工程材料课后习题参考答案
工程材料学课后习题答案
第一章钢的合金化基础1、合金钢是如何分类的?1) 按合金元素分类:低合金钢,含有合金元素总量低于5%;中合金钢,含有合金元素总量为5%-10%;中高合金钢,含有合金元素总量高于10%。
2) 按冶金质量S、P含量分:普通钢,P≤0.04%,S≤0.05%;优质钢,P、S均≤0.03%;高级优质钢,P、S均≤0.025%。
3) 按用途分类:结构钢、工具钢、特种钢2、奥氏体稳定化,铁素体稳定化的元素有哪些?奥氏体稳定化元素, 主要是Ni、Mn、Co、C、N、Cu等铁素体稳定化元素, 主要有Cr、Mo、W、V、Ti、Al、Si、B、Nb、Zr等3、钢中碳化物形成元素有哪些(强-弱),其形成碳化物的规律如何?1) 碳化物形成元素:Ti、Zr、Nb、V、Mo、W、Cr、Mn、Fe等(按形成的碳化物的稳定性程度由强到弱的次序排列) ,在钢中一部分固溶于基体相中,一部分形成合金渗碳体, 含量高时可形成新的合金碳化物。
2) 形成碳化物的规律a) 合金渗碳体—— Mn与碳的亲和力小,大部分溶入α-Fe或γ-Fe中,少部分溶入Fe3C中,置换Fe3C中的Fe而形成合金渗碳体(Mn,Fe)3C; Mo、W、Cr少量时,也形成合金渗碳体b) 合金碳化物——Mo、W 、Cr含量高时,形成M6C(Fe2Mo4C Fe4Mo2C),M23C6(Fe21W2C6 Fe2W21C6)合金碳化物c) 特殊碳化物——Ti 、V 等与碳亲和力较强时i. 当rc/rMe<0.59时,碳的直径小于间隙,不改变原金属点阵结构,形成简单点阵碳化物(间隙相)MC、M2C。
ii. 当rc/rMe>0.59时,碳的直径大于间隙,原金属点阵变形,形成复杂点阵碳化物。
★4、钢的四种强化机制如何?实际提高钢强度的最有效方法是什么?1) 固溶强化:溶质溶入基体中形成固溶体能够强化金属;2) 晶界强化:晶格畸变产生应力场对位错运动起到阻碍达到强化,晶格越细,晶界越细,阻碍位错运动作用越大,从而提高强度;3) 第二相强化:有沉淀强化和弥散强化,沉淀强化着眼于位错运动切过第二相粒子;弥散强化着眼于位错运动绕过第二相粒子;4) 位错强化:位错密度越高则位错运动越容易发生相互交割形成割阶,引起位错缠结,因此造成位错运动困难,从而提高了钢强度。
工程材料徐自立主编课后习题答案
工程材料徐自立主编课后习题答案第一章材料的性能1-1什么是金属材料的力学性能?金属材料的力学性能包含哪些方面?所谓力学性能,是指材料抵抗外力作用所显示的性能。
力学性能包括强度刚度硬度塑性韧性和疲劳强度等1-2什么是强度?在拉伸试验中衡量金属强度的主要指标有哪些?他们在工程应用上有什么意义?强度是指材料在外力作用下,抵抗变形或断裂的能力。
在拉伸试验中衡量金属强度的主要指标有屈服强度和抗拉强度。
屈服强度的意义在于:在一般机械零件在发生少量塑性变形后,零件精度降低或其它零件的相对配合受到影响而造成失效,所以屈服强度就成为零件设计时的主要依据之一。
抗拉强度的意义在于:抗拉强度是表示材料抵抗大量均匀塑性变形的能力。
脆性材料在拉伸过程中,一般不产生颈缩现象,因此,抗拉强度就是材料的断裂强度,它表示材料抵抗断裂的能力。
抗拉强度是零件设计时的重要依据之一。
1-3什么是塑性?在拉伸试验中衡量塑性的指标有哪些?塑性是指材料在载荷作用下发生永久变形而又不破坏其完整性的能力。
拉伸试验中衡量塑性的指标有延伸率和断面收缩率。
1-4什么是硬度?指出测定金属硬度的常用方法和各自的优缺点。
硬度是指材料局部抵抗硬物压入其表面的能力。
生产中测定硬度最常用的方法有是压入法,应用较多的布氏硬度洛氏硬度和维氏硬度等试验方法。
布氏硬度试验法的优点:因压痕面积较大,能反映出较大范围内被测试材料的平均硬度,股实验结果较精确,特别适用于测定灰铸铁轴承合金等具有粗大经理或组成相得金属材料的硬度;压痕较大的另一个优点是试验数据稳定,重复性强。
其缺点是对不同材料需要换不同直径的压头和改变试验力,压痕直径的测量也比较麻烦;因压痕大,不宜测试成品和薄片金属的硬度。
洛氏硬度试验法的优点是:操作循序简便,硬度值可直接读出;压痕较小,可在工件上进行试验;采用不同标尺可测定各种软硬不同的金属厚薄不一的式样的硬度,因而广泛用于热处理质量检验。
其缺点是:因压痕较小,对组织比较粗大且不均匀的材料,测得的结果不够准确;此外,用不同标尺测得的硬度值彼此没有联系,不能直接进行比较。
工程材料与机械制造基础第二版课后练习题含答案
工程材料与机械制造基础第二版课后练习题含答案第一章金属材料选择题1.金属的基本结构单位是()。
A. 原子 B. 分子 C. 离子 D. 高分子2.金属的导电性好,是因为()。
A. 金属原子共用周围电子形成了一个电子云 B. 金属原子之间的原子序数很大 C. 金属原子之间的距离很远D. 金属原子的原子半径很大3.现代材料科学的研究表明,金属的显微结构主要包括()两种结构。
A. 晶体和非晶体B. 多晶和单晶C. 非晶体和薄层结构D. 单晶和二晶轴4.在常温下铁、钨属于()。
A. 非晶态材料 B. 晶态材料 C. 二相材料 D. 单晶体材料5.劈铅试验所测试的是材料()。
A. 塑性 B. 韧性 C. 硬度 D. 强度简答题1.什么是金属材料?金属材料具有哪些特点?2.金属的结晶状态有哪些?请简述它们的特点。
3.介绍一下金属断裂的过程。
4.解释一下热处理和强化的含义。
答案选择题:1. A 2. A 3. B 4. B 5. D简答题:1.金属材料是一类以金属元素为主要组成成分的工程材料,具有一系列特点,如:密度大,强度高,塑性良好,导电导热性好等。
同时,也具有一些不足之处,如:易受腐蚀,疲劳寿命相对较短等。
2.金属的结晶状态主要有三种,分别为单晶、多晶以及非晶态。
单晶指的是具有完整晶格结构的材料,其具有优异的物理性能,但制造成本较高。
而多晶则指晶粒较小、有多个晶粒构成的材料。
这类材料具有低成本、高韧性等特点。
非晶态指材料的内部没有固定的原子排列方式,呈无序状态。
这类材料具有高强度、低应力腐蚀等特点。
3.金属断裂的过程主要包括两个阶段,分别为起始裂纹形成阶段和扩展裂纹阶段。
在起始裂纹形成阶段,由于外力作用,材料内部会出现微小的损伤,如缺陷、气孔等,这些损伤会在外力作用下产生应力集中。
当应力集中超过材料强度极限时,就会出现一条裂纹。
在扩展裂纹阶段,裂纹会不断扩大,细微损伤逐渐聚集,最终导致材料破裂。
工程材料与成形技术基础课后部分习题及答案
第一章2.图1-79为五种材料的应力-应变曲线:①45钢,②铝青铜,③35钢,④硬铝,⑤纯铜。
试问:(1)当外加应力为300MPa时,各材料处于什么状态?(2)有一用35钢制作的杆,使用中发现弹性弯曲较大,如改用45钢制作该杆,能否减少弹性变形?(3)有一用35钢制作的杆,使用中发现塑性变形较大,如改用45钢制作该杆,能否减少塑性变形?答:(1)①45钢:弹性变形②铝青铜:塑性变形③35钢:屈服状态④硬铝:塑性变形⑤纯铜:断裂。
(2)不能,弹性变形与弹性模量E有关,由E=σ/ε可以看出在同样的条件下45钢的弹性模量要大,所以不能减少弹性变形。
(3)能,当35钢处于塑性变形阶段时,45钢可能处在弹性或塑性变形之间,且无论处于何种阶段,45钢变形长度明显低于35钢,所以能减少塑性变形。
4.下列符号表示的力学性能指标的名称和含义是什么?σb 、σs、σ0.2、σ-1、δ、αk、HRC、HBS、HBW答:σb抗拉强度,是试样保持最大均匀塑性的极限应力。
σs屈服强度,表示材料在外力作用下开始产生塑性变形时的最低应力。
σ0.2条件屈服强度,作为屈服强度的指标。
σ-1疲劳强度,材料循环次数N次后达到无穷大时仍不发生疲劳断裂的交变应力值。
δ伸长率,材料拉断后增加的变形长度与原长的比率。
HRC洛氏硬度,表示用金刚石圆锥为压头测定的硬度值。
HBS布氏硬度,表示用淬硬钢球为压头测定的硬度值。
HBW布氏硬度,表示用硬质合金为压头测定的硬度值。
8.什么是固溶强化?造成固溶强化的原因是什么?答:形成固溶体使金属强度和硬度提高,塑性和韧性略有下降的现象称为固溶强化。
固溶体随着溶质原子的溶入晶格发生畸变。
晶格畸变随溶质原子浓度的提高而增大。
晶格畸变增大位错运动的阻力,使金属的滑移变形变得更加困难,从而提高合金的强度和硬度。
9.将20kg纯铜与30kg纯镍熔化后缓慢冷却到如图1-80所示温度T1,求此时:(1)两相的成分;(2)两相的重量比;(3)各相的相对重量(4)各相的重量。
土木工程材料课后习题(附答案)
第1章土木工程材料的基本性(1)当某一建筑材料的孔隙率增大时,材料的密度、表观密度、强度、吸水率、搞冻性及导热性是下降、上生还是不变?答:当材料的孔隙率增大时,各性质变化如下表:(2)答:(3)材料的孔隙率和空隙率的含义如何?如何测定?了解它们有何意义?答:P指材料体积内,孔隙体积所占的百分比:P′指材料在散粒堆积体积中,颗粒之间的空隙体积所占的百分比:了解它们的意义为:在土木工程设计、施工中,正确地使用材料,掌握工程质量。
(4)亲水性材料与憎水性材料是怎样区分的?举例说明怎样改变材料的变水性与憎水性?答:材料与水接触时能被水润湿的性质称为亲水性材料;材料与水接触时不能被水润湿的性质称为憎水性材料。
例如:塑料可制成有许多小而连通的孔隙,使其具有亲水性。
例如:钢筋混凝土屋面可涂抹、覆盖、粘贴憎水性材料,使其具有憎水性。
(5)普通粘土砖进行搞压实验,浸水饱和后的破坏荷载为183KN,干燥状态的破坏荷载为207KN(受压面积为115mmX120mm),问此砖是否宜用于建筑物中常与水接触的部位?答:(6)塑性材料和塑性材料在外国作用下,其变形性能有何改变?答:塑性材料在外力作用下,能产生变形,并保持变形后的尺寸且不产生裂缝;脆性材料在外力作用下,当外力达到一定限度后,突然破坏,无明显的塑性变形。
(7)材料的耐久性应包括哪些内容?答:材料在满足力学性能的基础上,还包括具有抵抗物理、化学、生物和老化的作用,以保证建筑物经久耐用和减少维修费用。
(8)建筑物的屋面、外墙、甚而所使用的材料各应具备哪些性质?答:建筑物的屋面材料应具有良好的防水性及隔热性能;外墙材料应具有良好的耐外性、抗风化性及一定的装饰性;而基础所用材料应具有足够的强度及良好的耐水性。
第2章天然石材(1)岩石按成因可分为哪几类?举例说明。
答:可分为三大类:1)岩浆岩,也称火成岩,是由地壳内的岩浆冷凝而成,具有结晶构造而没有层理。
例如花岗岩、辉绿岩、火山首凝灰岩等。
土木工程材料课后习题及答案
⼟⽊⼯程材料课后习题及答案⼟⽊⼯程材料课后习题答案⼟⽊⼯程材料概述及基本性质思考题与习题:⼀、填空1、建筑材料按化学成分可分为有机材料、⽆机材料、复合材料三⼤类。
2、建筑材料按使⽤功能可分为结构材料、功能材料两⼤类。
3、我国建筑材料标准分为:国家标准、部委⾏业标准、地⽅标准、企业标准四类,国家标准代号为: GB ,企业标准代号为Q 。
4、材料标准表⽰由标准名称,标准分类,标准编号,颁布年份四部分组成。
5、《蒸压加⽓混凝⼟砌块》(GB/T11969-1997)中,各字母和数字的含意为:GB : 国家标准, T : 推荐标准,11969 : 标准编号,1997 : 颁布年份。
6、某材料的密度为 2.5,表观密度为 1.8,该材料的密实度为 72% ,孔隙率为28% 。
7、⽔可以在材料表⾯展开,即材料表⾯可以被⽔浸润,这种性质称为材料的亲⽔性。
8、材料的吸⽔性⼤⼩⽤吸⽔率表⽰,吸湿性⼤⼩⽤含⽔率表⽰。
9、含⽔率为5%的湿砂1000g中,含⼲砂 952.38 g,⽔ 47.62 g。
10、材料的耐⽔性⽤软化系数表⽰,耐⽔材料的K R≥ 0.85 。
11、⼀般来说,材料含⽔时⽐其⼲燥时的强度低。
12、墙体受潮后,其保温隔热性会明显下降,这是由于材料受潮后导热系数明显增⼤的缘故。
13、当某材料的孔隙率增⼤时,下表中的性质将如何变化。
(增⼤↑,下降↓,不变-,不定?)14、某钢材直径10mm,拉伸破坏荷载为31.5KN,该钢材的抗拉强度为 401.07MPa 。
15、材料的弹性模量反映了材料抵抗变形的能⼒。
16、材料在使⽤环境中,除受荷载作⽤外,还会受到物理作⽤、化学作⽤和⽣物作⽤等周围⾃然因素的作⽤影响其耐久性。
⼆、是⾮判断题(对的打∨,错的打×)1、含⽔率为2%的湿砂重100g,其中⽔的重量为2g。
()2、热容量⼤的材料导热性⼤,受外界⽓温影响时室内温度变化较快。
()3、材料的孔隙率相同时,连通粗孔⽐封闭微孔的导热系数⼤。
工程材料与技术成型基础课后习题答案
工程材料与技术成型基础课后习题答案第一章1-1由拉伸实验可以得出哪些力学性能指标?在工程上这些指标是如何定义的? 答:强度和韧性.强度(σb)材料抵抗塑性变形和断裂的能力称为强度。
塑性(δ)材料在外力作用下产生永久变形而不被破坏的能力.强度指标里主要测的是:弹性极限,屈服点,抗拉强度等.塑性指标里主要测的是:伸长率,断面收缩率.1-21-3锉刀:HRC 黄铜轴套:HB 供应状态的各种非合金钢钢材:HB 硬质合金刀片:HRA,HV 耐磨工件的表面硬化层:HV调质态的机床主轴:HRC 铸铁机床床身:HB 铝合金半成品:HB1-4公式HRC=10HBS,90HRB=210HBS,HV=HBS800HV>45HRC>240HBS>90HRB1-7材料在加工制造中表现出的性能,显示了加工制造的难易程度。
包括铸造性,锻造性,切削加工性,热处理性。
第二章2-2 答:因为γ-Fe为面心立方晶格,一个晶胞含4个原子,致密度为0.74。
γ-Fe冷却到912°C 后转变为α-Fe后,变成体心立方晶格,一个晶胞含2个原子,致密度为0.68,尽管γ-Fe 的晶格常数大于α-Fe的晶格常数,但多的体积部分抵不上因原子排列不同γ-Fe变成α-Fe 体积增大的部分,故γ-Fe冷却到912℃后转变为α-Fe时体积反而增大。
2-3.答:(1)过冷度理论结晶温度与实际结晶温度只差。
(2)冷速越快则过冷度越大,同理,冷速越小则过冷度越小(3)过冷度越大则晶粒越小,同理,过冷度越小则晶粒越大。
过冷度增大,结晶驱动力越大,形核率和长大速度都大,但过冷度过大,对晶粒细化不利,结晶发生困难。
2-4:答:(1)在一般情况下,晶粒越小,其强度塑性韧性也越高。
(2)因为晶粒越小则晶界形成就越多,产生晶体缺陷,在晶界处晶格处于畸变状态,故晶界能量高因此晶粒的大小对金属的力学性能有影响。
(3)在凝固阶段晶粒细化的途径有下列三种:①提高结晶时的冷却速度增加过冷度②进行变质处理处理:在液态金属浇筑前人工后加入少量的变质剂,从而形成大量非自发结晶核心而得到细晶粒组织。
工程材料基础知识-课后习题及答案.docx
第一章工程材料基础知识参考答案1.金属材料的力学性能指标有哪些?各用什么符号表示?它们的物理意义是什么?答:常用的力学性能包括:强度、塑性、硬度、冲击韧性、疲劳强度等。
强度是指金属材料在静荷作用下抵抗破坏(过量塑性变形或断裂)的性能。
强度常用材料单位面积所能承受载荷的最大能力(即应力。
,单位为Mpa)表示。
塑性是指金属材料在载荷作用下,产生塑性变形(永久变形)而不被破坏的能力。
金属塑性常用伸长率5和断面收缩率出来表示:硬度是指材料抵抗局部变形,特别是塑性变形、压痕或划痕的能力,是衡量材料软硬程度的指标,是一个综合的物理量。
常用的硬度指标有布氏硬度(HBS、HBW)、洛氏硬度(HRA、HRB、HRC等)和维氏硬度(HV)。
以很大速度作用于机件上的载荷称为冲击载荷,金属在冲击载荷作用下抵抗破坏的能力叫做冲击韧性。
冲击韧性的常用指标为冲击韧度,用符号a k表示。
疲劳强度是指金属材料在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。
疲劳强度用。
-1表示,单位为MPa。
2.对某零件有力学性能要求时,一般可在其设计图上提出硬度技术要求而不是强度或塑性要求,这是为什么?答:这是由它们的定义、性质和测量方法决定的。
硬度是一个表征材料性能的综合性指标,表示材料表面局部区域内抵抗变形和破坏的能力,同时硬度的测量操作简单,不破坏零件,而强度和塑性的测量操作复杂且破坏零件,所以实际生产中,在零件设计图或工艺卡上一般提出硬度技术要求而不提强度或塑性值。
3.比较布氏、洛氏、维氏硬度的测量原理及应用范围。
答:(1)布氏硬度测量原理:采用直径为D的球形压头,以相应的试验力F压入材料的表面,经规定保持时间后卸除试验力,用读数显微镜测量残余压痕平均直径d,用球冠形压痕单位表面积上所受的压力表示硬度值。
实际测量可通过测出d值后查表获得硬度值。
布氏硬度测量范围:用于原材料与半成品硬度测量,可用于测量铸铁;非铁金属(有色金属)、硬度较低的钢(如退火、正火、调质处理的钢)(2)洛氏硬度测量原理:用金刚石圆锥或淬火钢球压头,在试验压力F的作用下,将压头压入材料表面,保持规定时间后,去除主试验力,保持初始试验力,用残余压痕深度增量计算硬度值,实际测量时,可通过试验机的表盘直接读出洛氏硬度的数值。
《工程材料力学性能》第二版课后习题答案
第一章
一、 解释下列名词
材料单向静拉伸载荷下的力学性能
滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料 能够完全弹性恢复的最高应力。 比例极限:应力—应变曲线上符合线性关系的最高应力。 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限 (ζ P)或屈服强度(ζ S)增加;反向加载时弹性极限(ζ P)或屈服 强度(ζ S)降低的现象。
二、 金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学 姓能? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而 材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指
1
《工程材料力学性能》(第二版)
标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的 强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包辛格效应,如何解释,它有什么实际意义? 答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或 屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明 在反向加载时塑性变形立即开始了。 包辛格效应可以用位错理论解释。第一,在原先加载变形时,位错源在 滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于 位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停 止开动。背应力是一种长程(晶粒或位错胞尺寸范围)内应力,是金属基体平 均内应力的度量。因为预变形时位错运动的方向和背应力的方向相反,而当 反向加载时位错运动的方向与原来的方向相反了,和背应力方向一致,背应 力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服 强度就降低了。这一般被认为是产生包辛格效应的主要原因。其次,在反向 加载时, 在滑移面上产生的位错与预变形的位错异号,要引起异号位错消毁, 这也会引起材料的软化,屈服强度的降低。 实际意义:在工程应用上,首先是材料加工成型工艺需要考虑包辛格效 应。其次,包辛格效应大的材料,内应力较大。另外包辛格效应和材料的疲 劳强度也有密切关系,在高周疲劳中,包辛格效应小的疲劳寿命高,而包辛 格效应大的,由于疲劳软化也较严重,对高周疲劳寿命不利。 可以从河流花样的反“河流”方向去寻找裂纹源。 解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。
工程材料学庞国星课后习题答案
以下仅本人鄙见、收集整理,有错之出请斧正,仅作参考宋井科2016年10月1-1由拉伸试验可以得出哪些力学性能指标?在工程上这些指标是怎样定义的?答:由拉伸试验可以得出弹性、强度、塑性等指标。
弹性极限:材料产生完全弹性变形时所能承受的最大应力值。
屈服强度:材料开始产生明显塑性变形时的最低应力值,抗拉强度:试样拉断前所能承受的最大应力值。
塑性:材料在断裂前发生不可逆永久变形的能力。
指标为断面伸长率和断面收缩率。
断后伸长率:指试样拉断后标距长度的残余伸长与原始标距之比的百分率。
断面收缩率:指断裂后试样横截面积的最大收缩量与原始横截面积之的百分率比。
1-2.有一d0=10mm,L0=50m m的低碳钢比例试样,拉伸试验时测得F s=20.5k N,F b=31.5k N,d1=6.25m m,L1=66mm,试确定此钢材的σs、σb、、ψ、δ。
1.解:σs=F s/A0,A0=π/4×d02=78.5mm2,σs=20.5×1000/π/4×100=261M p a;σb=F b/A0,A0=π/4×d02,σb=31.5×1000/π/4×100=401M p a;δ=(L1-L0)/L0×100%=(66-50)/50×100%=32%;ψ=(A0-A1)/A0×100%,A1=π/4×d12=30.7m m2=(78.5-30.7)/78.5×100%=61%1-3下列各种工件应该采用何种硬度试验方法来测定其硬度?(1)锉刀(2)黄铜轴套(3)硬质合金刀片(4)供应状态的各种碳钢钢材(5)耐磨工件的表面硬化层锉刀:H R C,黄铜轴套:H B、供应状态的各种非合金钢材:H B、硬质合金刀片:H V:、耐磨工件的表面硬化层:H R C(H R A)、调质态的机床主轴:H B、H R C、H R B。
工程材料课后习题答案
《工程材料及机械制造基础》习题参考答案第一章材料的种类与性能(P7)1、金属材料的使用性能包括哪些?力学性能、物理性能、化学性能等。
2、什么是金属的力学性能?它包括那些主要力学指标?金属材料的力学性能:金属材料在外力作用下所表现出来的与弹性和非弹性反应相关或涉及力与应变关系的性能。
主要包括:弹性、塑性、强度、硬度、冲击韧性等。
3、一根直径10mm的钢棒,在拉伸断裂时直径变为8.5mm,此钢的抗拉强度为450Mpa,问此棒能承受的最大载荷为多少?断面收缩率是多少?F=35325N ψ=27.75%4、简述洛氏硬度的测试原理。
以压头压入金属材料的压痕深度来表征材料的硬度。
5、什么是蠕变和应力松弛?蠕变:金属在长时间恒温、恒应力作用下,发生缓慢塑性变形的现象。
应力松弛:承受弹性变形的零件,在工作过程中总变形量不变,但随时间的延长,工作应力逐渐衰减的现象。
6、金属腐蚀的方式主要有哪几种?金属防腐的方法有哪些?主要有化学腐蚀和电化学腐蚀。
防腐方法:1)改变金属的化学成分;2)通过覆盖法将金属同腐蚀介质隔离;3)改善腐蚀环境;4)阴极保护法。
第二章材料的组织结构(P26)1、简述金属三种典型结构的特点。
体心立方晶格:晶格属于立方晶系,在晶胞的中心和每个顶角各有一个原子。
每个体心立方晶格的原子数为:2个。
塑性较好。
面心立方晶格:晶格属于立方晶系,在晶胞的8个顶角和6个面的中心各有一个原子。
每个面心立方晶格的原子数为:4个。
塑性优于体心立方晶格的金属。
密排六方晶格:晶格属于六方棱柱体,在六棱柱晶胞的12个项角上各有一个原子,两个端面的中心各有一个原子,晶胞内部有三个原子。
每个密排六方晶胞原子数为:6个,较脆2、金属的实际晶体中存在哪些晶体缺陷?它们对性能有什么影响?存在点缺陷、线缺陷和面缺陷。
使金属抵抗塑性变形的能力提高,从而使金属强度、硬度提高,但防腐蚀能力下降。
3、合金元素在金属中存在的形式有哪几种?各具备什么特性?存在的形式有固溶体和金属化合物两种。
工程材料力学性能-第2版课后习题答案
《工程材料力学性能》课后答案机械工业 2008第2版第一章 单向静拉伸力学性能1、 解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性围快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、 说明下列力学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。
工程材料及成形技术基础课课后习题参考答案
工程材料及成形技术基础课课后习题参考答案第一章:1-1 机械零件在工作条件下可能承受哪些负荷?这些负荷对零件产生什么作用?答:机械零件在工作条件下可能承受到力学负荷、热负荷或环境介质的作用(单负荷或复合负荷的作用)。
力学负荷可使零件产生变形或断裂;热负荷可使零件产生尺寸和体积的改变,产生热应力,热疲劳,高温蠕变,随温度升高强度降低(塑性、韧性升高),承载能力下降;环境介质可使金属零件产生腐蚀和摩擦磨损两个方面、对高分子材料产生老化作用。
1-3 σs、σ0.2和σb含义是什么?什么叫比强度?什么叫比刚度?答:σs-P s∕F0,屈服强度,用于塑性材料。
σ0.2-P0.2∕F0,产生0.2%残余塑性变形时的条件屈服强度,用于无明显屈服现象的材料。
σb-P b∕F0,抗拉强度,材料抵抗均匀塑性变形的最大应力值。
比强度-材料的强度与其密度之比。
比刚度-材料的弹性模量与其密度之比。
思考1-1、1-2.2-3 晶体的缺陷有哪些?可导致哪些强化?答:晶体的缺陷有:⑴点缺陷——空位、间隙原子和置换原子,是导致固溶强化的主要原因。
⑵线缺陷——位错,是导致加工硬化的主要原因。
⑶面缺陷——晶界,是细晶强化的主要原因。
2-5 控制液体结晶时晶粒大小的方法有哪些?答:见P101.3.4.2液态金属结晶时的细晶方法。
⑴增加过冷度;⑵加入形核剂(变质处理);⑶机械方法(搅拌、振动等)。
2-8 在铁-碳合金中主要的相是哪几个?可能产生的平衡组织有哪几种?它们的性能有什么特点?答:在铁-碳合金中固态下主要的相有奥氏体、铁素体和渗碳体。
可能产生的室温平衡组织有铁素体加少量的三次渗碳体(工业纯铁),强度低塑性好;铁素体加珠光体(亚共析钢),珠光体(共析钢),珠光体加二次渗碳体(过共析钢),综合性能好;莱氏体加珠光体加二次渗碳体(亚共晶白口铸铁),莱氏体(共晶白口铸铁),莱氏体加一次渗碳体(过共晶白口铸铁),硬度高脆性大。
思考题1. 铁-碳合金相图反映了平衡状态下铁-碳合金的成分、温度、组织三者之间的关系,试回答:⑴随碳质量百分数的增加,铁-碳合金的硬度、塑性是增加还是减小?为什么?⑵过共析钢中网状渗碳体对强度、塑性的影响怎样?⑶钢有塑性而白口铁几乎无塑性,为什么?⑷哪个区域的铁-碳合金熔点最低?哪个区域塑性最好?﹡⑸哪个成分结晶间隔最小?哪个成分结晶间隔最大?答:⑴随碳质量百分数的增加,硬度增加、塑性减小。
工程材料及成形技术基础课课后习题参考答案
工程材料及成形技术基础课课后习题参考答案第一章:1-1 机械零件在工作条件下可能承受哪些负荷?这些负荷对零件产生什么作用?答:机械零件在工作条件下可能承受到力学负荷、热负荷或环境介质的作用(单负荷或复合负荷的作用)。
力学负荷可使零件产生变形或断裂;热负荷可使零件产生尺寸和体积的改变,产生热应力,热疲劳,高温蠕变,随温度升高强度降低(塑性、韧性升高),承载能力下降;环境介质可使金属零件产生腐蚀和摩擦磨损两个方面、对高分子材料产生老化作用。
1-3 σs、σ0.2和σb含义是什么?什么叫比强度?什么叫比刚度?答:σs-P s∕F0,屈服强度,用于塑性材料。
σ0.2-P0.2∕F0,产生0.2%残余塑性变形时的条件屈服强度,用于无明显屈服现象的材料。
σb-P b∕F0,抗拉强度,材料抵抗均匀塑性变形的最大应力值。
比强度-材料的强度与其密度之比。
比刚度-材料的弹性模量与其密度之比。
思考1-1、1-2.2-3 晶体的缺陷有哪些?可导致哪些强化?答:晶体的缺陷有:⑴点缺陷——空位、间隙原子和置换原子,是导致固溶强化的主要原因。
⑵线缺陷——位错,是导致加工硬化的主要原因。
⑶面缺陷——晶界,是细晶强化的主要原因。
2-5 控制液体结晶时晶粒大小的方法有哪些?答:见P101.3.4.2液态金属结晶时的细晶方法。
⑴增加过冷度;⑵加入形核剂(变质处理);⑶机械方法(搅拌、振动等)。
2-8 在铁-碳合金中主要的相是哪几个?可能产生的平衡组织有哪几种?它们的性能有什么特点?答:在铁-碳合金中固态下主要的相有奥氏体、铁素体和渗碳体。
可能产生的室温平衡组织有铁素体加少量的三次渗碳体(工业纯铁),强度低塑性好;铁素体加珠光体(亚共析钢),珠光体(共析钢),珠光体加二次渗碳体(过共析钢),综合性能好;莱氏体加珠光体加二次渗碳体(亚共晶白口铸铁),莱氏体(共晶白口铸铁),莱氏体加一次渗碳体(过共晶白口铸铁),硬度高脆性大。
机械工程材料课后习题答案
1 .可否通过增加零件的尺寸来提高其弹性模量:不能,弹性模量主要取决与材料的本性,除随温度上升而渐渐降低外,其他强化手段如热处理,冷加工,合金化等对弹性模量的影响很小。
2 .工程上的延长率与选取的样品长度有关,为什么:延长率=(LI-L2)/10,当式样dθ不变时,LO增加,则延长率下降,只有当LO/dO 为常熟市,延长率才有可比性。
3 .如何用材料的应力-应变曲线推断材料的韧性:所谓的材料韧性是指材料从变形到断裂整个过程所汲取的能量,即拉伸曲线与横坐标所包围的面积。
4 .从原子结构上说明晶体与非晶体的区分:院子在三维空间呈现规章排列的固体成为晶体,而原子在空间里无序排列的固体成为非晶体。
晶体长程有序,非晶体短程无序。
5 .立方晶系重指数相同的晶面与晶向有什么关系:相互垂直。
6 .合金肯定单相的吗,固溶体肯定是单相的吗:合金不肯定是单相的,也可以由多相组成,固溶体肯定是单相的。
7 .固态非晶合金的晶化过程是否属于同素异构转变,为什么:不属于,同素异构是物质在固态下的晶格类型随温度变化而发生变化。
8 .依据匀晶转变相图分析产生枝晶偏析的缘由:由匀晶转变相图可以知道,固溶体合金的结晶只有在充分缓慢冷却的条件下才可能得到成分匀称的固溶体组织。
然而在实际生产中,由于冷速较快,合金在结晶过程中固相和液相中的原子来不及集中,使得线结晶出的枝晶轴含有较多的高熔点元素,而后结晶的枝晶间含较多的低熔点元素,在一个枝晶范围内或一个晶粒范围内成分消失不匀称的现象,成为枝晶偏析。
9 .结合相图分析含0.45%、1.2%和3.0%的Fe-C合金在缓慢冷却过程中的转变及温室下的组织:0.45%C:L—L+δ-L+δ+γ-L+γ—γ+c-P+γ+α,室温组织:P+α1.2%C:L—L+γ-y一y+二次渗碳体一F+γ+二次渗碳体一二次渗碳体,室温组织:P+二次渗碳体3.0%C:L—L+γ-L+γ+Le―y+Le+二次渗碳体一P+y+二次渗碳体+一次渗碳体一Le'+二次渗碳体+P,室温组织:Le'+二次渗碳体+P10 .为什么室温下金属的晶粒越细,强度、硬度越高,韧性、塑性也越好:由于金属的晶粒越细,晶界总面积额越大,位错障碍越多,需协调的具有不同未向的晶粒越多,金属塑性变形的抗力越高,从而导致金属的强度和硬度越高;合金的晶粒越细,单位体积内晶粒数目越多,同时参与变形的晶粒数目越多,变形越匀称,推迟了裂纹的形成与扩展,使得在断裂前发生了较大的塑性变形,在强度和硬度同时参与的状况下,所以合金晶粒越细,其清醒和韧性也越好。
工程材料课后习题答案
参考答案第1章机械工程对材料性能的要求思考题与习题P201.3、机械零件在工作条件下可能承受哪些负荷这些负荷对零件产生什么作用 p4工程构件与机械零件以下简称零件或构件在工作条件下可能受到力学负荷、热负荷或环境介质的作用..有时只受到一种负荷作用;更多的时候将受到两种或三种负荷的同时作用..在力学负荷作用条件下;零件将产生变形;甚至出现断裂;在热负荷作用下;将产生尺寸和体积的改变;并产生热应力;同时随温度的升高;零件的承载能力下降;环境介质的作用主要表现为环境对零件表面造成的化学腐蚀;电化学腐蚀及摩擦磨损等作用..1.4 整机性能、机械零件的性能和制造该零件所用材料的力学性能间是什么关系 p7机器的整机性能除与机器构造、加工与制造等因素有关外;主要取决于零部件的结构与性能;尤其是关键件的性能..在合理而优质的设计与制造的基础上;机器的性能主要由其零部件的强度及其它相关性能来决定..机械零件的强度是由结构因素、加工工艺因素、材料因素和使用因素等确定的..在结构因素和加工工艺因素正确合理的条件下;大多数零件的体积、重量、性能和寿命主要由材料因素;即主要由材料的强度及其它力学性能所决定..在设计机械产品时;主要是根据零件失效的方式正确选择的材料的强度等力学性能判据指标来进行定量计算;以确定产品的结构和零件的尺寸..1.5常用机械工程材料按化学组成分为几个大类各自的主要特征是什么p17机械工程中使用的材料常按化学组成分为四大类:金属材料、高分子材料、陶瓷材料和复合材料..提示:强度、塑性、化学稳定性、高温性能、电学、热学方面考虑回答..1.7、常用哪几种硬度试验如何选用P18 硬度试验的优点何在P11硬度试验有以下优点:●试验设备简单;操作迅速方便;●试验时一般不破坏成品零件;因而无需加工专门的试样;试验对象可以是各类工程材料和各种尺寸的零件;●硬度作为一种综合的性能参量;与其它力学性能如强度、塑性、耐磨性之间的关系密切;由此可按硬度估算强度而免做复杂的拉伸实验强韧性要求高时则例外;●材料的硬度还与工艺性能之间有联系;如塑性加工性能、切削加工性能和焊接性能等;因而可作为评定材料工艺性能的参考;●硬度能较敏感地反映材料的成分与组织结构的变化;故可用来检验原材料和控制冷、热加工质量..●提示:设备简单;试样方便无需专门加工;在一定范围可与力学性能、工艺性能建立联系;工程中常用第2章材料的组成和内部结构特征思考题与习题P552.7在铁碳合金中主要的相是哪几个两个最主要的恒温反应是什么其生成的组织是什么它们的性能有什么特点答:铁碳合金相图中共有五个基本相;即液相L、铁素体相F、高温铁素体相δ、奥氏体相A及渗碳体相Fe3C..在ECF水平线1148℃发生共晶转变L4.3 A2.11+Fe3C..转变产物为渗碳体基体上分布着一定形态、数量的奥氏体的机械混合物共晶体;称为莱氏体;以符号“Ld”表示;性能硬而脆..在PSK线727℃发生共析转变A0.77 F0.0218+Fe3C..转变产物为铁素体基体上分布着一定数量、形态的渗碳体的机械混合物共析体;称为珠光体;以符号“P”表示..珠光体的强度较高;塑性、韧性和硬度介于渗碳体和铁素体之间..2.9 根据铁碳相图对铁碳合金进行分类;试分析不同铁碳合金成分、室温平衡组织及性能之间关系..答:由Fe—C相图可将铁碳合金分为以下几类:①工业纯铁:wC≤0.0218%; 组织为F+Fe3CIII亚共析钢:0.0218%<wC<0.77%; 组织为F+PF+Fe3C共析钢:wC=0.77%; 组织为珠光体PF+Fe3C过共析钢:0.77%<wC<2.11%; 组织为P+ Fe3CII网状亚共晶白口铸铁:2.11%<wC<4.3%; 组织为P+ Fe3CII+ Ld'③白口铸铁共晶白口铸铁:wC=4.3%;组织为Ld A+ Fe3C或Ld'过共晶白口铸铁:4.3%<wC<6.69%; 组织为 Ld'+ Fe3CI由F和Fe3C两相构成的铁碳合金的室温平衡组织;随着含碳量的增加其变化规律为:F+少量Fe3CIII→F+P→P→P+ Fe3CII网状→P+ Fe3CII+Ld’ →Ld’ →Ld’+Fe3CI随着含碳量的增加;组织组成发生相应的变化;硬度增加;塑韧性降低;强度的变化是先增加后降低;大约在含碳量为0.9%时为最大值..合金中组织的不同引起的性能差异很大;这与Fe3C的存在形式密切相关;当他与F基体构成片层状的P组织时;合金的强度和硬度均随含碳量增加而增加;而当Fe3C以网状分布在晶界上时;不仅使塑韧性降低;也使强度降低;当Fe3C以粗大形态存在时Ld’或Fe3CI;塑韧性和强度会大大降低..2.11 从铁一碳相图的分析中回答:1随碳质量百分数的增加;硬度、塑性是增加还是减小答:随着含碳量的增加;硬度增加;塑韧性降低;因为随含碳量增加Fe3C 数量越来越多..2过共析钢中网状渗碳体对强度、塑性的影响怎样答:对基体产生严重的脆化;使强度和塑性下降..3钢有塑性而白口铁几乎无塑性答:钢是以塑韧的F为基体;而白口铁是以硬脆的Fe3C为基体;所以钢有塑性;而白口铁几乎无塑性..4哪个区域熔点最低哪个区域塑性最好答:共晶白口铸铁熔点最低..A区塑性最好..2.13 根据Fe-Fe3C相图;说明产生下列现象的原因:1含碳量为1.0%的钢比含碳量为0.5%的钢硬度高;答:因为钢的硬度随含碳量的增加而增加..2在室温下含碳量0.8%的钢其强度比含碳量1.2%的钢强度高;答:含碳量超过0.9%后;Fe3C以网状分布在晶界上;从而使钢的强度大大下降..3低温莱氏体的塑性比珠光体的塑性差;答:因为低温莱氏体是由共晶Fe3C、Fe3CII和珠光体组成;因此比起但纯的珠光体来说;其塑性要差..4在1100℃;含碳量0.4%的钢能进行锻造;含碳量4.0%的生铁不能锻造;答:因为在1100℃;含碳量0.4%的钢处于A单相区;而含碳量4.0%的生铁处于A+ Fe3CII+Ld’;5钢铆钉一般用低碳钢制成;答:钢铆钉需要有良好的塑韧性;另外需要兼有一定的抗剪切强度;因而使用低碳钢制成;6钳工锯0.8%C、1.0%C、1.2%C等钢材比锯0.1%C、0.2%C钢材费力;锯条容易磨损;答:0.8%C、1.0%C、1.2%C中的含碳量高;组织中的Fe3C的含量远比0.1%C、0.2%C钢中的含量高;因此比较硬;比较耐磨;7钢适宜于通过压力加工成形;而铸铁适宜于铸造成型;答:铸铁的熔点低;合金易熔化、铸造过程易于实施;钢的含碳量比铸铁低;通过加热可进入单相固溶体区;从而具有较好的塑性、较低的变形抗力;不易开裂;因此适宜于压力加工成形..第3章工程材料成形过程中的行为与性能变化思考题与习题P813、金属晶粒大小对机械性能有什么影响如何控制晶粒的大小P67~P68答:机械工程中应用的大多数金属材料是多晶体..同样的金属材料在相同的变形条件下;晶粒越细;晶界数量就越多;晶界对塑性变形的抗力越大;同时晶粒的变形也越均匀;致使强度、硬度越高;塑性、韧性越好..因此;在常温下使用的金属材料;一般晶粒越细越好..晶粒度的大小与结晶时的形核率N和长大速度G有关..形核率越大;在单位体积中形成的晶核数就越多;每个晶粒长大的空间就越小;结晶结束后获得的晶粒也就越细小..同时;如果晶体的长大速度越小;则在晶体长大的过程中可能形成的晶粒数目就越多;因而晶粒也越小..细化晶粒的方法有:1增大过冷度——提高形核率和长大速度的比值;使晶粒数目增大;获得细小晶粒;2加入形核剂——可促进晶核的形成;大大提高形核率;达到细化晶粒的目的;3机械方法——用搅拌、振动等机械方法迫使凝固中的液态金属流动;可以使附着于铸型壁上的细晶粒脱落;或使长大中的树枝状晶断落;进入液相深处;成为新晶核形成的基底;因而可以有效地细化晶粒..4、金属铸锭通常由哪几个晶区组成它们的性能特点如何P69~P70答:金属铸锭的宏观组织由由三个晶区组成的;由外至里分别是细等轴晶粒区、柱状晶粒区和中心等轴晶粒区..其性能特点如下:1表面细等轴晶区:晶粒细小;有较高的致密度;其力学性能也较好..但因其厚度太小;往往在随后的机械加工过程中去除;因而对铸锭总体性能的影响可以忽略不计..2柱状晶区:柱状晶区的各个晶粒平行地向中心长大;彼此互相妨碍;不能产生发达的分枝;结晶后的组织比较致密..但晶粒较粗大;晶粒间交界处容易聚集杂质形成脆弱区;受力时容易沿晶界开裂..因此;柱状晶的力学性能具有较明显的各向异性..一般铸件中应尽量限制出现较大的柱状晶区..3中心等轴晶区:等轴晶的分枝比较发达;凝固后容易形成显微缩松;晶体致密度较低;但杂质元素在等轴晶间的分布比较均匀;不会出现明显的各向异性;铸锭晶间的缩松还可在后续的压力加工过程中焊合..因此;对于铸锭和一般使用条件下的铸件;希望获得等轴晶组织..6.室温下;对一根铁丝进行反复弯曲—拉直试验;经过一定次数后;铁丝变得越来越硬;试分析原因..如果将这根弯曲—拉直试验后的铁丝进行一定温度的加热后;待冷至室温;然后再试着弯曲;发现又比较容易弯曲了;试分析原因..答:铁丝进行反复弯曲—拉直的过程是塑性变形的过程;在经过一定次数后铁丝产生了加工硬化;因此强度硬度越来越高;若进行一定温度的加热后;变形的铁丝发生了回复再结晶;加工硬化消除;硬度降低;所以又比较容易弯曲了..7、什么是金属的回复和再结晶过程回复和再结晶过程中金属的组织性能发生了哪些变化P75答:回复:塑性变形后的金属加热时;开始阶段由于加热温度不高;原子获得的活动能力较小;只能进行短距离的扩散;金属的显微组织仍保持纤维组织;力学性能也不发生明显的变化..在这一阶段内;原子的短距离扩散使晶体在塑性变形过程中产生的晶体缺陷减少;晶格畸变大部分消除;材料中的残余应力基本消除;导电性和抗腐蚀能力也基本恢复至变形前的水平..再结晶:把经历回复阶段的金属加热到更高温度时;原子活动能力增大;金属晶粒的显微组织开始发生变化;由破碎的晶粒变成完整的晶粒;由拉长的纤维状晶粒转变成等轴晶粒..这种变化经历了两个阶段;即先在畸变晶粒边界上形成无畸变晶核;然后无畸变晶核长大;直到全部转化为无畸变的等轴晶粒..该过程无相变发生;也为原子扩散导致的形核、长大过程;因此称为再结晶..金属在再结晶过程中;由于冷塑性变形产生的组织结构变化基本恢复;力学性能也随之发生变化;金属的强度和硬度下降;塑性和韧性上升;加工硬化现象逐渐消失;金属的性能重新恢复至冷塑性变形之前的状态..8、什么是加工硬化试述金属在塑性变形中发生加工硬化的原因试分析加工硬化的利与弊..P74答:加工硬化:金属在塑性变形过程中;随着变形程度增加;强度、硬度上升;塑性、韧性下降;这种现象称加工硬化也叫形变强化..加工硬化的原因:金属变形过程主要是通过位错沿着一定的晶面滑移实现的..在滑移过程中;位错密度大大增加;位错间又会相互干扰相互缠结;造成位错运动阻力增加;同时亚晶界的增多;从而出现加工硬化现象..利与弊:加工硬化加大了金属进一步变形的抗力;甚至使金属开裂;对压力加工产生不利的影响..因此需要采取措施加以软化;恢复其塑性;以利于继续形变加工..但是;对于某些不能用热处理方法强化的合金;加工硬化又是一种提高其强度的有效的强化手段..第4章改善材料性能的热处理、合金化及改性思考题与习题P1133、说明共析钢过冷奥氏体在不同温度等温冷却所得的转变组织及其性能的主要特征..A1~550℃为珠光体转变区P区;奥氏体分解为铁素体和渗碳体相间的片层状组织;它是靠Fe与C原子长距离扩散迁移;铁素体和渗碳体交替形核长大而形成的;为全扩散型转变..稍低于A1的等温转变产物的片层间距较大..而随着转变温度下降;过冷度加大;过冷奥氏体稳定性变小;孕育期变短;转变产物也变细..P区产物按转变温度的高低分别称为珠光体PA1~650℃、索氏体S650~600℃和屈氏体T600~550℃..这三种组织仅片层粗细不同;并无本质差异;片层越细;硬度、强度越高;它们统称为珠光体类型转变组织..从550℃到Ms的范围内;过冷奥氏体发生贝氏体转变B区..由于转变温度较低;Fe几乎不扩散;仅C原子作短距离扩散;故转变产物的形态、性能及转变过程都与珠光体不同;是含过饱和碳的铁素体和渗碳体的非片层状混合物;为半扩散型转变..按组织形态的不同;将贝氏体分为上贝氏体B上和下贝氏体B下..共析钢的B上在550~350℃形成;是自原奥氏体晶界向晶内生长的稍过饱和铁素体板条;具有羽毛状的金相特征;条间有小片状的Fe3C..在350~240℃形成的B下;其典型形态是呈一定角度的针片状更过饱和铁素体与其内部沉淀的超细小不完全碳化物Fe2.4C片粒;在光学显微镜下常呈黑色针状形态..C曲线图低温区的两条水平线M s、M f之间是马氏体转变区域M区..马氏体转变是无扩散型相变;母相成分不变;得到所谓的马氏体组织;相变速度极快..马氏体实质上是含有大量过饱和碳的α固溶体也可近似看成含碳极度过饱和的针或条状铁素体;产生很强的固溶强化..马氏体转变是在一定温度范围内进行的;共析钢的M转变约在240~-50℃进行..随着温度不断降低;M转变量不断增加;但是即使冷却到马氏体转变终了温度M f点;也总有一部分剩余;称为残余奥氏体A′..钢中的w C越高;A′数量越多;共析钢的A′可达到5%~8%..M组织中少量的A′≤10%不会明显降低钢的硬度;反而可以改善钢的韧性..在钢中马氏体有板条马氏体和针状马氏体两种形态;当w C:低于0.20%时;为板条马氏体;也称低碳马氏体或位错马氏体;大多强韧;高于 1.0%时;则为针状马氏体;也称高碳马氏体或孪晶马氏体;大多硬脆;0.2%~1.0%时;为两者的混合组织..钢中的碳含量越多;则所得的马氏体硬度越高;但残余奥氏体量也增多;综合结果使硬度趋于恒定..5、试说明下列钢件应采用何种退火、退火的目的及退火后的组织:1经冷轧的15钢钢板;要求降低硬度;答:再结晶退火2铸造成形的机床床身;答:去应力退火3经锻造过热晶粒粗大的wC=0.60%的锻件;答:完全退火或等温退火4具有细片状渗碳体组织的T12钢件;要求改善其切削性能..答:球化退火7、试说明预先热处理与最终热处理的主要区别;以及它们之间的联系..答:预先热处理常用的工艺方法有退火、正火、调质..通过预先热处理获得的无成分偏析、无热加工缺陷的稳定组织;还有利于零件在最终淬火最终热处理时各个部分均得到同等程度的淬火效果;使零件整个截面上的力学性能均匀一致;而且还可以减少零件淬火时尺寸和形状的变化等热处理缺陷..此外;良好的预先热处理组织还可为表面硬化零件提供心部的强韧性..因此;预先热处理可以为零件的最终热处理和表面强化处理做好组织准备..最终热处理----保证零件的性能图纸要求;工艺方法主要是淬火、回火;还有化学热处理和其他表面改性处理..9、钢淬火后为什么一定要回火说明回火的种类及主要应用范围..答:淬火钢一般不能直接使用;这是由于:①零件处于高应力状态可达300~500MPa以上;在室温下放置或使用时很易引起变形和开裂;②淬火态M+A′是亚稳定状态;使用中会发生组织、性能和尺寸变化;③淬火组织中的片状马氏体硬而脆;不能满足零件的使用要求..回火能使这些状况得到改善;获得所要求的力学性能..由于在回火过程中随着温度的提高逐渐发生了各种组织变化;钢的性能也会逐渐改变..根据回火温度可以分为三类回火;如下表所示:13、简述钢中主要合金元素的作用..哪些杂质损害钢材性能答:合金元素在钢中的作用如下:1形成固溶体;产生固溶强化2形成细小第二相;产生弥散强化或第二相强化3溶入奥氏体;提高钢的淬透性4提高钢的热稳定性;增加钢在高温下的强度、硬度和耐磨性5细化晶粒;产生细晶强韧化6形成钝化保护膜7对奥氏体和铁素体存在范围的影响20、有低碳钢齿轮和高碳钢齿轮各一个;要求齿面具有高的硬度和耐磨性;应分别采用怎样的热处理并比较它们在热处理后组织与性能上的差别..答:高碳钢齿轮应采用感应加热淬火和低温回火热处理后的组织为“回火马氏体+少量残余奥氏体”;低碳钢齿轮应正火后进行渗碳;然后进行淬火和低温回火;热处理后表层为高碳回火马氏体+碳化物+少量残余奥氏体;有很高的硬度和强度;而心部保持低碳钢的高韧性及高塑性;达到表硬心韧..23、有两种共析钢试样;分别加热到780℃和880℃;并保温相同时间;使之达到平衡状态;然后以大于临界冷却速度的冷速冷至室温..试问:1那种加热温度的马氏体晶粒粗大答:880℃2那种加热温度马氏体的含碳量较高答:880℃3那种加热温度的残余奥氏体较多答:880℃4那种加热温度的未溶解渗碳体较少答:880℃5那种加热温度淬火最合适为什么答780℃;因为该加热温度淬火后马氏体晶粒比较细小;马氏体含碳量较低从而组织应力较小;残余奥氏体量较少;加上未溶解碳化物;有利于提高钢的硬度和耐磨性..第5章常用金属材料及性能习题答案P1603、何谓渗碳钢试分析此类钢的用途及性能特点、合金化原则、热处理特点;并列举其典型钢种..答:渗碳钢是指经渗碳、淬火和低温回火后使用的结构钢..渗碳钢基本上都是低碳钢和低碳合金钢..用途及性能特点:用于承受较大冲击负荷、同时表面经受强烈摩擦磨损的零件如换档齿轮等..经渗碳及淬、回火后;表硬内韧..合金化原则:①低碳≤0.25%;保证渗碳及热处理后表、里的良好配合..②加提高淬透性元素;Cr、Mn、Ni、B等;保证心部良好强韧性..③加V、Ti、W等;阻止渗碳时晶粒长大..热处理特点:渗碳后淬火和低温回火;获得具有高硬度、高耐磨性的高碳回火马氏体..典型钢种:低淬透性1520、20Cr;中淬透性20CrMnMo、20MnTiB;高淬透性18Cr2Ni4W、20Cr2Ni4..4、何谓调质钢试分析此类钢的用途及性能特点、合金化原则、热处理特点;并列举其典型钢种..答:调质钢:指调质淬火+高温回火后使用的中碳钢及中碳合金钢..用途及性能特点:高强度承受较大负荷及高韧性防止断裂事故的重要零件如机床主轴;具有良好的综合力学性能..合金化原则:①中碳0.30~0.5%;保证热处理后足够强度;又不致太脆..②加淬透性元素Cr、Ni、Mn、Si、B;保证大截面均一的性能..③细化晶粒元素V、W、Mo等..④加Mo;消除回火脆性..热处理:调质即淬火+高温回火500~650℃..常用典型钢种:低淬透性:45、40Cr、40MnB;中淬透性:35CrMo、30CrMnSi;高淬透性:40CrNiMo、40CrMnMo..5、何谓弹簧钢试分析此类钢的用途及性能特点、合金化原则、热处理特点;并列举其典型钢种..答:弹簧钢:主要用于制造弹簧的钢..用途、性能:主要用于制造弹簧;弹簧钢应具有高的弹性极限、高的疲劳强度和足够的塑性与韧性..合金化:①中、高碳0.45~0.7%;②加Si提高σe及σs/σb;③加Mn、Si、或Cr提高淬透性;④加Mo、W、V细化晶粒重要弹簧..热处理:淬火+中温回火;回火屈氏体 42~48HRC..常用钢种:65;65Mn;60Si2Mn;50CrV..8、试比较冷作模具钢和热作模具钢的常用钢号、热处理特点和性能特点..答:1冷作模具钢:高碳合金钢..常用钢号如:T8、T10、T12;9Mn2V、9SiCr、GCr15、Cr12MoV、65Nb、W6Mo5Cr4V2..性能特点:高硬度高耐磨性、足够整体强度与韧性..用于各种冷冲压、冷成型模具;热处理特点:淬火+低温回火;≥58HRC;细小马氏体+粒状碳化物+少量残余奥氏体..2热作模具钢:中碳合金钢常用钢号如:5CrNiMo、5CrMnMo;3Cr2W8V;H114Cr5MoSiV、H13Cr5MoSiV1..性能特点:耐热性、高温强度;耐热疲劳;高淬透性和导热性..用于锻模、热挤压模、热弯模等;热处理特点:淬火、中温回火高于工作温度;35~50HRC;得到回火屈氏体..9、何谓高速钢试分析此类钢的用途及性能特点、合金化原则、热处理特点;并列举其典型钢种..答:高速钢是一类具有很高耐磨性和很高热硬性的工具钢;在高速切削条件刃部温度达到500~600℃时仍能保持很高的硬度;使刃口保持锋利;因此得名..用途及性能特点:用于高速切削的刀具;具有高硬度、高耐磨性及高热硬性..合金化原则:①高碳ωc>0.8%;以形成大量碳化物;保证高硬度、高耐磨性..②较多W与Mo>10%;产生W2C、Mo2C等细小弥散硬化;保证热硬性..③4%Cr;淬透性..④加V;提高硬度、耐磨性..热处理特点:先在730℃~870℃之间预热;1200-1300℃高温淬火;三次 560℃回火为了消除淬火钢中大量的残余奥氏体可达30%左右;使合金碳化物弥散析出;以保证具有高的热硬性;组织回火马氏体+碳化物+残余A;62~66HRC..典型钢种:W6Mo5Cr4V2、W9Mo3Cr4V、W18Cr4V..14、填写下表;说明表中铸铁牌号的类别、符号和数字的含义、组织特点和用途..15、填写下表;指出表中金属材料的类别、牌号或代号的含义、特性和主要用途..建议去掉特性;主要用途简写;写出最主要的即可第7章工程设计、制造与材料选择习题答案1、零件失效有哪些类型试分析零件失效的主要原因..答案参考P200~202答:机器零件的失效可以分为过量变形失效、断裂失效和表面损伤失效..每一类失效又可细分为若干具体的失效形式..失效的主要原因有以下四个方面:1设计1应力计算错误——表现为对零件的工作条件或过载情况估计不足造成的应力计算错误..2热处理结构工艺性不合理——热处理结构工艺性是指零件结构对热处理工艺性的影响及零件结构对失效的影响..如把零件受力大的部位设计成尖角或厚薄悬殊等;这样导致应力集中、应变集中和复杂应力等;从而容易产生不同形式的失效..2选材与热处理1选材错误——料牌号选择不当、错料、混料;均会造成零件的热处理缺陷或力学性能得不到保证和使用寿命下降..2热处理工艺不当——材料选择合理;但是热处理工艺或是热处理操作上出现了毛病;即使零件装配前没有报废;也容易早期失效..3治金缺陷——夹杂物、偏析、微裂纹、不良组织等超标;均会产生废品和零件失效..3加工缺陷冷加工和热加工工艺不合理会引起加工的缺陷;缺陷部位可能成为失效的起源..如切削加工缺陷主要指敏感部位的粗糙度值太高;存在较深的刀痕;由于热处理或磨削工艺不当造成的磨削回火软化或磨削裂纹;应力集中部位的圆角太小;或圆角过渡不好;零件受力大的关键部位精度偏低;运转不良;甚至引发振动等;均可能造成失效..4装配与使用装配时零件配合表面调整不好、过松或过紧、对中不好、违规操作、对某些零件在使用过程中未实行或未坚持定期检查、润滑不良以及过载使用等;均可能成为零件失效的原因..2、选材三原则是什么零件选材时应注意什么问题答案参考P202~205答:选材三原则是使用性能原则、工艺性原则、经济性原则..使用性能原则——使用性能是选材的必要条件;是零件乃至机器完成其功能的基本保证..使用性能可由力学性能、物理性能和化学性能表征..机械零件主要是力学性能..工艺性原则——是指材料经济地适应各种加工工艺而获得规定使用性能或形状的能力..。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程材料第一章金属的晶体结构与结晶1.解释下列名词点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。
如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。
如晶界和亚晶界。
亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。
亚晶界:两相邻亚晶粒间的边界称为亚晶界。
刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。
滑移部分与未滑移部分的交界线即为位错线。
如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。
单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由多种晶粒组成的晶体结构称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。
非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。
变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
变质剂:在浇注前所加入的难熔杂质称为变质剂。
2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、 Pb 、 Cr 、 V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。
晶体中配位数和致密度越大,则晶体中原子排列越紧密。
4.晶面指数和晶向指数有什么不同?uvw;晶面是指晶格中不同方位答:晶向是指晶格中各种原子列的位向,用晶向指数来表示,形式为[]hkl。
上的原子面,用晶面指数来表示,形式为()5.实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响?答:如果金属中无晶体缺陷时,通过理论计算具有极高的强度,随着晶体中缺陷的增加,金属的强度迅速下降,当缺陷增加到一定值后,金属的强度又随晶体缺陷的增加而增加。
因此,无论点缺陷,线缺陷和面缺陷都会造成晶格崎变,从而使晶体强度增加。
同时晶体缺陷的存在还会增加金属的电阻,降低金属的抗腐蚀性能。
6.为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。
7.过冷度与冷却速度有何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影响?答:①冷却速度越大,则过冷度也越大。
②随着冷却速度的增大,则晶体内形核率和长大速度都加快,加速结晶过程的进行,但当冷速达到一定值以后则结晶过程将减慢,因为这时原子的扩散能力减弱。
③过冷度增大,ΔF大,结晶驱动力大,形核率和长大速度都大,且N的增加比G增加得快,提高了N与G的比值,晶粒变细,但过冷度过大,对晶粒细化不利,结晶发生困难。
8.金属结晶的基本规律是什么?晶核的形成率和成长率受到哪些因素的影响?答:①金属结晶的基本规律是形核和核长大。
②受到过冷度的影响,随着过冷度的增大,晶核的形成率和成长率都增大,但形成率的增长比成长率的增长快;同时外来难熔杂质以及振动和搅拌的方法也会增大形核率。
9.在铸造生产中,采用哪些措施控制晶粒大小?在生产中如何应用变质处理?答:①采用的方法:变质处理,钢模铸造以及在砂模中加冷铁以加快冷却速度的方法来控制晶粒大小。
②变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒。
③机械振动、搅拌。
第二章金属的塑性变形与再结晶1.解释下列名词:加工硬化、回复、再结晶、热加工、冷加工。
答:加工硬化:随着塑性变形的增加,金属的强度、硬度迅速增加;塑性、韧性迅速下降的现象。
回复:为了消除金属的加工硬化现象,将变形金属加热到某一温度,以使其组织和性能发生变化。
在加热温度较低时,原子的活动能力不大,这时金属的晶粒大小和形状没有明显的变化,只是在晶内发生点缺陷的消失以及位错的迁移等变化,因此,这时金属的强度、硬度和塑性等机械性能变化不大,而只是使内应力及电阻率等性能显著降低。
此阶段为回复阶段。
再结晶:被加热到较高的温度时,原子也具有较大的活动能力,使晶粒的外形开始变化。
从破碎拉长的晶粒变成新的等轴晶粒。
和变形前的晶粒形状相似,晶格类型相同,把这一阶段称为“再结晶”。
热加工:将金属加热到再结晶温度以上一定温度进行压力加工。
冷加工:在再结晶温度以下进行的压力加工。
2.产生加工硬化的原因是什么?加工硬化在金属加工中有什么利弊?答:①随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈大,晶粒破碎的程度愈大,这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长而被拉长。
因此,随着变形量的增加,由于晶粒破碎和位错密度的增加,金属的塑性变形抗力将迅速增大,即强度和硬度显著提高,而塑性和韧性下降产生所谓“加工硬化”现象。
②金属的加工硬化现象会给金属的进一步加工带来困难,如钢板在冷轧过程中会越轧越硬,以致最后轧不动。
另一方面人们可以利用加工硬化现象,来提高金属强度和硬度,如冷拔高强度钢丝就是利用冷加工变形产生的加工硬化来提高钢丝的强度的。
加工硬化也是某些压力加工工艺能够实现的重要因素。
如冷拉钢丝拉过模孔的部分,由于发生了加工硬化,不再继续变形而使变形转移到尚未拉过模孔的部分,这样钢丝才可以继续通过模孔而成形。
3.划分冷加工和热加工的主要条件是什么?答:主要是再结晶温度。
在再结晶温度以下进行的压力加工为冷加工,产生加工硬化现象;反之为热加工,产生的加工硬化现象被再结晶所消除。
4.与冷加工比较,热加工给金属件带来的益处有哪些?答:(1)通过热加工,可使铸态金属中的气孔焊合,从而使其致密度得以提高。
(2)通过热加工,可使铸态金属中的枝晶和柱状晶破碎,从而使晶粒细化,机械性能提高。
(3)通过热加工,可使铸态金属中的枝晶偏析和非金属夹杂分布发生改变,使它们沿着变形的方向细碎拉长,形成热压力加工“纤维组织”(流线),使纵向的强度、塑性和韧性显著大于横向。
如果合理利用热加工流线,尽量使流线与零件工作时承受的最大拉应力方向一致,而与外加切应力或冲击力相垂直,可提高零件使用寿命。
5.为什么细晶粒钢强度高,塑性,韧性也好?答:晶界是阻碍位错运动的,而各晶粒位向不同,互相约束,也阻碍晶粒的变形。
因此,金属的晶粒愈细,其晶界总面积愈大,每个晶粒周围不同取向的晶粒数便愈多,对塑性变形的抗力也愈大。
因此,金属的晶粒愈细强度愈高。
同时晶粒愈细,金属单位体积中的晶粒数便越多,变形时同样的变形量便可分散在更多的晶粒中发生,产生较均匀的变形,而不致造成局部的应力集中,引起裂纹的过早产生和发展。
因此,塑性,韧性也越好。
6.金属经冷塑性变形后,组织和性能发生什么变化?答:①晶粒沿变形方向拉长,性能趋于各向异性,如纵向的强度和塑性远大于横向等;②晶粒破碎,位错密度增加,产生加工硬化,即随着变形量的增加,强度和硬度显著提高,而塑性和韧性下降;③织构现象的产生,即随着变形的发生,不仅金属中的晶粒会被破碎拉长,而且各晶粒的晶格位向也会沿着变形的方向同时发生转动,转动结果金属中每个晶粒的晶格位向趋于大体一致,产生织构现象;④冷压力加工过程中由于材料各部分的变形不均匀或晶粒内各部分和各晶粒间的变形不均匀,金属内部会形成残余的内应力,这在一般情况下都是不利的,会引起零件尺寸不稳定。
7.分析加工硬化对金属材料的强化作用?答:随着塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割、位错缠结加剧,使位错运动的阻力增大,引起变形抗力的增加。
这样,金属的塑性变形就变得困难,要继续变形就必须增大外力,因此提高了金属的强度。
8.已知金属钨、铁、铅、锡的熔点分别为3380℃、1538℃、327℃、232℃,试计算这些金属的最低再结晶温度,并分析钨和铁在1100℃下的加工、铅和锡在室温(20℃)下的加工各为何种加工?答:T再=0.4T熔;钨T再=[0.4*(3380+273)]-273=1188.2℃; 铁T再=[0.4*(1538+273)]-273=451.4℃;铅T再=[0.4*(327+273)]-273=-33℃; 锡T再=[0.4*(232+273)]-273=-71℃.由于钨T再为1188.2℃>1100℃,因此属于热加工;铁T再为451.4℃<1100℃,因此属于冷加工;铅T再为-33℃<20℃,属于冷加工;锡T再为-71<20℃,属于冷加工。
9.在制造齿轮时,有时采用喷丸法(即将金属丸喷射到零件表面上)使齿面得以强化。
试分析强化原因。
答:高速金属丸喷射到零件表面上,使工件表面层产生塑性变形,形成一定厚度的加工硬化层,使齿面的强度、硬度升高。
第三章合金的结构与二元状态图1.解释下列名词:合金,组元,相,相图;固溶体,金属间化合物,机械混合物;枝晶偏析,比重偏析;固溶强化,弥散强化。
答:合金:通过熔炼,烧结或其它方法,将一种金属元素同一种或几种其它元素结合在一起所形成的具有金属特性的新物质,称为合金。
组元:组成合金的最基本的、独立的物质称为组元。
相:在金属或合金中,凡成分相同、结构相同并与其它部分有界面分开的均匀组成部分,均称之为相。
相图:用来表示合金系中各个合金的结晶过程的简明图解称为相图。
固溶体:合金的组元之间以不同的比例混合,混合后形成的固相的晶格结构与组成合金的某一组元的相同,这种相称为固溶体。
金属间化合物:合金的组元间发生相互作用形成的一种具有金属性质的新相,称为金属间化合物。
它的晶体结构不同于任一组元,用分子式来表示其组成。
机械混合物:合金的组织由不同的相以不同的比例机械的混合在一起,称机械混合物。
枝晶偏析:实际生产中,合金冷却速度快,原子扩散不充分,使得先结晶出来的固溶体合金含高熔点组元较多,后结晶含低熔点组元较多,这种在晶粒内化学成分不均匀的现象称为枝晶偏析。
比重偏析:比重偏析是由组成相与溶液之间的密度差别所引起的。
如果先共晶相与溶液之间的密度差别较大,则在缓慢冷却条件下凝固时,先共晶相便会在液体中上浮或下沉,从而导致结晶后铸件上下部分的化学成分不一致,产生比重偏析。