第四章立体的投影讲义

合集下载

土木工程制图 教学课件 作者 张爽 第四章立体的投影

土木工程制图 教学课件  作者 张爽 第四章立体的投影

【例4-13】已知四棱柱体与三棱柱体相贯的水平 投影图和侧面投影图,求相贯线正投影。
平面立体与曲面立体相交
方梁和圆柱相贯
【例4-14】已知圆锥体薄壳基础的轮廓线,求其相贯线。
曲面立体与曲面立体相交
辅助平面法
表面取点
【例4-15】求两正交圆柱的相贯线。
【例4-16】求轴线正交的圆柱和圆锥的相贯线。
s″
z
z
k′ z n′
z
k″
z
z (n″)
a′
b′
c′ a″(c″)
b″
a
c
s
n z
z
k
z
b
【例4-2】完成三棱锥表面线条的各面投影。
曲面立体的投影
一、圆柱体
圆柱体
圆柱由圆柱面和上、 下两底面组成。
圆柱面可看成是由 直线AA1绕与它平行的 轴线旋转而成。
直线AA1称为母线。
圆柱面上与轴线平 行的任一直线称为圆柱 面的素线。
截切——用平面与立体相交,截去立体的一部分。
截交线
• 截平面 —— 用以截切物体的平面。 • 截交线 —— 截平面与物体表面的交线。 • 截断面 —— 因截平面的截切,在物体上形成的平面。
一、平面和平面立体的截交线
截交线的性质: • 截交线是一个由直线组成的封闭的平面多边形。 • 截交线的每条边是截平面与棱面的交线。
1、形体分析 2、投影选择 ⑴ 选择安放位置 ⑵ 选择正面投影方向 ⑶ 选择投影图的数量 3、先选比例、后定图幅或先定图幅、后选比例 4、画底稿线(布图、画基准线、逐个画出各基本形 体投影图,标注尺寸) 5、检查整理底稿、加深图线、书写文字 ,完成全图
1、形体分析的内容 1) 平面体相邻组成部分间的表面衔接与投 影图的关系

机械制图系列-04立体的投影ppt课件

机械制图系列-04立体的投影ppt课件

根据截平面与圆锥轴线的相对位置不同,截交线有五种形状。
PV
θ PV
PV
θ
α PV
θ= 90° 圆
过锥顶 两相交直线
θ>α 椭圆
θ PV
α
α
θ=α 抛物线
θ= 0°<α 双曲线
23
例: 圆锥被正垂面截切,求 截交线,并完成三视图。
截截交交线线的的空投间影形特状性??
如何找椭圆另一根轴 的端点?
★找特殊点 ★补充中间点 ★光滑连接各点 ★分析轮廓线的
s

●(n) k 如过何锥在顶圆作锥一面条上素作直 线线?。
圆的半径?
8
3.3圆.圆球球体
⑴ 圆球的形成 圆母线以它的直径为轴旋转而
成。
⑵ 圆球的三视图
k
⑶ 轮廓线的投影与曲 面三可个见视性图的分判别断为三
个和圆球的直径相等的
圆,它们分别是圆球三
⑷个方圆向球轮面廓上线取的点投影。
辅助圆法 k
k 圆的半径?
⑵ 棱柱的三视图 ⑶ 棱柱面上取点
点的可见性规定: 若点所在的平面的投影可见,点的投影也
可见;若在平图面示由的位于投置棱影时柱积,的聚六表成棱面直柱都线的是,两平点底面的面,投为所影水以也平在可面见,。 在俯视棱图柱中的反表映面实上形取。点前与后在两平侧面棱上面取是点正的平方面法,相其 余四个同侧。棱面是铅垂面,它们的水平投影都积聚成 直线,与六边形的边重合。
立体的投影
1
基本几何体的分类
基本 几何体
平面立体 回转体
棱锥体、 棱柱体
柱、锥、 球、环
2
一、平面立体的投影 常见的基本几何体(基本体)
平面立体
曲面立体

最新土木第4章-基本立体投影及表面取点课件PPT

最新土木第4章-基本立体投影及表面取点课件PPT
一圆周绕自身的一直径旋转一周即形成圆球,形成的回转 面称为圆球面。平面与球面的交线为一个圆,称为纬圆。
圆母线
纬圆
轴线
点击图片播放视频 圆球的形成
4.2 曲面立体投影、表面取点
1、投影分析
➢ 轮➢廓球素的线三(个圆投周影A均EC为F圆),平
行于其正直立径投与影圆面球,的把球圆面球直分径为 前半相球等可。见这,三后个半圆球是不圆可球见上; ➢行于轮三 的水廓个投平素不影投线同。影(方面圆向,周的把A轮B圆C廓球D纬)分圆平为 上半球可见,下半球不可见; ➢ 轮廓素线(圆周BEDF)平 行于侧立投影面,把圆球分为 左半球可见,右半球不可见。
公司法所设置的义务应承担 的法律后果, 包括民事责任、行政责任、刑事责任。
1、民事责任——私法责任 主要基于保护公司、股东以及相关主 体的利益不受侵害的目的,是对违法行为 损害的利益关系进行的恢复,反映的是责 任人和相对人的关系,具有救济性和事后 补偿的功能。
法律责任概述
2、行政责任和刑事责任——公法责任 公司法设置行政责任和刑事责任,主要基
n m
4.2 曲面立体投影、表面取点
曲面立体:形体的表面都由曲面或曲面与平面组成 的立体,包括圆柱、圆锥、圆球和圆环。
4.2 曲面立体投影、表面取点
① 圆柱的投影及表面取点
➢ 圆柱由一平行于轴线的母线绕轴线旋转一周形成。 ➢ 圆柱有两个底面和一个回转面。 ➢ 圆柱面的素线都与轴线平行,所有纬圆的直径相同。
形。
4.2 曲面立体投影、表面取点
绘图步骤:
s

●s
(1) 绘制轴线和圆的对称中心线
的投影 ;
(2) 绘制圆锥的水平投影(圆) ;
(3) 绘制圆锥的正面和侧面投影

第四章 立体投影(第四讲)

第四章 立体投影(第四讲)

截交线的求法: 截交线的求法:
平面立体截交线是一个封闭的平面多边形, 平面立体截交线是一个封闭的平面多边形,多边形的 封闭的平面多边形 顶点是平面立体的棱线与截平面的交点,多边形的每条边 顶点是平面立体的棱线与截平面的交点,多边形的每条边 是平面立体的棱线与截平面的交点 是平面立体的棱面与截平面的交线。 是平面立体的棱面与截平面的交线。 棱面与截平面的交线 求截交线---归根到底是求截 求截交线 归根到底是求截 平面与立体表面(或棱线) 平面与立体表面(或棱线) 一系列交线(或交点) 一系列交线(或交点)的问 题。 交线 顶点
平面与平面立体相交
应用举例(单一截平面) 应用举例(单一截平面)
例1:已知立体的正面投影和水平投影, 求其侧面投影。 ★ 形体分析和投影分析
1、根据投影,判别立体形状 、根据投影, 2、根据截平面位置,判别截断面形状 、根据截平面位置, 3、判别截平面与投影面的相对位置 、
平面与平面立体相交
(5′ 3(5′) ′ (6′ (6′) 2′ 1′
4 3
作图: 检查、 作图: ③检查、完成
检查、 (e) 检查、完成 图3-22 正四棱锥被两平面截切
平面与平面相交画法
截平面
截交线
例题2 求立体截切后的投影
4′ 5′ 1′
(3′)
3″ 6″
4″ 5″
(6′)
2″ 1″
(2′)
2
3
Ⅲ Ⅳ
1

6
Ⅱ Ⅰ
4

5
例题5
求立体截切后的投影
1′(2′) 3′(4′) 4″
求水平面、 (c) 求水平面、正垂面与立体的交线
图3-22 正四棱锥被两平面截切

第四章立体的投影

第四章立体的投影
③判别可见性。
❖ ㈡两平面立体的表面交线
相交形体的表面交线称为相贯线。
两平面立体相贯线的特征:一般情况为空间折线,特殊情况为平面折线,每 段折线是两立体棱面的交线,每个折点是一立体棱线与另一立体的贯穿点。 立体的相贯形式有两种:
一是全贯,即一个立体完全穿过另一个立体,相贯线有两组; 二是互贯,两个立体各有一部分参与相贯,相贯线为一组。 求两平面体相贯线的方法:有两种 (1)交点法——先作出各个平面体的有关棱线与另一立体的交点,再将所有交 点顺次连成折线,即组成相贯线。连点的规则是:只有当两个交点对每个立体 来说,都位于同一个棱面上时才能相连,否则不能相连。 (2)交线法——直接作出两平面立体上两个相应棱面的交线,然后组成相贯线。
(3)投影分析
(二)棱锥体 (1)形体特征: 底面是多边形,棱 线交于一点,侧棱面均为三角形。 (2)安放位置: 底面△ABC平行于H面。 (3)投影分析
【例4-1】 作四棱台的正投影图 解:(1)分析
1)四棱台的上、下底面都与H面平行, 前、后两棱面为侧垂面,左、右两棱面 为正 垂面。 2)上、下两底面与H面平行,其水平投 影反映实形;其正面、侧面投影积聚为 直线。 3)前、后两棱面与W面垂直,其侧面投影积聚为直线;与H、V面倾斜,投 影为缩小的类似形。 4)左、右两个面与V面垂直,其正面投影积聚为直线;与H、W面倾斜,投 影为缩小的类似形。 5)四根斜棱线都是一般位置直线,其投影都不反映实长。
3)连点。 4)判断可见性。
❖ 三、同坡屋面交线的画法
单坡屋面 坡屋面 双坡屋面
四坡屋面 同坡屋面:既屋檐高度相等、各屋面与水平面倾角相等的屋面。 同坡屋面交线的画法,其实 质是求两平面交线的问题。
同坡屋面上各种交线的名称

第四章 立体的投影

第四章 立体的投影

(6)根据三等关系作立体的其他两面投影。
第一节 平面立体的投影
例4-1 作四棱台的正投影图,如图4-5所示。
图4-5
四棱台的投影
第一节 平面立体的投影
解:(1)分析 1)四棱台的上、下底面都与H面平行,前、后两棱面为侧垂面,左、
右两棱面为正垂面。 2)上、下两底面与H面平行,其水平投影反映实形;其正面、侧面投 影积聚为直线。 4)左、右两棱面与V面垂直,其正面投影积聚为直线;与H、W面倾 斜,投影为缩小的类似形。 5)四根斜棱线都是一般位臵直线,其投影都不反映实长。 (2)作图
方法来帮助求解。这种方法是先过已知点在立体表面作一辅助直线,求出 辅助直线的另两面投影,再依据点的“从属性”,求出点的各面投影。
例:在三棱锥的SAB棱面上给出了点M的正面投影m’,又在SBC棱面上给
出了点N的水平投影n。求点M的水平投影和N点的正面投影。
第一节 平面立体的投影
例:如图,已知三棱锥的三面投影及其表面上的线段EF的投影ef,求出线 段的其他投影。
当点位于立体表面的某条 棱线上时,那么点的投影 必定在棱线的投影上。即 可利用线上点的“从属性” 求解。
图4-6 三棱柱表面上定点
第一节 平面立体的投影
2.积聚性法:当点所在的立体表面对某投影面的投影具有积聚性时, 那么点的投影必定在该表面对这个投影面的积聚投影上。 例:如图,已知四棱柱的三面投影及其表面上的点M,N的正面投 影 ,求出另外两面投影。
(1) 圆锥的投影特点
轮廓线的投影
(2) 圆锥可见性的判别—V面 曲面的可见 性的判断。
后半面 不可见
前半面 可见
(3) 圆锥可见性的判别—W面 曲面的可见 性的判断。
右半面 不可见 左半面 可见

立体的投影全解

立体的投影全解

三视图的形成
视图就是将物体向投影面投射所得的图形。
(主视图) (左视图)
(俯视图)
主视图 —— 体的正面投影 俯视图 —— 体的水平投影
左视图 —— 体的侧面投影
三视图之间的度量对应关系




主视、俯视长相等且对正
长对正

主视、左视高相等且平齐 高平齐 俯视、左视宽相等且对应 宽相等
4.1 立体及其表面的点和线
s 2 m c
YH
正三棱锥的三面投影图
再根据知二求三的 方法,求出m”。
方法二:利用辅助平面法
s’ s”
过m'作m'1'∥a'c',交s'a' 于1'。
求出Ⅰ点的水平投影1。
c”
1’
a’ a
m’ c’ b’ a”(b”) b
m''
1
m
s
过1作1m ∥ac,再 根据点在直线上的几 何条件,求出m。
再根据知二求三 的方法,求出m”。
常见的基本几何体
平面基本体(表面由平面构成)
曲面基本体(表面由曲面或平面与
曲面构成)
一、平面基本体的投影
平面基本体的投影实质是关于其表面上点、线、面 投影的集合,且以棱边的投影为主要特征,对于可见 的棱边,其投影以粗实线表示,反之,则以虚线示之。 在投影图中,当多种图线发生重叠时,应以粗实线、 虚线、点画线等顺序优先绘制。 平面基本体的各表面都是平面,平面与平面 的交线称为棱线,棱线与棱线的交点称为顶点。 平面基本体可分为棱柱体和棱锥体。
c
正三棱锥的三面投影图
例2: 已知三棱锥棱线上一点的V面投影1′和另一点 的V面投影2′,求两点的其它各面相应投影1″、1及 2、2″。

第五讲第4章立体投影(一)

第五讲第4章立体投影(一)

第五讲第4章立体的投影(一)本讲的学习目标:掌握平面立体(棱柱、棱锥)的形状特点,掌握曲面立体(圆柱、圆锥、圆球)的形成原理;熟练掌握基本形体的投影特征以及形体表面上点和线的求解方法。

学习的重点:基本形体的投影特征以及形体表面上点和线的求解方法4.1 平面立体的投影图4-1 房屋形体的分析图4-2 水塔形体的分析基本形体:组成形体的最简单但又规则的几何体,叫做基本形体。

基本形体的分类:根据表面的组成情况,基本形体可分为平面立体和曲面立体两种。

平面立体:表面由若干平面围成的基本体,叫做平面立体。

平面立体类型:有棱柱、棱锥、棱台等。

平面体的投影:作平面立体的投影,就是作出组成平面立体的各平面的投影。

4.1.1 棱柱4.1.1.1 棱柱的投影如图4-3所示,有两个三角形平面互相平行,其余各平面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些平面所围成的基本体称为棱柱。

图4-3 三棱柱体当底面为三角形、四边形、五边形……时,所组成的棱柱分别为三棱柱、四棱柱、五棱柱等。

(a)立体图(b)投影图图4-4 三棱柱的三面投影分析其三面投影图:W投影:投影为三角形。

H投影:投影为两个矩形。

V投影:投影为一个矩形。

4.1.1.2 棱柱表面定点和定线【例4-1】如图4-5所示,已知三棱柱上直线AB、BC的V投影,求另外两个投影。

(a)已知条件(b)作图图4-5 三棱柱表面上的点和线【例4-2】如图4-5所示,已知四棱柱表面上点K的V投影和点M的V投影,求它们的另外两投影。

(a)立体图(b)已知条件(c)作图图4-6 四棱柱表面上的点4.1.2 棱锥定义:由一个多边形平面与多个有公共顶点的三角形平面所围成的几何体称为棱锥。

如图4-6所示为三棱锥。

图4-7-1 三棱锥根据不同形状的底面,棱锥有三棱锥、四棱锥和五棱锥等。

当棱锥底面为正n边形时,称为正n棱锥。

4.1.2.1 棱锥的投影1. 棱锥如图4-7所示为一正三棱锥,三棱锥底面ABC是水平面,后棱面SAC是侧垂面,其它两个侧面都是一般面;棱线SB为侧平线,其它两条棱线为一般线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二 平面立体的截交线
截交线的性质:
1)截交线既在截平面上,又在立体表面上, 是截平面与立体表面的共有线。
2)截交线的形状由直线围成的封闭的平面多 边形。 3)多边形的顶点是立体棱线与截平面的交点,
多边形的各边是截平面与立体表面上不同 平面的交线。
三、平面与平面立体截交线的求法
1)求各棱线与截平面的交点→线面交点法。 2)求各棱面与截平面的交线→面面交线法。
求截交线的步骤: 1) 空间及投影分析
a、截平面与体的相对位置: 确定截交线的形状 b、截平面与投影面的相对位置
确定截交线的投影特性
2)画出截交线的投影
分别求出截平面与棱面的交线,并连接成多边形。
4
3
(3)
5 (6)
1(2)
2
2
3
1 6
5
4
4 6 5
1

Ⅱ Ⅰ
Ⅳ Ⅵ

[例题4] 求立体截割后的投影
1'(2') 3'(4')
10' (5')
2" 4" 5"
1"

3"
Ⅰ ⅣⅢ
10"


11'
(6') 6"
9' 8'
11"
9"

(7') 7"
8"
5
6
2(4)
7
11
1(3)
8
10
9
例4:四棱锥被正垂面P切割,求其截交线的投影 。
s’ 1
(4)2
s’’
1
4 2 ●


3
● 3
1) 空间分析
4 ●
2) 投影分析
第四章 平面立体的投影
基本要求 §4-1 平面立体的投影特性 §4-2 平面立体表面上取点 §4-3 平面立体的切割
常见的基本立体
平面立体
曲面立体
基本要 求
4.1 平面立体的投影
平面立体:由若干平面所围成的几何体,
如棱柱、棱锥等。
棱柱
棱锥
•平面立体侧表面的交线称为棱线 •若平面立体所有棱线互相平行,称为棱柱。 •若平面立体所有棱线交于一点,称为棱锥。
3
1

s●
3) 求截交线
2●
4) 补全棱线的投影
5) 检查:尤其注意检查
我们采用的是 哪种解题方法?
截交线投影的类似性
线面交点法
4'
1'
2'
3'
3
1 4
2
y
y
4"
3" y
1" 2" y
解题步骤
1.分析 相贯线的正面 投影已知,水平投影和 侧面投影未知;
2.求出相贯线上的折 点Ⅰ、Ⅱ、 Ⅲ、 Ⅳ ;
r 1
r 1
1
R

三棱锥表面上取点Ⅱ
2 2

2
三棱锥表面上取点Ⅲ
(3)
3

3
§4-3 平面立体的切割
平面立体的截交线是截平面与平面立体表面的交线。
一、平面立体的截交线 二、平面立体截交线的性质 三、平面立体截交线的求法 1. 棱柱上截交线的求法 2. 棱锥上截交线的求法
一、平面立体的截交线 平面立体的截交线是截平面与平面立体表面的交线。
一、棱柱表面上取点
由于棱柱的表面都是 平面,所以在棱柱的表面 上取点与在平面上取点的 方法相同。
点的可见性规定:
若点所在的平面的投影
a
可见,点的投影也可见;
(b)
若平面的投影积聚成直线, b
点的投影也可见。
a
Hale Waihona Puke a b六棱柱表面取点 和线
1'
2'
4'
3'
1" 2" (4")
3"
4
1(3) 2
二、三棱锥表面上取点Ⅰ
3.顺次地连接各点, 作出相贯线,并且判别 可见性;
4.整理轮廓线。
[例题4] 求立体切割后的投影
6
(5) 4
1
2 (3)
35
1
6
2 4
6
5
4
3 1 2

Ⅴ Ⅳ

ⅠⅡ
本章结束
第四:加深
二、棱锥的投影特性
一个投影为多边形, 另外两个投影轮廓线 为三角形。
三棱锥的投影
作图步骤:
第一:画中心线, 对称线,确定图 形位置
第二:画出底面 的及锥顶的三面 投影
第三:将锥顶和 底面各顶点的同 面投影连接起来, 即得棱线的投影
第四:加深
§4-2 平面立体表面上取点
一、棱柱表面上取点 二、棱锥表面上取点
平面立体的投影特性
一、棱柱的投影特性 六棱柱的投影图
二、棱锥的投影特性 三棱锥的投影图
例题1
一、棱柱的投影特性
一个投影为多边 形,另外两个投影轮 廓线为矩形。
六棱柱三面投影
作图步骤:
第一:画中心线, 对称线,确定图形 位置
第二:画出上下底 面的三面投影
第三:将上下底面 对应顶点的同面投 影连接起来,即得 棱线得投影
相关文档
最新文档