⊂,1()0E f x dx =⎰,结论不会成立14.设(),1,2,3,n f x n = 都是E 的非负可测函数,1()()n n f x f x +≥ ,(,1,2,3,x E n ∈= ),()l i m ()n n f xf x →∞= 并且有0n 使()n Efx dx <+∞⎰,举例说明,当()nEfx dx ⎰恒为+∞时,上述结论不成立.证明:()lim ()n n EEf x dx f x dx →∞=⎰⎰证明:令00()()(),()n n n s x f x f x n n =-≥ ,则()n s x 非负可测,且1()()n n s x s x +≥,0lim ()()()n n n s x f x f x →∞=-,对()n s x 用Levi 定理得l i m ()l i m (nn n n EEs x dx s x dx →∞→∞=⎰⎰,即00()lim ()(()())()()n n n n n EEEEEfx dx f x dx f x f x dx f x dx f x dx →∞-=-=-⎰⎰⎰⎰⎰,00(),lim ()()n n n EEEf x dx f x dx f x dx →∞≤<+∞=⎰⎰⎰成立.反例:令nE R⊂可测,mE =+∞,1()n f x n=于E 上,则11()()()n n f x f x f x +≥≥≥≥于E 上,lim ()0()n n f x f x →∞==于E 上,且1()n E f x dx mE n ==+∞⎰,()0l i m ()n n EEf x dx f x dx →∞=≠=+∞⎰⎰P151 第2节习题1. 设mE <+∞,()f x 在E 上可测且几乎处处有限[;1()]n E E x n f x n =-≤<,0,1,2,n =±±证明:()f x 在E 上可积的充要条件是nn mE+∞-∞<+∞∑证明 ()f x 在E 上可积⇔f 在E 上可积⇔Ef dx <+∞⎰,显然n E 可测(由f 可测)1nnn n EE E f dx f dx f dx +∞==-∞=+⎰⎰⎰1()()nnn n E E f x dx f x dx +∞==-∞=-⎰⎰1()()nnn n E E f x dx f x dx +∞==-∞=-∑∑⎰⎰若Ef dx <+∞⎰,则1(1)n nn n Ef dx n mE nmE +∞==-∞+∞>≥--∑∑⎰011n n n n n n nmE mE n mE +∞+∞===-∞=-+∑∑∑11()n n nn n n n mE m E n mE +∞+∞==-∞=≥-+∑∑ n n mE mE +∞-∞≥-∑则从mE <+∞知nn mE+∞-∞<+∞∑。

实变函数论课后答案第四章1

实变函数论课后答案第四章1

实变函数论课后答案第四章1第四章第一节习题 1.证明:E 上的两个简单函数的和与乘积都还是E 上的简单函数证明:设1()ini E i f c x χ==∑,1()imi F i g d x χ==∑,这里{}1ni i E =互不相交,{}1mi i F =互不相交令ij i j K E F =⋂,1,1i n j m ≤≤≤≤ ij i j a c d =+, 1,1i n j m ≤≤≤≤则易知1111()()()()iji jn m n mi E j F i j E F i j i j f g c x d x c d x χχχ⋂====+=+=+∑∑∑∑先注意:若1m i i K K == ,i K 互不相交,则1()()imK K i x x χχ==∑ (m可为无穷大)(x K ∀∈,i ∃使i x K ∈,()1()iK K x x χχ==,,()0K x K x χ∀∉=,且i ∀,i x K ∉则()0i K x χ=)且1111(())(())()(())m m m mcc i i j i j i j i j j j j j E E F E F E F E F =====⋂⋃⋂=⋂⋃⋂111()(())(())1()()()()()mmmii cci j i j i j j j j mE EF E F E F E F j x x x x x χχχχχ===⋂⋂⋂⋂==+=+∑同理:1()1()()()mji jcj i i nF E F F E i x x x χχχ=⋂⋂==+∑11()()i j n mi E j F i j f g c x d x χχ==+=+∑∑11()()1111(()())(()())mmi j i j cci j j i j i nmm ni E F j E F E F F E i j j i c x x d x x χχχχ==⋂⋂⋂⋂=====+++∑∑∑∑11()()1111()()()()mmijcci j j i j i n m nmi j E F i j E F F E i j i j c d x c x d x χχχ==⋂⋂⋂=====+++∑∑∑∑这显然还是一个简单函数,因为 若(,)(,)i j k l ≠,则()()i j k l E F E F ⋂⋂⋂=∅ 11(())(())m mcc i j k j j j E F E F ==⋂⋂⋂=∅ ,(i k ≠) 11(())(())mmcc j i k l i i F E F E ==⋂⋂⋂=∅ ,(j k ≠) 11(())(())m mcc i j k i j i E F F E ==⋂⋂⋂=∅ ,(,i k ∀) 1()(())mc i j i j j E F E F =⋂⋂⋂=∅ ,显然,()()()iiijE F E F x x x χχχ⋂=,事实上,i j x E F ∀∈⋂,()()1()()iiiiE F E F x x x x χχχχ+==若,i j i x E F x E ∉⋂⇒∉或i x F ∉ 则()()0()iiijE F E F x x x χχχ⋂==1111(())(())()()i j i j n m n mi E j F i j E F i j i j f g c x d x c d x x χχχχ====⋅==∑∑∑∑11()i j n mi j E F i j c d x χ⋂===∑∑当(,)(,)i j k l ≠时()()()()i j k l i k j l E F E F E F E F ⋂⋂⋂=⋂⋂⋂=∅则f g ⋅也是简单函数1a R ∀∈,显然1()()i ni E i af x ac x χ==∑仍为简单函数2.证明当()f x 既是1E 上又是2E 上的非负可测函数时,()f x 也是12E E ⋃上的非负可测函数证明:显然()0f x ≥于1E ,且()0f x ≥于2E 表明()0f x ≥于12E E ⋃ 又1a R ∀∈,{}{}{}1212|()|()|()E E x f x a E x f x a E x f x a ⋃>=>⋃> 由于f 在1E ,2E 上分别可测,{}1|()E x f x a >和{}2|()E x f x a >均为可测集,从而由P61推论2,{}{}12|()|()E x f x a E x f x a >⋃>={}12|()E E x f x a ⋃>为可测集,再由P101Th1知f 在12E E ⋃上可测或直接用P104Th4的证明方法. 3.设mE <+∞,()f x 是E 上几乎处处有限的非负可测函数,证明对0ε>,都有闭集F E ⊂,使(\)m E F ε<,而在F 上()f x 是有界的证明:令{}0|()0E E x f x ==,{}|()E E x f x E ∞∞==,由条件f 在E 上几乎处处有限,0mE ∞=.由()f x 可测于E 上知,{}{}0|()0|()0E E x f x E x f x =≥⋂≤是可测集(P103Th2,P64Th4可测集的交仍可测)令{};0()E E x f x +=<<+∞,1;()k A E x f x k k⎧⎫=≤≤⎨⎬⎩⎭,则{}1;()\;()k A E x f x k E x f x k ⎧⎫=≤<⎨⎬⎩⎭可测,1k k E A +∞+== ,且1k k A A +⊂由P64Th5 ()lim k k m E mA +→+∞=,而mE <+∞,则()m E +<+∞ 故0ε∀>,0k ∃使00()2k m E mA ε+≤-<,而0k A E +⊂故0(\)2k m E A ε+<由0E ,0k A 可测,∃闭集01k F A ⊂,01(\)8k m A F ε<,∃闭集00F E ⊂使00(\)8m E F ε<令10F F F =⋃,则F 为闭集,且在F 上00()f x k ≤≤ 由于E F ∞⋂=∅,00\\(\)E F E E E F E E E F ∞+∞+=⋃⋃=⋃⋃ 又000001\\(\)(\)E E F E E F F E F E F +++⋃=⋃⋃⊂⋃ 而011\(\)(\)k k E F E A A F ++⊂⋃,故00(\)(\)m E F mE m E E F F ∞+≤+⋃⋃0010(\)(\)m E F m E F +≤++ 01(\)(\)882842k k m E A m A F εεεεεεε+≤++≤++=+< 证毕.4.设{}()n f x 是可测集合E 上的非负可测函数序列,证明:如果对任意0ε>,都有1[|()]n n mE x f x ε∞=><+∞∑,则必有lim ()0.n n f x a e E →∞=于又问这一命题的逆命题是否成立?证明:()n f x 非负可测,令{}0|lim ()0n n E E x f x →∞==则由CH1.§1习题8的证明方法:(P11,见前面的习题解答){}|()0x f x ≤=0111|()m k n m nE E x f x k +∞+∞+∞===⎧⎫=≤⎨⎬⎩⎭(一般,{}111|lim ()()||()()|n m n k n m nE x f x f x E x f x f x k +∞+∞+∞→∞===⎧⎫==-≤⎨⎬⎩⎭) 在本题的假设下,我们需证0(\)0m E E = 由De Morgan 公式0111111\|()|()cm m k n m n k n m nE E E x f x E E x f x k k +∞+∞+∞+∞+∞+∞======⎛⎫⎧⎫⎧⎫=≤⋂=>⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎝⎭ (()m f x 可测,故1|()m E x f x k ⎧⎫>⎨⎬⎩⎭为可测集)故而0111()|()m k n m n m E E m E x f x k +∞+∞+∞===⎛⎫⎛⎫⎧⎫-≤>⎨⎬ ⎪ ⎪⎩⎭⎝⎭⎝⎭∑ 所以我们只用证11,|()0m n m n k m E x f x k +∞+∞==⎛⎫⎧⎫∀>=⎨⎬ ⎪⎩⎭⎝⎭,k n N ∀∀∈1111|()|()|()m m m m n n m n m n m E x f x m E x f x E x f x k k k +∞+∞+∞+∞====⎛⎫⎛⎫⎧⎫⎧⎫⎧⎫>≤>≤>⎨⎬⎨⎬⎨⎬⎪ ⎪⎩⎭⎩⎭⎩⎭⎝⎭⎝⎭∑ 由于1[|()]n n mE x f x ε∞=><+∞∑,故1lim |()0mn m nE x f x k +∞→+∞=⎧⎫>=⎨⎬⎩⎭∑ 111|()lim |()0m mn m n n m n m E x f x E x f x k k +∞+∞+∞→+∞===⎛⎫⎧⎫⎧⎫>≤>=⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎝⎭∑ 故0(\)0m E E =得证,即lim ()0.n n f x a e E →∞=于逆命题一般不成立{}1|()n n E x f x ε+∞=><+∞∑的必要条件是{}lim |()0n n E x f x ε→+∞>= 当mE =+∞时,()()n f x f x →不能推出()()n f x f x ⇒于E ([0,]1n χ→于1R ,但[0,]1n χ⇒不于1R ) 当mE <+∞时,()().n f x f x a e E →于,()()n f x f x ⇒于E但不能保证{}1|()n n E x f x ε+∞=><+∞∑5. 设mE <+∞,()f x 在E 上非负可测,证明对于任意y ,{}|()y E E x f x y = 都是可测的,进而证明使0y mE >的y 最多有可数多个证明:因为()f x 在E 上可测,P103,Th2{}1,|()y R E x f x y ⇒∀∈≥都是可测集,从而{}{}{}|()|()|()E x f x y E x f x y E x f x y ==≥⋂≤也是可测集显然,11[|0][|]y y k E x mE E x mE k+∞=>=≥下证:k N ∀∈,1[|]y E x mE k≥要么是空集,要么是有限集 事实上,若0k ∃使01[|]y E x mE k ≥为无限集,则由P18,Th1,存在可数集1201,,,,[|]n y y y y E x mE k ⊂≥由于i j y y ≠时ijy y E E ⋂=∅,1i y i E E +∞=⊂ ,11101()i i y y i i i mE m E mE k +∞+∞+∞===+∞≥≥=≥=+∞∑∑矛盾 6.证明:如果()f x 是n R 上的连续函数,则()f x 在n R 任何可测子集E 上都可测.证明:1a R ∀∈,则从()f x 是n R 上的连续函数,我们易知[|,()]n a F x x R f x a =∈<是开集.事实上若0a x F ∈,0()f x a <则从()n f C R ∈,0δ∃>使0(,)x B x δ∀∈,00()()(())f x f x a f x a <+-=则0(,)a B x F δ⊂,故a F 是开集,从而可测.而E 可测,故[|()]a E x f x a F E =<=⋂作为两个可测集的交也可测,这说明()f x 在E 上可测(P103,Th2). 7.设()f x 是1R 可测集E 上的单调函数,证明()f x 在E 上可测.证明:不妨设()f x 在E 上单调不减,即12,x x E ∀∈,若12x x <,则12()()f x f x ≤1a R ∀∈,我们来证明[|()]E x f x a =≤是可测集,这样由本节定理2知()f x 可测于E (P103).若1a R ∈使得[|()]a E x f x a ≤=∅ ,则显然a E 可测若1a R ∈使得a E ≠∅,此时若令0sup a y E =,则要么0y =+∞,要么0y <+∞(1) 若0y =+∞,则,M a M M y E ∀∃<∈,故,x x E M ∀∈∃使x M a y x E >∈,由()f x 在E 上单调不减,我们有()()xM f x f y a ≤≤,即a E E E ⊂⊂,从而a E E =为可测集(2) 若0y <+∞,则要么0y E ∈,要么0y E ∉若0y E ∈,则0()f y a ≤,此时0(,)x E y ∀∈⋂-∞,0,x a x y E x y y ∃∈<<,由()f x 单调不减于E 知,()()x f x f y a≤< 故0(,)a E y E ⋂-∞⊂,而0a y E ∈,从而有00(,](,]a E y E E y ⋂-∞⊂⊂⋂-∞,故0(,]a E E y =⋂-∞为可测集.若0y E ∈,而0()f y a >,0a y E ∉,则0(,)x y E ∀∈-∞⋂,0,x a x y E x y y ∃∈<<0x x y y <<,()()x f x f y a ≤<则00(,)(,)a y E E y E -∞⋂⊂⊂-∞⋂ 即0(,)a E y E =-∞⋂为可测集.若0y E ∉,则0a y E ∉,同样可证0(,)a E E y E =⋂-∞⋂可测.若()f x 单调不增,则()f x -在E 上单调不减,从而可测,故(())()f x f x --=在E 上可测.8.证明n R 中可测子集E 上的函数()f x 可测的充要条件是存在E 上的一串简单函数()m x ψ使()lim ()m m f x x ψ→+∞= (x E ∈) 证明:(1)E 上的简单函数是可测的;设1()()im i E i x c x ϕχ==∑为E 上的简单函数,1,mi i i E E E == 互不相交,iE 为E 的可测子集,易知,,()iE i x χ∀是可测的(()F x χ可测F ⇔是可测集)故由P104Th5,()ii E c x χ可测,1()imi E i c x χ=∑可测,由此,若存在E 上的一串简单函数()m x ψ, ()lim()m m f x x ψ→+∞= (x E ∈)则从{}()m x ψ可测,且lim ()m m x ψ→+∞P107推论2,()f x 在E 上可测 (2)若()f x 可测,则由P107Th7,,f f +-都是非负可测的,故由定义存在简单函数列()n x ϕ+,()n x ϕ-,(12,n = ),()()n x f xϕ++,()()n x f x ϕ-- (x E ∈)显然,()n x ϕ--也是简单函数,由本节第一题,()()()n n n x x x ψϕϕ+-=-仍为简单函数,且()()n x f x ψ→ (x E ∈).证毕.9.证明:当1()f x 是1p E R ∈,2()f y 是2q E R ∈中的可测函数,且12()()f x f y ⋅在12E E E =⨯上几乎处处有意义时,12()()f x f y ⋅是E 上的可测函数.证明:(1)若p E R ∈,q F R ∈分别是p R ,q R 中的可测集,则函数(,)()()E F f x y x y χχ=是p q R R ⨯上的可测函数,事实上,1a R ∀∈,若0a <,则{}(,)|(,)p q p q x y R R f x y a R R ∈⨯>=⨯是可测集 若1a ≥,则{}(,)|(,)p q x y R R f x y a ∈⨯>=∅是可测集 若01a ≤<,则{}(,)|(,)p q x y R R f x y a E F ∈⨯>=⨯是可测集(P72Th1)(1) 推出(2): 1c R ∀∈,p E R ∈可测,q F R ∈可测,则()()E F c x y χχ在p q R R ⨯上可测.现在来证明本题结论:1()f x 在1E 上可测,故由本节第8题结论,存在1E 上的简单函数列()()1()()n n im n n i E i x a x ϕχ==∑,()11nm n i i E E ==∑,()()n n i j E E ⋂=∅(当i j ≠)使得1()()n x f x ϕ→,1x E ∀∈同样,从2f 在2E 上可测知,存在2E 上的简单函数列()n y ψ,使2()()n y f y ψ→于2E 上.从上述(1)(2)知,()()n n x y ϕψ在p q R R ⨯上可测,且 12()()()()n n x y f x f y ϕψ→于12E E ⨯上 由上P107推论2知12()()f x f y 在p q R R ⨯上可测. 证法二(更简单)将1()f x ,2()f y 看成(,)x y 的函数1a R ∀∈,{}{}121112(,)|()(,)|()E E x y f x a E x y f x a E ⨯>=>⨯从1()f x 在1E 上可测知,{}11(,)|()E x y f x a >为p R 中的可测集,2E 可测,故{}112(,)|()E x y f x a E >⨯为p q R R ⨯中的可测集,故{}121(,)|()E E x y f x a ⨯>为p q R R ⨯中的可测集,则1()f x 作为12E E E =⨯上的函数是可测的同理,2()f y 在E 上也可测,P104Th5得12()()f x f y ⋅在E 上也可测. 10. 证明:如果()f x 是定义于n R 上的可测子集E 上的函数,则()f x 在E 上可测的充要条件是对1R 中Borel 集合B ,1()[|()]f B E x f x B -∈ 都是E 的可测子集,如果()f x 还是连续的,则1()f B -还是Borel 集(提示:用1B 表示1R 中那些使1()f B -是E 上的可测子集的B 所构成的集合族,比较1B 和1R 中的Borel 集合类B ).证明:记{}11|()B R f B E -=⊂是上的可测子集1B ,我们来证明1B 是一个σ-代数1)∅∈1B :1()f -∅=∅显然是E 的可测子集 2)若A ∈1B ,1()f A -是E 的可测子集,则1111111 ()(\)()\()\()c f A f R A f R f A E f A -----===也是E 的可测子集(P61推论1) 则c A ∈1B3)若i A ∈1B ,(1,2,i =) 则i ∀,1()i f A -是E 的可测子集,1111()()i i i i f A f A +∞+∞--=== 也是E 的可测子集,故1i i A +∞=∈ 1B故1B 是一个σ-代数现在,若1:f E R →是一可测函数,则1(,)[|()][|()][|()]f a b E x a f x b E x f x b E x a f x -=<<=<⋂<是为可测集([|()]E x f x b <,[|()]E x a f x <都是可测集(P60Th2)) 则(,)a b ∈1B故1B 包含所有的1R 上的开集(由一维开集的构造),从而包含所有的Borel 集,这就证明了∀Borel 集,1()f B -是E 的可测子集 反过来,若∀Borel 集,1()f B -是E 的可测子集,则由于1a R ∀∈,(,)a -∞为开集,故是Borel 集知1(,)[|()]f a E x f x a --∞=<为可测集,故f 是E 上的可测函数.令{}11|()B R f B Borel -=⊂为集2B ,则一样:(1)∅∈2B ;(2),c A A ∈∈22B B ;(3)121,,,i i A A A +∞=∈∈ 22B B ,故2B 也是一个σ-代数若f 连续,则(,)a b ∀ (1,a b R ∈⋃+∞)1(,)f a b -是开集(相对于E ),从而是Borel 集,故(,)a b ∈2B ,从而2B 包含所有的Borel 集,故∀Borel 集B ,1()f B -同样为Borel 集若:n n f R R →的同胚,则f 将Borel 集映为可测集11.设()f x 是E 上的可测函数,()g y 是1R 上的连续函数,证明:[()]g f x 是E 上的可测函数(注意:如果()f x 在n R 上连续,()g y 在1R 上可测,[()]g f x 未必可测,特别是()f x ,()g y 都可测时,[()]g f x 未必可测)证明:1a R ∀∈,从g 连续知,1(,)g a -+∞显然为1R 上的开集,由1R 上的开集的构造定理知(本书上只证了有界开集,事实上,无界开集也有类似的构造),∃至多可数个互不相交的开区间n I 使11(,)mn n g a I -=+∞=(m 有限或+∞)而1f -保持集合关系不变,即1111()()mmn n n n f I f I --=== ,而f 可测,故1()n f I -可测,故11()mn n f I -= 可测,从而有1111111[|(())]()(,)((,))()()m mn n n n E x g f x a g f a f g a f I f I -----==>=+∞=+∞==可测,故()g f x 是E 上的可测函数存在反例:《实分析中的反例》,可测函数f 和连续函数g 构成不可测的复合函数f g设E 是[0,1]中具有正测度的Cantor 集,令 ([0,]([0,1]\))()([0,1]\)m x E x m E ϕ⋂= (无处稠密完备集P70,习题1)则ϕ是由[0,1]到[0,1]上的一个同胚映射,P54习题3的证明过程中(见周民强书P84),已知,若*m E <+∞,[,]E a b ⊂,*([0,])m x E ⋂是[,]a b 上的连续函数故从[0,1]\[0E ⊂知,([0,]([0,1]\))()([0,1]\)m x E x m E ϕ⋂=是连续函数:[0,1][0,1](0)0,(1)1ϕϕ==且ϕ是严格递增的因E 是完备集,故E 是自密闭集,[0,1]\E 是相对开集(或c E 是开集),[0,1]\[0,1]c E E =⋂,[0,1]c E ⋂是开集,[0,1]x y ∀∈,y x >1()()[([0,]([0,1]\))([0,]([0,1]\))]([0,1]\)y x m y E m x E m E ϕϕ-=⋂-⋂1[(,]([0,1]\)]([0,1]\)m x y E m E =⋂1[(,)((0,1)\)]([0,1]\)m x y E m E ≥⋂注意:E 是无处稠密集,故(,)z x y ∃∈,使z E ∉,(0,1)\z E ∈,(,)((0,1)\)z x y E ∈⋂由于(,)((0,1)\)x y E ⋂为开集,故0δ∃>,使(,)(,)([0,1]\)z z x y E δδ-+⊂⋂ 则[(,)((0,1)\)](,)20m x y E m z z δδδ⋂≥-+=>故()()y x ϕϕ>,即()y ϕ严格单调,从而[0,1]到[0,1]上的一个同胚映射设(0,1)\E 这一有界开集可写成互不相交的构成区间的并,1(0,1)\(,)k k k E αβ+∞== ,从而1([0,1]\)((0,1)\)()k k k m E m E βα∞===-∑,又因为([0,]([0,1]\))([0,]([0,1]\))()()([0,1]\)k k k k m E m E m E βαϕβϕα⋂-⋂-=[(,]([0,1]\)]([0,1]\)k k m E m E αβ⋂=[(,)((0,1)\)]()()([0,1]\)([0,1]\)k k k k m E m E m E αβϕβϕα⋂-==故以从ϕ是同胚,1[([0,1]\)][((,))]k k k m E m ϕϕαβ+∞==1((),())k k k m ϕαϕβ+∞=⎛⎫= ⎪⎝⎭1(()())k k k ϕβϕα∞==-∑1()1([0,1]\)kk k m E βα∞=-==∑注意:()([0,1]\)[0,1][0,1]E E ϕϕϕ⋃==,且()([0,1]\)E E ϕϕ⋂=∅ 就得()[0,1](([0,1]\))1(([0,1]\))110m E m m E m E ϕϕϕ=-=-=-=(()E ϕ也是完备疏集,则同胚不能保证测度的等号!)又0mE >,故由P66第二题的解答最后知,设A 是E 的一个不可测子集(A 总是存在的!)由于()()A E ϕϕ⊂,()0m E ϕ= 则()0m A ϕ=,()A ϕ可测,而1()A A ϕϕ-=不可测.令()B A ϕ=,并在[0,1]上如下定义函数1:(){0[0,1]\x Bf f x x B∈=∈ 则f 是[0,1]上的可测函数,又g ϕ=是[0,1]到[0,1]上的连续函数,然而复合函数1[()][()]{0[0,1]\x Af g x f x x Aϕ∈==∈是不可测集A 的特征函数 所以,它是一个不可测的函数.12.证明:若12()(,,,)n f x f x x x = 是n R 上的可微函数;则 12(,,,),1,2,,n if x x x i n x ∂=∂ 都是n R 上的可测函数.证明:只证1i =的情形,其它一样证 ()f x 在n R 上可微,故0n x R ∀∈,000012001(,,,)()lim ()|n y x h f x h x x f x f y h x =→+-∂=∂ 故从0l i m ()()0,()()n n n ah g x g x a g x g x →=⇔∀→→这一原则知,n x R ∀∈000120011(,,,)()()limlim [()()]1n m m m f x x x f x m f x m g x f x x m→+∞→+∞+-∂==-∂ 这里121()(,,,)m n g x f x x x m=+ ,由于f 可微,f 连续,故()m g x 是连续的,从而可测,又f 连续,故[()()]m m g x f x -可测,故其逐点收敛的极限1()f x x ∂∂也是可测的.。

实变函数论课后答案第二章2

实变函数论课后答案第二章2

实变函数论课后答案第二章2第二章第二节习题1.证明点集F 为闭集的充要条件是F F =. 证明:因为'F F F = ,若F 为闭集,则'F F ⊂ 所以'F F F F F F F =⊂=⊂ 故F F =反过来,若'F F F F =⊂ ,则必有'F F ⊂ 从而F 为闭集.2.设()f x 是(),-∞∞上的实值连续函数,证明对于任意常数a ,(){};x f x a >都是开集,(){};x f x a ≥都是闭集.证明:任取常数a ,若 (){}0;x x f x a ∈>,则()0f x a >,由于()f x 连续,0,0a x δ∃>,使()(){}00,,;a xx N x x f x a δ∈⊂≥.这表明(){};x f x a >是开集.任取常数a ,若{}(){};n x x f x a ∈≥,且0n x x →,则从()n f x a ≥和()f x 连续知 ()()0lim n n f x f x a →∞=≥故(){}0;x x f x a ∈≥这表明(){}(){}';;x f x a x f x a ≥⊂≥. 故(){};x f x a ≥是闭集.3.证明任何邻域(),N p δ都是开集,而且()(){}'',;,N p p p p δρδ=<(N 通常称为一闭邻域)证明:()0,p N p δ∀∈,则()00,p p ηρδ≤<()0,Q N p δη∀∈-,()()()00,,,Q p Q p p p ρρρηδηδ≤+<+-=故()()0,,N p N p δηδ-⊂. 故(),N p δ是开集得证.(){}(){}'''';,,;,n p p p p p p p p ρδρδ∀∈≤∈≤且 n p p → 则 ()(),0,,n n p p p p ρρδ→≤() ()() (),,,,n n n p p p p p p p p ρρρρδ≤+≤+. 令n →∞得 (),0p p ρδ≤+. 故(){}(){}''''';,;,p p p p p p ρδρδ≤⊂≤.表明(){}'';,p p p ρδ≤是闭集.又 (){}'';,p p p p ρδ∀∈≤令 11k px p k k ⎛⎫=+- ⎪⎝⎭, 则() ()111,1,1,1k px p p p p p k k k k ρρρδδ⎛⎫⎛⎫⎛⎫⎛⎫=+-=-≤-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.()()1,,0k x p p p kρρ=→故(),,k k x N p x p δ∈→ 这表明(){}()()''';,,,p p p N p Np ρδδδ≤⊂⊂而()(){}'',;,N p p p p δρδ⊂≤故()(){}(){}()'''',;,;,,N p p p p p p p N p δρδρδδ⊂≤=≤⊂这表明()(){}'',;,N p p p p δρδ=≤.4.设∆是一有限闭区间,()1,2,3,n F n = 都是∆的闭子集,证明如果1n n F ∞==∅ ,则必有正整数N ,使1Nn n F ==∅ .证明:令1n n i i S F == ,则显知11n n n n F S ∞∞=== ,且12n S S S ⊃⊃⊃⊃ (),1i n F i n ∀≤≤为闭集,故n S 也为闭集.下证 N ∃,使1Nn N n F S ===∅ .反证,设,n n S ∀≠∅,则n n x S ∃∈⊂∆,由于∆是有限闭区间,{}n x 是有界点列,若{},1,2,3,n x n = 为无限集合,则由聚点原理{}n x ∃的子列{}00,,kkn n x xx x →∈∆由于12n S S S ⊃⊃⊃⊃故任取,m N k ∈充分大时kkn n m x S S ∈⊂,又m S 为闭集,且0kn m x x S →∈由m 的任意性知,011m n m m x S F ∞∞==∈==∅ 得矛盾. 若{},1,2,3,n x n = 为有限集合,则0n ∃,当()00max ,n n m ≥时,0n n m x x S S =∈⊂,故 011m n m m x S F ∞∞==∈==∅ 得矛盾.所以∃ N ,使得1NN n n S F ===∅ .证毕.设,n E R μ⊂是一族完全覆盖E 的开邻域,则有μ中的(或有限)多个邻域12,,,m N N N ,它们也完全覆盖了E ( Lindelof 定理)证明:设{};,I αμα=∈ΛΛ为某指标集,则E I αα∈Λ⊂ .,x E ∀∈∃ x α∈Λ,使得x x I α∈.由于I Λ是开集,0x δ∃>使(),x N x I δΛ⊂.由有理点在n R 的稠密性易知,存在有理点nx a Q ∈和有理数0x r >,使()(),,x x x x N a r N x I δΛ∈⊂⊂,而n R 中全体以有理点为心,有理数为半径的球作成集合与nQ Q ⨯的一个子集对等,故这些(){},;x x N a r x E ∈至多是一个可数集,从而相应的{};xIx E α∈也是至多可数集.而这些{};xI x E α∈显然为E 的一个开覆盖,因为(),xx x x E x EE N a r I α∈∈⊂⊂因为每一个上述(),x x N a r 包含在某个I α中,故存在至多可数个i I M ∈,使{};i I i ∈Λ成为E 的一个开覆盖.1. 证明nR 中任何开集G 可表成()1ni i G I ∞== 的形式,其中()()()(){}12;,,,,,1,2,3,,n i i in j j j I p p x xx c x d j n ==<<=证明:(注意这里并为要求()ni I 互不相交)设G 为n R 中的任意开集,则0x G ∀∈,由开集的定义,∃一个球形邻域()()000,0x x N x G δδ⊂>,令()00001200,,,;x x x n j x j I x x x x x x n n δδδ⎧⎫==-<<+⎨⎬⎩⎭则显然()000,x xx I N x G δ∈⊂⊂,且x x GG I G ∈⊂⊂ .故x x GG I ∈= ,x I 显然是开区间,也是开集,{},x I x G μ=∈为G 的一个开覆盖.由本节习题5,μ中的至多可数个123,,,,,n I I I I 完全覆盖了G所以1i i G I G ∞=⊂⊂ .所以1i i G I ∞== ,i I 都是开区间.故本题结论得证.2. 试根据B orel 有限覆盖定理证明Bolzano-Weierstrass 定理.证明:反证,设E 为有限无穷点集而无聚点,则'E =∅,从而'E E =∅⊂, 故E 为有界闭集,且任意p E ∈,都是E 的孤立点.故0p δ∃>使(){},p Np E p δ= ,所以(),p p EE N p δ∈⊂.(){},pN p δ形成E 的一个开覆盖,由于E 为有界闭集,由Borel 有界覆盖定理,∃有限个()()11,,,,,m p mp Np N pδδ ,使()1,imip i E Np δ=⊂()(){}111,,iimmmip ip ii i i E E Np E N p p δδ====== .前已知(){},ii p i N p E p δ= .故{}1mi i E p == 为一有限集合,这与E 为有界无穷集矛盾.8. 证明nR 中任意非空开集的基数都是c .证明:∀开集n U R ⊂,显从n U R ⊂知n U R c ≤=.又存在一个点()00,0,,p U N x U δδ∈∃>⊂,()0,N x c δ=, 故()0,U N x c δ≥≥. 所以Berrstein 定理知U c =. 证毕9. 证明对任意n E R ⊂,E 都是n R 中包含E 的最小闭集.证明:任取n E R ⊂,设F 是包含E 的人一闭集,则E F ⊂,''E F ⇒⊂ 所以''E E EF F F =⊂= ,因为F 为闭集 所以''E F F ⊂=,所以E 是n R 中包含E 的最小闭集. 10. 对于1R 定义的实函数()f x ,令()()()'''',lim sup liminfx x x x W f x fx fx δδδδ++→→-<-<=-.证明:对任意的(){}0,;,x W f x εε>≥都是闭集.进而证明()f x 的全体不连续点作成一F δ集.证明:首先 ,当δ单调下降趋于0时,()''sup x x f x δ-<也单调下降趋于某极限(有限或无限)而()''inf x x f x δ-<单调上升地趋于某极限.故()()()'''',lim sup liminfx x x x Wf x fx fx δδδδ++→→-<-<=-是有确切定义的(可为无限值)先证明:()f x 在0x x =连续()0,0W f x ⇔=.证:先设()0,0Wf x =,则()00,0εδε∀>∃>使00δδ<<时()()''''sup infx x x x fx fx δδε-<-<-<所以y ∀满足0y x δ-<时()()()()''''0sup infx x x x fy f x fx fx δδε-<-<-≤-<故f 在0x 处连续.反过来,若()f x 在0x x =处连续,则()0000,,0x εδδε∀>∃=>, 当00y x δδ-<<时,()()0fy f x εε-<-<又()000,x δδδε∀<=,''''''00,,,y y y x y x δδδδδδ∃-<-< 且()()()()'''''''sup ,infx x x x f x fy f y fx δδδδεε-<-<-≤≤+所以()()()()'''00sup x x f x f x fy f x δδεε-<--≤-<()()()()''''infx x f xf x f x f y δδεε-<--+≤-<不等式相加得()()()()''''''''sup inf220lim sup liminf4x x x x x x x x fx fx fx fx δδδδδδεεε++-<-<→→-<-<--≤≤-≤即()00,4,0W f x εε≤≤<任意.所以()0,0Wf x =为证(){}0;,x Wf x ε≥为闭集,只用证(){}0;,x W f x ε<为开集. (){}00;,x x Wf x ε∀∈<必有()0,Wf x ε<所以存在()00,0x δδε=>使()00,δδ∀∈时, ()()()()000sup inf ,2N x N x f f W N x δδδεδ-<()02y N x δ∀∈,由三角不等式,则()()02N y N x δδ⊂.故()()()02,,W f N y Wf N x δδε⎛⎫≤< ⎪⎝⎭所以()()02,lim ,Wf y W f N y δδε+→⎛⎫=< ⎪⎝⎭这说明()(){}02;,N x x Wf x δε⊂<故(){};,x Wf x ε<是开集,从而(){};,x W f x ε≥是闭集.由于()f x 在x 不连续的充要条件是(),0Wf x ≥.所以使x 不连续的点集为表为()11;,k F x Wf x k ∞=⎧⎫=≥⎨⎬⎩⎭. 由于()1,;,k x Wf x k ⎧⎫∀≥⎨⎬⎩⎭是闭集,故F 为一F δ集. 同时我们看出,全体使f 连续的点集是()11;,ck F x Wf x k ∞=⎧⎫=<⎨⎬⎩⎭这是一个G δ集合.推广:(1)对1:n f R R →有一样的结论,只不过在定义(),Wf x 时,'x x -理解为n R 中的距离()';x x ρ,其它完全一样,因为三角不等式对().,.ρ成立, (2)若f 是n R 中的开集,G 到1R 的函数,则同样可定义()(),W f x x G ∀∈,因为当(){}0,;,,x x G W f x εε∀>∈<为开集,(){};,x G Wf x ε∈≥为闭集.f 的不连续点集为()11;,k x G Wf x k ∞=⎧⎫∈≥⎨⎬⎩⎭而f 的不连续点集为()11;,k x Wf x k ∞=⎧⎫<⎨⎬⎩⎭. 11. 于n E R ⊂及实数α,定义()(){}1212,,;,,,n n E x x x x x x E αααα=∈ .证明当E 为开集,00,p E αα≠∀∈,则∃ 0E X ∈,使00p α=XE 开集,0E X ∈,故0δ∃>,使()0,N E δX ⊂.则∀()0,y N αδ∈X ,则yy αα=而0001y y y αδααδαααααX -X --=-X <=.故()0,yN E δα∈X ⊂从而yy E ααα=∈这表明()0,N E αδαX ∈,故E α为开集.若E 为闭集,0α=,则(){}0,0,0E α= 为单点集.当然是闭集,若0α≠,则0,n n p E p p α∈→,则0,,,nn n n n n p p E p p αα=X X ∈=X →表明nn p p αα=X →,而E 为闭集,0n p αX →,故np E α∈,从而0p p E ααα=∈.这说明()'E E αα⊂.从而得知E α为闭集.12. 设()fp 是定义于n R 上的实函数,证明()f p 在n R 上连续的充要条件是对于1R 中任何开集G .()(){}1;fG p f p G -∈ 都是1R 中的开集.证明:设1:n f R R →连续,G 为任一1R 中开集. ()10p fG -∀∈,则()0f p G ∈,由G为开集知,0δ∃>,使()()0,Nf p G ε⊂对上述()00,,0p εδδε>∃=>,使当()0,y N p δ∈时()()0fy f p ε-<故()()()0,fy N f p G ε∈⊂即()1y fG -∈.这说明()()10,N p f G δ-⊂故()1fG -为开集.现设对1R 中任意开集,()1,G fG -为开集,0,ε∀>()()0,Nf p ε是1R中的开集.故()()()1,fN f pε-是开集,而()()()100,p fN f pε-∈.故()()()()00,,f N p Nf p δε⊂所以()()()()00,,,y N p fy N f p δε∀∈∈.()()0fy f p ε-<这说明f 在0p 连续 证毕13. nR 上的实函数()f P 称为是下半连续的,若对任意n P R ∈,都有()()()()()0,lim inf lim inf Q PP Q f P f Q f Q δρδ→→<≤ ,证明()f P 下半连续等价于对任意的实数(){},;P f P αα≤都是n R 中的闭集,也等价于(){};P f P α≤是n R 中的开集.现若f 下半连续,1R α∀∈,若(){}0;P P f P α∈>. 则()()()()000lim inf N P f P f Q δδα→<≤∀()00022f P αεε-<<,()0,0p δδε∃=>使()()()00inf N P f P f Q δαε<-<所以()0,y N P δ∀∈,有()()()()00inf N P f P f Q fy δαε<-<≤.所以()(){}0,;N P P f P δα⊂>.故(){};P f P α>为开集.(从而(){};P f P α>为闭集)f 在nR 上下半连续,0,0nP R ε⇔∀∈∀>,()0,0p δδε∃=>.当()0,P N P δ∈时,()()0f P f P ε-<-. 反过来,若(){}1,;R x f x αα∀∈>为开集.则()(){}000,0,;nP R P x f x f P εε∀∈∀>∈>-由于()(){}0;P f P f P ε>-是开集.所以()0,0P δε∃>使()()(){}00,;P N P P f P f P δε∈⊂>-()0,Q N P δ∀∈有()()0f P f P ε>-,即f 在n R 上下连续,故一个等价性得证.而f 在n R 上下连续(){}1,;R P f P αα⇔∀∈≤是闭集(){};P f P α⇔>是开集.下证(){}1,;R P f P αα∀∈≤()(){},;,nP y P Rf P y ⇔∈≤为闭集.先设(){};P f P α≤为闭集,α任意.所以()()(){},,;;n n n n n P y P y P R f P y ∀∈∈≤,00,n n P P y y →→. 所以0,,N ε∀>∃当n N ≥时0n y y ε≤+. 故(){}0;n P P f P y ε∈≤+,这是闭集. 而(){}00;n P P P f P y ε→⇔≤+ 所以()00f P y ε≤+,()0ε∀>故()00f P y ≤.这表明()()(){}00,,;;n P y P y P R f P y ∈∈≤是闭集.若()(){},;;n P y P R f P y ∈≤是闭集,而(){}0;,n n P P f P P P α∈≤→ 则()()(){},,;;nn P P y P Rf P y α→∈≤,()()0,,n P P αα→.因为()(){},;;n P y P R f P y ∈≤为闭集,故()()(){}0,,;;n P P y P R f P y α∈∈≤ 所以()0f P α≤.这说明(){}0;P P f P α∈≤ 故(){};P f P α≤为闭集. 得证.14. 设,A B 是n R 中的有界闭集,01λ<<,证明()(){}121;,,,n A B x x x x λλ+- 有()()1212,,,,,,,n n y y y A z z z B ∈∈ ,使()1,1,2,i i i x y z i λλ=+-= 为有界闭集.举例说明当,A B 无界时,()1A B λλ+-可以不是闭集. 证明:,A B 有界,故存在 M 使()22212,,n x A B x x x x x x M ρ∀∈==+++≤特别地 i x M ≤.()1x A B λλ∀∈+-,有()1x A B λλ∀∈+-使 ()1i i i x y z λλ=+-,故()1x y z λλ=+-.故()()()111x y z y z M M M λλλλλλ∈+-≤+-≤+-=. 所以01λ≤≤时,()1A B λλ+-也有界.为证()1A B λλ+-为闭集,设()1n x A B λλ∈+-,0n x x →, 则,n n y A z B ∃∈∈使()1n n n x y z λλ=+-.由,A B 有界,()1n x A B λλ∈+-, ,n n y A z B ∈∈,由聚点原理,n y ∃的子列k n y 使0k n y y →,{}k n z 有子列{}k l n z 使0k l n z z →,{}k l n x 有子列{}k li n x 使()0k li nx x i →→∞ 从()1k k k lili li n n n x y z λλ=+- 所以()0001x y z λλ=+-,而,A B 为闭集,故00,y A z B ∈∈.从而有()01x A B λλ=+- 这说明()1A B λλ+-是闭集. 若,A B 不全是有界闭集时,()1A B λλ+-可不为闭集,在2R 上考虑()()(){}11,;,0,,,0;1,2,A x y y R x y x B n n ⎧⎫=∈∈∞=⎨⎬⎩⎭=-= B 是全由孤立点组成的集合,显然为闭集,但无界. 任取(),n n x y A ∈,若()()100,,n n x y x y R →∈, 则00,x y 为有限数,故从01n n y y x =→知00x ≠ 所以00010,x y x >=这说明()00,x y A ∈,故A 为闭集合,显然 0x +→时,1y x =→∞,故A 无界. 但1122A B +都不是闭集.取()1,0,,n B n A n ⎛⎫-∈∈ ⎪⎝⎭ 则()111111,0,0,22222n p n n A B n n⎛⎫⎛⎫=-+=∈+ ⎪ ⎪⎝⎭⎝⎭. 显然()0,0n p →,但()110,022A B ∉+. 因为若()110,022A B ∈+,则()0001,0,,n B x A x ⎛⎫∃-∈∈ ⎪⎝⎭使 ()()0001110,0,,022x n x ⎛⎫=+- ⎪⎝⎭故00011,0x n x =≥=得矛盾 所以1122A B +不是闭集.。

第三版实变函数论课后答案

第三版实变函数论课后答案

i 1
( Ei (
m j 1
Fj )c ) ( Ek (
m j 1
Fj ) c ) , (i k )
aij ci d j , 1 i n,1 j m
则 易 知
iE
(
m i 1
El )c ) , ( j k)
i 1
n
2. 证明当 f ( x) 既是 E1 上又是 E2 上的非负可测函数时, f ( x) 也是 E1 E2 上的非负可测函数 证明:显然 f ( x) 0 于 E1 ,且 f ( x) 0 于 E2 表明 f ( x) 0 于 E1 E2 又
由 P64Th5
m( E ) lim mAk ,而 mE ,则 m( E )
k
故 0 , k0 使 0 m( E ) mAk0 ,

2
,而 Ak0 E 故 m( E \ Ak0 )

2
a R1
由 E0 , Ak0 可测, 闭集 F1 Ak0 , m( Ak0 \ F1 )

, 闭集 F0 E0 使
E1 E2 x | f ( x) a E1 x | f ( x) a E2 x | f ( x) a

证毕.

8
m( E \ Ak0 ) m( Ak0 \ F1 )

8


2


8


4


2

E
上 几 乎 处 处 有 限 , mE 0 . 由 f ( x) 可 测 于 E 上 知 ,
E0 E x | f ( x) 0 E x | f ( x) 0 是可测集(P103Th2,P64Th4 可测集

《实变函数论》纯答案

《实变函数论》纯答案

1. 证明:()B A A B -=U 的充要条件是A B ⊂.证明:若()B A A B -=U ,则()A B A A B ⊂-⊂U ,故A B ⊂成立.反之,若A B ⊂,则()()B A A B A B B -⊂-⊂U U ,又x B ∀∈,若x A ∈,则()x B A A ∈-U ,若x A ∉,则()x B A B A A ∈-⊂-U .总有()x B A A ∈-U .故 ()B B A A ⊂-U ,从而有()B A A B -=U 。

证毕2. 证明cA B A B -=I .证明:x A B ∀∈-,从而,x A x B ∈∉,故,c x A x B ∈∈,从而x A B ∀∈-, 所以c A B A B -⊂I .另一方面,cx A B ∀∈I ,必有,cx A x B ∈∈,故,x A x B ∈∉,从而x A B ∈-, 所以 cA B A B ⊂-I .综合上两个包含式得c A B A B -=I . 证毕3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9. 证明:定理4中的(3):若A B λλ⊂(λ∈∧),则A B λλλλ∈∧∈∧⊂I I .证:若x A λλ∈∧∈I ,则对任意的λ∈∧,有x A λ∈,所以A B λλ⊂(∀λ∈∧)成立知x A B λλ∈⊂,故x B λλ∈∧∈I ,这说明A B λλλλ∈∧∈∧⊂I I .定理4中的(4):()()()A B A B λλλλλλλ∈∧∈∧∈∧=U U U U U .证:若()x A B λλλ∈∧∈U U ,则有'λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧∈⊂U U U U .反过来,若()()x A B λλλλ∈∧∈∧∈U U U 则x A λλ∈∧∈U 或者x B λλ∈∧∈U .不妨设x A λλ∈∧∈U ,则有'λ∈∧使'''()x A A B A B λλλλλλ∈∧∈⊂⊂U U U .故()()()A B A B λλλλλλλ∈∧∈∧∈∧⊂U U U U U .综上所述有()()()A B A B λλλλλλλ∈∧∈∧∈∧=U U U U U .定理6中第二式()c c A A λλλλ∈∧∈∧=I U .证:()cx A λλ∈∧∀∈I ,则x A λλ∈∧∉I ,故存在'λ∈∧ ,'x A λ∉所以'c cx A A λλλ∈∧∉⊂U从而有()c c A A λλλλ∈∧∈∧⊂I U .反过来,若c x A λλ∈∧∈U ,则'λ∃∈∧使'cx A λ∉,故'x A λ∉,x A λλ∈∧∴∉I ,从而()c x A λλ∈∧∈I()c c A A λλλλ∈∧∈∧∴⊃I U . 证毕定理9:若集合序列12,,,,n A A A K K 单调上升,即1n n A A +⊂(相应地1n n A A +⊃)对一切n 都成立,则 1lim n n n A ∞→∞==U (相应地)1lim n n n A ∞→∞==I .证明:若1n n A A +⊂对n N ∀∈成立,则i m i mA A ∞==I .故从定理8知11lim inf n i m n m i mm A A A ∞∞∞→∞=====U I U另一方面,m n ∀,令m i i mS A ∞==U ,从1m m A A +⊂对m N ∀∈成立知11111()()m i m i m i i m i mi m i m i m S A A A A A A S ∞∞∞∞++==+=+=+==⊂==U U U U U U .故定理8表明1111lim sup lim inf n i m m n n n m i mm m A A S S A A ∞∞∞∞→∞→∞=========I U I U故1lim lim sup lim inf n n n m n n n m A A A A ∞→∞→∞→∞====U .4. 证明()()A B B A B B -=-U U 的充要条件是B =∅.证:充分性 若B =∅,则()()A B B A A A A A -=-∅∅=-∅==∅=∅-∅U U U U 必要性 若()()A B B A B B -=-U U ,而B ≠∅则存在x B ∈.所以()()x A B B A B B ∈-=-U U 即所以,x A B x B ∈∉U 这与x B ∈矛盾, 所以x B ∈.4. 设{}{}{}{}1,2,3,4,1,2,3,4S A ==,求()F A .又如果1;1,2,3,,S n n ⎧⎫==⎨⎬⎩⎭L01;A n ⎧⎫=⎨⎬⎩⎭为奇数,{}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎨⎬⎬-⎩⎭⎩⎭⎩⎭L L ,问()()01,F A F A 是什么.解:若{}{}{}{}1,2,3,4,1,2,3,4S A ==,则(){}{}{}{},1,2,3,4,1,2,3,4F A =∅.若011111;1,2,3,,;1,,,,3521S n A n n i ⎧⎫⎧⎫⎧⎫====⎨⎬⎨⎬⎨⎬-⎩⎭⎩⎭⎩⎭L LL 为奇数, 则从1111111,,,,,,,3521242ci i ⎧⎫⎧⎫=⎨⎬⎨⎬-⎩⎭⎩⎭L L L L ,易知()111111,,1,,,,,,,,3521242F A S i i ⎧⎫⎧⎫⎧⎫=∅⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭LL L L . {}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭LL . 令11;1,2,,;1,2,212B i C i i i ⎧⎫⎧⎫====⎨⎬⎨⎬-⎩⎭⎩⎭L L .{}{}{}°1,F A S A K A B K C K A=∅==∅U U @为的子集,或. 证明: 因为{}111,,,,,321A B i ⎧⎫⎧⎫∈⎨⎬⎨⎬-⎩⎭⎩⎭L L 的任何子集()1F A . 所以有()1B F A ∈,而c B C =,故()1C F A ∈,又()1F A ∅∈. 任取B 的一子集A ,()1A A F A ∅=∈U ,且()1A C F A ∈U .显°S A ∈,故只用证°A 的确是一个 -域.(1) °,ccS S A∅==∅∈,且B ∀的子集A ,若K =∅,则 °,c K A A A C ∅==U U(B A -是B 的子集,故()°°()ccA A C F A ∅=∈U U )又B ∀的子集A ,()ccccA C A C AB ==U I I .显然是B 的子集,所以()()°ccA C AB A =∅∈U I U .又若n A 为B 的子集()1,2,3,,n n K C ==L 或∅.则()°°111n n n n n n n A K A K A K∞∞∞===⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭U U U U U U . 这里°1n n A A B ∞==⊂U 是B 的子集.°1nn K K C ∞===U 或∅. 所以()°1n n n A K A ∞=∈U U .若n A 中除B 的子集外,还有S ,则()°1n n n A K S A ∞==∈U U .若n A 中有∅,不影响1n n A B ∞=⊂U .故°A 是σ-域,且()°1F A A =. 证毕.6.对于S 的子集A ,定义A 的示性函数为()10A x Ax x A ϕ∈⎧=⎨∉⎩证明:(1)()()liminf liminf n n A A x x ϕϕ= (2)()()limsup lim sup n n A A x x ϕϕ= 证明:x S ∀∈,若()liminf n A x x ϕ∈则()liminf 1n A x ϕ=。

实变函数论课后答案第五章4

实变函数论课后答案第五章4

实变函数论课后答案第五章4第五章第四节习题1.证明:若()(),f x g x 都是[],a b 上的有界变差函数,则()()()(),f x g x f x g x +也都是[],a b 上的有界变差函数。

证明 对于[],a b 上的任一分划01:n a x x x b =<<<=()()()11nf i i i V f x f x -=∆=-∑()()()11n g i i i V g x g x -=∆=-∑()()()()()111nf g i i i i i V f x f x g x g x +--=∆=-+-∑()()()()()()1111n ni i i i f g i i f x f x g x g x V V --==≤-+-=∆+∆∑∑所以()()()()()()sup sup sup b b b a f g f g a a V f g V V V V f V g ++=∆≤∆+∆=+,f g 为[],a b 上的有界变差函数,则()b a V f <+∞,()b a V g <+∞,故()b a V f g +<+∞从而知f g +是[],a b 上的有界变差函数。

又,f g 为[],a b 上的有界变差函数,则[],x a b ∀∈()()()b a f x f b V f -≤<+∞,()()()b a g x g b V g -≤<+∞故,f g 在[],a b 上有界,所以M ∃<+∞,f M ≤,g M ≤于[],a b 上。

[],a b ∀的一个分划01:n a x x x b =<<<=()()()()()111nfg i i i i i V f x g x f x g x --=∆=-∑()()()()()()()()11111i i i i i i i i i f x g x f x g x f x g x f x g x +∞----==-+-∑()()()()()()11111ni i i i i i i i f x g x g x g x f x f x +∞---==≤-+-∑∑()()()()1111i i i i i i M g x g x M f x f x +∞+∞--==≤-+-∑∑()()()()()()b b g f a a M V V M V f V g =∆+∆≤+所以()()()()b b b a a a V fg M V f V g ≤+<+∞ 所以fg 是[],a b 上的有界变差函数。

实变函数答案 第三版 第二章 点集精编版

实变函数答案 第三版 第二章 点集精编版

第二章 点集1、证明:'0P E ∈的充要条件是在任意含有0P 的领域(),P δ⋃(不一定以0P 为中心)中,恒有异于0P 的点1P 属于E (事实上,这样的1P 还有无穷多个);0oP E ∈ 的充要条件则是有含有0P 的领域(),P δ⋃(同样,不一定以0P 为中心)存在,使(),P E δ⋃⊂.()()()'00100010101001001'0010000:min ,,,,..oP E d P P d P P P P E P E P E P E P E P E E δδδδδδδδ∈⋃=-⋃⊂⋃⋃∈⋃∈⋃∈⋃∈∈∈⋃∈⋃ 证明若,对任意含有P 的领域(P,),取则(P ,)(P,),而(P ,)中含有异于的点,所以(P ,)中存在异于P 的点若任意一个含有P 的领域(P,)中有异于P 的点,则任一(P )也有异于P 的点,故 若,则存在(P ),使(P ()()()0100010=min ,,,.o d P P d P P E P E δδδδδδ⋃∈⋃⊂=-⋃⊂⋃⊂∈ )(P ,)即得证.若P (P,)E ,取,则有(P ,)(P,),从而4、设3E 是函数1sin ,0,0,0x y x x ⎧≠⎪=⎨⎪=⎩当 当的图形上的点所作成的集合,在2R 内讨论'333oE E 的E 与.(){}'33=0y 11.oE y E φ⋃-≤≤=解:E ,8.x -+a f ∞∞≥设()是(,)上的实值连续函数,则对于任意常数,E={x|f(x)>a}是一开集,而E={x|f(x)a}总是一闭集。

(){}()()(){}(){}()(){}()()o ,?,0,,,, ,|()||()| |{|}|{|}.{, |}. ' ',o o o o o co x E x f x a f x a f x x x x f x a x E x f x a x E E x f x a H x f x a x f x a H x f x a x H H f x a H x δδδ∈=>>>-<>⋃∈=><=≥=<=≥∈=≥⊂' 任取则由在处连续及极限的保号性知,存在当时有即即为的内点,从而 证明为开:集;类似可证为开集从而是闭集又要证是闭集,只需证任取则存在()()(){}()(){|}{| ,, ,}n o n o o H x f x x f x a f x a x x f x a x f x a ≥≥∈≥≥中的点列使得由在处连续及,可知所以从而是闭集.9.证明:每个闭集必是可数个开集的交集;每个开集可以表示成可数个闭集的和集。

实变函数参考答案

实变函数参考答案

习题1解答(A 组题)一、选择题1、C ;2、A ;3、D ;4、C ;5、C ;6、A ;7、A ;8、B ;9、D ;10、C 二、判断题1、×;2、×;3、×;4、×;5、√;6、×;7、×;8、×;9、×; 10、× 三、填空题1、=;2、∅;3、()0,1;4、[]1,1-;5、,EF EF ;6、()2,3-;7、≥;8、c9、设有两个集合A 和B ,若≤A B ,≥A B ,则=A B 。

四、证明题1、(1)()()()()()\\====C C CC A A B A A B AAB A A AB A B ;(2)()()()()()()\\==C C CC A B CD A B CD A C B D()()()()\==CA C BD A C BD 。

2、111\lim \∞∞∞∞∞∞→∞======⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C Cn n n n n N n N N n N N n N A B A B A B AB ()111lim(\)∞∞∞∞∞∞→∞======⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C C C n n n n n N n N N n N N n N A B A B A B A B 。

同理可证第2个集合等式。

3、当A =∅时,{}∅张成的环和σ-环均为它自身;张成的代数和σ-代数均为{},X ∅。

当A X =时,{}X张成的环、σ-环、代数和σ-代数均为{},X ∅。

当A 为X 的非空真子集时,{}A 张成的环和σ-环均为{},A ∅;张成的代数和σ-代数均为{},,,cA A X∅。

4、首先,令()()tan 12π⎡⎤=-⎢⎥⎣⎦f x x ,由于()f x 是()0,1上的严格单调递减的连续函数,且()()()0,10,=+∞f,所以()f x 是()0,1到()0,+∞的一一映射。

实变函数论课后答案

实变函数论课后答案

λ∈∧
λ∈∧
λ∈∧
定理 4 中的(4): ∪ ( Aλ ∪ Bλ ) = ( ∪ Aλ ) ∪ ( ∪ Bλ ) .
λ∈∧
λ∈∧
λ∈∧
证 : 若 x ∈ ∪ ( Aλ ∪ Bλ ) , 则 有 λ ' ∈ ∧ , 使 λ∈∧
x

(
A λ
'

Bλ'
)

(∪
λ∈∧
Aλ ) ∪ ( ∪ λ∈∧
Bλ ) .
理 9.
证明:定理 4 中的(3):若 Aλ ⊂ Bλ ( λ ∈ ∧ ),则 ∩ Aλ ⊂ ∩ Bλ .
λ∈∧
λ∈∧
证:若 x ∈ ∩ Aλ ,则对任意的 λ ∈ ∧ ,有 x ∈ Aλ ,所以 Aλ ⊂ Bλ( ∀ λ ∈ ∧ ) λ∈∧
成立
知 x ∈ Aλ ⊂ Bλ ,故 x ∈ ∩ Bλ ,这说明 ∩ Aλ ⊂ ∩ Bλ .
n→∞
An

故 lim n→∞
An
=
lim sup
n→∞
An
=
lim inf
n→∞
An
=

m=1
Am .
4. 证明 ( A − B) ∪ B = ( A ∪ B) − B 的充要条件是 B = ∅ .
证:充分性
若 B=∅ , 则
(A− B)∪ B = (A−∅)∪∅ = A−∅ = A = A∪∅ = A∪∅−∅
( ) x0
∞∞ ∞
∈∩ ∪ ∩
k =1 m=1 i=m
E
⎡⎢⎣ x;
fi
x

a
+
1 k
f

实变函数论课后答案

实变函数论课后答案

λ∈∧
λ∈∧
λ∈∧
定理 4 中的(4): ∪ ( Aλ ∪ Bλ ) = ( ∪ Aλ ) ∪ ( ∪ Bλ ) .
λ∈∧
λ∈∧
λ∈∧
证 : 若 x ∈ ∪ ( Aλ ∪ Bλ ) , 则 有 λ ' ∈ ∧ , 使 λ∈∧
x

(
A λ
'

Bλ'
)

(∪
λ∈∧
Aλ ) ∪ ( ∪ λ∈∧
Bλ ) .


An ⊃ An+1 )对一切 n 都成立,则
lim
n→∞
=

n=1
An
(相应地)
lim
n→∞
=

n=1
An
.

证明:若 An ⊂ An+1 对 ∀n ∈ N 成立,则 ∩ Ai = Am .故从定理 8 知 i=m
∞∞

lim inf
n→∞
An
=
∪∩
m=1 i=m
Ai
=

m=1
Am

另一方面 ∀m, n ,令 Sm = ∪ Ai ,从 Am ⊂ Am+1 对 ∀m ∈ N 成立知 i=m
.
{ } F {A1} = {∅, S} ∪ A ∪ K A为B的子集,K = C或K = ∅ ≜ �A .
证明:
因为
{1}
,
⎧ ⎨ ⎩
1 3
⎫ ⎬ ⎭
,⋯,
⎧ ⎨ ⎩
1 2i −
1
⎫ ⎬ ⎭
,⋯

A,
B
的任何子集
F
(

实变函数论课后答案第三版

实变函数论课后答案第三版

1. 证明:()B A A B -=的充要条件是A B ⊂.证明:若()B A A B -=,则()A B A A B ⊂-⊂,故A B ⊂成立. 反之,若A B ⊂,则()()B A A B A B B -⊂-⊂,又x B ∀∈,若x A ∈,则()x B A A ∈-,若x A ∉,则()x B A B A A ∈-⊂-.总有()x B A A ∈-.故()B B A A ⊂-,从而有()B A A B -=。

证毕2. 证明c A B A B -=.证明:x A B ∀∈-,从而,x A x B ∈∉,故,c x A x B ∈∈,从而x A B ∀∈-, 所以c A B A B -⊂.另一方面,c x A B ∀∈,必有,c x A x B ∈∈,故,x A x B ∈∉,从而x A B ∈-, 所以 c A B A B ⊂-.综合上两个包含式得c A B A B -=. 证毕3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9.证明:定理4中的(3):若A B λλ⊂(λ∈∧),则A B λλλλ∈∧∈∧⊂.证:若x A λλ∈∧∈,则对任意的λ∈∧,有x A λ∈,所以A B λλ⊂(∀λ∈∧)成立知x A B λλ∈⊂,故x B λλ∈∧∈,这说明A B λλλλ∈∧∈∧⊂.定理4中的(4):()()()A B A B λλλλλλλ∈∧∈∧∈∧=.证:若()x A B λλλ∈∧∈,则有'λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧∈⊂.反过来,若()()x A B λλλλ∈∧∈∧∈则x A λλ∈∧∈或者x B λλ∈∧∈.不妨设x A λλ∈∧∈,则有'λ∈∧使'''()x A A B A B λλλλλλ∈∧∈⊂⊂.故()()()A B A B λλλλλλλ∈∧∈∧∈∧⊂.综上所述有()()()A B A B λλλλλλλ∈∧∈∧∈∧=.定理6中第二式()c c A A λλλλ∈∧∈∧=.证:()c x A λλ∈∧∀∈,则x A λλ∈∧∉,故存在'λ∈∧ ,'x A λ∉所以'c c x A A λλλ∈∧∉⊂从而有()c c A A λλλλ∈∧∈∧⊂.反过来,若c x A λλ∈∧∈,则'λ∃∈∧使'c x A λ∉,故'x A λ∉,x A λλ∈∧∴∉,从而()c x A λλ∈∧∈()c c A A λλλλ∈∧∈∧∴⊃. 证毕定理9:若集合序列12,,,,n A A A 单调上升,即1n n A A +⊂(相应地1n n A A +⊃)对一切n 都成立,则 1lim n n n A ∞→∞==(相应地)1lim n n n A ∞→∞==.证明:若1n n A A +⊂对n N ∀∈成立,则i m i mA A ∞==.故从定理8知11liminf n i m n m i mm A A A ∞∞∞→∞=====另一方面,m n ∀,令m i i mS A ∞==,从1m m A A +⊂对m N ∀∈成立知 11111()()m i mi m i i m i mi m i m i m S A A A A A A S ∞∞∞∞++==+=+=+==⊂==.故定理8表明1111limsup liminf n i m m n n n m i mm m A A S S A A ∞∞∞∞→∞→∞=========故1lim limsup liminf n n n m n n n m A A A A ∞→∞→∞→∞====.4. 证明()()A B B A B B -=-的充要条件是B =∅. 证:充分性若B =∅,则()()A B B A A A A A -=-∅∅=-∅==∅=∅-∅必要性 若()()A B B A B B -=-,而B ≠∅则存在x B ∈.所以()()x A B B A B B ∈-=-即所以,x A B x B ∈∉这与x B ∈矛盾, 所以x B ∈.4. 设{}{}{}{}1,2,3,4,1,2,3,4S A ==,求()F A .又如果1;1,2,3,,S n n⎧⎫==⎨⎬⎩⎭01;A n ⎧⎫=⎨⎬⎩⎭为奇数,{}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭,问()()01,F A F A 是什么. 解:若{}{}{}{}1,2,3,4,1,2,3,4S A ==,则(){}{}{}{},1,2,3,4,1,2,3,4F A =∅.若011111;1,2,3,,;1,,,,3521S n A nni ⎧⎫⎧⎫⎧⎫====⎨⎬⎨⎬⎨⎬-⎩⎭⎩⎭⎩⎭为奇数, 则从1111111,,,,,,,3521242ci i ⎧⎫⎧⎫=⎨⎬⎨⎬-⎩⎭⎩⎭, 易知()111111,,1,,,,,,,,3521242F A S i i ⎧⎫⎧⎫⎧⎫=∅⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. {}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. 令11;1,2,,;1,2,212B i C i i i⎧⎫⎧⎫====⎨⎬⎨⎬-⎩⎭⎩⎭. {}{}{}1,F A S AK A B K C K A =∅==∅为的子集,或.证明: 因为{}111,,,,,321A B i ⎧⎫⎧⎫∈⎨⎬⎨⎬-⎩⎭⎩⎭的任何子集()1F A .所以有()1B F A ∈,而c B C =,故()1C F A ∈,又()1F A ∅∈. 任取B 的一子集A ,()1A A F A ∅=∈,且()1A C F A ∈. 显S A ∈,故只用证A 的确是一个σ-域.(1) ,c c S S A ∅==∅∈,且B ∀的子集A ,若K =∅,则,c KA A A C ∅==(B A -是B 的子集,故()()cc A A C F A ∅=∈) 又B ∀的子集A ,()cc c c A C A C A B ==. 显然是B 的子集,所以()()cc A C A B A =∅∈.又若n A 为B 的子集()1,2,3,,n n K C ==或∅.则()111nn n n n n n A K A K A K ∞∞∞===⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.这里1n n A A B ∞==⊂是B 的子集.1n n K K C ∞===或∅.所以()1n n n A K A ∞=∈.若n A 中除B 的子集外,还有S ,则()1n n n A K S A ∞==∈.若n A 中有∅,不影响1n n A B ∞=⊂.故A 是σ-域,且()1F A A =. 证毕.6.对于S 的子集A ,定义A 的示性函数为()10A x Ax x A ϕ∈⎧=⎨∉⎩证明:(1)()()liminf liminf nnA A x x ϕϕ=(2)()()limsup limsup nnA A x x ϕϕ=证明:x S ∀∈,若()liminf nA x x ϕ∈则()liminf 1nA x ϕ=。

实变函数答案第三版第二章点集

实变函数答案第三版第二章点集

第二章 点集1、证明:'0P E ∈的充要条件是在任意含有0P 的领域(),P δ⋃(不一定以0P 为中心)中,恒有异于0P 的点1P 属于E (事实上,这样的1P 还有无穷多个);0oP E ∈ 的充要条件则是有含有0P 的领域(),P δ⋃(同样,不一定以0P 为中心)存在,使(),P E δ⋃⊂. ()()()'00100010101001001'0010000:min ,,,,..o P E d P P d P P P P E P E P E P E P E P E E δδδδδδδδ∈⋃=-⋃⊂⋃⋃∈⋃∈⋃∈⋃∈∈∈⋃∈⋃ 证明若,对任意含有P 的领域(P,),取则(P ,)(P,),而(P ,)中含有异于的点,所以(P ,)中存在异于P 的点若任意一个含有P 的领域(P,)中有异于P 的点,则任一(P )也有异于P 的点,故 若,则存在(P ),使(P ()()()0100010=min ,,,.o d P P d P P E P E δδδδδδ⋃∈⋃⊂=-⋃⊂⋃⊂∈ )(P ,)即得证.若P (P,)E ,取,则有(P ,)(P,),从而4、设3E 是函数1sin ,0,0,0x y x x ⎧≠⎪=⎨⎪=⎩当 当的图形上的点所作成的集合,在2R 内讨论'333o E E 的E 与.(){}'33=0y 11.o E y E φ⋃-≤≤=解:E ,8.x -+a f ∞∞≥设()是(,)上的实值连续函数,则对于任意常数,E={x|f(x)>a}是一开集,而E={x|f(x)a}总是一闭集。

(){}()()(){}(){}()(){}()()o ,?,0,,,, ,|()||()| |{|}|{|}.{, |}. ' ',o o o o o co x E x f x a f x a f x x x x f x a x E x f x a x E E x f x a H x f x a x f x a H x f x a x H H f x a H x δδδ∈=>>>-<>⋃∈=><=≥=<=≥∈=≥⊂' 任取则由在处连续及极限的保号性知,存在当时有即即为的内点,从而 证明为开:集;类似可证为开集从而是闭集又要证是闭集,只需证任取则存在()()(){}()(){|}{| ,, ,}n o n o o H x f x x f x a f x a x x f x a x f x a ≥≥∈≥≥中的点列使得由在处连续及,可知所以从而是闭集.9.证明:每个闭集必是可数个开集的交集;每个开集可以表示成可数个闭集的和集。

实变函数论课后答案第三版

实变函数论课后答案第三版

1. 证明:()B A A B -=的充要条件是A B ⊂.证明:若()B A A B -=,则()A B A A B ⊂-⊂,故A B ⊂成立. 反之,若A B ⊂,则()()B A A B A B B -⊂-⊂,又x B ∀∈,若x A ∈,则()x B A A ∈-,若x A ∉,则()x B A B A A ∈-⊂-.总有()x B A A ∈-.故()B B A A ⊂-,从而有()B A A B -=。

证毕2. 证明c A B A B -=.证明:x A B ∀∈-,从而,x A x B ∈∉,故,c x A x B ∈∈,从而x A B ∀∈-, 所以c A B A B -⊂.另一方面,c x A B ∀∈,必有,c x A x B ∈∈,故,x A x B ∈∉,从而x A B ∈-, 所以 c A B A B ⊂-.综合上两个包含式得c A B A B -=. 证毕3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9.证明:定理4中的(3):若A B λλ⊂(λ∈∧),则A B λλλλ∈∧∈∧⊂.证:若x A λλ∈∧∈,则对任意的λ∈∧,有x A λ∈,所以A B λλ⊂(∀λ∈∧)成立知x A B λλ∈⊂,故x B λλ∈∧∈,这说明A B λλλλ∈∧∈∧⊂.定理4中的(4):()()()A B A B λλλλλλλ∈∧∈∧∈∧=.证:若()x A B λλλ∈∧∈,则有'λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧∈⊂.反过来,若()()x A B λλλλ∈∧∈∧∈则x A λλ∈∧∈或者x B λλ∈∧∈.不妨设x A λλ∈∧∈,则有'λ∈∧使'''()x A A B A B λλλλλλ∈∧∈⊂⊂.故()()()A B A B λλλλλλλ∈∧∈∧∈∧⊂.综上所述有()()()A B A B λλλλλλλ∈∧∈∧∈∧=.定理6中第二式()c c A A λλλλ∈∧∈∧=.证:()c x A λλ∈∧∀∈,则x A λλ∈∧∉,故存在'λ∈∧ ,'x A λ∉所以'c c x A A λλλ∈∧∉⊂从而有()c c A A λλλλ∈∧∈∧⊂.反过来,若c x A λλ∈∧∈,则'λ∃∈∧使'c x A λ∉,故'x A λ∉,x A λλ∈∧∴∉,从而()c x A λλ∈∧∈()c c A A λλλλ∈∧∈∧∴⊃. 证毕定理9:若集合序列12,,,,n A A A 单调上升,即1n n A A +⊂(相应地1n n A A +⊃)对一切n 都成立,则 1lim n n n A ∞→∞==(相应地)1lim n n n A ∞→∞==.证明:若1n n A A +⊂对n N ∀∈成立,则i m i mA A ∞==.故从定理8知11liminf n i m n m i mm A A A ∞∞∞→∞=====另一方面,m n ∀,令m i i mS A ∞==,从1m m A A +⊂对m N ∀∈成立知 11111()()m i mi m i i m i mi m i m i m S A A A A A A S ∞∞∞∞++==+=+=+==⊂==.故定理8表明1111limsup liminf n i m m n n n m i mm m A A S S A A ∞∞∞∞→∞→∞=========故1lim limsup liminf n n n m n n n m A A A A ∞→∞→∞→∞====.4. 证明()()A B B A B B -=-的充要条件是B =∅. 证:充分性若B =∅,则()()A B B A A A A A -=-∅∅=-∅==∅=∅-∅必要性 若()()A B B A B B -=-,而B ≠∅则存在x B ∈.所以()()x A B B A B B ∈-=-即所以,x A B x B ∈∉这与x B ∈矛盾, 所以x B ∈.4. 设{}{}{}{}1,2,3,4,1,2,3,4S A ==,求()F A .又如果1;1,2,3,,S n n⎧⎫==⎨⎬⎩⎭01;A n ⎧⎫=⎨⎬⎩⎭为奇数,{}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭,问()()01,F A F A 是什么. 解:若{}{}{}{}1,2,3,4,1,2,3,4S A ==,则(){}{}{}{},1,2,3,4,1,2,3,4F A =∅.若011111;1,2,3,,;1,,,,3521S n A nni ⎧⎫⎧⎫⎧⎫====⎨⎬⎨⎬⎨⎬-⎩⎭⎩⎭⎩⎭为奇数, 则从1111111,,,,,,,3521242ci i ⎧⎫⎧⎫=⎨⎬⎨⎬-⎩⎭⎩⎭, 易知()111111,,1,,,,,,,,3521242F A S i i ⎧⎫⎧⎫⎧⎫=∅⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. {}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. 令11;1,2,,;1,2,212B i C i i i⎧⎫⎧⎫====⎨⎬⎨⎬-⎩⎭⎩⎭. {}{}{}1,F A S AK A B K C K A =∅==∅为的子集,或.证明: 因为{}111,,,,,321A B i ⎧⎫⎧⎫∈⎨⎬⎨⎬-⎩⎭⎩⎭的任何子集()1F A .所以有()1B F A ∈,而c B C =,故()1C F A ∈,又()1F A ∅∈. 任取B 的一子集A ,()1A A F A ∅=∈,且()1A C F A ∈. 显S A ∈,故只用证A 的确是一个σ-域.(1) ,c c S S A ∅==∅∈,且B ∀的子集A ,若K =∅,则,c KA A A C∅==(B A -是B 的子集,故()()ccAA C F A ∅=∈)又B ∀的子集A ,()cc c c A C A C A B ==. 显然是B 的子集,所以()()cc A C A B A =∅∈.又若n A 为B 的子集()1,2,3,,n n K C ==或∅. 则()111nn n n n n n A K A K A K ∞∞∞===⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.这里1n n A A B ∞==⊂是B 的子集.1n n K K C ∞===或∅.所以()1n n n A K A ∞=∈.若n A 中除B 的子集外,还有S ,则()1n n n A K S A ∞==∈.若n A 中有∅,不影响1n n A B ∞=⊂.故A 是σ-域,且()1F A A =. 证毕.6.对于S 的子集A ,定义A 的示性函数为()10A x Ax x Aϕ∈⎧=⎨∉⎩证明:(1)()()liminf liminf nnA A x x ϕϕ=(2)()()limsup limsup nnA A x x ϕϕ=证明:x S ∀∈,若()liminf nA x x ϕ∈则()liminf 1nA x ϕ=。

实变函数论课后答案第二章(精品)

实变函数论课后答案第二章(精品)

实变函数论课后答案第二章1第二章第一节1.证明'0p E ∈的充要条件是对于任意含有0p 的邻域()0,N p δ(不一定以0p 为中心)中,恒有异于0p 的点1p 属于E (事实上这样的1p 其实还是有无穷多个)而0p 为E 的内点的充要条件则上有含有0p 的邻域()0,N p δ(同样,不一定以0p 为中心)存在,使()0,N p E δ⊂. 证明:先设'0p E ∈,则()00,,N p E δδ∀> 中有无穷多个点。

现在设()00,p N p δ∈,这表明()00,p p ηρδ≤=<,故()0,y N p δη∀∈-,有()()()00,,,y p y p p p ρρρδηηδ≤+<-+= 故()()0,,N p N p δηδ-⊂故()0,N p E δη- 有无穷个点,自然有异于0p 的点()10,p N p E δη∈-(),N p δ⊂.这就证明了必要性,事实上,(){}00,N p E p δη-- 是无穷集,故(),N p δ中有无穷多个异于0p 的E 中的点.反过来,若任意含有0p 的邻域(),N p δ中,恒有异于0p 的点1p 属于E ,则0δ∀>,(),N p δ中,有异于0p 的点1p 属于E ,记()101,p p ρδ=,则显然1δδ<由条件()01,N p δ中有异于0p 的点2p E ∈,()2021,p p ρδδ=<由归纳法易知,有{}11,1,2,,n n n n δδδδ+∀=<<< 和()01,n n p E N p δ-∈ ,0,1,2,n p p n ≠=这表明()0,N p δ中有无穷个E 中的点.由0δ>的任意性知,'0x E ∈若0p 为E 的内点,则0,δ∃>使()0,N p E δ⊂,故必要性是显然的. 若存在邻域(),N p E δ⊂,使()0,p N p δ∈,则从前面的证明知()()()00,,,N p p p N p E δρδ-⊂⊂,故0p 为E 的内点.2.设1n R R =是全体实数,1E 是[]0,1上的全部有理点,求'11,E E .解:[]0,1x ∀∈,由有理数的稠密性知,()()0,,,N x x x εεεε∀>=-+中有无穷个1E 中的点,故'1x E ∈,故[]'10,1E ⊂.而另一方面,[]0,1x ∀∉,必有0δ>,使()[]0,0,1N x δ=∅ ,故'01x E ∉ 故[]'10,1E ⊂,所以[][]'10,10,1E ⊂⊂. 表明[]'10,1E =而[][]'11110,10,1E E E E === 故[]'110,1E E ==.1. 设2n R R =是普通的xy 平面(){}222,;1E x y xy =+<,求'22,E E .解:(){}'222,;1E x y xy =+≤事实上,若()'0002,p x y E =∈,则由于()22,f x y x y =+是2R 上的连续函数,必存在0δ>,使()()0,,x y N p δ∀∈有()22,1f x y x y =+>.故()02,N p E δ=∅ ,故0p 不是'2E 中的点矛盾. 故22001x y +≤时(){}220,;1p x y xy ∈+≤反过来,若()(){}22000,,;1p x y x y x y =∈+≤则0δ∀>,作[]0,1上的函数()()()()22000000,f t tp p tx x ty y ρ==-+-()22222000011t x y t x y =-+=-+则()f t 是[]0,1上的连续函数,()220001f x y =+≤,()10f =,01δ∀<<,[]0,1t δ∃∈使()f t δδ=现在任取()0,0min 1,ηδη>∃<<,使()()00,,N p N p δη⊂. 由上面的结论,存在01t δ<<,使()1f t δδ=<.故0t p δ满足(1)00t p p δ≠;(2)0001t p t p t p t δδδδ==≤<.故02t p E δ∈ (3)()00,t p p δρδη=<,故()0,t p N p δη∈所以(){}020,t p N p E p δη∈- 由习题1的结论知'02p E ∈,所以(){}'222,;1E x y xy =+≤.而(){}''222222,;1E E E E x y xy ===+≤ .2. 设2nR R =是普通的xy 平面,3E 是函数1sin00x y xx ⎧≠⎪=⎨⎪=⎩的图形上的点所作成的集合,求'3E . 解:设函数的图形是()(){}{}'131,;,,sin ;0x f x x R Ex x R x ⎧⎫⎛⎫∈=∈-⎨⎬ ⎪⎝⎭⎩⎭(){}0,0 . 下证(){}'330,;11E E δδ=-≤≤()'0003,p x y E =∈⇔存在()(){}300,,n n n p x y E x y =∈-, ()000,,n n n n n p x y p x x y y =→⇔→→,()0,0n p p ρ→设()'0003,p x y E =∈,则存在()(){}30,,n n x y E x y ∈-使00,nn xx y y →→若00x ≠,则0n x ≠(当n 充分大) 则0011sinsin n n y y x x =→= 所以()003,x y E ∈若00x ≠,则0n x →,01sinn ny y x =→,011y -≤≤ 所以()(){}00,0,;11x y δδ∈-≤≤ 故(){}'330,;11E E δδ⊂-≤≤反过来:()(){}0003,0,;11p x y E δδ∀=∈-≤≤ , 若00x ≠,001siny x =, 故存在0n x x ≠,使0n x ≠,0n x x →从而011sinsin n x x → 即存在()001,sin,n n x x y x ⎛⎫→ ⎪⎝⎭故'03p E ∈.若()(){}000,0,;11p y δδ=∈-≤≤ 则从[]01,1y ∈-知存在0x 使00sin x y =, 令()010,1,2,2k x k k x π=≠=+ .则()0001sinsin 2sin kk x x y x π=+==, 所以()3011,sin,,sin 0,k kkk x E x y x x ⎛⎫⎛⎫∈→ ⎪ ⎪⎝⎭⎝⎭,()()00,0,k x y y → ()()00,0,k x y y ≠故'03p E ∈ 故结论成立.3. 证明当E 是nR 中的不可数无穷点集时,'E 不可能是有限集. 证明:记B 为E 的孤立点集,则'E B E -= 所以()'E E B B E B =-⊂ .若能证明B 是至多可数集,则若'E 是有限集或可列集知'E B E ⊃ 为至多可数集,这将与E 是n R 中的不可数无穷点集矛盾.故只用证E 的孤立点集B 是至多可数集p B ∀∈,0p δ∃>使(){},p N p E p δ=故(),np p N p R δ⊂ 是B 到nR 中的一个互不相交的开球邻域组成的集的11-对应.而任一互不相交开球邻域作成的集合{},A αα∈Λ是可数的,因为任取α∈Λ,取有理点p A α∈,则从,A A αβαβ=∅≠ 则{},A αα∈Λ与Q 11-对应故{},A αα∈Λ是至多可数集. 证毕。

(完整版)实变函数与泛函分析基础第三版第七章答案

(完整版)实变函数与泛函分析基础第三版第七章答案

习题解答1、设为一度量空间,令 ,(,)X d 00(,){|,(,)}U x x x X d x x εε=∈<00(,){|,(,)}S x x x X d x x εε=∈≤问的闭包是否等于。

0(,)U x ε0(,)S x ε解答:在一般度量空间中不成立,例如:取的度量子空间,则中00(,)(,)U x S x εε=1R [0,1][2,3]X = X 的开球的的闭包是,而(1,1){;(1,)1}U x X d x =∈<[0,1](1,1){;(1,)1}[0,1]{2}S x X d x =∈≤= 2、设是区间上无限次可微函数全体,定义,证[,]C a b ∞[,]a b ()()()()01|()()|(,)max21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑明:按构成度量空间。

[,]C a b ∞(,)d f g 证明:(1)显然且有(,)0d f g ≥(,)0d f g =⇔()()()()1|()()|,max 021|()()|r r r r r a t bf tg t r f t g t ≤≤-∀=+-⇒,[,]r t a b ∀∀∈,特别当时有有。

()()|()()|0r r f t g t -=0,[,]r t a b =∀∈|()()|0f t g t -=⇒[,]t a b ∀∈ ()()f t g t =(2)由函数在上单调增加,从而对有()1t f t t=+[0,)+∞,,[,]f g h C a b ∞∀∈()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max 21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三角不等式成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 证明:()B A A B -=的充要条件就是A B ⊂、证明:若()B A A B -=,则()A B A A B ⊂-⊂,故A B ⊂成立、反之,若A B ⊂,则()()B A A B A B B -⊂-⊂,又x B ∀∈,若x A ∈,则()x B A A ∈-,若x A ∉,则()x B A B A A ∈-⊂-、总有()x B A A ∈-、故()B B A A ⊂-,从而有()B A A B -=。

证毕2. 证明c A B AB -=、证明:x A B ∀∈-,从而,x A x B ∈∉,故,cx A x B ∈∈,从而x A B ∀∈-, 所以cA B A B -⊂、另一方面,c x A B ∀∈,必有,c x A x B ∈∈,故,x A x B ∈∉,从而x A B ∈-,所以 c AB A B ⊂-、综合上两个包含式得cA B AB -=、 证毕3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式与定理9、 证明:定理4中的(3):若A B λλ⊂(λ∈∧),则A B λλλλ∈∧∈∧⊂、证:若x A λλ∈∧∈,则对任意的λ∈∧,有x A λ∈,所以A B λλ⊂(∀λ∈∧)成立知x A B λλ∈⊂,故x B λλ∈∧∈,这说明A B λλλλ∈∧∈∧⊂、定理4中的(4):()()()A B A B λλλλλλλ∈∧∈∧∈∧=、 证:若()x A B λλλ∈∧∈,则有'λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧∈⊂、反过来,若()()x A B λλλλ∈∧∈∧∈则x A λλ∈∧∈或者x B λλ∈∧∈、不妨设x A λλ∈∧∈,则有'λ∈∧使'''()x A A B A B λλλλλλ∈∧∈⊂⊂、故()()()A B A B λλλλλλλ∈∧∈∧∈∧⊂、综上所述有()()()A B A B λλλλλλλ∈∧∈∧∈∧=、定理6中第二式()c c A A λλλλ∈∧∈∧=、证:()c x A λλ∈∧∀∈,则x A λλ∈∧∉,故存在'λ∈∧ ,'x A λ∉所以'c c x A A λλλ∈∧∉⊂从而有()c c A A λλλλ∈∧∈∧⊂、反过来,若c x A λλ∈∧∈,则'λ∃∈∧使'c x A λ∉,故'x A λ∉,x A λλ∈∧∴∉,从而()c x A λλ∈∧∈()c c A A λλλλ∈∧∈∧∴⊃、 证毕定理9:若集合序列12,,,,n A A A 单调上升,即1n n A A +⊂(相应地1n n A A +⊃)对一切n 都成立,则 1lim n n n A ∞→∞==(相应地)1lim n n n A ∞→∞==、证明:若1n n A A +⊂对n N ∀∈成立,则i m i mA A ∞==、故从定理8知11liminf n i m n m i mm A A A ∞∞∞→∞=====另一方面,m n ∀,令m i i mS A ∞==,从1m m A A +⊂对m N ∀∈成立知11111()()m i mi m i i m i mi m i m i m S A A A A A A S ∞∞∞∞++==+=+=+==⊂==、故定理8表明1111limsup liminf n i m m n n n m i mm m A A S S A A ∞∞∞∞→∞→∞=========故1lim limsup liminf n n n m n n n m A A A A ∞→∞→∞→∞====、4、 证明()()A B B A B B -=-的充要条件就是B =∅、证:充分性若B =∅,则()()A B B A A A A A -=-∅∅=-∅==∅=∅-∅必要性 若()()A B B A B B -=-,而B ≠∅则存在x B ∈、所以()()x A B B A B B ∈-=-即所以,x A B x B ∈∉这与x B ∈矛盾,所以x B ∈、 4. 设{}{}{}{}1,2,3,4,1,2,3,4S A ==,求()F A 、又如果1;1,2,3,,S n n⎧⎫==⎨⎬⎩⎭01;A n ⎧⎫=⎨⎬⎩⎭为奇数,{}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭,问()()01,F A F A 就是什么、解:若{}{}{}{}1,2,3,4,1,2,3,4S A ==,则(){}{}{}{},1,2,3,4,1,2,3,4F A =∅、若011111;1,2,3,,;1,,,,3521S n A n n i ⎧⎫⎧⎫⎧⎫====⎨⎬⎨⎬⎨⎬-⎩⎭⎩⎭⎩⎭为奇数, 则从1111111,,,,,,,3521242ci i ⎧⎫⎧⎫=⎨⎬⎨⎬-⎩⎭⎩⎭, 易知()111111,,1,,,,,,,,3521242F A S i i ⎧⎫⎧⎫⎧⎫=∅⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭、 {}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭、 令11;1,2,,;1,2,212B i C i i i⎧⎫⎧⎫====⎨⎬⎨⎬-⎩⎭⎩⎭、 {}{}{}1,F A S AK A B K C K A =∅==∅为的子集,或、证明: 因为{}111,,,,,321A B i ⎧⎫⎧⎫∈⎨⎬⎨⎬-⎩⎭⎩⎭的任何子集()1F A 、所以有()1B F A ∈,而cB C =,故()1C F A ∈,又()1F A ∅∈、 任取B 的一子集A ,()1A A F A ∅=∈,且()1AC F A ∈、显S A ∈,故只用证A 的确就是一个σ-域、(1) ,c cS S A ∅==∅∈,且B ∀的子集A ,若K =∅,则,c KA A A C ∅==(B A -就是B 的子集,故()()ccA A C F A ∅=∈)又B ∀的子集A ,()ccc cAC A C A B ==、 显然就是B 的子集,所以()()ccAC A B A =∅∈、又若n A 为B 的子集()1,2,3,,n n K C ==或∅、 则()111nn n n n n n A K A K A K ∞∞∞===⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭、这里1n n A A B ∞==⊂就是B 的子集、1n n K K C ∞===或∅、所以()1n n n A K A ∞=∈、若n A 中除B 的子集外,还有S ,则()1n n n A K S A ∞==∈、若n A 中有∅,不影响1n n A B ∞=⊂、故A 就是σ-域,且()1F A A =、 证毕、6、对于S 的子集A ,定义A 的示性函数为()10A x Ax x A ϕ∈⎧=⎨∉⎩证明:(1)()()liminf liminf n n A A x x ϕϕ= (2)()()limsup limsup n n A A x x ϕϕ=证明:x S ∀∈,若()liminf n A x x ϕ∈则()liminf 1n A x ϕ=。

且只有有限个n ,使得n x A ∉ 所以∃ 00n > 使得 0n n ≥时 n x A ∈ 从而有()1nA x ϕ=故()()liminf liminf 1n n A A x x ϕϕ== 若()liminf n A x x ϕ∉, 则()liminf 0nA x ϕ=且有无限个().1,2,3,4k n N k ∈=故()lim 0k A k x ϕ→∞=所以 ()()liminf liminf 0n n A A x x ϕϕ==、 故(1)成立、(2)的证明: x S ∀∈,若()limsup n A x x ϕ∈ 则()liminf 1n A x ϕ=、且有无穷个 ().1,2,3,4k n N k ∈=使得knx A ∈ ,1n kA ϕ=所以 ()lim 1k A k x ϕ→∞= 注意到()01k A x ϕ≤≤所以 ()()limsup limsup 1n n A A x x ϕϕ==、 若()limsup n A x x ϕ∉,则()limsup 0nA x ϕ=且只有有限个n 使得n x A ∈所以 ∃ 00n > 使得 0n n ≥时n x A ∉ ,()0n A x ϕ= 所以 ()()limsup limsup 0n n A A x x ϕϕ==、 所以(2)也成立、也可以这样证(2):注意nA R ∀⊂()()1cA A x x ϕϕ=-、()()()()()()()()()()()()limsup limsup liminf liminf 11liminf 1limsup limsup 1limsup cc nn ccc n n cn c nc n nA A A A A A A A x x x x x x x x ϕϕϕϕϕϕϕϕ===-=-=+-=-=、7、设f(x)就是定义于E 上的实函数,a 为一常数,证明 (1)()()11;;n E x f x a E x f x a n ∞=⎡⎤>=≥+⎡⎤⎣⎦⎢⎥⎣⎦ (2)()()11;;n E x f x a E x f x a n ∞=⎡⎤≥=>-⎡⎤⎣⎦⎢⎥⎣⎦、 证明:(1)()0;x E x f x a ∀∈>⎡⎤⎣⎦ 我们有()0f x a >,故存在n N ∈ 使()01f x a n ≥+(因为()01,n f x a n∃≤-使)所以()011;n x E x f x a n ∞=⎡⎤∈≥+⎢⎥⎣⎦、 从而有()()11;;n E x f x a E x f x a n ∞=⎡⎤>⊂≥+⎡⎤⎣⎦⎢⎥⎣⎦; 反过来: 若()011;n x E x f x a n ∞=⎡⎤∈≥+⎢⎥⎣⎦,则 ()()()()0000111,,;1;;n n n f x a a n x E x f x a E x f x a E x f x a n ∞=∃≥∃≥+>∴∈>⎡⎤⎣⎦⎡⎤∴≥+⊂>⎡⎤⎣⎦⎢⎥⎣⎦使所以(1)成立、下证(2) ()0;x E x f x a ∀∈≥⎡⎤⎣⎦ 我们有()()()()()000111;1;n f x a a n N nx E x f x a n N n x E x f x a n ∞=≥>-∀∈⎡⎤∈>-∀∈⎢⎥⎣⎦⎡⎤∈>-⎢⎥⎣⎦所以故从而有()()11;;n E x f x a E x f x a n ∞=⎡⎤≥⊂>-⎡⎤⎣⎦⎢⎥⎣⎦ 反过来,若()011;n x E x f x a n ∞=⎡⎤∈>-⎢⎥⎣⎦8、若实函数序列(){}n f x 在E 上收敛于()f x ,则对于任意常数a 都有()()()1111;liminf ;liminf ;k k E x f x a E x f x a E x f x a k k ∞∞==⎡⎤⎡⎤≤=≤+=<+⎡⎤⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦证明:先证第一个等式 由定理8知()()()()111111liminf ;;11liminf ;;n i m i m n i k k m i m E x f x a E x f x a k k E x f x a E x f x a k k ∞∞==∞∞∞∞====⎡⎤⎡⎤≤+=≤+⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤≤+=≤+⎢⎥⎢⎥⎣⎦⎣⎦所以()0;x E x f x a ∀∈≤⎡⎤⎣⎦ 我们有()01f x a a k≤≤+对k N ∀∈成立。

相关文档
最新文档