最新七年级数学代数式专题练习(解析版)
最新湘教版七年级数学上册《代数式的值》技能训练及答案解析(精品试题).docx

提技能·题组训练求代数式的值1.已知m=1,n=0,则代数式m+n的值为( )A.-1B.1C.-2D.2【解析】选B.当m=1,n=0时,m+n=1+0=1.2.当x=-1时,代数式x2-2x+7的值是( )A.10B.8C.6D.4【解析】选A.x=-1时,x2-2x+7=(-1)2-2×(-1)+7=1+2+7=10.【易错提醒】如果代入的值是负数,要注意加上括号,以免在符号上出错.如本题代入后等于1+2+7而不是-1-2+7.3.如果a+b=2,那么代数式3a+3b的值是( )A.6B.5C.4D.12【解析】选A.因为a+b=2,所以3(a+b)=3×2=6.【变式训练】若m,n互为相反数,则5m+5n-5的值为( )A.-5B.0C.5D.15【解析】选A.由题意得m+n=0,所以5m+5n-5=5(m+n)-5=5×0-5=-5.4.若a-2b=3,则2a-4b-5= .【解析】2a-4b-5=2(a-2b)-5=2×3-5=1.答案:1【互动探究】若2+a-2b=0,那么2a-4b-5的值是多少?【解析】因为2+a-2b=0,所以a-2b=-2,所以2a-4b-5=2(a-2b)-5=2×(-2)-5=-9.【知识归纳】整体代入法求代数式的值最常用的方法就是代入法,即把字母所表示的数值直接代入,计算求值.有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难求出字母的值或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入,求值时方便又快捷,这种整体代入的方法经常用到.5.当x=-7时,代数式ax 7+bx 5+cx 3-3的值为7,其中a,b,c 为常数,当x=7时,这个代数式的值是 . 【解析】因为当x=-7时,代数式ax 7+bx 5+cx 3-3的值为7,所以-77a-75b-73c-3=7,即:77a+75b+73c=-10,所以当x=7时,ax 7+bx 5+cx 3-3=77a+75b+73c-3=-13.答案:-136.已知ab=1,b-a=3,求ab-a+b 的值.【解析】当ab=1,b-a=3时,ab-a+b=ab+b-a=1+3=4.7.已知a−ba+b =3,求代数式2(a−b)a+b -3(a+b)5(a−b)的值. 【解析】因为a−b a+b=3,所以a+b a−b =13. 所以2(a−b)a+b -3(a+b)5(a−b)=2×a−b a+b -35×a+b a−b =2×3-35×13=6-15=295. 求代数式的值的应用1.某种导火线的燃烧速度是0.81cm/s,爆破员跑开的速度是5m/s,为在点火后使爆破员跑到150m 以外的安全地区,导火线的长度可以为 ( )A.22cmB.23cmC.24cmD.25cm【解析】选D.导火线的长度是与安全地区的路程相关,设点火后使爆破员跑到xm×0.81cm.当x=150时,导火线以外的安全地区,那么所需导火线的长度至少为x5×0.81=24.3(cm),故导火线的长度至少为24.3cm,只有D项符合要的长度为1505求.2.按照如图所示的操作步骤,若输入x的值为2,则输出的值为.【解题指南】解答本题的两个步骤(1)按运算程序列出代数式.(2)把x的值代入所列的代数式.【解析】由图可知输出的结果为(x+3)2-5,当x=2时,(x+3)2-5=(2+3)2-5=25-5=20.答案:203.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第20个图形中有个实心圆.【解析】第(1)个图形中有4+2×0=4个实心圆;第(2)个图形中有4+2×1=6个实心圆;第(3)个图形中有4+2×2=8个实心圆;…,第(n)个图形中有4+2×(n -1)个实心圆;所以第20个图形中有4+2×19=42个实心圆.答案:424.若梯形的上底为a,下底为b,高为h,则梯形面积为,当a=2cm,b=4 cm,h=3cm时,梯形的面积为.【解析】梯形的面积公式为S=(上底+下底)×高÷2, 即S=12(a+b)h,当a=2cm,b=4cm,h=3cm时,S=12×(2+4)×3=12×6×3=9(cm2).答案:12(a+b)h 9cm25.一块三角尺的形状和尺寸如图所示,a为直角边的长,r为圆孔的半径.(1)求阴影部分的面积S.(2)当a=8cm,r=1.5cm时.求S的值(π取3.14).【解析】(1)因为三角形的面积为12a2,圆的面积为πr2,所以阴影部分的面积S=12a2-πr2.(2)当a=8cm,r=1.5cm,π取3.14时,S=12a2-πr2=12×82-3.14×1.52=32-7.065=24.935(cm2). 【错在哪?】作业错例课堂实拍已知a=12,b=14,求代数式a+2b的值.(1)找错:从第________步开始出现错误.(2)纠错:________ ________________________答案: (1)①(2) 1111+=+⨯=+=a2b21.2422。
七年级数学上册数学 第3章 代数式(解析版)

第3章代数式——章末测试卷(时间:120分钟,满分:120分)一.选择题(共10小题,满分30分,每小题3分)1.下面式子中符合代数式书写要求的是()A .3ab B .2123xy C .34mπD .3x +克2.下面计算正确的是()A .2233x x -=B .235325a a a +=C .33x x +=D .30.7504ab ba -+=3.两艘船从同一港口出发,甲船顺水而下,乙船逆水而上,已知两船在静水中的速度都是45/km h ,水流速度是/akm h ,1h 后两船相距()km A .90B .4a C .2a D .180【详解】解:(45)1(45)190()a a km +⨯+-⨯=.故本题选:A .4.下列式子变形正确的是()A .()x y z x y z+-=++B .()x y x y --=--C .()a b a b -+=--D .222()x y z x z y +-=-+【详解】解:A 、()x y z x y z +-=+-,故A 不正确;B 、()x y x y --=-+,故B 不正确;C 、()a b a b -+=--,故C 正确;D 、222()x y z x z y +-=--,故D 不正确.故本题选:C .5.已知33n x y -与342m x y -是同类项,则式子20232024m n +的值是()A .1-B .0C .1D .2【详解】解:33n x y - 与342m x y -是同类项,33m ∴=,34n -=,1m ∴=,1n =-,20232024m n ∴+202320241(1)=+-11=+2=.故本题选:D .6.已知2241M a a =-++,2341N a a =-+-,则M 与N 的大小关系是()A .M N>B .M N <C .M N =D .以上都有可能【详解】解:M N - 22241(341)a a a a =-++--+-22241341a a a a =-+++-+220a =+>,M N ∴>.故本题选:A .7.下列判断正确的是()A .单项式33x y π-的系数是1-B .23m n 不是整式C .单项式322x y π-的次数是5D .2236x y x y -+是二次三项式D .2236x y x y -+是三次三项式,故本选项不正确.故本题选:C .8.多项式2||11(1)57m x y m y -++是关于x ,y 的三次二项式,则m 的值是()A .1B .1±C .1-D .0【详解】解: 多项式2||11(1)57m x y m y -++是关于x ,y 的三次二项式,∴||23(1)0m m +=⎧⎨-+=⎩,1m ∴=-.故本题选C .9.如图所示的数码叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且两端的数均为1n ,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为()A .160B .1168C .1252D .1280【详解】解:根据给出的数据可得:第2n -行的第一个数等于12n -,第1n -行的第一个数等于11n -,第二个数等于1121n n ---,第n 行的第一个数等于1n ,第二个数等于111n n --,第三个数等于()()1111221121n n n n n n n⎛⎫---= ⎪-----⎝⎭,则第8行第3个数(从左往右数)为()()2182818168=--1111()82881168-⨯=--.故本题选:B .10.在多项式x ﹣y ﹣z ﹣m ﹣n (其中x >y >z >m >n )中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x ﹣y ﹣|z ﹣m |﹣n =x ﹣y﹣z +m ﹣n ,|x ﹣y |﹣z ﹣|m ﹣n |=x ﹣y ﹣z ﹣m +n ,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A .0B .1C .2D .3【详解】解:|x ﹣y |﹣z ﹣m ﹣n =x ﹣y ﹣z ﹣m ﹣n ,故说法①正确;若使其运算结果与原多项式之和为0,需出现﹣x ,显然无论怎么添加绝对值,都无法使x 的符号为负号,故说法②正确;当添加一个绝对值时,共有4种情况,分别是|x ﹣y |﹣z ﹣m ﹣n =x ﹣y ﹣z ﹣m ﹣n ,x ﹣|y ﹣z |﹣m ﹣n =x ﹣y +z ﹣m ﹣n ,x ﹣y ﹣|z ﹣m |﹣n =x ﹣y ﹣z +m ﹣n ,x ﹣y ﹣z ﹣|m ﹣n |=x ﹣y ﹣z ﹣m +n ;当添加两个绝对值时,共有3种情况,分别是|x ﹣y |﹣|z ﹣m |﹣n =x ﹣y ﹣z +m ﹣n ,|x ﹣y |﹣z ﹣|m ﹣n |=x ﹣y ﹣z ﹣m +n ,x ﹣|y ﹣z |﹣|m ﹣n |=x ﹣y +z ﹣m +n ;综上,共有7种情况,因为有两对运算结果相同,所以共有5种不同运算结果,故说法③不符合题意.故本题选:C .二.填空题(共8小题,满分24分,每小题3分)11.将多项式322313xy x y x y --+按字母y 升幂排列,结果是.【详解】解:将多项式322313xy x y x y --+按字母y 升幂排列,结果是322313x y x y xy -+-+.故本题答案为:322313x y x y xy -+-+.12.下列式子:22323134,,,23,0,,,,,22m n m n x xy y y x a m y ab m n x --++--++,其中单项式有;多项式有;整式有.13.如图,两个大、小正方形的边长分别是4cm 和x (04)cm x <<,用含x 的式子表示图中阴影部分的面积为2cm .14.当k =时,多项式22(1)325x k xy y xy +----中不含xy 项.【详解】解:整理只含xy 的项得:(3)k xy -,30k ∴-=,3k =.故本题答案为:3.15.当2x =时,代数式334ax bx -+的值是7,则当2x =-时,这个代数式的值是.【详解】解:当2x =时,3348647ax bx a b -+=-+=,863a b ∴-=,∴当2x =-时,334864(86)4341ax bx a b a b -+=-++=--+=-+=.故本题答案为:1.16.粗心的小明在计算2532a a -+加上一个多项式时,误看成减去这个多项式得到223a a +,那么正确的计算结果应该是.【详解】解:根据题意得:222532[(532)(23)]a a a a a a -++-+-+222532(53223)a a a a a a =-++-+--22253253223a a a a a a =-++-+--2894a a =-+.故本题答案为:2894a a -+.17.用黑白两色棋子按下列方式摆图形,依照此规律,第n 个图形中黑色棋子共有个.【详解】解:第1个有黑色棋子3224⨯-=个黑色棋子,第2个有黑色棋子3327⨯-=个黑色棋子,第3个有黑色棋子34210⨯-=个黑色棋子,第4个有黑色棋子35213⨯-=个黑色棋子,⋅⋅⋅第n 个有黑色棋子3(1)231n n +-=+个黑色棋子.故本题答案为:(31)n +.18.如果一个四位自然数abcd 的各数位上的数字均不为0,且满足ab bc cd +=,那么称这个四位数为“共和数”.例如:四位数1235,122335+= ,1235∴是“共和数”;又如:四位数3824,388224+≠,3824不是“共和数”,若一个“共和数”为268m ,则m 的值为;若一个“共和数”M 的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的差,再减去2a ,结果能被7整除,则满足条件的M 的最大值与最小值的差是.又09d <,62971c ∴<.78c ∴<,7c ∴=,8d =,6178M ∴=;617816844494∴-=.故本题答案为:4;4494.三.解答题(共10小题,满分66分)19.(6分)化简:(1)2243322xy x xy y x ---+;(2)22223462a ab b ab b -+--.【详解】解:(1)原式22(43)(32)2xy xy x x y=-+-+-22xy x y =--;(2)原式2222(36)(42)a ab ab b b =+--+-22292a ab b =-+.20.(6分)把()a b +和()x y +各看成一个整体,对下列各式进行化简:(1)26()4()25()a b a b a b +++-+;(2)226()3()9()2()x y x y x y x y +++-+++.【详解】解:(1)原式(26425)()a b =+-+5()a b =+;(2)原式2(69)()(32)()x y x y =-++++.23()5()x y x y =-+++.21.(9分)化简:(1)()[32()]m n m m n +-+-+;(2)222222(45)(34)a b ab a b ab --+;(3)222223{6[48(46)]3}x xy x y xy y x -+----.【详解】解:(1)()[32()]m n m m n +-+-+(322)m n m m n =+--+322m n m m n=+-+-n =-;(2)222222(45)(34)a b ab a b ab --+2222224534a b ab a b ab =---2229a b ab =-;(3)222223{6[48(46)]3}x xy x y xy y x -+----.222223648463x xy x y xy y x =--++-+22222x xy y =-+.22.(6分)小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.(1)求这个多项式;(2)算出此题的正确的结果.【详解】解:(1)由题意可得:这个多项式是:223125a a a a +-+-+,2324a a =++;(2)由(1)可得:()2232425a a a a ++-+-2232425a a a a =++--+29a a =++,即此题的正确的结果是29a a ++.23.(6分)已知:223A a ab b =--,2226B a ab b =+-.(1)计算2A B -的表达式;(2)若代数式22(26)(2351)x ax y bx x y +-+--+-的值与字母x 的取值无关,求代数式2A B -的值.【详解】解:(1)222222(3)(26)A B a ab b a ab b -=---+-222222626a ab b a ab b =----+3ab =-;(2)22(26)(2351)x ax y bx x y +-+--+-22262351x ax y bx x y =+-+-+-+2(22)(3)67b x a x y =-++-+, 代数式22(26)(2351)x ax y bx x y +-+--+-的值与字母x 的取值无关,220b ∴-=,30a +=,3a ∴=-,1b =,233(3)19A B ab ∴-=-=-⨯-⨯=.24.(8分)先化简,再求值:(1)2222(2)[2(3)1]4x y xy x xy y -+---+-+,其中x ,y 满足2(2)|1|0x y ++-=;(2)若关于x 的多项式32|2|4m x mx -+-与多项式32462x x x --+的和是二次三项式,求代数式2223[4(2)1]6m m m m ---++的值.【详解】解:(1)原式22222(2261)4x y xy x xy y =----+--+2222222614x y xy x xy y =---+-+++2535y xy =-+,2(2)|1|0x y ++-= ,∴2010x y +=⎧⎨-=⎩,解得:21x y =-⎧⎨=⎩,当2x =-,1y =时,原式56516=++=;(2)323232|2|4(462)(|2|4)(6)24m x mx x x x m x m x x -+-+--+=--+-+-,由题意得:|2|4060m m --=⎧⎨-≠⎩,解得:2m =-,2222223[4(2)1]63(421)6m m m m m m m m ---++=--+++223(21)6m m m =-+++226336m m m =---+33m =--,当2m =-时,33633m --=-=,∴代数式2223[4(2)1]6m m m m ---++的值为3.25.(8分)理解与思考:整体代换是数学的一种思想方法,例如:20x x +=,则21186x x ++=;我们将2x x +作为一个整体代入,则原式011861186=+=.仿照上面的解题方法,完成下面的问题:(1)若220x x +-=,则22021x x ++=;(2)如果6a b +=,求2()4421a b a b +--+的值;(3)若2222a ab +=,228b ab +=,求22232a b ab --的值.【详解】解:(1)220x x +-= ,22x x ∴+=,22021220212023x x ∴++=+=,故本题答案为:2023;(2)6a b += ,2()4421a b a b ∴+--+2()4()21a b a b =+-++2()21a b =-++2621=-⨯+1221=-+9=;(3)2222a ab += ,228b ab +=,2222a ab ∴=-,282b ab =-,22232a b ab∴--2(222)3(82)2ab ab ab=----4442462ab ab ab=--+-20=.26.(8分)类比同类项的概念,我们规定:所含字母相同,并且相同字母的指数之差的绝对值都小于或等于1的项是“准同类项”.例如:34a b 与432a b 是“准同类项”.(1)给出下列三个单项式:①452a b ,②253a b ,③444a b -.其中与45a b 是“准同类项”的是(填写序号).(2)已知A ,B ,C 均为关于a ,b 的多项式,4534233(2)A a b a b n a b =++-,2324523n B a b a b a b =-+,C A B =-.若C 的任意两项都是“准同类项”,求n 的值.(3)已知D ,E 均为关于a ,b 的单项式,22m D a b =,43n E a b =,其中|1||2|m x x k =-+-+,(|1||2|)n k x x =---,x 和k 都是有理数,且0k >.若D 与E 是“准同类项”,则x 的最大值是,最小值是.【详解】解:(1)根据准同类项的定义可知:①③是准同类项,故本题答案为:①③;(2)4534233(2)A a b a b n a b =++- ,2324523n B a b a b a b =-+,23342(4)33n C A B n a b a b a b ∴=-=-++,当343a b 与23n a b 是准同类项,则3n =或4或5;当23(4)n a b -与23n a b 是准同类项,则2n =或3或4;综上,3n =或4;(3)22m D a b = ,43n E a b =是“准同类项”,3m ∴=或4或5,1n =或2或3,又|1||2|m x x k =-+-+ ,(|1||2|)n k x x =---,而|1||2|x x -+-表示x 到1和2的距离之和,最小为1,1m k ∴+,27.(9分)2.对于整数a ,b ,定义一种新的运算“ ”:当a b +为偶数时,规定2||||a b a b a b =++- ;当a b +为奇数时,规定2||||a b a b a b =+-- .(1)当2a =,4b =-时,求a b 的值.(2)已知0a b >>,()(1)7a b a b -+-= ,求式子31()(1)44a b a b -++-的值.(3)已知()1805a a a a =- ,求a 的值.综上,a的值为15或30或10.。
最新七年级数学代数式单元测试卷(含答案解析)

一、初一数学代数式解答题压轴题精选(难)1.用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C 型钢板和3块D型钢板.现购买A、B型钢板共100块,并全部加工成C、D型钢板.设购买A型钢板x块(x为整数)(1)可制成C型钢板块(用含x的代数式表示);可制成D型钢板块[用含x的代数式表示).(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D型钢板全部出售,通过计算说明此时获得的总利润.(3)在(2)的条件下,若20≤x≤25,请你设计购买方案使此时获得的总利润最大,并求出最大的总利润.【答案】(1)解:设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据题意得:可制成C型钢板2x+(100﹣x)=(x+100)块,可制成D型钢板x+3(100﹣x)=(﹣2x+300)块.故答案为:x+100;﹣2x+300(2)解:设获得的总利润为w元,根据题意得:w=100(x+100)+120(﹣2x+300)=﹣140x+46000(3)解:∵k=﹣140<0,∴w值随x值的增大而减小,又∵20≤x≤25,∴当x=20时,w取最大值,最大值为43200,∴购买A型钢板20块、B型钢板80块时,可获得的总利润最大,最大的总利润为43200元.【解析】【分析】(1)设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据“ 用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板”从而用含x的代数式表示出可制成C型钢板及D型钢板的数量.(2)设获得的总利润为w元,根据总利润=100×制成C型钢板的数量+120×制成D型钢板的数量,从而得出结论.(3)利用一次函数的性质求出最大利润及购买方案即可.2.如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.(1)若AB=6千米,老王开车从A到D共需多少时间?(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)【答案】(1)解:若AB=6千米,则BC=22千米,CD=44千米,从A到D所需时间为:=2.4(小时)(2)解:从A到D所需时间不变,(答案正确不回答不扣分)设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,t===2.4(小时)【解析】【分析】(1)根据题意可以求出AB,BC,CD的长,然后根据路程除以速度等于时间,即可分别算出老王开车行三段的时间,再求出其和即可;(2)从A到D所需时间不变,设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,,然后根据路程除以速度等于时间,即可分别表示出老王开车行三段的时间,再根据异分母分式加法法则求出其和,再整体代入即可得出结论;3.从2022年4月1日起龙岩市实行新的自来水收费阶梯水价,收费标准如下表所示:月用水量不超过15吨的部分超过15吨不超过25吨的部分超过25吨的部分收费标准2.23.34.4(元/吨)(2)某用户8月份用水量为24吨,求该用户8月份应缴水费是多少元.(3)若某用户某月用水量为m吨,请用含m的式子表示该用户该月所缴水费.【答案】(1)解:2.2×10=22元,答:该用户4月份应缴水费是22元,(2)解:15×2.2+(24﹣15)×3.3=62.7元,答:该用户8月份应缴水费是 62.7元(3)解:①当m≤15时,需交水费2.2m元;②当15<m≤25时,需交水费,2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③当m>25时,需交水费2.2×15+10×3.3+(m﹣25)×4.4=(4.4m﹣44)元.【解析】【分析】(1)先根据月用水量确定出收费标准,再进行计算即可;(2) 8月份应缴水费为:不超过15吨的水费+超出的9吨的水费;(3)分①m≤15吨,②15<m≤25吨,③m>25吨三种情况,根据收费标准列式进行计算即可得解。
【精选】七年级数学代数式专题练习(解析版)

一、初一数学代数式解答题压轴题精选(难)1.|a|的几何意义是数轴上表示数a的点与原点O的距离,例如:|3|=|3﹣0|,即|3﹣0|表示3、0在数轴上对应两点之间的距离.一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|,解决下面问题:(1)数轴上表示﹣1和2的两点之间的距离是________;数轴上P、Q两点的距离为6,点P表示的数是2,则点Q表示的数是________;(2)点A在数轴上表示数为x,点B、C在数轴上表示的数分别为多项式2m2n+mn﹣2的常数项和次数.________①若B、C两点分别以3个单位长度/秒和2个单位长度/秒的速度同时向右运动t秒.当OC =2OB时,求t的值;________②用含x的绝对值的式子表示点A到点B、点A到点C的距离之和为________,直接写出距离之和的最小值为________.【答案】(1)3;8或﹣4(2)解:∵多项式2m2n+mn﹣2的常数项是﹣2,次数是3,∴点B、C在数轴上表示的数分别为﹣2、3.;运动t秒,B点表示的数为﹣2+3t,C点表示的数为3+2t,∵OC=2OB,∴3+2t=2× ,∴3+2t=2(﹣2+3t),或3+2t=2(2﹣3t),解得t=,或t=,故所求t的值为或;;5.【解析】【解答】(1)解:数轴上表示﹣1和2的两点之间的距离是|2﹣(﹣1)|=3;设点Q表示的数是m,则|m﹣2|=6,解得m=8或﹣4,即点Q表示的数是8或﹣4.故答案为3,8或﹣4。
(2)解:②AB+AC=|﹣2﹣x|+|3﹣x|,其最小值为5.故答案为|﹣2﹣x|+|3﹣x|,5.【分析】(1)根据数轴上A、B两点之间的距离为|AB|=|a−b|,代入数值运用绝对值的性质即可求数轴上表示−1和2的两点之间的距离;设点Q表示的数是m,根据P、Q两点的距离为6列出方程|m−2|=6,解方程即可求解;(2)根据多项式的常数项与次数的定义求出点B、C在数轴上表示的数;①根据OC=2OB列出方程,解方程即可求解;②根据数轴上A、B两点之间的距离为|AB|=|a−b|即可表示AB+AC,然后可得距离之和的最小值.2.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。
七年级数学上册第三章整式及其加减第2节代数式第1课时代数式同步练习含解析新版北师大版

第三章 整式及其加减2 代数式第1课时 代数式1. 指出下列各式中哪些是代数式,哪些不是代数式.(1)32x +1;(2)a =2;(3)π;(4)S =πR 2;(5)73; (6)23>35. 解:根据代数式的定义,32x +1是代数式,单独一个数或一个字母也是代数式,那么π和73也是代数式,而a =2,S =πR 2,23>35中含有等号或不等号,因此它们不是代数式.所以(1)(3)(5)是代数式;(2)(4)(6)不是代数式.2.用代数式表示:(1)比8小x 的数;(2)m 个学生数学考试的总分是n 分,这些学生数学考试的平均分;(3)菜场上黄瓜每千克a 元,白菜每千克b 元,某食堂要买30 kg 黄瓜、50 kg 白菜,需支付的钱数;(4)长方形的长为a cm ,宽为b cm ,该长方形的周长和面积.解:(1)8-x ;(2)n m 分;(3)(30a +50b )元;(4)长方形的周长为2(a +b ) cm ,长方形的面积为ab cm 2.3..下列判断错误的是( C )A .0是代数式B .式子2-5是代数式C .3>2是代数式D .x =2不是代数式4.下列代数式中符合书写要求的是( D )A .1/aB .n 2C .a ÷bD .-a5.下列说法中错误的是( B )A .x 、y 两数的平方差是x 2-y 2B .x 加上y 的和除以x 的商是x +y xC .x 减去y 的2倍所得的差是x -2yD .x 与y 和的平方的2倍是2(x +y )26.“x 的2倍与5的和”用代数式表示为__2x +5__.7.三个连续偶数中,n 是最小的一个,则另外两个数为__n +2,n +4__.8.在2x 2,1-2x =0,ab ,a >0,0,1a,π中,是代数式的有( A ) A .5个 B .4个C .3个D .2个9.“比a 的2倍大1的数”用代数式表示是( C )A .2(a +1)B .2(a -1)C .2a +1D .2a -110.某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( A )A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元11.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人比会弹古筝的人多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有__(2m +3)__人.(用含m 的代数式表示)12.体育委员带了500元钱去买体育用品,已知一个足球a 元,一个篮球b 元,则代数式500-3a -2b 表示的意义为__买3个足球,2个篮球后剩余的钱__.13.用代数式表示:(1)a 与b 的差;(2)m 的2倍与n 的一半的和;(3)x 与y 两数的平方差;(4)某工厂8月份的产值为a 万元,若9月、10月平均每月的增长率都是b %,那么9月、10月的产值分别是多少万元?解:(1)a -b ;(2)2m +12n ; (3)x 2-y 2;(4)9月a (1+b %)万元,10月a (1+b %)2万元.14.说出下列代数式的意义:(1)2(a +3);(2)a 2+b 2;(3)n +1n -1. 解:(1)a 与3的和的2倍;(2)a ,b 的平方的和;(3)n 与1的和除以n 与1的差所得的商.15.七年级(2)班有学生a 人,若以10人为1组,其中有1个小组只有8人,则本班学生一共有( B )A .a -210组B .a +210组C .⎝ ⎛⎭⎪⎫a 10-2组D .⎝ ⎛⎭⎪⎫a 10+2组 16.某商店举办促销活动,促销的方法是将原价x 元的衣服以45(x -10)元出售,则下列说法中,能正确表达该商店促销方法的是( A )A .原价减去10元再打8折B .原价打8折后再减10元C .原价减10元再打2折D .原价打2折后再减10元17.甲、乙两地的公路全长为100 km ,某人从甲地到乙地每小时走a km ,下面问题试用代数式表示.(1)此人从甲地到乙地需要多长时间?(2)若每小时多走2 km ,那么从甲地到乙地需走多长时间?(3)速度变化后,从甲地到乙地少用多长时间?解:(1)从甲地到乙地需要走100ah ; (2)如果每小时多走2千米,需要走100a +2h ; (3)速度变化后,从甲地到乙地少用(100a -100a +2) h. 18.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n (n 为正整数)个图案由__3n +1__个▲组成.【解析】 仔细观察图形,结合三角形每条边上的三角形的个数与图形的序列数之间的关系发现图形的变化规律.观察发现:第1个图形有3×2-3+1=4(个)三角形;第2个图形有3×3-3+1=7(个)三角形;第3个图形有3×4-3+1=10(个)三角形;…第n 个图形有3(n +1)-3+1=(3n +1)个三角形.。
人教版七年级上册数学 代数式专题练习(解析版)

一、初一数学代数式解答题压轴题精选(难)1.任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。
”请你帮助小明说明理由.(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.【答案】(1)解:10y+x(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。
(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。
(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。
(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。
2.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。
2023学年浙江七年级数学上学期专题训练专题03 代数式单元综合提优(含详解)

已知十字路宽2米.
(1)用含a、b的代数式表示修建的十字路的面积.
(2)若a=30,b=20,求草坪(阴影部分)的面积.
23.化简与求值:
(1)有理数a,b,c在数轴上的位置如图所示,求 的値.
(2)已知: ,若 ,求 的值.
;
第3次分割,把上次分割图中空白部分的面积继续二等分,…;
…
第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为 + + +…+ ,最后空白部分的面积是 .
根据第n次分割图可得等式: + + +…+ =1﹣ .
探究二:计算 + + +…+ .
第1次分割,把正方形的面积三等分,其中阴影部分的面积为 ;
14.已知M=x2-3x-2,N=2x2-3x-1,则M______N.(填“<”“>”或“=”)
15.已知f(x)=1+ ,其中f(a)表示当x=a时代数式的值,如f(1)=1+ ,f(2)=1+ ,f(a)=1+ ,求f(1)×f(2)×f(3)×…×f(50)的值.
16.已知S1=x,S2=3S1﹣2,S3=3S2﹣2,S4=3S3﹣2,…,S2017=3S2016﹣2,则S2017=_______.(结果用含x的代数式表示)
∴a2﹣2015a=a﹣4,a2+4=2016a,
∴a2﹣2015a+ +5=a﹣4+ +5=a﹣4+ +5= +5= +5=2017.
故选C.
代数式的值与合并同类项(3种题型)-2023年新七年级数学(苏科版)(解析版)

代数式的值与合并同类项(3种题型)1.会求代数式的值,会利用求代数式的值解决较简单的实际问题。
2.掌握同类项及合并同类项的概念,并能熟练进行合并;3.掌握同类项的有关应用;4.体会整体思想即换元的思想的应用.一.代数式求值(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;二.同类项(1)定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.同类项中所含字母可以看成是数字、单项式、多项式等.(2)注意事项:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项.三.合并同类项(1)定义:把多项式中同类项合成一项,叫做合并同类项.(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.(3)合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.一.代数式求值(共8小题)1.(2022秋•连云港期末)当x=﹣3时,代数式2x+5的值是()A.﹣7B.﹣2C.﹣1D.11【分析】将x=﹣3,代入2x+5进行计算即可.【解答】解:当x=﹣3时,2x+5=2×(﹣3)+5=﹣1,故选:C.【点评】本题考查代数式求值.属于基础题型,正确的进行运算,是解题的关键.2.(2022秋•姑苏区校级期末)已知m,n满足3m﹣4n+1=0,则代数式9m﹣12n﹣4的值为()A.0B.﹣1C.﹣7D.﹣10【分析】将代数式适当变形后,利用整体代入的方法解答即可.【解答】解:∵3m﹣4n+1=0,∴3m﹣4n=﹣1.∴原式=3(3m﹣4n)﹣4=3×(﹣1)﹣4=﹣3﹣4=﹣7.故选:C.【点评】本题主要考查了求代数式的值,将代数式适当变形后,利用整体代入的方法解答是解题的关键.3.(2022秋•高邮市期末)如图,按图中的程序进行计算.(1)当输入的x=30时,输出的数为;当输入的x=﹣16时,输出的数为;(2)若输出的数为﹣52时,求输入的整数x的值.【分析】(1)根据图中的程进行列式计算,即可求解;(2)当输出的数为﹣52时,分两种情况进行讨论.【解答】解:(1)根据运算程序可知:当输入的x=30时,得:|30|×(﹣2)=﹣60<﹣45,∴输入的x=30时,输出的数为﹣60;根据运算程序可知:当输入的x=﹣16时,得:|﹣16|×(﹣2)=﹣32>﹣45;再输入x=﹣32,得:|﹣32|×(﹣2)=﹣64<﹣45,∴输入的x=﹣32时,输出的数为﹣64;故答案为:﹣60,﹣64;(2)当输出的数为﹣52时,分两种情况:第一种情况:|x|×(﹣2)=﹣52,解得:x=±26;第二种情况:当第一次计算结果为﹣26时,再循环一次输入的结果为﹣52,则|x|×(﹣2)=﹣26,解得:x=±13,综上所述,输出的数为﹣52时,求输入的整数x的值为:x=±26或±13.【点评】本题考查程序流程图与有理数的计算、绝对值,解题的关键是掌握有理数的运算法则和解绝对值方程.4.(2022秋•海安市期末)已知3x2﹣4xy+7y2=2m﹣17,x2+5xy+6y2=m+12,则式子x2﹣7xy﹣y2的值为()A.﹣41B.﹣C.D.【分析】先利用等式的性质,再整体求解.【解答】解:第一个等式减去第二个等式的2倍,得x2﹣14xy﹣y2=﹣41,∴x2﹣7xy﹣y2=﹣,故选:B.【点评】本题考查了代数式求值,整体求解是解题的关键.5.(2022秋•宝应县期末)“十一”期间,小明和父母一起开车到距家300千米的景点旅游,出发前,汽车油箱内储油60升,当行驶100千米时,发现油箱余油量为50升(假设行驶过程中汽车的耗油量是均匀的).(1)该车平均每千米的耗油量是升,行驶x千米时的剩余油量是升(用含有x的代数式表示);(2)当x=260千米时,求剩余油量;(3)当油箱中剩余油量低于3升时,汽车将自动报警,试问汽车最多行驶多少千米就自动报警?请说明理由.【分析】(1)单位耗油量=耗油量÷行驶里程,剩余油量=油箱内油的升数﹣行驶路程的耗油量;(2)把x=260千米代入剩余油量公式,计算即可;(3)把剩余油量3代入(2)中求出x即可.【解答】解:(1)(60﹣50)÷100=0.1(升).行驶路程与耗油量的关系为:(0.1x)升.故答案为:0.1,(60﹣0.1x).(2)当x=260千米时,60﹣0.1×260=60﹣26=34(升).答:剩余油量为34升.(3)由题意可知:60﹣0.1x<3,解得:x>570.故行驶距离大于570千米时会自动报警.【点评】本题考查了列代数式、求代数式的值.题目难度不大,列出代数式是关键.6.(2022秋•苏州期末)我校七年级(3)班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如下,其中阴影部分为内部粘贴角料(单位:毫米).(1)此长方体包装盒的体积为立方毫米(用含x,y的式子表示).(2)若内部粘贴角料的面积占长方体表面纸板面积的,则当x=30,y=52时,制作这样一个长方体共需要纸板多少平方毫米?【分析】(1)由长方体包装盒的平面展开图,可知该长方体的长为y毫米,宽为x毫米,高为65毫米,根据长方体的体积=长×宽×高即可求解;(2)由于长方体的表面积=2(长×宽+长×高+宽×高),又内部粘贴角料的面积占长方体表面纸板面积的,所以制作这样一个长方体共需要纸板的面积=(1+)×长方体的表面积.【解答】解:(1)由题意,知该长方体的长为y毫米,宽为x毫米,高为65毫米,则长方体包装盒的体积为:65xy立方毫米.故答案为:65xy;(2)∵长方体的长为y毫米,宽为x毫米,高为65毫米,∴长方体的表面积=2(xy+65y+65x)平方毫米,又∵内部粘贴角料的面积占长方体表面纸板面积的,∴制作这样一个长方体共需要纸板的面积S=(1+)×2(xy+65y+65x)=xy+143x+143y平方毫米,将x=30,y=52代入得:S=15158平方毫米答:制作这样一个长方体共需要纸板15158平方毫米.【点评】本题考查了长方体的平面展开图,长方体的体积与表面积公式,解题关键是掌握立体图形与平面展开图之间的关系,从图中得到长方体的长、宽、高.7.(2022秋•鼓楼区期末)某校要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示.(1)求阴影部分的面积(用含a的代数式表示).(2)当a=20时,π取3时,求阴影部分的面积.【分析】(1)先求出两个长方形的面积,再减去半圆的面积,即可得出阴影部分的面积;(2)把x=20,π取3代入(1)中的结论,即可得出答案.【解答】解:(1)由图可知上面的长方形的面积为6×(a﹣2﹣4)=6a﹣36,下面的长方形的面积为4×(a﹣2)=4a﹣8,∴两个长方形的面积之和为10a﹣44,∵半圆的直径为4+6=10,∴半圆的面积为π•52÷2=12.5π,∴阴影部分的面积为10a﹣44﹣12.5π;(2)当a=20,π取3时,10a﹣44﹣12.5π=10×20﹣44﹣12.5×3=200﹣44﹣37.5=118.5,∴阴影部分的面积为118.5.【点评】本题主要考查代数式求值,关键是要牢记长方形和圆的面积公式.8.(2022秋•海门市期末)如图所示的运算程序中,若开始输入x的值为3,则第2023次输出的结果是()A.﹣4B.﹣2C.﹣3D.﹣6【分析】按运算程序先计算,通过计算结果找出规律,利用规律得结论.【解答】解:输入x=3,∵3是奇数,∴输出3﹣5=﹣2.输入x=﹣2,∵﹣2是偶数,∴输出﹣2×=﹣1.输入x=﹣1,∵﹣1是奇数,∴输出﹣1﹣5=﹣6.输入x=﹣6,∵﹣6是偶数,∴输出﹣6×=﹣3.输入x=﹣3,∵﹣3是奇数,∴输出﹣3﹣5=﹣8.输入x=﹣8,∵﹣8是偶数,∴输出﹣8×=﹣4.输入x=﹣4,∵﹣4是偶数,∴输出﹣4×=﹣2.输入x=﹣2,∵﹣2是偶数,∴输出﹣2×=﹣1.输入x=﹣1,∵﹣1是奇数,∴输出﹣1﹣5=﹣6...依次类推,除去第一次输入,输出分别以﹣2、﹣1、﹣6、﹣3、﹣8、﹣4循环.∴2023÷6=337.....1.故第2023次输出的结果是﹣2.故选:B.【点评】本题主要考查了代数式的求值,通过输入输出的计算得到规律是解决本题的关键.二.同类项(共5小题)9.(2022秋•惠山区校级期末)请写出3ab2的一个同类项.【分析】根据题意,写出一个含有字母a,b且a的指数为1,b的指数为2的单项式即可求解.【解答】解:写出3ab2的一个同类项可以是ab2,故答案为:ab2(答案不唯一).【点评】本题考查了同类项的定义,掌握同类项的定义是解题的关键.所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.10.(2022秋•句容市校级期末)已知两个单项式a3b m与﹣3a n b2是同类项,则m﹣n=.【分析】根据同类项的定义直接可得到m、n的值.【解答】解:因为两个单项式a3bm与﹣3anb2是同类项,可得:m=2,n=3,所以m﹣n=2﹣3=﹣1,故答案为:﹣1【点评】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项.11.(2022秋•高邮市期末)下列两个单项式中,是同类项的是()A.3与x B.2a2b与3ab2C.xy2与2xy D.3m2n与nm2【分析】根据同类项的定义,逐项判断即可求解.【解答】解:A、3与x不是同类项,故本选项不符合题意;B、2a2b与3ab2不是同类项,故本选项不符合题意;C、xy2与2xy不是同类项,故本选项不符合题意;D、3m2n与nm2是同类项,故本选项符合题意;故选:D.【点评】本题考查了同类项的定义.熟练掌握所含字母相同且相同字母的指数也相同的项是同类项是解题的关键.12.(2022秋•秦淮区期末)若代数式﹣2x2y m与x n y3是同类项,则代数式m n=.【解答】解:代数式﹣2x2ym与xny3是同类项,可得m=3,n=2,所以mn=32=9,故答案为:9.【点评】本题考查了同类县的定义,要注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.13.(2022秋•镇江期末)下列各组中,不是同类项的是()A.2x与﹣x B.﹣5mn与nmC.0.2p2q与D.a3b5与7a5b3【分析】根据同类项的定义进行判断即可.【解答】解:根据“所含的字母相同,且相同字母的指数也相同的项是同类项”可知,a3b5与7a5b3不是同类项,因此选项D符合题意,故选:D.【点评】本题考查同类项,理解“所含的字母相同,且相同字母的指数也相同的项是同类项”是正确判断的前提.三.合并同类项(共12小题)14.(2022秋•泰兴市期末)多项式x2﹣2kxy﹣3y2+6xy﹣8化简后不含xy项,则k=.【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变可得:﹣2k+6=0,再解即可.【解答】解:由题意得:﹣2k+6=0,解得:k=3,故答案为:3.【点评】此题主要考查了合并同类项,关键是掌握合并同类项法则.15.(2022秋•广陵区校级期末)合并同类项:(1)5m+2n﹣m﹣3n(2)3a2﹣1﹣2a﹣5+3a﹣a2【分析】根据合并同类项法则解答即可.【解答】解:(1)原式=(5﹣1)(2﹣3)n=4m﹣n;(2)原式=(3﹣1)a2+(3﹣2)a﹣(1+5)=2a2+a﹣6.【点评】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.16.(2022秋•江阴市期末)计算7a﹣3a等于()A.4a B.a C.4D.10a【分析】合并同类项即可.【解答】解:7a﹣3a=4a,故选:A.【点评】本题考查合并同类项,掌握合并同类项法则是正确解答的前提.17.(2022秋•徐州期末)下列运算正确的是()A.2x+x=2x2B.2x+3y=5xy C.4x﹣2x=2D.3x2﹣2x2=x2【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,计算即可.【解答】解:2x+x=3x,故A选项不符合题意;2x+3y不能合并同类项,故B选项不符合题意;4x﹣2x=2x,故C选项不符合题意;3x2﹣2x2=x2,故D选项符合题意,故选:D.【点评】本题考查了合并同类项,熟练掌握合并同类项的法则是解题的关键.18.(2022秋•邗江区期末)若﹣4x5y+4x2n+1y=0,则常数n的值为.【分析】根据同类项“相同字母的指数相同”列式求解即可.【解答】解:根据题意可知,﹣4x5y与4x2n+1y是同类项,∴2n+1=5,解得n=2.故答案为:2.【点评】本题主要考查了合并同类项的知识,熟练掌握同类项的定义是解题关键.19.(2022秋•江都区期末)若单项式与7a x+5b2与﹣a3b y﹣2的和是单项式,则x y=.【分析】利用同类项的定义求得x,y的值,再代入运算即可.【解答】解:∵单项式与7ax+5b2与﹣a3by﹣2的和是单项式,∴单项式与7ax+5b2与﹣a3by﹣2是同类项,∴x+5=3,y﹣2=2,∴x=﹣2,y=4.∴xy=(﹣2)4=16.故答案为:16.【点评】本题主要考查了合并同类项,利用同类项的定义求得x,y的值是解题的关键.20.(2022秋•秦淮区期中)合并同类项:(1)2a﹣5b﹣3a+b;(2)3x2+6x+5﹣4x2+7x﹣6【分析】(1)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【解答】解:(1)2a﹣5b﹣3a+b=(2﹣3)a+(1﹣5)b=﹣a﹣4b;(2)3x2+6x+5﹣4x2+7x﹣6=(3﹣4)x2+(6+7)x+(5﹣6)=﹣x2+13x﹣1.【点评】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.21.(2022秋•射阳县校级期末)已知多项式﹣2x2+5kxy﹣3y2﹣15xy+10中不含xy项,则k=【分析】先化简多项式,再根据“不含xy项”求k即可.【解答】解:﹣2x2+5kxy﹣3y2﹣15xy+10=﹣2x2+(5k﹣15)xy﹣3y2+10,∵多项式﹣2x2+5kxy﹣3y2﹣15xy+10中不含xy项,∴5k﹣15=0,∴k=3.故答案为:3.【点评】本题考查了整式加减运算,熟练掌握运算法则是关键.22.(2022秋•广陵区校级期末)多项式x2﹣3mxy﹣3y2+6xy﹣8中不含xy项,则常数m的值是.【分析】先去掉括号,再合并同类项,根据已知得出﹣3m+6=0,再求出即可.【解答】解:x2﹣3mxy﹣3y2+6xy﹣8=x2﹣3mxy+6xy﹣3y2﹣8=x2+(﹣3m+6)xy﹣3y2﹣8,∵多项式中不含xy项,∴﹣3m+6=0,解得:m=2,故答案为:2.【点评】本题考查了去括号法则,合并同类项法则,多项式等知识点,能根据题意得出﹣3m+6=0是解此题的关键.23.(2021秋•滨湖区期末)定义:若x﹣y=m,则称x与y是关于m的相关数.(1)若5与a是关于2的相关数,则a=.(2)若A与B是关于m的相关数,A=3mn﹣5m+n+6,B的值与m无关,求B的值.【分析】(1)根据相关数的定义得到5﹣a=2,从而得到a的值;(2)根据相关数的定义得到A﹣B=m,从而B=(3n﹣6)m+n+6,根据B的值与m无关得到3n﹣6=0,求出n的值,从而得到B的值.【解答】解:(1)∵5﹣a=2,∴a=3,故答案为:3;∴3mn﹣5m+n+6﹣B=m,∴B=3mn﹣5m+n+6﹣m=3mn﹣6m+n+6=(3n﹣6)m+n+6,∵B的值与m无关,∴3n﹣6=0,∴n=2,∴B=2+6=8.答:B的值为8.【点评】本题考查了合并同类项,新定义问题,掌握与m无关就合并同类项后让m前面的系数等于0是解题的关键.24.(2022秋•锡山区校级期中)已知整式﹣x2+2y﹣mx+5﹣nx2+6x﹣20y的值与字母x的取值无关.求m2﹣2mn﹣n3的值.【分析】代数式合并得到最简结果,令x的二次项与x的一次项系数为0,求出m与n的值,代入所求式子中计算即可得到结果.【解答】解:﹣x2+2y﹣mx+5﹣nx2+6x﹣20y=(﹣1﹣n)x2+(6﹣m)x+5﹣18y,∵整式﹣x2+2y﹣mx+5﹣nx2+6x﹣20y的值与字母x的取值无关,∴﹣1﹣n=0,6﹣m=0,解得n=﹣1,m=6,∴m2﹣2mn﹣n3===.【点评】本题考查了整式的混合运算,掌握合并同类项法则是解答本题的关键.25.(2022秋•仪征市校级月考)合并同类项(1)5m+2n﹣m﹣3n;(2)a2﹣b2﹣a2+4ab﹣4b2.【分析】(1)直接合并同类项进而得出答案;(2)直接合并同类项得出答案.【解答】解:(1)5m+2n﹣m﹣3n=(5﹣1)m+(2﹣3)n=4m﹣n;(2)a2﹣b2﹣a2+4ab﹣4b2=a2﹣a2+4ab﹣b2﹣4b2=(1﹣1)a2+4ab+(﹣1﹣4)b2=﹣5b2+4ab.【点评】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.一.选择题(共6小题)1.(2022秋•邗江区校级期末)下列各式中,与x2y是同类项的是()A.xy2B.2xy C.﹣x2y D.3x2y2【分析】根据:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项进行判断即可.【解答】解:x2y与﹣x2y所含字母相同,并且相同字母的指数也相同,是同类项.故选:C.【点评】本题考查了同类项,熟练掌握同类项的定义是解题的关键.2.(2022秋•苏州期末)按图示的程序计算,若开始输入的x为正整数,最后输出的结果为40,则x的值是()A.1或4B.2或12C.1或4或13D.2或4或12【分析】根据运算程序列出方程求出x,然后把求出的x的值当作计算结果继续求解,直至x不是正整数为止.【解答】解:∵最后输出的结果为40,∴3x+1=40,解得:x=13,当3x+1=13,解得:x=4,当3x+1=4,解得:x=1,当3x+1=1,解得:x=0(舍去),综上,则x的值是1或4或13.故选:C.【点评】本题主要考查代数式求值,该题难点在于最后输出的结果40对应的x的值有可能不是第一次输入x的值.3.(2022秋•海门市期末)已知a﹣b=2,则代数式2b﹣2a+3的值是()【分析】先把2b﹣2a+3变形为﹣2(a﹣b)+3,然后把a﹣b=2代入计算即可.【解答】解:当a﹣b=2时,原式=﹣2(a﹣b)+3=﹣2×2+3=﹣4+3=﹣1,故选:A.【点评】本题考查了代数式求值:先根据已知条件把代数式进行变形,然后利用整体代入进行求值.4.(2022秋•惠山区校级期末)下列计算正确的是()A.3a+2b=5ab B.9a﹣3a=6C.3a+a=3a2D.3a2b+5a2b=8a2b【分析】根据合并同类项的法则进行运算即可判断.【解答】解:A、3a与2b,不是同类项,不能进行加减运算,此选项错误,不符合题意;B、9a﹣3a=6a,此选项错误,不符合题意;C、3a+a=4a,此选项错误,不符合题意;D、3a2b+5a2b=8a2b,此选项正确,符合题意;故选:D.【点评】本题考查合并同类项,解题的关键是掌握合并同类项的运算法则,合并同类项时,系数相加减,字母及其指数不变.5.(2022秋•南京期末)计算3a2﹣a2的结果是()A.3B.2C.2a2D.4a2【分析】根据合并同类项法则解答即可.【解答】解:3a2﹣a2=2a2.故选:C.【点评】本题考查合并同类项,掌握同类项的定义以及合并同类项法则是正确解答的前提.6.(2022秋•玄武区校级期末)如果|m|=2,n2=36,|m﹣n|=n﹣m.那么代数式m+n的值是()A.4,8B.﹣4,﹣8C.﹣4,8D.4,﹣8【分析】根据|m|=2,|m﹣m|=n﹣m,求出m,n的值计算即可.【解答】解:∵|m|=2,n2=36,|m﹣n|=n﹣m,∴m=±2,n=6,当m=2时,m+n=8,当m=﹣2时,m+n=4,【点评】本题考查了绝对值的意义,掌握绝对值的意义是解题的关键.二.填空题(共7小题)7.(2022秋•鼓楼区校级期末)若单项式与2x3y n的和仍是单项式,则m+n=.【分析】根据和是单项式,可得它们是同类项,在根据同类项,可得m、n的值,根据有理数的加法法则,可得答案.【解答】解:∵单项式与2x3yn的和仍是单项式,∴单项式与2x3yn是同类项,∴m=3,n=2,m+n=3+2=5,故答案为:5.【点评】本题考查了合并同类项,掌握同类项的定义是解答本题的关键.8.(2022秋•仪征市期末)若a2+3a=﹣5,则2a2+6a﹣2的值为.【分析】先根据已知条件式得到2a2+6a=﹣10,然后把2a2+6a=﹣10整体代入所求式子中进行求解即可.【解答】解:∵a2+3a=﹣5,∴2a2+6a﹣2=2(a2+3a)﹣2=﹣10﹣2=﹣12,故答案为:﹣12.【点评】本题主要考查了代数式求值,利用整体代入的思想求解是解题的关键.9.(2022秋•兴化市期末)若3x m+1y3与﹣5x3y n是同类项,则﹣m n=.【分析】根据同类项的定义得出m+1=3,n=3,求出m,n的值,再代入求出答案即可.【解答】解:∵3xm+1y3与﹣5x3yn是同类项,∴m+1=3,n=3,∴m=2,∴﹣mn=﹣23=﹣8.故答案为:﹣8.【点评】本题考查了同类项的定义,能根据同类项的定义求出m、n的值是解此题的关键.10.(2022秋•姜堰区期末)如果代数式x2﹣2x﹣5的值等于5,那么代数式﹣2x2+4x﹣3的值是.【分析】根据代数式x2﹣2x﹣5的值等于5,求出x2﹣2x的值,利用整体思想,代入﹣2x2+4x﹣3中进行计算即可.∴x2﹣2x=10,∴﹣2x2+4x﹣3=﹣2(x2﹣2x)﹣3=﹣2×10﹣3=﹣23;故答案为:﹣23.【点评】本题考查代数式求值.解题的关键是利用整体思想,代入求值.11.(2022秋•常州期末)若3a m b2与﹣a2b n+3是同类项,则mn=.【分析】根据同类项是所含字母相同且相同字母的指数也相同,可得答案.【解答】解:由3amb2与﹣a2bn+3是同类项是同类项可得:m=2,n+3=2,解得m=2,n=﹣1,所以mn=2×(﹣1)=﹣2.故答案为:﹣2.【点评】本题考查了同类项,同类项定义中的两个“相同”:所含字母相同、相同字母的指数相同,是易混点,因此成了中考的常考点.12.(2022秋•兴化市期末)如果x2﹣3x﹣3=0,那么代数式2x2﹣6x﹣8的值是.【分析】由题意可知;x2﹣3x=3,然后由等式的性质可知2x2﹣6x=6,然后代入计算即可.【解答】解:∵x2﹣3x﹣3=0,∴x2﹣3x=3,∴2x2﹣6x=6,∴2x2﹣6x﹣8=6﹣8=﹣2.故答案为:﹣2.【点评】本题主要考查的是求代数式的值,依据等式的性质求得2x2﹣6x=6是解题的关键.13.(2022秋•玄武区校级期末)已知2a﹣3b=﹣1,则1﹣4a+6b=.【分析】根据2a﹣3b=﹣﹣,求出4a﹣6b的值是多少,即可求出1﹣4a+6b的值.【解答】解:∵2a﹣3b=﹣1,∴1﹣4a+6b=1﹣2(2a﹣3b)=1﹣2×(﹣1)=1+2=3故答案为:3.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.三.解答题(共4小题)14.(2021秋•宜兴市期中)若多项式mx3﹣2x2+4x﹣3﹣3x3+6x2﹣nx+6化简后不含x的三次项和一次项,【分析】先将关于x的多项式合并同类项.由于其不含三次项及一次项,即系数为0,可以先求得m,n,再代入(m﹣n)2021进行计算,即可得出答案.【解答】解:mx3﹣2x2+4x﹣3﹣3x3+6x2﹣nx+6=(m﹣3)x3+4x2+(4﹣n)x+3,∵该多项式化简后不含x的三次项和一次项,∴m﹣3=0,4﹣n=0,∴m=3,n=4,∴(m﹣n)2021=﹣1.【点评】此题考查了多项式及代数式求值,解答本题必须先合并同类项,在多项式中不含哪项,即哪项的系数之和为0.15.(2021秋•泗阳县期中)合并同类项:(1)4m﹣7n﹣2m+3n;(2)3a2﹣1﹣2a﹣5+3a﹣a2.【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【解答】解:(1)4m﹣7n﹣2m+3n=(4m﹣2m)+(3n﹣7n)=(4﹣2)m+(3﹣7)n=2m﹣4n;(2)3a2﹣1﹣2a﹣5+3a﹣a2.=(3a2﹣a2)+(3a﹣2a)+(﹣1﹣5)=(3﹣1)a2+(3﹣2)a﹣(1+5)=2a2+a﹣6.【点评】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.16.(2021秋•丹阳市期中)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b),“整体思想”是一种重要的数学思想方法,它在多项式的化简与求值中应用极为广泛.(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣(a﹣b)2+7(a﹣b)2,其结果是;(2)已知x2﹣2y=1,求﹣3x2+6y+5的值.【分析】(1)把(a﹣b)2看成一个整体,根据合并同类项的法则化简即可;(2)把x2﹣2y=1看成一个整体,整体代入求值即可.故答案为:9(a ﹣b )2;(2)∵x2﹣2y =1,∴原式=﹣3(x2﹣2y )+5=﹣3+5=2.【点评】本题考查了合并同类项,代数式求值,考查整体思想,把x2﹣2y =1看成一个整体,整体代入求值是解题的关键.17.(2021秋•广陵区校级月考)化简:(1)﹣3x 2y +3xy 2﹣2xy 2+2x 2y ;(2)2a 2﹣5a +a 2+6+4a ﹣3a 2.【分析】合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变,据此计算即可.【解答】解:(1)﹣3x2y+3xy2﹣2xy2+2x2y =(﹣3x2y+2x2y )+(3xy2﹣2xy2)=﹣x2y+xy2;(2)2a2﹣5a+a2+6+4a ﹣3a2=(2a2+a2﹣3a2)+(4a ﹣5a )+6=﹣a+6.【点评】本题考查了合并同类项法则的应用,熟记合并同类项法则是解答本题的关键.一、单选题【分析】根据同类项的定义,逐项判断即可求解.【详解】解:A 、3与x 不是同类项,故本选项不符合题意;B 、22a b 与23ab 不是同类项,故本选项不符合题意;C 、2xy 与2xy 不是同类项,故本选项不符合题意;D 、23m n 与2nm 是同类项,故本选项符合题意; 故选:D【点睛】本题考查了同类项的定义.熟练掌握所含字母相同且相同字母的指数也相同的项是同类项是解题的关键. 2.(2023秋·江苏无锡·七年级统考期末)计算73a a −等于( )【答案】A【分析】合并同类项即可得出结果.【详解】解:734−=a a a ;故选A .【点睛】本题考查合并同类项.熟练掌握合并同类项法则,是解题的关键. 3.(2023秋·江苏无锡·七年级校联考期末)下列计算正确的是( )A .2527a a a +=B .22287x y yx x y −=C .32y y −=D .235a b ab +=【答案】B【分析】结合选项进行合并同类项,然后选择正确选项.【详解】解:A 、527a a a +=,原式计算错误,故本选项错误;B 、22287x y yx x y −=,计算正确,故本选项正确;C 、32y y y −=,计算错误,故本选项错误;D 、2a 和3b 不是同类项,不能合并,故本选项错误.故选B .【点睛】本题考查了合并同类项的知识,解答本题的关键是掌握合并同类项的法则.【答案】A【分析】先把方程233a b c +−=的左右两边同乘以3得到3699a b c +−=,然后再同方程5675a b c −+=相减即可得到答案.【详解】解:∵233a b c +−=,∴3699a b c +−=①,又∵5675a b c −+=②,∴②-①得:212164a b c −+=−,∴682a b c −+=−,【点睛】本题考查了代数式求值,解题的关键是运用所给的代数式变换并进行四则运算得出所求的代数式.二、填空题【答案】5【分析】根据同类项的定义:所含字母相同,且相同字母的指数也相同的两个单项式是同类项,求出,a b 的值,代入计算即可.【详解】解:∵2a x y −与312b x y 的和是单项式,∴2a x y −与312b x y 是同类项, ∴32a b ==,,∴325a b +=+=.故答案为:5.【点睛】本题考查了同类项的定义,出,a b 的值是解题的关键.【答案】4【分析】根据单项式223m x y 与322n x y 的差仍是单项式,可知223m x y 与322n x y 是同类项,由此确定m ,n 的值,即可求解.【详解】解:由题意知223m x y 与322n x y 是同类项, 由同类项相同字母的指数相同可得3m =,22n =,即3m =,1n =,所以314m n +=+=,故答案为:4.【点睛】本题考查单项式、同类项、代数式求值等,解题的关键判断出223m x y 与322n x y 是同类项.7.(2023秋·江苏无锡·七年级校联考期末)若224m x y −与32n x y −是同类项,则m n −=_____.【分析】根据同类项定义得到3m =,2n =,代入计算可得.【详解】解:∵224m x y −与32n x y −是同类项, ∴23m −=,2n =,∴5m =,∴523m n −=−=,故答案为:3.【点睛】此题考查了同类项的定义:含有相同的字母,且相同字母的指数也分别相等的项是同类项,熟记同类项的定义是解题的关键.8.(2023秋·江苏无锡·七年级江苏省锡山高级中学实验学校校考期末)请写出23ab 的一个同类项______.【答案】2ab (答案不唯一)【分析】根据题意,写出一个含有字母,a b 且a 的指数为1,b 的指数为2的单项式即可求解.【详解】解:写出23ab 的一个同类项可以是2ab ,故答案为:2ab (答案不唯一).【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.所含字母相同,并且相同字母的指9.(2023秋·江苏盐城·七年级统考期末)若23x y −=,则代数式249x y −−的值等于______.【答案】3−【分析】将代数式249x y −−整理为2(2)9x y −−,然后代入求值即可.【详解】解:∵23x y −=,∴2492(2)92393x y x y −−=−−=⨯−=−.故答案为:3−.【点睛】本题主要考查了代数式求值,将代数式249x y −−整理为2(2)9x y −−是解题关键. 10.(2023秋·江苏盐城·七年级统考期末)若关于x 的多项式223247x mx x +−+与多项式32351x x x −+−相加后不含x 的二次项,则m 的值为______.【答案】1【分析】将两个多项式相加后,然后合并同类项,令含2x 的项的系数化为0即可.【详解】223247x mx x +−++32351x x x −+− =−+−+32232236x x m x x()=−−−+3232236x x m x令220m −=,解得:1m =故答案为:1.【点睛】本题考查了合并同类项,熟练掌握合并同类项的方法进行求解是解题的关键. 11.(2023春·江苏·七年级专题练习)已知关于x 的整系数二次三项式2ax bx c ++,当x 取1、6、8、12时,某同学算得这个二次三项式的值分别是0、15、35、100.经验算,只有一个是错误的,这个错误的结果是____________.【答案】15【分析】根据所给的值,6x =和12x =具有倍数关系,由此可知,这两个结果是解题的突破,因此6x =和12x =的结果中必有一个是错误的,假设当6x =的结果是正确的,36615a b c ++=①,1a b c ++=②,可得1475a b +=,不符合题意,由此即可求解.【详解】∵6x =时215ax bx c ++=,12x =时2100ax bx c ++=,∴36615a b c ++=,14412100a b c ++=,∴4(366)460a b c ++=,∴4043b c +=−,∵二次三项式2ax bx c ++的系数是整数,∴6x =和12x =的结果中必有一个是错误的,当6x =时,215ax bx c ++=,∴36615a b c ++=①,当1x =时,21ax bx c ++=时,∴1a b c ++=②,−①②得,35514a b +=, ∴1475a b +=,∵二次三项式2ax bx c ++的系数是整数,∴6x =时,215ax bx c ++=的结果是错误的.故答案为:15【点睛】本题考查整数的运算,熟练掌握代数式求值的方法,观察所给的数可知6x =和12x =的结果是解题的关键.三、解答题 12.(2023秋·江苏扬州·七年级校考期末)合并同类项:(1)523m n m n +−−(2)2231253a a a a −−−+−【答案】(1)4m-n;(2) 226a a +−【分析】(1)合并同类项即可得到答案;(2)将多项式合并同类项.【详解】(1)5234m n m n m n +--=,(2)2223125326a a a a a a ---+-=+-.【点睛】此题考查整式的加减法计算,将多项式中的同类项合并. 13.(2023秋·七年级单元测试)如图,一块长方形铁片,从中挖去直径分别为x cm ,y cm 的四个半圆.(1)用含x 、y 的式子表示剩下的面积.(2)当x =6,y =2时,剩下铁片的面积是多少平方厘米?(结果保留π)。
代数式化简求值的三种考法—2023-2024学年七年级数学上册(人教版)(解析版)

代数式化简求值的三种考法类型一、整体代入求值【答案】【分析】根据一元一次方程的解的定义,将3x =代入2mx n −=,得出32n m −=−,代入代数式,即可求解.【详解】解:∵3x =是关于x 的一元一次方程2mx n −=的解, ∴32m n −=,即32n m −=− ∴265n m −+=()()2352251n m −+=⨯−+=,故答案为:1.【点睛】本题考查了一元一次方程解的定义,代数式求值,整体代入解题的关键. 例2.已知代数式232a b −+的值为4,则代数式 2628b a −+的值为( ) A .4 B .8−C .12D .4−【答案】A【分析】由代数式232a b −+的值为4,可知23a b −的值,再观察题中的两个代数式23a b −和2628b a −+,可以发现226282(3)8b a a b −+=−−+,代入即可求解.【详解】解:∵代数式232a b −+的值为4,∴2324a b −+=,即232a b −=,∴2628b a −+22(3)8a b =−−+228=−⨯+4=,故选:A .【点睛】此题主要考查了代数式求值,代数式中的字母没有明确告知,而是隐含在题设中,首先应从题设入手,寻找要求的代数式与题设之间的关系,然后利用“整体代入法”求代数式的值.例3.已知535y ax bx cx =++−,当3x =时,7y =,那么3x =−时,y =( ) A .-3 B .-7 C .-17 D .7【答案】C【分析】把3x =,7y =代入计算得5333312a b c ++=,然后把3x =−代入原式化简,利用整体代入法即可得到答案.【详解】解:∵535y ax bx cx =++−中,当3x =时,7y =,∴5333357a b c ++−=, ∴5333312a b c ++=,把3x =−代入535y ax bx cx =++−,得 533335y b c a =−−−−, 53(333)5a b c =−++−125=−− 17=−;故选择:C.【点睛】本题考查了求代数式的值,解题的关键是利用整体代入法进行解题.【分析】根据绝对值的性质,求出,a b 可能取得值,根据0a b −<确定,a b 的值,再代数求值. 【详解】解:5a =,18b −=,5a ∴=±,18b −=±, 5a ∴=±,9b =或7−, 0a b −<Q ,∴当5a =,9b =时,5914a b +=+=;当5a =−,9b =时,594a b +=−+=. 故a b +的值为4或14.【点睛】本题考查了绝对值与代数式求值,解决本题的关键在于根据绝对值的性质求出,a b 的值,然后分情况讨论.【分析】先根据多项式乘以多项式运算法则,将括号展开,再将2a b −=,5ab =代入进行计算即可. 【详解】解:()()()444416416a b ab a b ab a b −+=+−−=+−−,∵2a b −=,5ab =, ∴原式5421619=−⨯−=−.故答案为:19−.【点睛】本题主要考查了多项式乘以多项式,解题的关键是掌握多项式乘以多项式,把前面一个多项式的每一项分别乘以后面一个多项式的每一项. 【变式训练3】已知a +b =2ab ,那么232a ab ba ab b++−+=( )A .6B .7C .9D .10【答案】B【详解】解:∵2a b ab +=,∴232a ab b a ab b ++−+=2()3a b ab a b ab +++−=2232ab ab ab ab ⨯+−=43ab ab ab +=7abab =7,故选:B .类型二、特殊值法代入求值例1.已知关于x 的多项式4323ax bx cx dx e ++++,其中a ,b ,c ,d 为互不相等的整数. (1)若4abcd =,求+++a b c d 的值;(2)在(1)的条件下,当1x =时,这个多项式的值为27,求e 的值;(3)在(1)、(2)条件下,若=1x −时,这个多项式4323ax bx cx dx e ++++的值是14,求a c +的值. 【答案】(1)0 (2)3e = (3) 6.5−【分析】(1)由a b c d 、、、是互不相等的整数,4abcd =可得这四个数由1−,1,2−,2组成,再进行计算即可得到答案;(2)把1x =代入432327ax bx cx dx e ++++=,即可求出e 的值;(3)把=1x −代入432314ax bx cx dx e ++++=,再根据0a b c d +++=,即可求出a c +的值.【详解】(1)解:4abcd =,且a b c d 、、、是互不相等的整数, ∴a b c d 、、、为1−,1,2−,2,0a b c d ∴+++=;(2)解:当1x =时,4323ax bx cx dx e ++++ 43231111a b c d e =⨯+⨯+⨯+⨯+ 3a b c d e =++++ 30e =+27=,3e ∴=;(3)解:当=1x −时,4323ax bx cx dx e ++++()()()()43231111a b c d e =⨯−+⨯−+⨯−+⨯−+3a b c d e =−+−+14=,13a b c d ∴−+−=−, 0a b c d +++=, 6.5a c ∴+=−.【点睛】本题主要考查了求代数式的值,解题的关键是得出a b c d 、、、这四个数以及a b c d 、、、之间的关系.【变式训练1】已知()20211232021012320211x a a x a x a x a x +=++++⋅⋅⋅+,则20212020201920181a a a a a −+−+⋅⋅⋅+的值为 .【答案】1【分析】分别令=1x −、0x =代入,求得对应代数式的值,求解即可.【详解】解:令=1x −,则()202101232020202110x a a a a a a +=−+−+⋅⋅⋅−=+,令0x =,则()2021011x a +==,∴2021202020192018100a a a a a a −+−+⋅⋅⋅+−=, ∴2021202020192018101a a a a a a −+−+⋅⋅⋅+==.故答案为:1.【点睛】此题考查了求代数式的值,解题的关键是给x 赋值,得到对应代数式的值. 【变式训练2】若()665432654321021x a x a x a x a x a x a x a −=++++++,则5310a a a a ++−=______. 【答案】365−【详解】解:令x=0,代入等式中得到:()61−=a ,∴0=1a , 令x=1,代入等式中得到:65432101①=++++++a a a a a a a , 令x=-1,代入等式中得到:66543210(3)②−−−−=+++a a a a a a a ,将①式减去②式,得到:65311(3)2()−−+=+a a a ,∴536113)3642(−+=+=−a a a ,∴53103641365++−=−−=−a a a a , 故答案为:365−.【变式训练3】特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=; (3)取1x =−时,可以得到432106a a a a a −+−+=−;(4)把(2),(3)的结论相加,就可以得到4222a a +020+=a ,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x −+−+−+−+−+−+=.求:(1)0a 的值;(2) 6543210++++++a a a a a a a 的值; (3) 642a a a ++的值. 【答案】(1)4;(2)8;(3)0 【解析】(1)解:当1x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴0414a =⨯=;(2)解:当2x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432108a a a a a a a +++++=+;(3)解:当2x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432108a a a a a a a +++++=+①;当0x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432100+−++=−−a a a a a a a ②;用①+②得:406282222++=+a a a a ,∴642040a a a a ++=−=. 类型三、降幂思想求值例.若2230x x −+=,则3227122020x x x −++=_____; 【答案】2029【详解】解:∵2230x x −+=, ∴223x x −=−,∴3227122020x x x −++=x(2x2-4x -3x+12)+2020=x[2(x2-2x)-3x+12]+2020= x[2×(-3)-3x+12]+2020=x(-3x+6)+2020=-3(x2-2x)+2020=-3×(-3)+2020=9+2020=2029 故答案为:2029.【分析】根据已知得到2232022x x −=,再将所求式子变形为()()22232320222020x x x x x x =−+−−−,整体代入计算即可.【详解】解:∵22320220x x −−=, ∴2232022x x −=, ∴32220252020x x x −−−322232*********x x x x x =−+−−−()()22232320222020x x x x x x =−+−−−2022202220222020x x =+−−2=故答案为:2.【点睛】本题主要考查了代数式求值,利用整体代入的思想求解是解题的关键. 【变式训练2】如果2233x x −+的值为5,则2695x x −−的值为______. 【答案】1【详解】∵22335x x −+=,∴2232x x −=∴2695x x −−()23235x x =−−325=⨯−1=,故答案为:1. 【变式训练3】已知21x x +=,求43222023x x x x +−−+的值. 【答案】2022【分析】把所求式子变形成含已知的代数式,结合整体代入的思想解答即可.【详解】解:∵21x x +=, ∴43222023x x x x +−−+()22222023x x x x x =+−−+2222023x x x =−−+ 22023x x =−−+()22023x x =−++12023=−+2022=.【点睛】本题考查了代数式求值和整式的乘法,正确变形,灵活应用整体思想是解题的关键. 【变式训练4】已知210x x −−=,则3222021x x −++的值是______. 【答案】2022【详解】解:∵210x x −−=,∴230x x x −−=, ∴32210x x −+−=,∴3221x x −+=,∴3222021120212022x x −++=+=,故答案为:2022.课后训练1.已知2|1|(2)0x y −++=,a 与b 互为倒数,c 与d 互为相反数,求32()()33x y ab c d +−−++的值. 【答案】-2 【详解】解:()2120x y −++=,()21020x y −≥+≥,.10x ∴−=,20y += 1x ∴=,2y =−因为a 与b 互为倒数,所以1ab = 因为c 与d 互为相反数,所以0c d += ∴原式()()()321213c d =−−−++()311=−−=-2.2.已知23a bc +=,222b bc −=−.则22543a b bc +−的值是( ) A .23− B .7C .13D .23【答案】B【分析】将所求式子变形为()()22542a bc b bc ++−,再整体代入计算.【详解】解:∵23a bc +=,222b bc −=−, ∴22543a b bc +−225548a bc b bc =+−+()()22254a bc b bc =+−+()5342=⨯+⨯−158=−7=故选B .【点睛】本题考查了整式的加减,代数式求值,解题的关键是掌握整体思想的灵活运用. 3.已知21a a +=,那么3222023a a ++的值是( ) A .2021 B .2022 C .2023 D .2024【答案】D【分析】先将3a 降次为2a a −+,然后代入代数式,再根据已知条件即可求解. 【详解】解:∵21a a +=,∴21a a =−+,则32a a a =−+,∴3222023a a ++2222023a a a =−+++ 22023a a =++12023=+2024=,故选:D .【点睛】本题考查了已知代数式的值求代数式的值,解决本题的关键是要将未知代数式进行降幂.【分析】根据2330a a −−=得出233a a ∴−=,然后整体代入求解;【详解】2330a a −−=Q ,233a a ∴−=,∴()222021262320212320212015a a a a −+=−−+=−⨯+=,故答案为:2015.【点睛】本题考查了求代数式的值,根据已有的等式整体代入求值是解题的关键.【分析】根据互为相反数的两个数的和为零,得到0m n +=,2c 与d 互为倒数得到21c d ⋅=,b 是最大的负整数得1b =-,代入求值.【详解】解:由题意可知,互为相反数的两个数的和为零,得到0m n +=,2c 与d 互为倒数得到21c d ⋅=,b 是最大的负整数得1b =-,故原式20200(11)=−−.0=.故答案为:0.【点睛】本题考查相反数的性质,倒数的性质以及最大的负整数,熟练掌握知识点是解题的关键.【答案】【分析】先把1x =代入531ax bx cx +++,可得a b c ++的值,再把1x =−代入531ax bx cx +++得1a b c −−−+,变形后再次把a b c ++的值代入计算即可.【详解】把1x =代入531ax bx cx +++得,12023a b c +++=∴2022a b c ++=,再把1x =−代入531ax bx cx +++得()11a b c a b c −−−+=−+++20221=−+ 2021=−.【点睛】此题考查代数式求值,解题关键在于把x 的值代入和整体思想的应用.【答案】(1)37;17;(2)2n+【分析】(1)根据题意代入求值即可;(2)分别计算1(),()f n f n 的值,找到规律再求解【详解】(1)()2263661637f ==+; 221114417114f ⎛⎫⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫+ ⎪⎝⎭;(2)22222111(),()1111n n f n f n n n n ===+++1()()1f n f n \+=∴()()()()1111231231f f f f f f n f n ⎛⎫⎛⎫⎛⎫+++++⋅⋅⋅+++ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()1111231231f f f f f f n f n ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+++++⋅⋅⋅+++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦11122n n =+⨯=+.【点睛】本题考查了代数式求值,分式的计算,理解题意,找到1()()1f n f n +=是解题的关键.【答案】【分析】把2x x +当整体代入求值,通过两次代入即可得出最后结果.【详解】解:230+−=x x ,23∴+=x x ,32225x x x +−+ 32225x x x x =++−+()2225x x x x x =++−+23x x +=,∴原式2325x x x =+−+25x x =++ 35=+8=,故答案为:8.【点睛】本题考查分解因式的应用,同时也要熟练运用整体代入的方法,快速分析出所需代入的整体是解题的关键.9.已知24a +=,()214b −=,且0ab <,则a b +=______.【答案】1或-3【详解】∵24a +=,()214b −=,∴a+2=±4,b−1=±2,∴a=2或a=−6,b=3或b=−1;∵0ab <,∴a=2,b=−1或a=−6,b=3,当a=2,b=−1时,则2(1)1a b +=+−=;当a=−6,b=3时,则633a b +=−+=−;故答案为:1或-3.。
新人教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)

新⼈教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2024七上·曲阳期末)代数式a−b2的意义表述正确的是( )A.a减去b的平方的差B.a与b差的平方C.a、b平方的差D.a的平方与b的平方的差2.(3分)(2023七上·槐荫期中)下列各式符合代数式书写规范的是( )A.a9B.x﹣3元C.st D.227x3.(3分)(2021七上·永州月考)下列式子不是代数式的是( )A.xy+4B.a+bx C.-8+2=-6D.1x+54.(3分)(2023七上·雁峰月考)按如图所示的程序计算,若开始输入的值为x=3,则最后输出的结果是( )A.156B.231C.6D.215.(3分)(2023九上·大埔期末)十八世纪伟大的数学家欧拉最先用记号f(x)的形式来表示关于x的多项式,把x等于某数n时一的多项式的值用f(n)来表示.例如x=1时,多项式f(x)=2x2−x+3的值可以记为f(1),即f(1)=4.我们定义f(x)=ax3+3x2−2bx−5.若f(3)=18,则f(−3)的值为( )A.−18B.−22C.26D.326.(3分)(2023七上·高州期中)按如图所示的运算程序,若开始输入x的值为343,则第2023次输出的结果为( )A.7B.1C.343D.497.(3分)(2023八上·开州期中)若x+2y=6,则多项式2x+4y−5的值为( )A.5B.6C.7D.88.(3分)(2019七上·高县期中)“a与b两数平方的和”的代数式是( )A.a2+b2;B.a+b2;C.a2+b;D.(a+b)2;9.(3分)﹣|﹣a|是一个( )A.正数B.正数或零C.负数D.负数或零10.(3分)(2024·常州模拟)当x=2时,代数式ax3+bx+1的值为6,那么当x=−2时,这个代数式的值是( )A.1B.−5C.6D.−4⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)(2017七上·黄陂期中)笔记本每本a元,圆珠笔每本b元,买5本笔记本和8支圆珠笔共需 元12.(3分)(2022七上·江油月考)若x−1与2−y互为相反数,则(x−y)2022= .13.(3分)父亲的年龄比儿子大28岁.如果用×表示儿子现在的年龄,那么父亲现在的年龄为 岁.14.(3分)(2024八下·兴国期末)当x=1 .15.(3分)一组按规律排列的代数式:a+2b,a2−2b3,a3+2b5,a4−2b7,⋯,则第n个代数式为 .三、解答题(共5题,共37分)(共5题;共37分)16.(6分)若x+y=1,求x3+y3+3xy的值.17.(6分)(2020七上·增城期中)已知a,b互为相反数,c,d互为倒数,|m|=6,求a+b3﹣5cd+m的值.18.(6分)(2024七下·西城期末)将非负实数x“四舍五入”到个位的值记为x,当n为非负整数时,①若n−12≤x<n+12,则x=n:②若x=n,则n−12≤x<n+12.如0=0.49=0,0.64=1.49=1,2=2.(1)(1分)π=;(2)(1分)若t+1=32t,则满足条件的实数t的值是.18.(6分)如果四个不同的整数a,b,c,d满足(10-a)×(10-b)×(10-c)×(10-d)= 121,求a+b+c+d的值.19.(13分)(2023七下·顺义期中)已知x−y=3,求代数式(−x+y)(−x−y)+(y−1)2−x(x−2)的值.四、实践探究题(共3题,共38分)(共3题;共13分)21.(2分)(2024七下·陕西期中)在“趣味数学”的社团活动课上,学生小白给大家分享了一个自己发现的关于8的倍数和最近学习的平方差公式之间的有趣关系.小白同学的具体探究过程如下,请你根据小白同学的探究思路,解决下面的问题:(1)(4分)观察下列各式并填空:8×1=32−12;8×2=52−32;8×3=72−52;8×4=92−72;8×5= −92;8× =132−112;…(2)(4分)通过观察、归纳,请你用含字母n(n为正整数)的等式表示上述各式所反映的规律;(3)(4分)请验证(2)中你所写的规律是否正确.22.(9分)(2023七上·安吉期中)探索代数式a2-2ab+b2与代数式(a-b)2的关系.(1)(4.5分)当a=2,b=1时分别计算两个代数式的值.(2)(4.5分)当a=3,b=-2时分别计算两个代数式的值.(3)(1分)你发现了什么规律?(4)(1分)利用你发现的规律计算:20232-2×2023×2022+20222.23.(2分)(2023七上·宁江期中)某中学附近的水果超市新进了一批百香果,为了促销这种百香果,特推出两种销售方式方式一:购买不超过5斤百香果,每斤12元,超出5斤的部分,每斤打8折;方式二:每斤售价10元.(1)(4.5分)顾客买a(a>5)斤百香果,则按照方式一购买需要 元;按照方式二购买需要 元(请用含a的代数式表示).(2)(4.5分)于老师决定买35斤百香果,通过计算说明用哪种方式购买更省钱.答案解析部分1.【答案】A【知识点】代数式的实际意义2.【答案】C【知识点】代数式的书写规范【解析】【解答】A:a9 应写成9a,选项错误,不合题意;B:x-3元应写成(x-3)元,选项错误,不合题意;C:st符合代数式书写要求,选项正确,符合题意;D:227x中带分数应写成假分数,选项错误,不合题意;故答案为:C.【分析】本题考查代数式的书写要求:(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;(2)数字要写在前面;(3)带分数一定要写成假分数;(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;(5)式子后面有单位时,和差形式的代数式要在单位前把代数式括起来。
专题04 代数式求值的五种类型(解析版)2021-2022学年七年级数学上册(北师大版,成都专用)

专题04 代数式求值的五种类型类型一、直接代入求值例.当3,1a b =-=-时,代数式242a b +的值是( ) A .132 B .132- C .52- D .52【答案】D【解析】a =-3,b =-1时,242a b +=()()23412-+⨯-=52, 故选:D .【变式训练1】已知2x =8,则2x +3的值为________.【答案】11【解析】∵2x =8,∵2x +3=8+3=11,故答案为:11.【变式训练2】当x 2=- 时,代数式2x 162x+- 的值等于______. 【答案】-0.3【解析】当2x =-时, 212(2)130.36262(2)10x x +⨯-+-===---⨯-. 故答案为:-0.3【变式训练3】若34a =,17b =-,那么21356a ab ++的值是_________. 【答案】1116【解析】将34a =,17b =-代入21356a ab ++中 21356a ab ++23311344756⎛⎫⎛⎫=+⨯-+ ⎪ ⎪⎝⎭⎝⎭9313162856=-+631226112-+=77112=1116= 故答案为:1116.类型二、利用数的非负性求值例.若a 、b 满足|a ﹣2|+(3﹣b )2=0,则a b =_____.【答案】9【解析】∵|a ﹣2|+(3﹣b )2=0,∵a =2,b =3,∵b a =32=9.故答案为9.【变式训练1】已知:2(2)10y x -++=,则2x y +=_________.【答案】0【解析】根据题意得,x+1=0,y -2=0,解得x=-1,y=2,所以2x+y=2×(-1)+2=-2+2=0.故答案为0.【变式训练2】已知()2120a b ++-=,则1b a +的值等于______.【答案】2【解析】∵()2120a b ++-=,且()210a +≥,20b -≥,∵10a +=,20b -=,∵1a =-,2b =,∵()2111112b a +=-+=+=;故答案为:2.类型三、整体代入求值例1.已知23x y -=,则代数式724x y -+的值为______.【答案】1【解析】∵23x y -=∵724x y -+=72(2)723761x y --=-⨯=-=故答案为:1例2.已知2237m n -+=-,则代数式21284n m -+的值等于__________.【答案】-24【解析】∵2237m n -+=-,∵212828n m -=-,∵21284n m -+= -28+4= -24.故答案为:-24.例3.当x=1时,代数式px 3+qx+1的值为2018,则当x=-1时,代数式px 3+qx+1 的值为__________.【答案】-2016【解析】将x=1代入px 3+qx+1∵p+q+1=2018,∵p+q=2017将x=−1代入px 3+qx+1∵−p−q+1=−(p+q)+1=−2017+1=−2016,故答案为-2016.例4.如果210x x +-=,那么代数式3223x x +-的值为______ .【答案】-2【解析】210x x +-=,21x x ∴+=,3223x x ∴+- 3223x x x =++- 23x x =+- 2=-.即:32232x x +-=-.故答案为:2-.【变式训练1】已知2323x x +-的值为6,则2223x x --的值为________.【答案】-1【解析】∵2323x x +-=6,∵22=33x x + ∵22222=2-+33x x x x ⎛⎫-- ⎪⎝⎭,∵将22=33x x +代入得:22222=2-+33x x x x ⎛⎫-- ⎪⎝⎭=2-3=-1故答案为:-1.【变式训练2】若23x y -=,则412x y +-的值是_____.【答案】7【解析】()412221x y x y +-=-+将23x y -=代入原式中,原式()2212317x y =-+=⨯+=故答案为:7.【变式训练3】当2020t =时,312xt yt -+=,则当2020t =-时,多项式32xt yt --的值为( )A .0B .3-C .1D .4-【答案】B 【解析】把t =2020代入多项式得:32020202012x y -+=,即3202020201x y -=,把t =-2020代入多项式得:3202020202x y -+-=()3202020202x y ---=12--=-3 故选:B .【变式训练4】已知250x x +-=,则()26xx +=__________.【答案】25【解析】∵250x x +-=,∵25x x =-,25x x +=,∵()26x x +()()56x x =-+230x x =--+()230x x =-++530=-+25= 故答案为:25.类型四、特殊值法代入求值例.已知:55432(2)x ax bx cx dx ex f +=+++++,求b d +的值为 _________.【答案】90【解析】令x =1,得:a +b +c +d +e +f =243①;令x =﹣1,得﹣a +b ﹣c +d ﹣e +f =1②,①+②得:2b +2d +2f =244, 即b +d +f =122,令x =0,得f =32,则b +d =b +d +f ﹣f =122﹣32=90,故答案为:90.【变式训练1】①已知,45290129(1)(2)x x a a x a x a x -+=+++⋅⋅⋅+,则2468a a a a +++=________. ②已知关于a 的多项式234n a a -+与3223ma a +-的次数相同,那么23n -=________.【答案】-24 -27或-12【解析】①令x =0,得450(01)(02)a -+=,则032a =,当x =1时,得450129(11)(12)a a a a -+=+++⋅⋅⋅+,则01290a a a a +++⋅⋅+=⋅①,当x =-1时,得450129(11)(12)a a a a ---+=-+-⋅⋅⋅-,则50129442(111)(12)6a a a a ---+=-+-=⋅⋅=-⋅②,①+②,得()40286221a a a ++=⋅+=⋅⋅,∵0288a a a ++⋅⋅⋅=+, 又∵032a =,∵246824a a a a ++=-+;②∵关于a 的多项式234n a a -+与3223ma a +-的次数相同, ∵当m ≠0时,n =3,则23n -=-27;当m =0时,n =2,则23n -=-12;故答案为:-24,-27或-12.【变式训练2】已知()6212111021211102101x x a x a x a x a x a x a -+=+++⋅⋅⋅+++,则1211210a a a a a +++++的值为_________,11971a a a a +++⋅⋅⋅+的值为________.【答案】1 -364【解析】令x =1得:()621211102101111a a a a a a +++⋅⋅⋅++-+==+,① 令x =-1得:()()6212111021601311a a a a a a ⎡⎤+-⋅⋅⋅+-+---+⎣-==⎦,② ①-②得:()611971213a a a a +++⋅⋅⋅+=-,∵11971364a a a a +++⋅⋅⋅+=-, 故答案为:1,-364.类型五、方程组法求代数式的值例.若24,348a b a b -=-=,则代数式-a b 的值为_______.【答案】2【解析】∵24a b -=①,348a b -=②,∵②-①:224a b -=,∵2a b -=.故答案为:2.【变式训练1】若a +2b =8,3a +4b =18,则2a +3b 的值为_____.【答案】13【解析】联立得:283418a b a b +=⎧⎨+=⎩①②, ①+②得:4a +6b =26,即2(2a +3b )=26,则2a +3b =13.故答案为:13.【变式训练2】已知214a bc +=,226b bc -=-,则22345a b bc +-=______.【答案】18【解析】∵a 2+bc =14,b 2-2bc =-6,∵a 2=14-bc ,b 2=-6+2bc ,∵3a 2+4b 2-5bc =3(14-bc )+4(-6+2bc )-5bc =42-3bc -24+8bc -5bc =18, 故答案为:18.。
3.2代数式的值 同步练习题(含简单答案)人教版数学七年级上册(2024年)新版教材

3.2 代数式的值一、单选题1.下列关于代数式“2a +”的说法,正确的是( )A .表示2个a 相加B .代数式的值比a 大C .代数式的值比2大D .代数式的值随a 的增大而减小 2.已知式子226y y -+的值为8,那么式子2245y y -++的值为( )A .1B .2C .3D .43.若多项式210m m ++=,则多项式2202122m m --的值是( )A .2022B .2022-C .2023D .2023- 4.如图是一个运算程序的示意图,若开始输入x 的值为81,则第2024次输出的结果为( )A .27B .9C .3D .15.如图是一个正方体的展开图,将展开图折成正方体后,相对的两个面上的数互为倒数,则a b c ++的值为( )A .74-B .7C .74D .47 6.若3x =-是方程1243ax b +=的解,则代数式63b a -的值为( ) A .4 B .7 C .9 D .127.如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有()1n n >个点,记第1个图形中总的点数为23S =,第2个图形中总的点数为36S =,依次为459,12S S ==,则2023S 的值是( )A .6063B .6066C .6069D .60728.已知代数式2x y -的值是2,则代数式12x y -+的值是( )A .-1B .1C .3D .-39.已知3x 2﹣4x +6的值为9,则6﹣x 2+43x 的值为( ) A .﹣5 B .5 C .7 D .﹣710.若235a b -=,求246a b -+-的值( )A .12-B .12C .8-D .8二、填空题11.若实数x 满足2210x x --=,则322742025x x x -++的值为 .12.已知有理数a ,b ,满足3310a b ++-=,则a b -的值为 .13.如图所示的运算程序中,若开始输入的x 值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,……,第2024次输出的结果为 .14.已知多项式325a a 的值是7,则多项式323a a -++的值是 . 15.若233a b +=-,则代数式21247b a ---= .16.如图,在正方形ABCD 中,阴影部分的面积用含有a 、b 的代数式可表示为 ;当a =5,b =2时,阴影部分的面积为17.已知a 2+2ab =-10,b 2+2ab =16,则a 2+4ab +b 2= ,a 2-b 2= . 18.已知2251n n -=,则27410n n --+的值是 .19.当2a =-,3b =时,23a b +的结果为 .20.当13x 时,代数式21x +的值是 .三、解答题21.甲超市在国庆节这天进行优惠促销活动,苹果的标价为5元/千克,一次性购买4千克以上的苹果,超过4千克的部分按标价的6折出售.(1)文文购买3千克的苹果需付款________元;购买5千克的苹果需付款________元;(2)若文文一次性购买()4x x >千克的苹果,需付款多少元?(用含x 的代数式表示)(3)当天,乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为5元/千克,且全部按标价的8折销售,文文如果要购买10千克苹果,请问她在哪个超市购买更划算?22.某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元.“十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉10台,电磁炉x 台()10x >.(1)若该客户按方案一购买,需付款______元(用含x 的代数式表示);若该客户按方案二购买,需付款______元(用含x 的代数式表示).(2)若30x =,通过计算说明此时按哪种方案购买较为合算?(3)当30x =时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法并计算需付款多少元?23.小亮房间窗户宽为b,高为a,窗户的窗帘如图1所示,它是由两个四分之一圆组成(半径相同)(1)用代数式表示窗户能射进阳光的面积是________.(结果保留π)(2)当34a=,1b=时,求窗户能射进阳光的面积是多少?(取π3≈)(3)小亮又设计了如图2的窗帘(由一个半圆和两个四分之一圆组成,半径相同),请你帮他算一算此时窗户能射进阳光的面积是多少?(结果保留π)24.当1m=-时,求代数式326m m m+-+.25.如图是一个简单的数值运算程序.(1)用含x的代数式表示出运算过程;(2)当输入的x值为1-时,输出的值是多少?3x x-−−→−−→−−→−−→输入立方乘减去输出参考答案:1.B2.A3.C4.D5.C6.D7.B8.A9.B10.D11.2028-12.133- 13.214.115.516. 2ab /2ba 2017. 6 -2618.-919.520.119/10921.(1)15,23(2)(38)x +(3)在甲超市购买更划算22.(1)6000200x ;7200180x(2)方案一较为合算(3)先按方案一购买10台微波炉送10台电磁炉,再按方案二购买20台电磁炉,需要付款11600元23.(1)21π8ab b -(2)38(3)21π16ab b - 24.7 25.(1)33x x --(2)4。
七年级数学代数式求值整式加减练习题(附答案)

七年级数学代数式求值整式加减练习题一、解答题1.某公园的门票价格是:成人20元,学生10元,满40人可以购买团体票(打8折),设一个旅游团共有x 人(40x >),其中学生y 人.1.用含的式子表示该旅游团应付的门票费;2.如果旅游团有47个成人, 12个学生,那么他们应付多少门票费?2.某市的张、王、李三家合办一个股份制企业,总股数为()2532a a --股,每股1元,张家持有()221a +股,王家比张家少()1a -股,年终按股本额18%的比例支付股利,获利的20%缴纳个人所得税,请你帮助李家算算年终能得到多少钱.3.某农户2007年承包荒山若干亩,投资7800元改造后,种果树2000棵.今年水果总产量为18000千克,此水果在市场上每千克售a 元,在果园每千克售b 元()b a <该农户将水果拉到市场出售平均每天出售1000千克,需8人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.1.分别用,a b 表示两种方式出售水果的收入?2.若 1.3a =元, 1.1b =元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.3.该农户加强果园管理,力争到明年纯收入达到15000元,那么纯收入增长率是多少(纯收入=总收入-总支出),该农户采用了(2)中较好的出售方式出售)?4.假如在数轴原点处放立一挡板(厚度不计),有甲、乙两个球(忽略球的大小,可看作一点),甲球从表示数-2的点处出发,以每秒1个单位长度的速度沿数轴向左运动;同时乙球从表示数4的点处出发,以每秒2个单位长度的速度沿数轴向左运动,在碰到挡板后即刻按原来的速度向相反的方向运动,设运动的时间为t (秒).用含t 的代数式分别表示甲、乙两球到原点之间的距离.5.历史上的数学巨人欧拉最先把关于x 的多项式用记号()f x 的形式来表示,把x 等于某数a 时的多项式的值用()f a 来表示,例如1x =-时,多项式()235f x x x =+-的值记为()1f -,则()17f -=-.已知()533f x ax bx x c =+++,且()01f =-.(1)c = .(2)若()12f =,求a b +的值;(3)若()29f =,求()2f -的值.二、计算题6.化简下列各题(1)()22232x xy xy x -+-. (2)()221212a a a a ⎛⎫-+-+- ⎪⎝⎭. (3)()3521x x x ---⎡⎤⎣⎦.(4)()()()355423a b a b a b ++---.7.化简求值.(1)233360.5xy xy x y -+23335 4.5xy xy x y -+-,其中1, 4.2x y =-= (2)222{35[4a a a --++2(31)]}5a a ----,其中 3.a =8.计算下列各题.(1)228352(32)xy x xy xy y ----(2)3323410(310)a b b a b b -+-+(3)22225[(52)2(3)]a a a a a a -+---9.先化简,再求值. (1)32(2)3()2a ab a b +---,其中3,2a b =-=. (2){}222243[5(2)4]x x x x x x x ------+,其中12x =-. 10.已知232A a ab a =--,22B a ab =-+-.(1)求43()A A B --的值;(2)若3A B +的值与a 的取值无关,求b 的值.11.计算下列小题:(1)已知:222x y +=,12xy =-,求2222(23)(2)x y xy x y xy ----+的值; (2)若22(26)(2351)x ax y bx x y +-+--+-的值与字母x 所取的值无关,试求3232112(3)34a b a b ---的值.参考答案1.答案:1.由题意得成人门票费为()20x y -元,学生门票费为10y 元,所以总费用为()201080%x y y -+⨯⎡⎤⎣⎦元.答:该旅游团应付门票费()201080%x y y -+⨯⎡⎤⎣⎦元.2.当该旅游团有47个成人, 12个学生时, ()2047101280%848⨯+⨯⨯= (元). ()40x > 答:如果旅游团有47个成人, 12个学生,那么他们应付门票费848元.解析:门票费=门票价格×人数×80%(人数>40),由于成人和学生的门票价格不相同,所以应先分别求两种门票的费用,再求它们的和,最后乘所打折数,就得最终费用.2.答案:王家持有的股数为:()()()2221122a a a a +--=-+股. 李家持有的股数为:()()()()2222532212225a a a a a a a ---+--+=--股.所以李家年终可获得的钱数为:()()212518%120%a a ⨯--⨯⨯-()20.14425a a =--()20.1440.2880.72a a =--元.答:李家年终能获得()20.1440.2880.72a a --元. 解析:3.答案:1.解:将这批水果拉到市场上出售收入为18000180001800082510010001000a -⨯⨯-⨯ 1800036001800180005400a a =--=- (元)在果园直接出售收入为18000b 元;2.当 1.3a =时,市场收入为18000540018000 1.3540018000a -=⨯-= (元),当 1.1b =时,果园收入为1800018000 1.119800b =⨯= (元),因为1800019800<,所以应选择在果园出售3.因为今年的纯收入为19800780012000-=,所以 100%25%⨯=,所以增长率为25%。
最新人教版七年级数学上册 代数式专题练习(解析版)

一、初一数学代数式解答题压轴题精选(难)1.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.(1)每个盒子需________个长方形,________个等边三角形;(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).现有相同规格的 19 张正方形硬纸板,其中的 x 张按方法一裁剪,剩余的按方法二裁剪.①用含 x 的代数式分别表示裁剪出的侧面个数,底面个数;②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.【答案】(1)3;2(2)解:①∵裁剪x张时用方法一,∴裁剪(19−x)张时用方法二,∴侧面的个数为:6x+4(19−x)=(2x+76)个,底面的个数为:5(19−x)=(95−5x)个;②由题意,得解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为:答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.【解析】【解答】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;故答案为3,2.【分析】(1)由图可知两个底面是等边三角形,侧面是长方形,所以需要2个等边三角形和3个长方形。
(2)①由题意知裁剪x张用方法一,则(19-x)张用方法二,再根据方法一二所得的侧面数与底面数列代数式。
②根据每个三棱柱的底面数目与侧面数目的比列方程,求解x,由此计算出侧面总个数,即可求得盒子的个数。
2.小明是个爱动脑筋的同学,在发现教材中的用方框在月历中移动的规律后,突发奇想,将连续的偶数2,4,6,8,…,排成如表,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五个数,其他五个数的和能等于2016吗?如能,写出这五个数,如不能,说明理由.【答案】(1)解:十字框中的五个数的和为6+14+16+18+26=80=16×5,∴十字框中的五个数的和为中间的数16的5倍(2)解:设中间的数为x,则另外四个数分别为x﹣10、x﹣2、x+2、x+10,∴十字框中的五个数的和为(x﹣10)+(x+10)+(x﹣2)+(x+2)+x=5x(3)解:假设能够框出满足条件的五个数,设中间的数为x,根据题意得:5x=2016,解得:x=403.2.∵403.2不是整数,∴假设不成立,∴不能框住五个数,使它们的和等于2016.【解析】【分析】(1)算出十字框中的五个数的和,即可发现是16的5倍;(2)设中间的数为x,则另外四个数分别为x﹣10、x﹣2、x+2、x+10 ,利用整式加法法则即可算出十字框中的五个数的和;(3)假设能够框出满足条件的五个数,设中间的数为x ,根据(2)计算的结果及这五个数的和是2016,,列出方程,求解如解是整数即可,不是整数即不可。
第01讲 字母表示数与代数式(7类热点题型讲练)(解析版)--初中数学北师大版7年级上册

第01讲字母表示数与代数式1.掌握字母表示数及代数式的概念;并掌握代数式的书写要求;2.掌握代数式的求值;掌握程序流程图的求值方法;3.掌握整体代入法的计算方法.知识点01代数式的概念用运算符号和括号把数或表示数的字母连接而成的式子叫做代数式.(单独的一个数或者一个字母也是代数式)知识点02代数式的书写代数式书写规范:①数和字母相乘,可省略乘号,并把数字写在字母的前面;②字母和字母相乘,乘号可以省略不写或用“·”表示.一般情况下,按26个字母的顺序从左到右来写;③后面带单位的相加或相减的式子要用括号括起来;④除法运算写成分数形式,即除号改为分数线;⑤带分数与字母相乘时,带分数要写成假分数的形式;⑥当“1”与任何字母相乘时,“1”省略不写;当“-1”乘以字母时,只要在那个字母前加上“-”号.知识点03整体法1.整体思想:就是从问题的整体性质出发,把某些式子看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理.2.根据条件进行求值时,我们可以根据条件的结构特征,合理变形,构造出条件中含有的模型,然后整体代入,从整体上把握解的方向和策略,从而使复杂问题简单化.题型01列代数式【典例1】(2023秋·全国·七年级专题练习)一个两位数,个位上数字为5,设十位上数字为x,则这个两位数表示为.题型02代数式的概念题型03代数式书写方法题型04代数式表示的实际意义题型05已知字母的值,求代数式的值(1)=a__________;(2)求222-+的值;a b ab-【答案】(1)3(2)143a ∴=-.(2)由题意得,3a =-,1b =,22293214a b ab ∴-+=++=.【点睛】本题考查了相反数的概念、正整数的概念,代数式求值,求出a ,b 的值是关键.题型06已知式子的值,求代数式的值题型07程序流程图与代数式求值【答案】1-【分析】按题中所示程序输入=1x -,结果为21>,再输入【答案】2【分析】根据运算程序的要求,将3x =-【详解】解:∵34x =-≤,∴把3x =-代入()14y x x =-≤,【答案】231【分析】利用题中的程序图进行操作,运算,按要求得出结论.-A.15【答案】C【分析】先根据正方体的表面展开图,找出相对的面,然后根据正方体中相对的面上的数字或代数式互为相反数,列出方程求出【答案】82a b+【分析】根据长方体纸盒的容积等于底面积乘以高,底面积等于底面长方形的长与宽的乘积可以先求出宽,再计算纸盒底部长方形的周长即可.【详解】解:根据题意,得该纸盒的容积为【答案】9或4或32或14【分析】根据程序框图计算求解即可.当4x =时,183430S =+⨯=.【点睛】此题考查了列代数式和代数式的求值,解题的关键是结合图形列出代数式.14.(2022秋·河北廊坊·七年级校联考期中)小高家买了一套新房,其结构如图所示(单位:m ).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米40元,木地板价格为每平方米70元.当2, 2.5a b ==时,小高一共需要花多少钱?【答案】(1)木地板和地砖分别需要10ab 、15ab 平方米(2)6500元【分析】(1)由题意知,卧室的面积为()()25335210b a a a b b b ab ⨯-+⨯--=平方米,新房面积为5525a b ab ⨯=平方米,则木地板需要10ab 平方米,地砖需要251015ab ab ab -=平方米;(2)由题意知,小高一共需要10701540ab ab ⨯+⨯元,将2, 2.5a b ==代入求解即可.【详解】(1)解:由题意知,卧室的面积为()()25335210b a a a b b b ab ⨯-+⨯--=平方米,新房面积为5525a b ab ⨯=平方米,∴木地板需要10ab 平方米,地砖需要251015ab ab ab -=平方米,∴木地板和地砖分别需要10ab 、15ab 平方米;(2)解:由题意知,小高一共需要10701540ab ab ⨯+⨯元,将2, 2.5a b ==代入得,102 2.570152 2.5406500⨯⨯⨯+⨯⨯⨯=,∴小高一共需要花6500元.【点睛】本题考查了列代数式,代数式求值.解题的关键在于根据题意正确的列代数式.15.(2022秋·安徽滁州·七年级校考期中)已知关于x 的多项式4323ax bx cx dx e ++++,其中a ,b ,c ,d 为互不相等的整数.(1)若4abcd =,求+++a b c d 的值;(2)在(1)的条件下,当1x =时,这个多项式的值为27,求e 的值;(3)在(1)、(2)条件下,若=1x -时,这个多项式4323ax bx cx dx e ++++的值是14,求a c +的值.【答案】(1)0(2)3e =(3)6.5-【分析】(1)由a b c d 、、、是互不相等的整数,4abcd =可得这四个数由1-,1,2-,2组成,再进行计算即可得到答案;(2)把1x =代入432327ax bx cx dx e ++++=,即可求出e 的值;(3)把=1x -代入432314ax bx cx dx e ++++=,再根据0a b c d +++=,即可求出a c +的值.【详解】(1)解:4abcd = ,且a b c d 、、、是互不相等的整数,∴a b c d 、、、为1-,1,2-,2,0a b c d ∴+++=;(2)解:当1x =时,4323ax bx cx dx e ++++43231111a b c d e =⨯+⨯+⨯+⨯+3a b c d e =++++30e =+27=,3e ∴=;(3)解:当=1x -时,4323ax bx cx dx e ++++()()()()43231111a b c d e =⨯-+⨯-+⨯-+⨯-+3a b c d e =-+-+14=,13a b c d ∴-+-=-,0a b c d +++= ,6.5a c ∴+=-.【点睛】本题主要考查了求代数式的值,解题的关键是得出a b c d 、、、这四个数以及a b c d 、、、之间的关系.。
3.2 代数式 同步训练(含简单答案)2024-2025学年苏科版(2024)七年级上册数学

3.2 代数式 同步训练一、单选题1.下列代数式书写正确的是( )A .B .C .D .2.当,时,代数式的值是( )A .B .C .1D .113.在中,代数式的个数为( )A .1个B .2个C .3个D .4个4.一个两位数的个位数字是,十位数字是,则这个两位数可表示为( )A .ab B .C .D .5.单项式的系数和次数分别是( )A .,5B .,6C .,6D .3,76.关于多项式的说法正确的是( )A .按x 的降幂排列B .按x 的升幂排列C .按y 的降幂排列D .按y 的升幂排列7.已知,,则的值为( )A .B .C .5D .188.如果是关于x ,y 的五次三项式,则m 的值为( )A .B .4C .或4D .不存在9.如图所示的运算程序中,若开始输入的值为18,我们发现第1次输出的结果为9,第2次输出的结果为12,……则第2023次输出的结果为( )A .3B .6C .9D .18二、填空题10.单项式的系数是,次数是,则.4a m n ÷112x -3x-1x =2y =431x y -+2-1-,0,21,2,210x y a b x +>-+=a b a b +10a b +10b a +233πxy z -π-1-3π-3223235x y x y xy y -+-+23x xy -=-228xy y -=-22243x xy y +-30-11-()1243m x y m xy x ---+2-2-x 22x y -m n m n +=11.下列式子:,,,,,0,整式的个数是 个.12.若是关于x 的五次四项式,则 .13.已知多项式是关于x 、y 的四次四项式,则的值为 .14.按一定规律排列的一列数依次为,,,,,,…,按此规律排列下去,这列数中的第10个数是 .三、解答题15.当,,时,计算代数式的值.16.已知多项式按要求解答下列问题:(1)填空:该多项式的次数是______,二次项是______,常数项是______;(2)请将该多项式按y 的降幂重新排列.17.如图,池塘边有一块长为21米,宽为18米的长方形土地,现在将其余两面留出宽都是x 米的小路,余下的长方形部分做菜地.(1)长方形菜地的面积为_____________平方米(用含x 的代数式表示,不需要化简);(2)当时,长方形菜地的面积是多少平方米?22x +14a +237ab ab c 5x -32425P x x qx x +--+p q -+=23263a b x y x y --+-132a b +-12253104175266374a ==5b -2c =()22a a c -+2333251xy xy x y ---,1x =参考答案:1.D2.B3.C4.D5.C6.A7.A8.A9.B10.11.412.13.14.15.16.(1)6;;(2)17.(1)平方米(2)菜地的面积为平方米15-1-1010120-3xy 1-3325231x y xy xy --+-()()2118x x --340。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.请观察图形,并探究和解决下列问题:(1)在第n个图形中,每一横行共有________个正方形,每一竖列共有________个正方形;(2)在铺设第n个图形时,共有________个正方形;(3)某工人需用黑白两种木板按图铺设地面,如果每块黑板成本为8元,每块白木板成本6元,铺设当n=5的图形时,共需花多少钱购买木板?【答案】(1)(n+3);(n+2)(2)(n+2)(n+3)(3)解:当n=5时,有白木板5×(5+1)=30块,黑木板7×8-30=26块,共需花费26×8+30×6=388(元).【解析】【解答】⑴第n个图形的木板的每行有(n+3)个,每列有n+2个,故答案为:(n+3)、(n+2);⑵所用木板的总块数(n+2)(n+3),故答案为:(n+2)(n+3);【分析】本题主要考查的是探索图形规律,并根据所找到的规律求值;根据所给图形找出正方形个数的规律是解决问题的关键.3.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和5的两点之间的距离是________,数轴上表示2和﹣3的两点之间的距离是________(2)数轴上表示x和﹣2的两点之间的距离表示为________.(3)若x表示一个有理数,且﹣4≤x≤﹣2,则|x﹣2|+|x+4|=________(4)若|x+3|+|x﹣5|=8,利用数轴求出x的整数值.【答案】(1)3;5(2)|x+2|(3)6(4)解:∵|x+3|+|x﹣5|=8,∴﹣3≤x≤5,∵x为整数,∴x=﹣3,﹣2,﹣1,0,1,2,3,4,5【解析】【解答】解:(1)数轴上表示2和5两点之间的距离是5﹣2=3,数轴上表示2和﹣3的两点之间的距离是2﹣(﹣3)=5;(2)数轴上表示x和﹣2的两点之间的距离表示为|x+2|;(3)若x表示一个有理数,且﹣4≤x≤﹣2,则|x﹣2|+|x+4|=6;故答案为:3,5;|x+2|;6.【分析】(1)根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上两点间的距离是大数减小数,可得答案;(3)根据线段上的点到线段的两端点的距离的和等于线段的距离,可得答案;(4)根据线段上的点到线段的两端点的距离的和等于线段的距离,可得答案.4.某垃圾处理厂,对不可回收垃圾的处理费用为90元/吨,可回收垃圾的分拣处理费用也为90元/吨,分拣后再被相关企业回收,回收价格如下表:垃圾种类纸类塑料类金属类玻璃类回收单价(元/吨)500800500200A,B,C三个小区12月份产生的垃圾总量分别为100吨,100吨和m吨。
(1)已知A小区金属类垃圾质量是塑料类的5倍,纸类垃圾质量是塑料类的2倍。
设塑料类的质量为x吨,则A小区可回收垃圾有________吨,其中玻璃类垃圾有________吨(用含x的代数式表示)(2)B小区纸类与金属类垃圾总量为35吨,当月可回收垃圾回收总金额扣除所有垃圾处理费后,收益16500元,求12月份该小区可回收垃圾中塑料类垃圾的质量。
(3)C小区发现塑料类与玻璃类垃圾的回收总额恰好相等,所有可回收垃圾的回收总金额为12000元,设该小区塑料类垃圾质量为a吨,求a与m的数量关系。
【答案】(1)60;60-8x(2)解:由题意得:塑料类和玻璃类垃圾总质量为:100×60%-35=25(吨),设塑料类垃圾为x,则玻璃类垃圾为:25-x, 得:800x+(25-x)×200+35×500-100×90=16500,解得x=.(3)解:设玻璃类垃圾质量为y,则800a=200x,∴x=4a,∴纸类和金属类垃圾质量之和为:m-5a,∴(m-5a)×500+800a+200×4a=12000,整理得:5m-9a=120.【解析】【解答】(1)设塑料类的质量为x吨,纸类垃圾为2x吨,金属类垃圾为5x,则A小区可回收垃圾为:100×60%=60(吨),玻璃类垃圾为:60-(x+2x+5x)=60-8x.故答案为:60,60-8x.【分析】(1)设塑料类的质量为x吨,纸类垃圾为2x吨,金属类垃圾为5x, 因为可回收垃圾占垃圾总量的60%,则A小区可回收垃圾有60吨,玻璃类垃圾为:60-(x+2x+5x),即60-8x.(2)先求出塑料类和玻璃类垃圾总质量,设塑料类垃圾为x,则玻璃类垃圾为25-x, 然后根据12月份总收益为16500元列方程,求出x即可.(3)根据塑料类与玻璃类垃圾的回收总额恰好相等把玻璃类垃圾质量用含a的代数式表示,则纸类和金属类垃圾质量之和也可用含a的代数式表示,再根据可回收垃圾的回收总金额为12000元列式,最后化简即可得出a与m的数量关系。
5.将大小不一的正方形纸片①、②、③、④放置在如图所示的长方形ABCD内(相同纸片之间不重叠),其中AB=a.小明发现:通过边长的平移和转化,阴影部分⑤的周长与正方形①的边长有关.(1)根据小明的发现,用代数式表示阴影部分⑥的周长________.(2)阴影部分⑥与阴影部分⑤的周长之差与正方形________(填编号)的边长有关,请计算说明.________【答案】(1)2a(2)②;解:设②的边长是m.∴阴影部分⑤的周长是2(a-m).∴阴影部分⑥-阴影部分⑤=2a-2(a-m)=2m【解析】【解答】解(1)设长方形⑥的长为x, 宽为y, 则x+y=a, 周长=2(x+y)=2a.【分析】(1)设长方形⑥的长为x, 宽为y, 因为这个长方形的长与宽之和为a, 则周长为2a.(2)设②的边长是m,把⑤的周长用含m和a的代数式表示,再计算阴影部分⑥的周长和阴影部分⑤的周长之差即可,其结果正好等于正方形②的周长.6.观察下表:我们把表格中字母的和所得的多项式称为"'特征多项式",例如:第1格的“特征多项式”为4x+y,第 2 格的“特征多项式”为 8x+4y, 回答下列问题:(1)第 3 格的“特征多项式”为________第 4 格的“待征多项式”为________, 第 n 格的“特征多项式”为________.(2)若第 m 格的“特征多项式”与多项式-24x+2y-5 的和不含有 x 项,求此“特征多项式”. 【答案】(1)12x+9y;16x+16y;4nx+n2y(2)解:由(1)可得,第m格的“特征多项式”是4mx+m2y,∴(4mx+m2y)+(−24x+2y−5)=4mx+m2y−24x+2y−5=(4m−24)x+(m2+2)y−5,∵第m格的“特征多项式”与多项式−24x+2y−5的和不含有x项,∴4m−24=0,解得m=6,∴此“特征多项式”是24x+36y.【解析】【解答】解:(1)由表格可得:第3格的“特征多项式”为12x+9y,第4格的“特征多项式”为16x+16y,第n格的“特征多项式”为4nx+n2y,故答案为:12x+9y, 16x+16y, 4nx+n2y;【分析】(1)根据表格中的数据找出规律即可解答本题;(2)根据(1)中的结果可以写出第m格的“特征多项式”,然后根据“和不含有x项”可以求得m的值,从而可以写出此“特征多项式”.7.(1)已知3x2-5x+1=0,求下列各式的值:①3x+ ;②9x2+ ;(2)若3x m+1-2x n-1+x n是关于x的二次多项式,试求3(m-n)2-4(n-m)2-(m-n)3+2(n-m)3的值.【答案】(1)解:①∵3x2﹣5x+1=0,∴3x﹣5 0,∴3x 5;②∵3x 5,∴,∴ 25,∴ 19(2)解:3(m﹣n)2﹣4(n﹣m)2﹣(m﹣n)3+2(n﹣m)3=﹣(m﹣n)2+3(n﹣m)3∵3x m+1﹣2x n﹣1+x n是关于x的二次多项式,∴或或或,解得:或或或.①当m=1,n=2时,原式=﹣(1﹣2)2+3(2﹣1)3=﹣1+3=2;②当m=1,n=1时,原式=﹣(1﹣1)2+3(1﹣1)3=0;③当m=0,n=2时,原式=﹣(0﹣2)2+3(2﹣0)3=﹣4+24=20;④当m=﹣1,n=2时,原式=﹣(﹣1﹣2)2+3(2+1)3=﹣9+81=72.综上所述:原式的值为2或0或20或72【解析】【分析】(1)①根据等式的性质,由3x2-5x+1=0 得出3x﹣5 + 0,即3x+ 5;②将3x+ 5的两边完全平方,再利用完全平方公式展开移项合并同类项即可;(2)首先将代数式合并同类项化为最简形式;由于多项式中,次数最高的项的次数就是单项式的次数,根据3x m+1﹣2x n﹣1+x n是关于x的二次多项式,即可列出关于m,n的方程组:或或或,一一求解即可分别得出m,n的值,再分别代入代数式化简的结果即可算出答案。
8.如图,A、B、C三点在数轴上,A表示的数为-10,B表示的数为14,点C为线段AB的中点,动点P在数轴上,且点P表示的数为m.(1)求点C表示的数;(2)点P从A点出发,沿射线AB向终点B运动,设BP的中点为M,用含m的整式表示线段MC的长.(3)在(2)的条件下,当m为何值时,AP-CM=2PC.【答案】(1)解:∵A表示的数为-10,B表示的数为14,点C为线段AB的中点,∴点C表示的数为 =2;(2)解:∵BP的中点为M,∴BM= BP= (14-m),∴MC=BC-BM=12- (14-m)=5+ m(3)解:∵AP=m+10,CM=5+ m,PC=|m-2|,∴当AP-CM=2PC时,m+10-(5+ m)=2|m-2|,∴ m+5=2m-4,或 m+5=-(2m-4),解得m=6,或m=- .【解析】【分析】(1)根据线段的中点坐标公式即可求出点C表示的数;(2)根据线段中点的定义可得再代入MC=BC-BM,计算即可求解;(3)用含m的代数式分别表示AP=m+10,,PC=|m-2|,代入AP-CM=2PC,解方程即可.9.如图:在数轴上A点表示数,B点示数,C点表示数c,b是最小的正整数,且a、b满足|a+2|+ (c-7)2=0.(1)a=________,b=________,c=________;(2)若将数轴折叠,使得A点与C点重合,则点B与数________表示的点重合;(3)点A.B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=________,AC=________,BC=________.(用含t的代数式表示)(4)请问:3BC-2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)-2;1;7(2)4(3)3t+3;5t+9;2t+6(4)解:不变.3BC-2AB=3(2t+6)-2(3t+3)=12【解析】【解答】解:(1)∵|a+2|+(c-7)2=0,∴a+2=0,c-7=0,解得a=-2,c=7,∵b是最小的正整数,∴b=1;故答案为:-2,1,7.( 2 )(7+2)÷2=4.5,对称点为7-4.5=2.5,2.5+(2.5-1)=4;故答案为:4.( 3 )AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.【分析】(1)根据绝对值的非负性,偶次幂的非负性,由几个非负数的和为0,则这几个数都为0,列出方程组a+2=0,c-7=0,求解得出a,c的值,再根据最小的正整数是1,得出b的值;(2)根据(1)可知A、C两点间的距离为2+7=9,根据折叠的性质得出折迹处到A、C两点的距离是(7+2)÷2=4.5,折叠处表示的数是7-4.5=2.5,B点距离折叠处的距离是 2.5-1=1.5,根据对称的性质即可得出与点B重合的点所表示的数是2.5+1.5=4;(3)根据路程等于速度乘以时间得出:A点运动的路程为t,B点运动的路程为2t,C点运动的路程为4t,由AB=A点运动的路程加上B点运动的路程再加上一开始AB两点间的距离得出AB=t+2t+3=3t+3,由AC=A点运动的路程加上C点运动的路程再加上一开始AC两点间的距离得出AC=t+4t+9=5t+9,由BC=C点运动的路程减去B点运动的路程再加上一开始BC两点间的距离得出BC=4t-2t+6=2t+6;(4)将(3)中得出的BC,AB的长度分别代入3BC-2AB ,即可列出一个整式的加减法算式,再去括号合并同类项后发现是一个常数,于是得出 3BC-2AB 的值与字母t无关。