陶瓷基复合材料(CMC) PPT课件

合集下载

陶瓷基复合材料(CMC

陶瓷基复合材料(CMC
特点: 低密度,2.0-2.8g/cm3 高弹性模量(80-140GPa)和弯曲强度
(70-350MPa)
7
第三节 陶瓷粉末的烧结
粉末状物料在压制成型后,含有大量气孔,颗粒 之间接触面积较小,强度也比较低。经过高温作 用后,坯体中颗粒相互烧结,界面逐渐扩大成为 晶界,最后数个晶粒结合在一起,产生再结晶与 聚集再结晶,使晶粒长大。气孔体积缩小,大部 分甚至全部从体坯中排出,体收缩而致密,强度 增加,成坚固整体。上述整个过程叫烧结过程。
10
烧结作用力分析
表面张力产生的作用于ABCD表面上切线方向的力, 可由表面张力定义求出
11
由表可以看出,曲面压力随颗粒半径之降低而 增加,随曲面圆内角θ之减小而降低,亦即随 烧结之进行而降低。所以颗粒越细,曲面压力 越大,颈部成长越快。颈部长大表面积减小, 表面能也降低。
12
三、烧结机理
(一)颗粒的粘附作用
(7)氮化硅的电绝缘性也很好
5
三、碳化硅陶瓷
由反应烧结法(α-SiC+C粉 烧结)和 热压烧结(SiC+促进剂)法制备 特点: 较高的高温强度 较高的热导率 较好的热稳定性、耐磨性、耐腐蚀性和 抗蠕变性
6
四、玻璃陶瓷
含有大量微晶体的玻璃称为微晶玻璃或 玻璃陶瓷。常用的玻璃陶瓷有锂铝硅 (Al2LOi23O-S-iAOl22O,3M-SAiOS)2两,L个AS体)系和。镁铝硅(MgO-
39
模量
40
断裂韧性
没有增强时,断裂韧性随温度升高而降低,有晶须 增强后,因纤维拔出,在高温随温度升高而增大 41
2.蠕变
在高温或高应力的作用下,玻璃发生粘性流动, 应变急剧增大 42
3.热冲击性(热震性)

3陶瓷基复合材料(CMC)

3陶瓷基复合材料(CMC)

三、陶瓷基复合材料的界面和界面设计
1、界面的粘结形式 (1)机械结合 (2)化学结合 陶瓷基复合材料往往在高温下制备,由于增强体与基体的原 子扩散,在界面上更易形成固溶体和化合物。此时其界面是 具有一定厚度的反应区,它与基体和增强体都能较好的结合, 但通常是脆性的。 若增强体与基体在高温时不发生反应,那么在冷却下来时, 陶瓷的收缩大于增强体,由此产生的径向压应力τ与界面剪 切应力στ有关:τ = υ στ ,υ为摩擦系数,一般取0.1~0.6。
图10 - 10
陶瓷基复合材料界面示意图
3、界面性能的改善
为了获得最佳界面结合强度,希望避免界面化学 反应或尽量降低界面的化学反应程度和范围。 实际当中除选择增强剂和基体在制备和材料服役 期间能形成热动力学稳定的界面外,就是纤维表 面涂层处理。包括C、SiC、BN、ZrO2 和SnO2等。 纤维表面涂层处理对纤维还可起到保护作用。纤 维表面双层涂层处理是最常用的方法。其中里面 的涂层以达到键接及滑移的要求,而外部涂层在 较高温度下防止纤维机械性能降解。
纤维增韧
SiC/硼硅玻璃 SiC/
SiC/锂铝硅玻璃 SiC/


8 ~10
15~25
15~25
33~44
44~66
裂纹尺寸 大小, µm
131~204
二、陶瓷基复合材料的制备工艺 1、粉末冶金法 原料(陶瓷粉末、增强剂、粘结剂和助烧 剂)→ 均匀混合(球磨、超声等)→ 冷压 成形 → (热压)烧结。 关键是均匀混合和烧结过程防止体积收缩 而产生裂纹。
8、其它方法
2)原位复合法 利用化学反应生成增强组元—晶须或高长径比晶体 来增强陶瓷基体的工艺称为原位复合法。 其关键是在陶瓷基体中均匀加入可生成晶须的元素 或化合物,控制其生长条件使在基体致密化过程中 在原位同时生长出晶须;或控制烧结工艺,在陶瓷 液相烧结时生长高长径比的晶相,最终形成陶瓷基 复合材料。

陶瓷基复合材料(CMC)

陶瓷基复合材料(CMC)

陶瓷基复合材料(CMC)第四节陶瓷基复合材料(CMC)1.1概述⼯程中陶瓷以特种陶瓷应⽤为主,特种陶瓷由于具有优良的综合机械性能、耐磨性好、硬度⾼以及耐腐蚀件好等特点,已⼴泛⽤于制做剪⼑、⽹球拍及⼯业上的切削⼑具、耐磨件、发动机部件、热交换器、轴承等。

陶瓷最⼤的缺点是脆性⼤、抗热震性能差。

与⾦属基和聚合物基复合材料有有所不同的,是制备陶瓷基复合材料的主要⽬的之⼀就是提⾼陶瓷的韧性。

特别是纤维增强陶瓷复合材料在断裂前吸收了⼤量的断裂能量,使韧性得以⼤幅度提⾼。

表6—1列出了由颗粒、纤维及晶须增强陶瓷复合材料的断裂韧性和临界裂纹尺⼨⼤⼩的⽐较。

很明显连续纤维的增韧效果最佳,其次为品须、相变增韧和颗粒增韧。

⽆论是纤维、晶须还是颗粒增韧均使断裂韧性较整体陶瓷的有较⼤提⾼,⽽且也使临界裂纹尺⼨增⼤。

陶瓷基复合材料的基体为陶瓷,这是⼀种包括范围很⼴的材料,属于⽆机化合物纳构远⽐⾦属与合⾦复杂得多。

使⽤最多的是碳化硅、氮化硅、氧化铝等,它们普遍具有耐⾼温、耐腐蚀、⾼强度、重量轻和价格低等优点。

陶瓷材料中的化学键往注是介于离⼦键与共价键之间的混合键。

陶瓷基复合材料中的增强体通常也称为增韧体。

从⼏何尺⼨上可分为纤维(长、短纤维)、晶须和颗粒三类。

碳纤维是⽤来制造陶瓷基复合材料最常⽤的纤维之⼀。

碳纤维主要⽤在把强度、刚度、重量和抗化学性作为设计参数的构件,在1500霓的温度下,碳纤维仍能保持其性能不变,但对碳纤维必须进⾏有效的保护以防⽌它在空⽓中或氧化性⽓氛中被腐蚀,只有这样才能充分发挥它的优良性能。

其它常⽤纤维是玻璃纤维和硼纤维。

陶瓷材料中另⼀种增强体为晶须。

晶须为具有⼀定长径⽐(直径o 3。

1ym,长30—lMy”)的⼩单晶体。

从结构上看,晶须的特点是没有微裂纹、位偌、孔洞和表⾯损伤等⼀类缺陷,⽽这些缺陷正是⼤块晶体中⼤量存在且促使强度下降的主要原因。

在某些情况下,晶须的拉伸强度可达o.1Z(Z为杨⽒模量),这已⾮常接近⼗理论上的理想拉伸强度o.2Z。

复合材料课件第六章 陶瓷基复合材料-1

复合材料课件第六章 陶瓷基复合材料-1
抑制晶粒组织长大,获得超细晶粒结构材料, 显著改善材料的显微组织。
但在微波烧结陶瓷中存在一些值得关注的特殊 现象。
1)过热点。由于微波场的不均匀分布或 材料组分不均匀导致某些部分局部明显高于 其它部分,出现过热点。
2)热应力开裂。一些热膨胀系数大而热 导率又较小的陶瓷材料在微波降温段,由于 试样中存在的温度梯度而引起的热应力开裂。
1930年,美国科学家提出利用等离子体脉冲烧结原理 1965年,脉冲电流烧结技术在美国和日本等国得到应用 1988年,日本研制出第一台工业型等离子体烧结装置 1996年,日本组织了等离子体烧结研讨会,每年召开一次 1998年,瑞典购进等离子体烧结系统,对碳化物、氧化物及 生物陶瓷等进行较多研究工作 2006年6月武汉理工大学购置了国内首台等离子体烧结装置, 此后国内多所高校及研究所相继引进该装置,成为材料制备 的全新技术
微波烧结:微波烧结是一种新型的粉末 冶金烧结致密化工艺,微波烧结是利用 微波加热来对材料进行烧结。
微波加热中出现区别与常规加热的现象有促
进物质的扩散、加快致密化进程、降低反应
温度、加快反应进程。作为一种新型加热技 术具有以下优点:1)可经济地获得2000℃高 温;2)加热速度快,升温速率可达50℃/min; 3)具有即时性特点,只要有微波辐射,物料 即刻得到加热,微波停止加热也立刻停止;4) 微波能量转换率高,可达80~90;5)与常规 烧结相比烧结温度降低,同时快速升温可以
化学制粉 优点:高纯、超细、均匀 缺点:需复杂的设备,工艺严格,成本高
液相共沉淀法 溶胶-凝胶法 冰冻干燥法 喷雾干燥法
②成型
成型后,胚体的密度越高,烧结样品的收缩率越小, 尺寸约容易控制,缺陷约少。
模压成型 热压成型 轧膜成型 注射成型

第八章陶瓷基复合材料ppt课件

第八章陶瓷基复合材料ppt课件

的性能与SiCw含量之间的关系。
完整版PPT课件
50
断 裂 韧 性
弯 曲 强 度
f(MPa)
KIC(MPa.m1/2)
ZrO2(Y2O3)
复 合
SiCw含量(vol%)
SiCw含量(vol%)材Fra bibliotek料 的
维 氏 硬


弹 性 模 量
E(GPa) HV(GPa)



完整版PPT课件
51
SiCw含量(vol%)
完整版PPT课件
11
但是,必须对碳纤维进行有效 的保护以防止它在空气中或氧化性 气氛中被腐蚀,只有这样,才能充 分发挥它的优良性能。
完整版PPT课件
12
陶瓷基复合材料中的增强体中, 另一种常用纤维是玻璃纤维。
制造玻璃纤维的基本流程如下 图所示:
完整版PPT课件
13
将玻璃小球 熔化,然后通过 1mm左右直径的 小孔把它们拉出 来。
9
目前,碳纤维常规生产的品种主要有两种, 即高模量型和低模量型。
其中,高模量型的拉伸模量约为400 GPa, 拉伸强度约为1.7 GPa;
低模量型的拉伸模量约为240 GPa,拉伸
强度约为2.5 GPa。
完整版PPT课件
10
碳纤维主要用在把强度、刚度、 重量和抗化学性作为设计参数的构 件,在1500℃的温度下,碳纤维仍 能保持其性能不变。
可达0.1E(E为杨氏模量),这已非常接
近于理想拉伸强度0.2E。
相比之下,多晶的金属纤维和块
状金属的拉伸强度只有0.02E和0.001E。
完整版PPT课件
23
由于晶须具有最佳的热性能、低密度和 高杨氏模量,从而引起了人们对其特别的关 注。

第十四章--陶瓷基复合材料PPT课件

第十四章--陶瓷基复合材料PPT课件
制备方法:反应烧结、常压烧结、热压烧结等。
.
47
性能特点: 优异的高温强度,可保持到1600℃; 热传导能力高,仅次于氧化铍陶瓷; 抗磨损性高、摩擦系数低,良好的耐腐蚀
性,低热膨胀系数,适宜的力学性能。 缺点:断裂韧性较低且在任何温度下都很
脆。
.
53
14.3 增强体
1.纤维 2.晶须 3.颗粒
.
18
.
19
.
20
.
21
.
22
主要性能: 硬度很高,2000MPa,仅次于金刚石、氮化 硼、碳化硅 耐磨性好 耐腐蚀性强:由于铝氧之间键合力很大,氧化 铝又具有酸碱两重性。 电绝缘性好 抗热震性能差,不能承受环境温度的突然变化
.
23
2、氧化锆陶瓷
以氧化锆(ZrO2)为主要成分的陶瓷称为氧 化锆陶瓷。
.
54
碳纤维
1、碳纤维是指纤维中含碳量95%左右的碳纤维和含 碳量99%左右的石墨纤维。制造陶瓷基复合材料最 常用的纤维之一。
2、原料:
人造丝(粘胶纤维) 聚丙烯腈PAN(主要原料) 沥青
.
55
3、制造
热牵伸法
预氧化
碳化
.
石墨化
58
碳化
石墨化
.
59
.
60
4、性能特点
• 强度和模量高、密度小,和碳素材料一样具有很 好的耐酸性。
➢ 耐磨性,轴承、密封件和替代人骨(如髋关节)等 ➢ 低热传导性,汽车发动机中作活塞顶、缸盖底板
和汽缸内衬。 ➢ 氧化锆增韧氧化物陶瓷基体,制成韧性较基体材
料高的复合材料。 ➢ 氧化锆的韧性在所有陶瓷中是最高的。
.
30
二、氮化物陶瓷

金属陶瓷基复合材料PPT课件

金属陶瓷基复合材料PPT课件

15
5.3.2 陶瓷基复合材料的制造
制备方法:
①料浆浸渍-热压烧结法;②化学气相渗透法 ③有机先驱体热解法; ④熔融渗透法 ⑤直接氧化沉淀法; ⑥反应烧结法
(2)晶须和颗粒增强陶瓷基复合材料的制备工艺
①晶须复合材料制备工艺
a.烧结法
b.先驱体转化法
c.电泳沉积法
2020/4/2
16
② 原位生长晶须 ③ 颗粒增强陶瓷基复合材料
碳化硅保护高 温下的氧化
21
5.2.4.2 性能
➢ 轻质、高强度、高硬度和耐高温; ➢ 熔点高, 高温抗氧化性能好; ➢ 化学稳定好, 耐辐射,具有较高的热辐射 率; ➢ 具有碳纤维与碳材料的突出性能; ➢ 低温下,易于氧化。
2020/4/2
22
5.2.4.3 应用
航空和航天材料;生物医学材料;坦克装 甲用耐磨材料;化工领域的抗腐蚀材料等.
耐磨零件: 碳化硅,氧化铝颗粒,晶须等
用作集电和电触头: SiC,金属丝,石墨颗粒增强铝,铜等
耐腐蚀电池极板: 石墨碳纤维增强铅合金等
2020/4/2
5
5.2.3 金属基复合材料
➢ 重要体系 Al2O3/(Al、Mg)
➢ 主要特点 ● 高的比强度、比模量; ● 好的韧性; ● 比聚合物高的使用温度。
2020/4/2
10
5.2.3.3 金属基复合材料 的应用
➢ Bf/Al 用作航天飞机部件; ➢ Cf/Al用作NASA空间望远镜的
天线支架;
➢ FP-Al2O3f/ (Al,Mg)用作汽车部 件和内燃机连杆等等
2020/4/2
11
铝合金在飞机上的应用
2020/4/2
12
5.3 陶瓷基复合材料

复合材料概论精_第六章_陶瓷基复合材料ppt课件

复合材料概论精_第六章_陶瓷基复合材料ppt课件

• 延性(金属)颗粒:延性颗粒强化CMC的韧性 显著提高,但强度变化不明显,且高温性能下降。
• 高性能连续纤维:加入数量较多的高性能连续纤 维(如CF、SiC纤维)除韧性显著提高外,强 度和模量均有不同程度的提高。
表6-2 C纤维增韧Si3N4复合材料的性能
完整编辑ppt
7
表6-1 SiCw增韧氧化铝陶瓷性能
➢CMC的制备过程通常分为两个步骤: • 首先将增强材料掺入未固结的(或粉末
状的)基体材料中; • 使基体固结。
完整编辑ppt
13
6.3.1 连续纤维增强CMC成型工 艺
连续纤维增强CMC制备方法有料浆浸渍及 热压烧结法、化学气相沉积(CVD)法、直 接氧化沉积法、先驱体热解法等
1)料浆浸渍及热压烧结法:
晶须含量 弯曲强度
/vol% /MPa
0
250
10
500
20
550
30
600
维氏硬度HV /GPa 14.5 16.5 17.5 18.2
断裂韧性1K/2 IC /MPa·m 4.5 6 6.5 7
完整编辑ppt
8
表6-2 C纤维增韧Si3N4复合材料
的性能 材料
性能
Si3N4
C/Si3N4
密度
3.44
第六章 陶瓷基复合材料
• 现代陶瓷:具有耐高温、硬度高、耐磨 损、耐腐蚀及其相对密度低等优异的性 能。但它有致命的缺点即脆性。
• 陶瓷强韧化途径:颗粒弥散、纤维(晶 须)补强增韧、层状复合增韧、与金属 复合增韧及相变增韧。
• 陶瓷中加入适量的纤维(晶须)可明显 改善韧性,与高温合金相比密度低。
完整编辑ppt
• 优点:比常压烧结的烧结温度低,时间短, 致密度高;

陶瓷基复合材料 ppt课件

陶瓷基复合材料  ppt课件
陶瓷基复合材料
PPT课件
1
回顾一下:
陶瓷致命缺点:
脆性
改善韧性的有效手段:
向陶瓷材料中加入起增韧作用的第二相
增韧机制:
靠纤维(晶须)的拔出、裂纹的桥连与转向机 制对强度和韧性的提高产生作用。
PPT课件
2
10.3 陶瓷基复合材料的种类及基本性能
10.3.1 纤维增强陶瓷基复合材料
纤维增强陶瓷材料是常见的重要手段!! 按纤维排布方式的不同,可将其分为
裂纹垂直于纤维方向扩展示意图 PPT课件
5
当外加应力进一步提高时,由于基体与纤维间
的界面离解,同时又由于纤维的强度高于基体的强
度,从而使纤维从基体中拔出。 当拔出的长度达到某一临界值时,会使纤维发 生断裂。
裂纹垂直于纤维方向扩展示意图 PPT课件
6
因此,裂纹的扩展必须克服纤维的拔出功和
纤维断裂功,结果就是使得材料的断裂变得更为
困难,从而起到了增韧的作用。
单向排布纤维增韧陶瓷只是在纤维排列方向 上的轴向性能较为优越,而其横向性能显著低于 纵向性能,所以只适用于单轴应力的场合。
PPT课件
7
二、多向排布纤维增韧复合材料
而许多陶瓷构件则要求在二维及三维方向上 均具有优良的性能,这就要进一步的制备多向排 布纤维增韧陶瓷基复合材料。
莫来石+ Si3;SiCw
452
551~580
4.4
5.4~6.7
很明显,由ZrO2+SiCw与莫来石制得的复合材料要比 单独用SiCw与莫来石制得的复合材料的性能好得多。
PPT课件 32
10.4 陶瓷基复合材料的制备
陶瓷基复合材料的制造分为两个步骤:
第一步是将增强材料掺入未固结(或粉末状)的基

陶瓷基复合材料的制备方法与工艺PPT课件

陶瓷基复合材料的制备方法与工艺PPT课件
7
第7页/共92页
此外,一些新开发的工艺如固相反 应烧结、高聚物先驱体热解、CVD、溶 胶—凝胶、直接氧化沉积等也可用于颗 粒弥散型陶瓷基复合材料的制备。
8
第8页/共92页
晶须补强陶瓷基复合材料的制备方法: 将晶须在液体介质中经机械或超声分散, 再与陶瓷基体粉末均匀混合,制成一定形状 的坯件,烘干后热压或热等静压烧结。
23
第23页/共92页
下图显示了在热压各向同性氧化铝纤 维增强玻璃陶瓷基复合材料时,温度和压 力随时间的变化曲线。
24
第24页/共92页
温度 温 度
压 力
压力
/ M Pa /℃
时间 / min
热压各向同性氧化铝纤维增强玻璃陶瓷基复合材 料时温度、压力随时间的变化曲线
25
第25页/共92页
浆料浸渍工艺非常适合玻璃或玻璃陶 瓷基复合材料,因为它的热压温度低于这些 晶体基体材料的熔点。
60
第60页/共92页
②热解法
热解(Pyrolysis)法就是使聚合物先驱体热 解形成陶瓷基复合材料的方法。
61
第61页/共92页
如由聚碳硅烷生产SiC陶瓷基复合材料 中,聚合物一般在热解过程中有较高的陶 瓷产量、低的收缩、好的机械性能,同时 聚合物本身容易制备。
聚合物热解法可用来生产SiCf/SiC和 Si3N4f/SiC等陶瓷基复合材料。
58
第58页/共92页
由于从凝胶转变成陶瓷所需的反应温 度要低于传统工艺中的熔融和烧结温度, 因此,在制造一些整体的陶瓷构件时,溶 胶--凝胶法有较大的优势。
59
第59页/共92页
溶胶---凝胶法与一些传统的制造工艺 结合,可以发挥比较好的作用。
如在浆料浸渍工艺中,溶胶作为纤维 和陶瓷的黏结剂,在随后除去黏结剂的工 艺中,溶胶经烧结后变成了与陶瓷基相同 的材料,有效地减少了复合材料的孔隙率。

陶瓷基复合材料(CMC)

陶瓷基复合材料(CMC)

4.溶解——沉淀
在有液相参与的烧结中,若液相能润湿和溶解 固体,由于小颗粒的表面能较大,其溶解度也 比大颗粒的大。小颗粒不断溶解并在大颗粒表 面析出,空隙消失而致密化。
陶瓷基复合材料(CMC)
第四节 CMC制备工艺
一、粉末冶金法 将陶瓷粉末、增强材料(颗粒或纤维)
和加入的粘结剂混合均匀后,冷压制成 所需形状,然后进行烧结或直接热压挠 结或等静压烧结制成陶瓷基复合材料。
六、化学气相浸渍法
陶瓷基复合材料(CMC)
第五节 CMC界面
一、CMC界面的特点 CMC一般制备的温度较高,原子的活性增
特点: 低密度,2.0-2.8g/cm3 高弹性模量(80-140GPa)和弯曲强度
(70-350MPa)
陶瓷基复合材料(CMC)
第三节 陶瓷粉末的烧结
粉末状物料在压制成型后,含有大量气孔,颗粒 之间接触面积较小,强度也比较低。经过高温作 用后,坯体中颗粒相互烧结,界面逐渐扩大成为 晶界,最后数个晶粒结合在一起,产生再结晶与 聚集再结晶,使晶粒长大。气孔体积缩小,大部 分甚至全部从体坯中排出,体收缩而致密,强度 增加,成坚固整体。上述整个过程叫烧结过程。
初期:晶界不移动,也就是晶粒不成长 中期:晶界开始移动,晶粒开始成长,气孔成
三维连通状 末期:还体浙趋致密,当相对密度达95%左右,
气孔逐渐封闭,成为不连续状态
陶瓷基复合材料(CMC)
二、烧结动力
任何系统都有向最低能量状态转变的趋 势,所以这种表面自由能的降低,在很 多情况下就成为物质烧结的主要动力。 此外高度分散物料的表面还存在严重歪 曲,内部也具有比较严重的结构缺陷, 这些都促使晶格活化,性质点易于迁移, 从而构成烧结动力的另一部分。
陶瓷基复合材料(CMC)

复合材料第六章陶瓷基复合材料-陶瓷基体材料课件

复合材料第六章陶瓷基复合材料-陶瓷基体材料课件
无机非金属材料由晶相、玻璃相和气相组成的多晶多相复合体
晶 相: 硅酸盐、氧化物、非氧化物等, 是材料基本组成部分,其性质 决定着该材料的性能。
玻璃相: 非晶低熔点固体 (多为硅酸盐结构),主要作用是: a) 填充气孔和空隙 b) 将分散的晶相粘接起来而降低烧结温度 c) 抑制晶粒长大
16
气孔:一般存在于晶体内部或晶体与玻璃相之间,是 裂纹的 根源,导致强度降低、脆性增大,应极力避免
减小内部和表面缺陷可在一定程度上有效改善材料性能
22
2)提高断裂韧性
断裂韧性低是陶瓷固有缺点,限制了其扩大应用! 提高断裂韧性方法:主要是复合化途径,以陶瓷为基体, 加进增强相而引入各种 增韧机制 来 加大裂纹扩展阻 力,增加断裂过程能量消耗,达到提高断裂韧性的目的。
可能的消耗能量机制: 裂纹偏转或分叉、基体裂纹被纤维 桥联、使结合弱的界面解离、纤维拔出等。
29
2)氧化锆
性能特点: 高强度、高硬度、耐化学腐蚀性、
高韧性 (是所有陶瓷中最高的)
晶型结构: 单斜结构 (m相,低于1170度, 5.65g/cm3) 四方结构 (t相, 1170~2370度, 6.10g/cm3) 立方结构 (c相, 2370度以上, 6.27g/cm3)
30
晶型转变:在1170度左右发生晶型转变 升温时单斜向四方晶型转变, 体积收缩7% 冷却时四方向单斜晶型转变, 体积膨胀7%
力强而质地坚硬,如石英)
11
1.1.2 玻璃及其结构
玻璃: 非晶态无机非金属材料。 主要组分及其功能: SiO2: 硅酸盐玻璃的主要成份,构成玻璃骨架; Na2O: 制造玻璃的助熔剂,可以大大降低玻璃液粘度; CaO: 加速玻璃熔化、提高玻璃稳定性;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档