(完整word版)立体几何(平行关系的证明)

合集下载

立体几何平行垂直的证明方法

立体几何平行垂直的证明方法

立体几何平行垂直的证明方法在立体几何中,平行和垂直是两个重要的概念。

平行指的是两条直线或两个平面在平面内没有交点,而垂直则表示两条直线或两个平面之间存在90度的夹角。

在解决立体几何问题时,我们常常需要证明两条线段或两个平面是否平行或垂直。

本文将介绍几种常用的证明方法,帮助读者更好地理解立体几何中平行和垂直的性质。

一、平行线的证明方法1. 共面法:若两条直线在同一个平面内且没有交点,则它们是平行线。

要证明两条直线平行,我们可以找到一个共同的平面,使得这两条直线在该平面内且没有交点。

通过构建图形或使用法向量等方法,可以证明两条直线共面且没有交点,从而得出它们是平行线的结论。

2. 平行线定理:若两条直线与第三条直线分别平行,则这两条直线也是平行线。

这一方法常用于证明平行线的性质,通过构建平行线与其他直线的交点关系,可以得出所求结论。

3. 平行线的性质:在平面几何中,平行线具有很多性质。

常见的平行线定理包括等角定理、同位角定理、内错角定理等。

通过运用这些性质,可以证明两条直线平行。

二、垂直关系的证明方法1. 垂直定理:若两条直线互相垂直,则构成的四个角中有两个互为相应角。

根据这一定理,我们可以通过证明两个角互为相应角,从而得出两条直线互相垂直的结论。

2. 垂线定理:若两条直线互相垂直,则它们的斜率之积等于-1。

这一方法常用于证明两条直线垂直的情况。

通过计算两条直线的斜率,如果它们的斜率之积等于-1,则可以得出它们垂直的结论。

3. 垂直角的性质:在平面几何中,垂直角的性质是我们常用的性质之一。

两条直线垂直时,其错角是互相垂直的。

通过构建直线的错角,可以证明所求的两条直线垂直关系。

三、平面的平行和垂直关系的证明方法1. 共面定理:在空间几何中,三条或三条以上的直线如果在同一个平面内,则它们是共面的。

通过在空间中构建直线和平面的关系,可以证明所求直线是否共面。

2. 平行平面定理:若两个平面各与第三个平面平行,则这两个平面也是平行的。

高中数学立体几何判定定理与性质.docx

高中数学立体几何判定定理与性质.docx

高中立体几何判定定理及性质一、公理及其推论文字语言符号语言图像语言公理 1A l ,B l , A, B如果一条直线上的两l点在一个平面内,那么这条直线上所有的点都在这个平面内。

公理 2作用①用来验证直线在平面内;②用来说明平面是无限延展的如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

(那么它们有且只有一条通过这个公共点的公共直线)公理 3经过不在同一条直线上的三点,有且只有一个平面推论1经过一条直线和这条直线外的一点,有且只有一个平面推论 2经过两条相交直线,有且只有一个平面推论 3经过两条平行直线,有且只有一个平面公理 4 (平行公理)平行于同一条直线的两条直线平行Pl 且 P lA, B, C 不共线A, B,C 确定一个平面A有且只有一个平面,使 A, aa b P有且只有一个平面,使 a,ba ∥ b有且只有一个平面,使 a,ba ∥ ba ∥ cb ∥c ①用来证明两个平面是相交关系;②用来证明多点共线,多线共点。

用来证明多点共面,多线共面用来证明线线平行二、平行关系文字语言(1)公理 4 (平行公理)平行于同一条直线的两条直线平行(2)线面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

(3)线面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(4)面面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行 .符号语言图像语言作用a ∥ ba ∥ cb ∥ ca ∥ ba a ∥bb∥b a ∥ baa ∥b ∥a b O∥ab(5)面面平行的判定如果两个平面垂直于同一条直线,那么这两个平面平行。

OOOO∥(6)面面平行的性质定理如果两个∥a a ∥ b平行平面同时和第三b个平面相交 ,那么它们的交线平行。

( 7)面面平行的性∥质如果两个平面平行 , a ∥那么其中一个平面内a的直线平行于另一个平面。

空间中的平行关系——数学立体几何

空间中的平行关系——数学立体几何

【思路】
本题可以转化为证明EE1平行于 平面FCC1内的一条直线或证明平 面A1ADD1与平面FCC1平行.
【解答】
证法一:在直四棱柱ABCD- A1B1C1D1 中 , 取 A1B1 的 中 点 F1 , 连 接 A1D , C1F1 ,
CF1. 因为AB=2CD,且AB∥CD,
所以CD平行且等于A1F1,
∵BC∥AD且BC=1/2AD, 又Q为AD的中点 即BC平行且等于AQ.
M
D
∴四边形BCQA为平行四边形, Q N
C
且N为AC中点,
又∵点M在是棱PC的中点, A
B
∴ MN // PA
………………...…2分
∵ MN⊂平面MQB,PA⊄平面MQB, ...………3分
∴ PA // 平面MBQ.
……………...……4分
【点评】
证明线面平行的方法主要有两种:利 用线面平行的判断定理和面面平行的 性质定理.定理的条件的叙述要完整, 同时也需根据不同特点的题选用不同 方法.关键是找到(或作出)平面内与已 知直线平行的直线,常用平行四边形 的对边平行(如本例)或三角形的中位线 的性质(如变式题),还可以逆用线面平 行的性质先推测出需要的直线.
空间中的平行关系
空间平行例题
空间中的平行关系例题
[2009·山东] 如图所示,在直四棱柱ABCD- A1B1C1D1 中 , 底 面 ABCD 为 等 腰 梯 形 , AB∥CD , AB = 2CD , E 、 E1 、 F 分 别 是 棱 AD、AA1、AB的中点. 证明:直线EE1∥平面FCC1.
2011·丰台一模·立体几何
如图,在四棱锥P-
P
ABCD中,底面ABCD

立体几何——平行

立体几何——平行

立体几何——平行关系1.线面平行:(1)判定定理: (口诀:线线平行 线面平行)(2)性质定理: (口诀:线面平行 线线平行)2.面面平行:(1)判定定理: (口诀:线面平行,则面面平行)(2)性质定理:① (口诀:面面平行,则线面平行)② (口诀:面面平行,则线线平行)1、线线平行、线面平行、面面平行相互之间的转化图为:线线平行 线面平行面面平行直线与平面、平面与平面平行的判定与性质中,都隐含着直线与直线的平行,它成为联系直线与平面、平面与平面平行的纽带,成为证明平行问题的关键. 1.运用中点作平行线1. 如图,在底面为平行四边形的四棱锥P ABCD 中,点E 是PD 的中点. 求证:PB ∥平面AEC .2.如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 1//面BDC 1;判定定理 性质定理性质定理 判定定理判定定理性质定理PEDCBA3.已知四棱锥P ABCD 的底面是距形,M、N分别是AD、PB的中点,求证MN∥平面PCD .4如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;5.正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,M 为BB 1的中点, 求证: D 1O//平面A 1BC 1;6、在四棱锥P-ABCD 中,AB ∥CD ,AB=21DC ,中点为PD E . 求证:AE ∥平面PBC ;2.运用比例作平行线1、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BD 上的点,且SM AM =NDBN, 求证:MN ∥平面SDC2.如图所示,正四棱锥P —ABCD 的各棱长均为13,M ,N 分别为PA ,BD 上的点,且PM ∶MA =BN ∶ND =5∶8. (1)求证:直线MN ∥平面PBC ; (2)求线段MN 的长.A CNP D M BG图1EFBACDP3.P 是△ABC 所在平面外一点,A ′、B ′、C ′分别是△PBC 、△PCA 、△PAB 的重心。

立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的.( )(2)平面的单位法向量是唯一确定的.( )(3)若两平面的法向量平行,则两平面平行.( )(4)若两直线的方向向量不平行,则两直线不平行.( )(5)若a ∥b ,则a 所在直线与b 所在直线平行.( )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( )1.下列各组向量中不平行的是( )A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.已知平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为______________.4.若A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(x ,y ,z ),则x ∶y ∶z =________.题型一 证明平行问题例1 (2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ;(2)是否存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.题型二证明垂直问题例2如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC—A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC =2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角.(1)求证:CM∥平面PAD;(2)求证:平面PAB⊥平面PAD.题型三解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.如图所示,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A 组 专项基础训练1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A .相交B .平行C .在平面D .平行或在平面3.已知A (4,1,3),B (2,-5,1),C (3,7,-5),则平行四边形ABCD 的顶点D 的坐标是( )A .(2,4,-1)B .(2,3,1)C .(-3,1,5)D .(5,13,-3)4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为( )A .60°B .45°C .90°D .以上都不正确6.已知平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1)B .(23,23,1)C .(22,22,1) D .(24,24,1) 12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,若α⊥β,则t 等于( )A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.14.如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.(1)求证:EF⊥CD;(2)在平面PAD求一点G,使GF⊥平面PCB,并证明你的结论.。

2021届高考数学 8.6立体几何中的向量方式(一)证明平行与垂直配套文档 理

2021届高考数学 8.6立体几何中的向量方式(一)证明平行与垂直配套文档 理

§8.6立体几何中的向量方式(一)——证明平行与垂直1.用向量表示直线或点在直线上的位置(1)给定一个定点A和一个向量a,再任给一个实数t,以A为起点作向量AP→=t a,那么此向量方程叫做直线l以t为参数的参数方程.向量a称为该直线的方向向量.(2)对空间任一确信的点O,点P在直线l上的充要条件是存在唯一的实数t,知足等式OP→=(1-t)OA→+tOB→,叫做空间直线的向量参数方程.2.用向量证明空间中的平行关系(1)设直线l1和l2的方向向量别离为v1和v2,那么l1∥l2(或l1与l2重合)⇔v1∥v2.(2)设直线l的方向向量为v,与平面α共面的两个不共线向量v1和v2,那么l∥α或l⊂α⇔存在两个实数x,y,使v=x v1+y v2.(3)设直线l的方向向量为v,平面α的法向量为u,那么l∥α或l⊂α⇔v⊥u.(4)设平面α和β的法向量别离为u1,u2,那么α∥β⇔u1∥u2.3.用向量证明空间中的垂直关系(1)设直线l1和l2的方向向量别离为v1和v2,那么l1⊥l2⇔v1⊥v2⇔v1·v2=0.(2)设直线l的方向向量为v,平面α的法向量为u,那么l⊥α⇔v∥u.(3)设平面α和β的法向量别离为u1和u2,那么α⊥β⇔u1⊥u2⇔u1·u2=0.1.判定下面结论是不是正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确信的.( ×)(2)平面的单位法向量是唯一确信的.( ×)(3)假设两平面的法向量平行,那么两平面平行.( ×)(4)假设两直线的方向向量不平行,那么两直线不平行.( √)(5)假设a∥b,那么a所在直线与b所在直线平行.( ×)(6)假设空间向量a平行于平面α,那么a所在直线与平面α平行.( ×)2.假设直线l1,l2的方向向量别离为a=(2,4,-4),b=(-6,9,6),那么( ) A.l1∥l2B.l1⊥l2C.l1与l2相交但不垂直D.以上均不正确解析 a ·b =-12+36-24=0,故a ⊥b ,即l 1⊥l 2,选B.3. 已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),那么以下点P 中,在平面α内的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)答案 A解析 一一验证法,关于选项A ,MP →=(1,4,1), ∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内.4. 已知AB →=(1,5,-2),BC →=(3,1,z ),假设AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,那么实数x ,y ,z 别离为______________.答案 407,-157,4解析 由题意知,BP →⊥AB →,BP →⊥BC →.因此⎩⎪⎨⎪⎧AB →·BC →=0,BP →·AB →=0,BP →·BC →=0,即⎩⎪⎨⎪⎧1×3+5×1+-2×z =0,x -1+5y +-2×-3=0,3x -1+y -3z =0,解得,x =407,y =-157,z =4.5. 若A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α内的三点,设平面α的法向量n =(x ,y ,z ),那么x ∶y ∶z答案 2∶3∶(-4) 题型一 证明平行问题例1 (2021·浙江改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC . 证明:PQ ∥平面BCD .思维启发 证明线面平行,能够利用判定定理先证线线平行, 也可利用平面的法向量.证明 方式一 如图,取BD 的中点O ,以O 为原点,OD 、OP 所在射线为y 、z 轴的正半轴,成立空间直角坐标系Oxyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0).设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,因此Q ⎝ ⎛⎭⎪⎪⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1).又P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12,因此PQ →=⎝ ⎛⎭⎪⎪⎫34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD ,因此PQ ∥平面BCD .方式二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同证法一成立空间直角坐标系,写出点A 、B 、C 的坐标,设点C 坐标为(x 0,y 0,0). ∵CF →=14CD →,设F 点坐标系(x ,y,0)那么(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0)∴⎩⎪⎨⎪⎧x =34x 0y =24+34y∴OF →=(34x 0,24+34y 0,0)又由证法一知PQ →=(34x 0,24+34y 0,0),∴OF →=PQ →, ∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .思维升华 用向量证明线面平行的方式有(1)证明该直线的方向向量与平面的某一法向量垂直; (2)证明该直线的方向向量与平面内某直线的方向向量平行;(3)证明该直线的方向向量能够用平面内的两个不共线的向量线性表示.如下图,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E 、F 、G 别离是线段PA 、PD 、CD 的中点.求证:PB ∥平面EFG . 证明 ∵平面PAD ⊥平面ABCD 且ABCD 为正方形,∴AB 、AP 、AD 两两垂直,以A 为坐标原点,成立如下图的空间直角坐标系Axyz ,那么A (0,0,0)、B (2,0,0)、C (2,2,0)、D (0,2,0)、P (0,0,2)、E (0,0,1)、F (0,1,1)、G (1,2,0).∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →、FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 题型二 证明垂直问题例2 如下图,正三棱柱ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .思维启发 证明线面垂直能够利用线面垂直的概念,即证线与平面内的任意一条直线垂直;也能够证线与面的法向量平行.证明 方式一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,那么存在实数λ,μ,使m =λBA 1→+μBD →.令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,而且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝ ⎛⎭⎪⎫λ+12μa +μb +λc ,AB 1→·m =(a -c )·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫λ+12μa +μb +λc=4⎝ ⎛⎭⎪⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证.方式二 如下图,取BC 的中点O ,连接AO . 因为△ABC 为正三角形, 因此AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,因此AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,以OB →,OO 1→,OA →为x 轴,y 轴,z 轴成立空间直角坐标系, 则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0).因为n ⊥BA 1→,n ⊥BD →,故⎩⎨⎧n ·BA1→=0,n ·BD→=0⇒⎩⎪⎨⎪⎧-x +2y +3z =0,-2x +y =0,令x =1,那么y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),因此AB 1→=n ,因此AB 1→∥n ,故AB 1⊥平面A 1BD .思维升华 用向量证明垂直的方式(1)线线垂直:证明两直线所在的方向向量相互垂直,即证它们的数量积为零.(2)线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示. (3)面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.如下图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC=2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.求证:(1)CM ∥平面PAD ; (2)平面PAB ⊥平面PAD .证明 以C 为坐标原点,CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴成立如下图的空间直角坐标系Cxyz , ∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角,∴∠PBC =30°.∵PC =2,∴BC =23,PB =4. ∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M (32,0,32),∴DP →=(0,-1,2),DA →=(23,3,0),CM →=(32,0,32),(1)令n =(x ,y ,z )为平面PAD 的一个法向量,则⎩⎨⎧DP →·n =0,DA→·n =0,即⎩⎪⎨⎪⎧-y +2z =0,23x +3y =0,∴⎩⎪⎨⎪⎧z =12y ,x =-32y ,令y =2,得n =(-3,2,1).∵n ·CM →=-3×32+2×0+1×32=0,∴n ⊥CM →,又CM ⊄平面PAD ,∴CM ∥平面PAD . (2)取AP 的中点E ,那么E (3,2,1),BE →=(-3,2,1).∵PB =AB ,∴BE ⊥PA . 又∵BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE →⊥DA →,∴BE ⊥DA ,又PA ∩DA =A ,∴BE ⊥平面PAD , 又∵BE ⊂平面PAB ,∴平面PAB ⊥平面PAD . 题型三 解决探讨性问题例3 (2021·福建)如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD=1,E 为CD 的中点. (1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是不是存在一点P ,使得DP ∥平面B 1AE ?假设存在,求AP 的长;假设不存在,说明理由. 思维启发 利用向量法成立空间直角坐标系,将几何问题进行转化;关于存在性问题可通过计算下结论.(1)证明 以A 为原点,AB →,AD →,AA 1→的方向别离为x 轴,y 轴,z 轴的正方向成立空间直角坐标系(如图).设AB =a ,那么A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝ ⎛⎭⎪⎫a 2,1,0,B 1(a,0,1), 故AD 1→=(0,1,1),B 1E →=⎝ ⎛⎭⎪⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝ ⎛⎭⎪⎫a2,1,0.∵AD 1→·B 1E →=-a 2×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0). 使得DP ∥平面B 1AE ,现在DP →=(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎪⎫1,-a 2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a2-az 0=0,解得z 0=12.又DP ⊄平面B 1AE ,∴存在点P ,知足DP ∥平面B 1AE ,现在AP =12.思维升华 关于“是不是存在”型问题的探讨方式有两种:一种是依照条件作出判定,再进一步论证.另一种是利用空间向量,先设出假设存在点的坐标,再依照条件求该点的坐标,即找到“存在点”,假设该点坐标不能求出,或有矛盾,那么判定“不存在”.如下图,四棱锥S —ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD .(2)假设SD ⊥平面PAC ,那么侧棱SC 上是不是存在一点E ,使得BE ∥平面PAC .假设存在,求SE ∶EC 的值;假设不存在,试说明理由.(1)证明 连接BD ,设AC 交BD 于O ,那么AC ⊥BD . 由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →别离为x 轴、y 轴、z 轴正方向,成立空间直角坐标系如图. 设底面边长为a ,那么高SO =62a ,于是S ⎝ ⎛⎭⎪⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎪⎫-22a ,0,0,B ⎝ ⎛⎭⎪⎪⎫22a ,0,0,C ⎝ ⎛⎭⎪⎪⎫0,22a ,0,OC →=⎝ ⎛⎭⎪⎪⎫0,22a ,0,SD →=⎝ ⎛⎭⎪⎪⎫-22a ,0,-62a ,那么OC →·SD →=0. 故OC ⊥SD .从而AC ⊥SD .(2)解 棱SC 上存在一点E 使BE ∥平面PAC .理由如下:由已知条件知DS →是平面PAC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎪⎫22a ,0,62a ,CS →=⎝ ⎛⎭⎪⎪⎫0,-22a ,62a ,BC →=⎝ ⎛⎭⎪⎪⎫-22a ,22a ,0.设CE →=tCS →,那么BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎪⎫-22a ,22a 1-t ,62at ,而BE →·DS →=0⇔t =13.即当SE ∶EC =2∶1时,BE →⊥DS →.而BE 不在平面PAC 内,故BE ∥平面PAC .利用向量法解决立体几何问题典例:(12分)(2021·湖南)如下图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.(1)证明:CD ⊥平面PAE ;(2)假设直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P -ABCD 的体积. 思维启发 此题中的(1)有两种证明思路:(1)利用常规方式,将证明线面垂直转化为证明线线垂直,利用线面垂直的判定定理证之; (2)将证明线面垂直问题转化为向量间的关系问题,证明向量垂直;然后计算两个向量的数量积. 标准解答方式一 (1)证明 如图,连接AC .由AB =4,BC =3,∠ABC =90°得AC =5.[1分] 又AD =5,E 是CD 的中点,因此CD ⊥AE .[2分]因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,因此PA ⊥CD .[4分] 而PA ,AE 是平面PAE 内的两条相交直线, 因此CD ⊥平面PAE .[5分](2)解 过点B 作BG ∥CD ,别离与AE ,AD 相交于点F ,G ,连接PF . 由(1)CD ⊥平面PAE 知,BG ⊥平面PAE .于是∠BPF 为直线PB 与平面PAE 所成的角,[6分] 且BG ⊥AE .由PA ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角.[7分] 由题意得∠PBA =∠BPF , 因为sin∠PBA =PAPB,sin∠BPF =BFPB,因此PA =BF .由∠DAB =∠ABC =90°知,AD ∥BC .又BG ∥CD ,因此四边形BCDG 是平行四边形. 故GD =BC =3.于是AG =2.在Rt△BAG 中,AB =4,AG =2,BG ⊥AF ,因此BG =AB 2+AG 2=25,BF =AB 2BG =1625=855. 于是PA =BF =855.[10分]又梯形ABCD 的面积为S =12×(5+3)×4=16, 因此四棱锥P -ABCD 的体积为V =13×S ×PA =13×16×855=128515.[12分] 方式二 如图,以A 为坐标原点,AB ,AD ,AP 所在直线别离为x 轴,y 轴,z 轴成立空间直角坐标系.设PA =h ,那么A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).[2分](1)证明 易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,[4分]因此CD ⊥AE ,CD ⊥AP .而AP ,AE 是平面PAE 内的两条相交直线,因此CD ⊥平面PAE .[5分](2)解 由题设和(1)知,CD →,PA →别离是平面PAE ,平面ABCD 的法向量.[6分]而PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,因此|cos 〈CD →,PB →〉|=|cos 〈PA →,PB →〉|,即⎪⎪⎪⎪⎪⎪CD →·PB →|CD →|·|PB →|=⎪⎪⎪⎪⎪⎪PA →·PB →|PA →|·|PB →|.[8分] 由(1)知,CD →=(-4,2,0),PA →=(0,0,-h ),又PB →=(4,0,-h ),故⎪⎪⎪⎪⎪⎪⎪⎪-16+0+025·16+h 2=⎪⎪⎪⎪⎪⎪⎪⎪0+0+h 2h ·16+h 2. 解得h =855.[10分]又梯形ABCD 的面积为S =12×(5+3)×4=16, 因此四棱锥P -ABCD 的体积为V =13×S ×PA =13×16×855=128515.[12分] 温馨提示 (1)利用向量法证明立体几何问题,能够建坐标系或利用基底表示向量;(2)成立空间直角坐标系时要依照题中条件找出三条相互垂直的直线;(3)关于和平面有关的垂直问题,也可利用平面的法向量.方式与技术用向量知识证明立体几何问题有两种大体思路:一种是用向量表示几何量,利用向量的运算进行判定;另一种是用向量的坐标表示几何量,共分三步:(1)成立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)依照运算结果的几何意义来讲明相关问题.失误与防范用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方式证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.假设用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外. A 组 专项基础训练(时刻:40分钟)一、选择题1. 假设直线l 的一个方向向量为a =(2,5,7),平面α的一个法向量为u =(1,1,-1),那么( )A .l ∥α或l ⊂αB .l ⊥αC .l ⊂αD .l 与α斜交答案 A2. 假设直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0)B .a =(1,3,5),n =(1,0,1)C .a =(0,2,1),n =(-1,0,-1)D .a =(1,-1,3),n =(0,3,1)答案 D解析 假设l ∥α,那么a ·n =0,D 中,a ·n =1×0+(-1)×3+3×1=0,∴a ⊥n .3. 设平面α的法向量为a =(1,2,-2),平面β的法向量b =(-2,h ,k ),假设α∥β,那么h +k 的值为( )A .-2B .-8C .0D .-6答案 C解析 由α∥β得a ∥b , ∴-21=h 2=k -2, ∴h =-4,k =4,∴h +k =0.4. 已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),假设a ,b ,c 三向量共面,那么实数λ等于( ) A.627 B.637 C.607 D.657答案 D解析 由题意得c =t a +μb =(2t -μ,-t +4μ,3t -2μ), ∴⎩⎪⎨⎪⎧ 7=2t -μ5=-t +4μλ=3t -2μ,∴⎩⎪⎨⎪⎧ t =337μ=177λ=657.5. 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.那么AM 与PM 所成的角为( )A .60°B .45°C .90°D .以上都不正确答案 C解析 以D 点为原点,别离以DA ,DC ,DD 1所在直线为x ,y ,z 轴,成立如下图的空间直角坐标系Dxyz , 依题意,可得,D (0,0,0),P (0,1,3),C (0,2,0),A (22,0,0), M (2,2,0).∴PM →=(2,1,-3), AM →=(-2,2,0),∴PM →·AM →=(2,1,-3)·(-2,2,0)=0,即PM →⊥AM →,∴AM ⊥PM .二、填空题6. 已知平面α和平面β的法向量别离为a =(1,1,2),b =(x ,-2,3),且α⊥β,那么x =________.答案 -4解析 ∵a·b =x -2+6=0,∴x =-4.7. 设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确信的平面上,那么a =________.答案 16解析 PA →=(-1,-3,2),PB →=(6,-1,4).依照共面向量定理,设PC →=xPA →+yPB → (x 、y ∈R ),那么(2a -1,a +1,2)=x (-1,-3,2)+y (6,-1,4)=(-x +6y ,-3x -y,2x +4y ),∴⎩⎪⎨⎪⎧ 2a -1=-x +6y ,a +1=-3x -y ,2=2x +4y , 解得x =-7,y =4,a =16.8. 如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 别离为A 1B 和AC 上的点,A 1M =AN =2a 3,那么MN 与平面BB 1C 1C 的位 置关系是________.答案 平行解析 ∵正方体棱长为a ,A 1M =AN =2a 3, ∴MB →=23A 1B →,CN →=23CA →, ∴MN →=MB →+BC →+CN →=23A 1B →+BC →+23CA → =23(A 1B 1→+B 1B →)+BC →+23(CD →+DA →) =23B 1B →+13B 1C 1→. 又∵CD →是平面B 1BCC 1的法向量,∴MN →·CD →=⎝ ⎛⎭⎪⎫23B 1B →+13B 1C 1→·CD →=0, ∴MN →⊥CD →.又∵MN ⊄平面B 1BCC 1,∴MN ∥平面B 1BCC 1.三、解答题9. 如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ . 证明 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 为x 轴的正半轴成立空间直角坐标系Dxyz .依题意有Q (1,1,0),C (0,0,1),P (0,2,0),那么DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0).∴PQ →·DQ →=0,PQ →·DC →=0.即PQ ⊥DQ ,PQ ⊥DC ,又DQ ∩DC =D ,故PQ ⊥平面DCQ ,又PQ ⊂平面PQC ,∴平面PQC ⊥平面DCQ .10. 如图,在底面是矩形的四棱锥P -ACBD 中,PA ⊥底面ABCD ,E ,F 别离是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .证明 (1)以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,成立如下图的空间直角坐标系,那么A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),∴E (12,1,12),F (0,1,12),EF →=(-12,0,0),PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0).∵EF →=-12AB →,∴EF →∥AB →,即EF ∥AB , 又AB ⊂平面PAB ,EF ⊄平面PAB ,∴EF ∥平面PAB .(2)∵AP →·DC →=(0,0,1)·(1,0,0)=0, AD →·DC →=(0,2,0)·(1,0,0)=0,∴AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,∴DC ⊥平面PAD .∵DC ⊂平面PDC ,∴平面PAD ⊥平面PDC .B 组 专项能力提升(时刻:30分钟)1. 已知a =(1,1,1),b =(0,2,-1),c =m a +n b +(4,-4,1).假设c 与a 及b 都垂直,那么m ,n 的值别离为 ( ) A .-1,2 B .1,-2 C .1,2 D .-1,-2答案 A解析 由已知得c =(m +4,m +2n -4,m -n +1),故a·c =3m +n +1=0,b·c =m +5n -9=0.解得⎩⎪⎨⎪⎧ m =-1,n =2. 2. 已知平面ABC ,点M 是空间任意一点,点M 知足条件OM →=34OA →+18OB →+18OC →,那么 直线AM ( )A .与平面ABC 平行B .是平面ABC 的斜线C .是平面ABC 的垂线D .在平面ABC 内答案 D解析 由已知得M 、A 、B 、C 四点共面.因此AM 在平面ABC 内,选D.3. 在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 别离为AB ,BC 的中点,点Q为平面ABCD 内一点,线段D 1Q 与OP 相互平分,那么知足MQ →=λMN →的实数λ的有________个.答案 2解析 成立如图的坐标系,设正方体的边长为2,那么P (x ,y,2),O (1,1,0),∴OP 的中点坐标为 ⎝ ⎛⎭⎪⎫x +12,y +12,1, 又知D 1(0,0,2),∴Q (x +1,y +1,0),而Q 在MN 上,∴x Q +y Q =3,∴x +y =1,即点P 坐标知足x +y =1.∴有2个符合题意的点P ,即对应有2个λ.4. 如下图,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 别离为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .证明 (1)如图成立空间直角坐标系Axyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4).取AB 中点为N ,连接CN ,则N (2,0,0),C (0,4,0),D (2,0,2),∴DE →=(-2,4,0),NC →=(-2,4,0),∴DE →=NC →,∴DE ∥NC ,又∵NC ⊂平面ABC ,DE ⊄平面ABC .故DE ∥平面ABC .(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0).B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0,B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.∴B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF ,又∵AF ∩FE =F ,∴B 1F ⊥平面AEF .5. 在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 别离是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论.(1)证明 如图,以DA 、DC 、DP 所在直线别离为x 轴、y 轴、z 轴成立空间直角坐标系,设AD =a ,那么D (0,0,0)、A (a,0,0)、B (a ,a,0)、C (0,a,0)、E ⎝ ⎛⎭⎪⎫a ,a 2,0、 P (0,0,a )、F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2. EF →=⎝ ⎛⎭⎪⎫-a 2,0,a 2,DC →=(0,a,0). ∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),那么FG →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2, 假设使GF ⊥平面PCB ,那么由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a,0,0) =a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a 2; 由FG →·CP →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(0,-a ,a ) =a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0. ∴G 点坐标为⎝ ⎛⎭⎪⎫a 2,0,0,即G 点为AD 的中点.。

立体几何中线面平行的经典方法+经典题(附详细解答)

立体几何中线面平行的经典方法+经典题(附详细解答)

DB A 1A高中立体几何证明平行的专题(基本方法)立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。

(2)利用三角形中位线的性质。

(3)利用平行四边形的性质。

(4)利用对应线段成比例。

(5)利用面面平行,等等。

(1) 通过“平移”再利用平行四边形的性质1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形*2、如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3, 过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC. (Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形-3、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM.…分析:连EA ,易证C 1EAD 是平行四是(第1题图)PEDCBAMF -,,AD CD AD BA ⊥⊥//EB PAD 平面E FG M AD CD BD BC AM EFG 求证:AB 1ABEF ⊥ABCD ABEFABCD 090,BAD FAB BC∠=∠=//=12AD BE //=12AF ,G H ,FA FD BCHG ,,,C D F E ) 利用平行四边形的性质9.正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,M 为BB 1的中点, 求证: D 1O21中点为PD E 求证:AE ∥平面PBC ; &分析:取PC 的中点F ,连EF 则易证ABFE 是平行四边形11、在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90︒,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF. (Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE; (Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.#(I )证法一: 因为EF90ACB ∠=︒90,EGF ABC∠=︒∆.EFG ∆BC FG 21=ABCD BC AM 21=FA ⊂GM ⊄SM AM NDBNABC P -PB ⊥ABC 90BCA ∠=E PCM AB F PA 2AF FP =(1)求证:BE ⊥平面PAC ; (2)求证://CM 平面BEF ;分析: 取AF 的中点N ,连CN 、MN ,易证平面CMN1!AFEBCD M。

高三立体几何证明知识点

高三立体几何证明知识点

高三立体几何证明知识点立体几何是高中数学中的重要部分,它研究的是三维空间中的几何图形及其性质。

在高三阶段,同学们需要掌握并运用一些立体几何的证明知识点。

本文将介绍一些常见的高三立体几何证明知识点,并探讨它们的证明方法和应用。

一、平行关系的证明在立体几何中,平行关系的证明是十分常见的。

平行关系的证明方法有多种,下面我们将介绍两种常用的方法。

1. 使用平行线性质在平面几何中,我们学过平行线的性质,这些性质同样适用于立体几何中的平行关系。

例如,当两个平面分别与第三个平面垂直时,它们之间的交线就是平行于第三个平面的直线。

通过运用平行线的性质,我们可以进行平行关系的证明。

2. 使用对称性对称性是立体几何中常用的证明方法之一。

当我们需要证明两条线段平行时,可以通过构造一条第三条线段,并证明这三条线段关于某个轴线的对称性。

通过利用对称性,我们可以得出两条线段平行的结论。

二、相似关系的证明相似关系是立体几何中另一个重要的概念。

相似关系的证明方法也有多种,下面我们将介绍两种常用的方法。

1. 利用比例关系相似三角形的三个对应边的比例相等。

根据这个性质,我们可以通过计算两个三角形的对应边之间的比值来证明它们的相似关系。

具体而言,我们可以利用距离比例和角度比例来求解相似三角形之间的比例关系,并进而得出它们相似的结论。

2. 使用旋转和平移旋转和平移是几何中常用的操作方法。

在证明相似关系时,我们可以通过将一个图形旋转或平移后与另一个图形重合,来证明它们的相似关系。

通过旋转和平移,我们可以使得两个图形具有相同的形状,从而得出它们相似的结论。

三、垂直关系的证明垂直关系是立体几何中常见的关系之一。

证明两条线段垂直的方法有多种,下面我们将介绍两种常用的方法。

1. 使用垂直线性质在几何中,我们学过垂直线的性质,例如,垂直线的斜率乘积为-1。

当我们需要证明两条线段垂直时,可以通过计算它们的斜率,并验证乘积是否为-1。

通过运用垂直线的性质,我们可以得出两条线段垂直的结论。

立体几何中的平行关系

立体几何中的平行关系

立体几何中的平行关系在立体几何中,平行关系是非常重要的概念。

平行关系是指两条直线或者两个平面在空间中永远不相交的关系。

在几何图形的构造和推导中,平行关系常被用来解决问题和证明定理。

本文将介绍平行关系的基本定义、特征和性质,并探讨平行关系在立体几何中的应用。

一、平行关系的定义及特征在平面几何中,平行线是指在同一平面上,不相交、不会相交、永不相交的两条直线。

在空间几何中,平行面是指在三维空间中,不相交、不会相交、永不相交的两个平面。

平行关系是指这样的特定关系,即两条直线或者两个平面之间永远不会相交。

平行关系的特征有两个重要条件:1. 两条直线或者两个平面上的任意一对相交直线的对应角度相等;2. 两条直线或者两个平面上的任意一对相交线段的比例相等。

根据这两个特征条件,我们可以判断两条直线或者两个平面是否平行。

二、平行关系的性质1. 平行关系具有传递性:如果直线AB平行于直线CD,直线CD平行于直线EF,那么直线AB也平行于直线EF。

这个性质可以类推到平面平行关系上。

2. 平行关系具有对称性:如果直线AB平行于直线CD,那么直线CD也平行于直线AB。

同样地,平面平行关系也具有对称性。

3. 平行关系具有自反性:直线AB和直线AB是平行的,平面P和平面P是平行的。

这意味着同一条直线或者平面与自身平行。

4. 平行关系具有唯一性:两条直线(或两个平面)要么平行,要么交于一点。

不存在一条直线(或一个平面)同时与另外两条直线(或两个平面)平行。

三、立体几何中的平行关系应用1. 平行线与平行面的交点问题:在立体几何中,我们常常需要研究平行线与平行面的交点问题。

根据平行关系的性质,我们可以得出结论:平行线与同一个平面相交,其交点在这个平面上任意一条直线上。

2. 平行关系的运用:a. 平行线截割三角形的性质:如果在一个三角形中,有一对平行线分别截断两边,那么这两个截断线的比等于被截断边的比。

b. 平行线截割平行四边形的性质:如果在一个平行四边形中,有一对平行线分别截断两个对边,那么这两个截断线的比等于被截断边的比。

空间立体几何中的平行、垂直证明

空间立体几何中的平行、垂直证明
又∵AH⊂平面 PAB,且ED 平面 PAB
∴DE∥平面 PAB.
精选ppt
H
构造平行四边行法
23
(2)证明 在直角梯形中,CB⊥AB, 又∵平面 PAB⊥平面 ABCD, 且平面 PAB∩平面 ABCD=AB, ∴CB⊥平面 PAB. ∵CB⊂平面 PBC, ∴平面 PBC⊥平面 PAB.
精选ppt
看到中点找中点
D1 A1
DE A
C1
B1
F
C B
精选ppt
7
定理应用
空间中的平行
方法一):构造平行四边形
D1 A1
DE A
M
C1
B1
F
C
N
B
精选ppt
8
定理应用
空间中的平行
方法二):构造平行平面
D1 A1
DE A
C1
B1
F
HC B
精选ppt
9
定理应用
空间中的平行
例 2.如图所示, P在 AB四 C 中D 棱 ,锥 已知 A四 BC 是 边 D 形 平行四M 边 ,N分 形别 ,是PA点 ,, BC的中 证明:MND //面PPC
精选ppt
25
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
感 谢
感 谢
阅阅
读读
分析: (1)证明线面平行只需在平面内找一条和 该直线平行的直线即可,也可转化为经过这条直线 的平面和已知平面平行;(2)证明面面垂直,只需在 一个平面内找到另一个平面的垂线.
精选ppt
21

立体几何中平行与垂直证明方法归纳

立体几何中平行与垂直证明方法归纳

a ∥
a∥
α
a a
β
3) 利用定义:直线在平面外,且直线与平面没有公共点
(三)平面与平面平行的证明
常见证明方法:
1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
3
a ⊂ b ⊂
a ∩b P
a // b //
⇒ /性:如正方体的上下底面互相平行等
一条直线与一个平面内的两条相交直线都垂直,则该直线垂直于此平面。
a
b
ab
A
l
l a l b
l
b
Aa
4) 利用平面与平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
5
l
a
a
a l
l
5) 利用常用结论:
① 一条直线平行于一个平面的一条垂线,则该直线也垂直于此平面。
在同一个平面内,垂直于同一条直线的两条直线互相平行。
8) 利用定义:在同一个平面内且两条直线没有公共点
(二)直线与平面平行的证明
1) 利用直线与平面平行的判定定理:
平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。
a
a
b a∥
a∥b
b
2) 利用平面与平面平行的性质推论:
两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。
a b ba
b a
α
4) 利用平面与平面垂直的性质推论:
如果两个平面互相垂直,在这两个平面内分别作垂直于交线的直线,则这
两条直线互相垂直。
4
l a b al
bl
ab
β b

必修二立体几何初步知识点整理(可编辑修改word版)

必修二立体几何初步知识点整理(可编辑修改word版)

A1DB1C四棱柱 ⎪ 其他棱柱 ⎪⎩ ⎨ −棱−垂−直于−底面−→ 直棱柱 1 1一、基础知识(理解去记) 必修二立体几何初步知识点整理(一)空间几何体的结构特征 (1) 多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。

旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2) 柱,锥,台,球的结构特征1. 棱柱1.1 棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行, 由这些面所围成的几何体叫做棱柱。

1.2 相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:⎧斜棱柱 棱柱⎪ ⎧⎪ −底−面−是正−多形−→正棱柱 ⎨ ⎩② 底面为平行四边形侧棱垂直于底面底面为矩形底面为正方形 1.3 棱柱的性质:①侧棱都相等,侧面是平行四边形;侧棱与底面边长相等 ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

补充知识点 长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如D1C1图】 AC 2 = AB 2 + AD 2 + AA 2②(了解)长方体的一条对角线 AC 1 与过顶点 A 的三条棱所成的角AB分别是,,,那么cos 2+ cos 2 + cos 2 = 1, sin 2+ sin 2 + sin 2 = 2 ;③ ( 了解) 长方体的一条对角线 AC 1 与过顶点 A 的相邻三个面所成的角分别是,,, 则cos 2+ cos 2 + cos 2 = 2 , sin 2+ sin 2 + sin 2 = 1.1.4 侧面展开图:正 n 棱柱的侧面展开图是由 n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.正方体正四棱柱 长方体 直平行六面体 平行六面体①S 直棱柱侧 = c ⋅ h 1.5 面积、体积公式:(其中 c 为底面周长,h 为棱柱的高)S= c ⋅ h + 2S ,V= S ⋅ h2. 圆柱直棱柱全底棱柱底2.1 圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2 圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形.2.3 侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.2.4 面积、体积公式: S 圆柱侧= 2rh ;S 圆柱全= 2rh + 2r 2 ,V 圆柱=S 底 h=r 2h (其中 r 为底面半径,h 为圆柱高)3. 棱锥3.1 棱锥——有一个面是多边形,其余各面是有一个公共顶点的 三角形,由这些面所围成的几何体叫做棱锥。

必修二立体几何初步第三讲---平行关系.

必修二立体几何初步第三讲---平行关系.

专题平行关系本讲义主要内容:第一部分:【知识回顾】1.直线与平面平行的判定(1直线与平面平行的定义:如果一条直线与一个平面没有公共点,我们就说这条直线与这个平面平行.(2直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.符号表示为:.注意:这个定理是证明直线与平面平行最常用的一个定理,也就是说欲证明一条直线与一个平面平行,一是说明这条直线不在这个平面内,二是要证明已知平面内有一条直线与已知直线平行.2.两个平面平行的判定(1两个平面平行的定义:两个平面没有公共点,则两个平面平行.(2平面与平面的平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.符号表示为:.注意:这个定理的另外一种表达方式为“如果一个平面内有两条相交直线和另一个平面内的两条相交直线分别平行,那么这两个平面平行”.(3平行于同一平面的两个平面互相平行.即.3.直线与平面平行的性质(1 直线与平面平行的性质定理:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.符号表示为:.注意:如果一条直线和一个平面平行,那么这条直线和平面内的无数条直线平行,但不能误解为“如果一条直线与一个平面平行,那么这条直线就和平面内的任意一条直线平行”.实际上,如果一条直线和一个平面平行,这条直线和平面内的直线平行或异面,有两种位置关系.(2直线与平面平行的性质:过平面内一点的直线与该平面平行的一条直线平行,则这条直线在这个平面内.符号表示为:若,点,且,则.4.平面与平面平行的性质(1如果两个平面平行,那么其中一个平面内的任意直线均平行与另一个平面.此结论可以作为定理用,可用来判定线面平行.(2两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(3夹在两个平行平面间的平行线段相等.第二部分:【经典例题】例1 下面说法正确的是()A. 直线平行于平面内的无数条直线,则∥;B. 若直线在平面外,则∥;C. 若直线∥,直线,则∥;D. 与两条异面直线都平行的平面有无穷多个例2 下列说法中正确的是()①若一个平面内有两条直线都与另一个平面平行,则这两个平面平行;②若一个平面内有无数条直线都与另一个平面平行,则这两个平面平行;③若一个平面内任何一条直线都平行于另一个平面,则这两个平面平行;④若一个平面内的两条内的两条相交直线分别平行于另一个平面,则这两个平面平行。

高中数学 -空间立体几何中的平行、垂直证明定理总结 (1)

高中数学 -空间立体几何中的平行、垂直证明定理总结 (1)

l n
☺ 简称:线线垂直,线面垂直.
复习定理
空间中的垂直
2.直线与平面垂直性质
判定:如果一条直线和一个平面垂直,则称这条直线和这 个平面内任意一条直线都垂直.
l m
l
m
☺ 简称:线面垂直,线线垂直.
复习定理
空间中的垂直
3.平面与平面垂直判定
判定:如果一个平面经过另一个平面的一条垂线,则这两个 平面互相垂直.
(1)求证:BC1∥平面 CA1D; (2)求证:平面 CA1D⊥平面 AA1B1B. 证明:(1)连结AC1交A1C于E,连结DE.
∵AA1C1C为矩形,则E为AC1的中点. 又D是AB的中点,
∴在△ABC1中,DE∥BC1.
E
又DE⊂平面CA1D,
BC1⊄平面CA1D,
∴BC1∥平面CA1D.
证明:(2)∵AC=BC, D为AB的中点, ∴在△ABC中,AB⊥CD.
空间中的平行与垂直 定理总结
复习定理
空间中的平行
1.直线与平面平行的判定
平面外一条直线与此平面内的一条直线平行,则 该直线与此平面平行.
a
b
a
//
b
a // b
☺ 简称:线线平行,线面平行.
复习定理
空间中的平行
2.直线与平面平行的性质
一条直线与一个平面平行,则过这条直线的任一 平面与此平面的交线与该直线平行.
①若m⊥α,n∥α,则m⊥n;②若α⊥γ,β⊥γ,
则α∥β;
③若m∥α,n∥α,则m∥n;④若α∥β,β∥γ,
m⊥α,则m⊥γ.
正确的命题是( C)
A.①③
B.②③
C.①④
D.②④
解析 ②中平面α与β可能相交,③中m与n可以

(全国通用)2020高考数学艺体生文化课第八章立体几何第4节空间中的平行关系课件

(全国通用)2020高考数学艺体生文化课第八章立体几何第4节空间中的平行关系课件

且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则( )
A.BD∥平面EFGH,且四边形EFGH是矩形
B.EF∥平面BCD,且四边形EFGH是梯形
C.HG∥平面ABD,且四边形EFGH是菱形
D.EH∥平面ADC,且四边形EFGH是平行四边形 【答案】 B
【解析】由AE∶EB

AF∶FD
数学符号表示:a∥α,a⊂β,α∩β=c⇒a∥c.
3.面面平行的判定定理:一个平面内的两条相交直线与另一个 平面平行,则这两个平面平行.
a // , b// 数学符号表示: a ,b //
a b M
4.面面平行的性质定理:如果两个平行平面同时与第三个平面 相交,那么它们的交线平行.
则四边形EFMN是平行四边形(平面EFMN为所求截面),
且EF MN 2 AC 2, FM EN 1 PB 2,
3
3
所以截面的周长为2 4 8.
8.棱长为2的正方体ABCD-A1B1C1D1中,M是棱AA1的中点,过C,M,D1
作正方体的截面,则截面的面积是
.
【答案】 9 2
【答案】 B 【解析】 对于A选项, α内有无数条直线与β平行,则α与β相交 或α∥β,排除; 对于B选项, α内有两条相交直线与β平行,则α∥β ; 对于C选项, α, β平行于同一条直线,则α与β相交或α∥β ,排除; 对于D选项, α, β垂直于同一平面,则α与β相交或α∥β ,排除. 故选B.
7.在三棱锥P-ABC中,PB=6,AC=3,G为△PAC的重心,过点G作三
棱锥的一个截面,使截面平行于PB和AC,则截面的周长为
.
【答案】 8
【解析】 过点G作EF //AC,分别交PA, PC于点E, F,

平行关系、垂直关系

平行关系、垂直关系
线面平行
(1)定义——如果一条直线和一个平面没有 公共点,则直线与平面平行。
(2)判定定理——如果一条直线和一个平面 内的一条直线都平行,则直线与平面平行。
性质定理——如果一条直线与一个平面平 行,则过这条直线的任一平面与此平面交 线与该直线平行。
面面平行
定义——如果两个平面没有公共点,则这 两个平面平行。
小结
线面垂直 的定义 面面垂直的 性质定理
线线垂直 线面垂直 面面垂直
三垂线定理
线面垂直的 判定定理
面面垂直的 判定定理
[A设 ∴空所线点该解作PA((A12间在,.交∈析1A业))与先先中两由线β]1又于故题,∩确将证 个 公与因是三由BP处定 其另三 平 理BαA条∈推理1两 中∩2线 面两A直α论B=,β1条 一共 的直,B线=、2P该1直 条点 公线,,ACB分点线 直各共CAB可则别在111交线交点设P,、、确它∈于看,于B则CB定们BA一做第一CBP1平的A11∈点是点三与相1、面交C,某,,条C交CαC线C再两P直再C,1于1上∈1(证个线证,β公点共,B,该平这是C理BP点从Cγ点面,两这12.1,而.)是 的与点两,得这 交A个重三A两 线合平1线条 ,.面,共直 证从的线 明而交 分得析三线:共设点A.A1∩BB1=P, 再说明点P在CC1上
B
典型例题1、四面体ABCD中,面ADC⊥面 BCD,面ABD⊥面BCD,设DE是BC边上的 高,求证:平面ADE⊥面ABC
A
D CE

面面垂直

面ADC⊥面BCD
① 面ABD ⊥面BCD
AD ⊥面BCD
B

AD ⊥BC
③ DE ⊥BC
④ BC ⊥面ADE
面ABC ⊥面ADE

立体几何平行

立体几何平行

A BC DA B ` C` DE FAED 1CB 1D CBA立体几何——平行关系11.线面平行:(1)判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行 。

(记忆口诀:线线平行 线面平行)(2)性质定理: 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行. (记忆口诀:线面平行 线线平行)2.两个平面平行:(1)判定定理: 如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。

(记忆口诀:线面平行,则面面平行)(2)性质定理:① 如果两个平面平行同时与第三个平面相交,那它们的交线平行② 一个平面内的任一直线平行另一平面(记忆口诀:面面平行,则线线平行)1. a ∥α,b ∥α则a 与b 的位置关系( )A .平行B .异面C .相交D .以上情况均有可能2.a ,b 是两条不相交的直线,则过直线b 且平行于a 的平面( )A .有且只有一个B .至少有一个C .至多有一个D .以上答案都不对3、已知正方体ABCD-A 1B 1C 1D 1中,E ,F 分别是A 1B 1,B 1C 1的中点。

求证:EF ∥面AD 1C 。

4、如图,已知矩形ABCD 所在平面外一点P ,E 、F 分别是AB, PC 的中点 ,求证:EF ∥平面PAD ;5. 如图,四棱锥P -ABCD 的底面是正方形,点E 、F 分别为棱AB 、PD 的中点。

求证:AF ∥平面PCE ;6、如图,在正方体1111ABCD A BC D 中,E 是1AA 的中点, 求证:1//AC 平面BDE 。

CBDAPE F1A 17. 如图,在底面为平行四边形的四棱锥P ABCD 中,点E 是PD 的中点. 求证:PB ∥平面AEC .8.已知正四棱锥P —ABCD ,M 、N 分别是PA 、BD 上的点,且PM ∶MA=BN ∶ND=5∶8,求证:直线MN ∥平面PBC ; 9、正方体ABCD-A 1B 1C 1D 1,P 、Q 分别是正方形AA 1D 1D 和A 1B 1C 1D 1的中心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何(平行关系的证明)
线面平行的证明
利用中位线
1.在四棱锥ABCD P -中,底面ABCD 是正方形,侧棱⊥PD 底面ABCD ,DC PD =,E 是PC 的中点,作PB EF ⊥交PB 于点F 。

证明 :∥PA 平面EDB 。

2.如图,矩形ABCD 中,ABE AD 平面⊥,2===BC EB AE ,F 为CE 上的点,且
ACE BF 平面⊥.求证;BFD AE 平面//;
3.如图,四边形ABCD 与''ABB A 都是边长为a 的正方形,点E 是A A '的中点,
'A A ⊥平面ABCD 。

求证:C A '//平面BDE 。

B
C
N
M A B
D
C
O A
B
C
E
F
P
1
A 1
C 1
B 利用平行四边形
4.如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,
4
ABC π
∠=
, OA ABCD ⊥底面, 2OA =,M 为OA 的中点,
N 为BC 的中点。

证明:直线MN OCD 平面‖
5.在直三棱柱111C B A ABC -中, AC=4,CB=2,AA 1=2
ο60=∠ACB ,E 、F 分别是BC C A ,11的中点。

证明://1F C 平面ABE 。

6.如图,PA 垂直于矩形ABCD 所在的平面,AD PA 2==,CD 22=,E 、F 分别 是AB 、PD 的中点。

求证:AF//平面PCE ;
利用比例
7.如下图,设P 为长方形ABCD 所在平面外一点,M ,N 分别为AB ,PD 上的点,且MB AM =NP
DN
,求证:直线MN ∥平面PBC.
8.如图,正方形ABCD 的边长为13,平面ABCD 外一点P 到正方形各顶点的距离都是13,
M ,N 分别是PA ,DB 上的点,且58PM MA BN ND ==∶∶∶.求证:直线MN //平面PBC 。

9 正方形ABCD 交正方形ABEF 于AB (如图所示)M 、N 在对角线AC 、FB 上且AM= FN 。

求证:MN //平面BCE
A
B
C E
N D M
P
D A B
C F
E
M N
B A C
D
E M N
P A C
D
B
B
A
D
C
F E F
E
G
面面平行的证明
10.如图,在四棱锥V -ABCD 中,底面ABCD 是矩形,侧棱VA ⊥底面ABCD ,E 、F 、G 分别为VA 、VB 、BC 的中点.求证:平面EFG ∥平面VCD 。

11.在四棱锥ABCD P -中,ABCD 是矩形,N M E 、、分别是PC AB CD 、、的中点. 证明:平面//EMN 平面PAD .
12.在直角梯形ABCD 中,BC AD //,2222===AB AD BC ,︒=∠90ABC ,且E 、
F 分别为AB 、AD 的点,如图1,把ABD ∆沿BD 对折,使得平面ABD 与平面BCD 不
重合.在图2中,若λ===AC
AG
AD AF AB AE ,求证:平面//EFG 平面BCD .。

相关文档
最新文档