【考试必备】2018-2019年最新青岛二中初升高自主招生考试数学模拟精品试卷【含解析】【5套试卷】

合集下载

2019年山东省青岛市中考数学模拟试卷含答案

2019年山东省青岛市中考数学模拟试卷含答案

2019年山东省青岛市中考数学模拟试卷含答案一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列实数中,有理数是()A.B.C.D.0.1010012.下列运算正确的是()A.a•a4=a5 B.a3+a3=a6C.(a2)3=a5D.3a﹣a=33.函数y=的自变量x的取值范围是()A.x≠﹣2 B.x≥﹣2 C.x>﹣2 D.x<﹣24.如图是一个正方体,则它的表面展开图可以是()A. B.C.D.5.2016年我国启动了新一代“E级超算”(计算速度达到每秒100亿亿次)样机系统的研制,预计今年底能够研制成功,这比美国计划在2025年造出“E级超算”提早8年,“E级超算”的计算速度用科学记数法表示为()A.1.0×1017B.1.0×1018C.1.0×1019D.1.0×10206.如图,CE是△ABC的外角∠ACD的平分线,若∠B=25°,∠ACE=60°,则∠A=()A.105°B.95°C.85°D.25°7.我国自主研制的世界首颗空间量子科学实验卫星“墨子号”,圆满完成4个月的在轨测试任务后,于2017年1月18日正式交付用户单位使用.在试验期间的某周,“墨子号”向地面接收站发送的信息量如下表:这七天发送的信息量的众数是()A.198 B.200 C.202 D.2108.已知一次函数y=ax+5和y=bx+3,若a>0且b<0,则这两个一次函数的图象的交点在()A.第四象限 B.第三象限 C.第二象限 D.第一象限9.不等式组的解集,在数轴上表示正确的是()A.B.C.D.10.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=110°,∠BAC=20°,则∠E的度数为()A.60°B.55°C.50°D.45°11.一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A.B.C.D.12.有3个正方形按如图所示放置,其中大正方形的边长是1,阴影部分的面积依次记为S1,S2,则S1+S2等于()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.请将最后答案直接写在答题卷的相应题中的横线上.)13.因式分解:3y2﹣12=.14.已知一个正多边形的内角是140°,则这个正多边形的边数是.15.在平面直角坐标系内,以点P(﹣1,0)为圆心、为半径作圆,则该圆与y轴的交点坐标是.16.以x为自变量的二次函数y=x2﹣(b﹣2)x+b﹣3的图象不经过第三象限,则实数b 的取值范围是.三、解答题(本大题共5小题,共44分)17.计算:(1)计算:(﹣1)2017+2cos45°﹣(2)化简:÷(1﹣).18.如图,在平面直角坐标系中,△ABC的顶点A(1,0),B(4,2),C(2,3)均在正方形网格的格点上.(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.19.2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)条形统计图中,m=,n=;(3)扇形统计图中,热词B所在扇形的圆心角是多少度?20.某地2015年为做好“精准扶贫”,投入资金1500万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1440万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励9元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?21.如图,在Rt△ABC中,C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB 为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求AD的长.二、填空题(本大题共4小题,每小题6分,共24分.请将最后答案直接写在答题卷的相应题中的横线上.)22.如果m是从﹣1,0,1,2四个数中任取的一个数,n是从﹣2,0,3三个数中任取的一个数,则二次函数y=(x﹣m)2+n的顶点在坐标轴上的概率为.23.如图,点A的坐标为(﹣5,0),直线y=x+t与坐标轴交于点B,C,连结AC,如果∠ACD=90°,则t=.24.如图,正方形ABCD的边长为15,AG=CH=12,BG=DH=9,连接GH,则线段GH 的长为.25.一列数a1,a2,a3,…满足条件:a1=,a n=(n≥2,且n为整数),则a1+a2+a3+…+a2017=.四、解答题(本大题共3小题,每小题12分,共36分.解答时必须写出必要的文字说明、证明过程或推演步骤)26.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离d可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为d===.根据以上材料,解答下列问题:(1)点P(1,﹣1)到直线y=x+1的距离;(2)已知⊙Q的圆心Q的坐标为(0,4),半径r为2,判断⊙Q与直线y=x+8的位置关系并说明理由;(3)已知直线y=﹣2x+1与y=﹣2x+6平行,A、B是直线y=﹣2x+1上的两点且AB=8,P是直线y=﹣2x+6上任意一点,求△P AB的面积.27.如图,已知ABCD是菱形,△EFP的顶点E,F,P分别在线段AB,AD,AC上,且EP=FP.(1)证明:∠EPF+∠BAD=180°;(2)若∠BAD=120°,证明:AE+AF=AP;(3)若∠BAD=θ,AP=a,求AE+AF.28.已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(s,t)(s≠0).(1)当s=2时,t=1时,求抛物线对应的二次函数的表达式;(2)若(1)中的抛物线与x轴交于点B,过B作OA的平行线交抛物线于点D,求△BDO 三条高的和;(3)当点A在抛物线y=x2﹣x上,且﹣1≤s<2时,求a的取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列实数中,有理数是()A.B.C.D.0.101001【考点】27:实数.【分析】根据有理数是有限小数或无限循环小数,可得答案.【解答】解:,,是无理数,0.101001是有理数,故选D2.下列运算正确的是()A.a•a4=a5 B.a3+a3=a6C.(a2)3=a5D.3a﹣a=3【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、幂的乘方运算法则分别化简求出答案.【解答】解:A、a•a4=a5,正确,符合题意;B、a3+a3=2a3,错误,不合题意;C、(a2)3=a6,错误,不合题意;D、3a﹣a=2a,错误,不合题意;故选:A.3.函数y=的自变量x的取值范围是()A.x≠﹣2 B.x≥﹣2 C.x>﹣2 D.x<﹣2【考点】E4:函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得:x+2≥0,解得x≥﹣2.故选:B.4.如图是一个正方体,则它的表面展开图可以是()A. B.C.D.【考点】I6:几何体的展开图.【分析】根据含有田字形和凹字形的图形不能折成正方体可判断B、C、D,故此可得到答案.【解答】解:A、能折成正方体,故A正确;B、含有田字形,不能折成正方体,故B错误;C、含有田字形,不能折成正方体,故C错误;D、凹字形,不能折成正方体,故D错误;故选A.5.2016年我国启动了新一代“E级超算”(计算速度达到每秒100亿亿次)样机系统的研制,预计今年底能够研制成功,这比美国计划在2025年造出“E级超算”提早8年,“E级超算”的计算速度用科学记数法表示为()A.1.0×1017B.1.0×1018C.1.0×1019D.1.0×1020【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:100亿亿=1.0×1018.故选:B.6.如图,CE是△ABC的外角∠ACD的平分线,若∠B=25°,∠ACE=60°,则∠A=()A.105°B.95°C.85°D.25°【考点】K8:三角形的外角性质;K7:三角形内角和定理.【分析】先根据角平分线的性质求出∠ACD的度数,再由三角形外角的性质即可得出结论.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°.∵∠B=25°,∴∠A=120°﹣25°=95°.故选B.7.我国自主研制的世界首颗空间量子科学实验卫星“墨子号”,圆满完成4个月的在轨测试任务后,于2017年1月18日正式交付用户单位使用.在试验期间的某周,“墨子号”向地面接收站发送的信息量如下表:这七天发送的信息量的众数是()A.198 B.200 C.202 D.210【考点】W5:众数.【分析】根据众数的定义求解可得.【解答】解:在这7个数据中,出现次数最多的为202,出现3次,即众数为202,故选:C.8.已知一次函数y=ax+5和y=bx+3,若a>0且b<0,则这两个一次函数的图象的交点在()A.第四象限 B.第三象限 C.第二象限 D.第一象限【考点】FF:两条直线相交或平行问题.【分析】根据k的符号来求确定一次函数y=kx+b的图象所经过的象限,然后根据a、b 的情况即可求得交点的位置.【解答】解:∵一次函数y=ax+5中a>0,∴一次函数y=ax+5的图象经过第一、二、三象限.又∵一次函数y=bx+3中b<0,∴一次函数y=bx+3的图象经过第一、二、四象限.∵3<5,∴这两个一次函数的图象的交点在第二象限,故选C.9.不等式组的解集,在数轴上表示正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解不等式组得:,再分别表示在数轴上即可得解.【解答】解:由5x﹣4<4x得x<4,由≥3,得x≤﹣3,则不等式组的解集为x≤﹣3,故选:D.10.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=110°,∠BAC=20°,则∠E的度数为()A.60°B.55°C.50°D.45°【考点】M6:圆内接四边形的性质;M4:圆心角、弧、弦的关系.【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣110°=70°.∵且=,∠BAC=20°,∴∠DCE=∠BAC=20°,∴∠E=∠ADC﹣∠DCE=70°﹣20°=50°.故选C.11.一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A.B.C.D.【考点】G2:反比例函数的图象;F3:一次函数的图象;H2:二次函数的图象.【分析】根据一次函数的图象的性质先确定出a、b的取值范围,然后根据反比例函数的性质确定出c的取值范围,最后根据二次函数的性质即可做出判断.【解答】解:∵一次函数y=ax+b经过一、二、四象限,∴a<0,b>0,∵反比例函数y=的图象在一、三象限,∴c>0,∵a<0,∴二次函数y=ax2+bx+c的图象的开口向下,∵b>0,∴>0,∵c>0,∴与y轴的正半轴相交,故选C.12.有3个正方形按如图所示放置,其中大正方形的边长是1,阴影部分的面积依次记为S1,S2,则S1+S2等于()A.B.C.D.【考点】LE:正方形的性质.【分析】再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:∵AB=1,∴AC=,根据图形可得:∵=,∴S1=S△ADC=,∵S2==,∴S1+S2=+=,故选A.二、填空题(本大题共4小题,每小题5分,共20分.请将最后答案直接写在答题卷的相应题中的横线上.)13.因式分解:3y2﹣12=3(y+2)(y﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3y2﹣12,=3(y2﹣4),=3(y+2)(y﹣2).14.已知一个正多边形的内角是140°,则这个正多边形的边数是9.【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式,可得答案.【解答】解:设多边形为n边形,由题意,得(n﹣2)•180°=140°n,解得n=9,故答案为:9.15.在平面直角坐标系内,以点P(﹣1,0)为圆心、为半径作圆,则该圆与y轴的交点坐标是(2,0),(﹣2,0).【考点】MB:直线与圆的位置关系;D5:坐标与图形性质.【分析】根据题意画出图形,再利用勾股定理求解即可.【解答】解:如图,∵由题意得,OM=1,MP=,∴OP==2,∴P(2,0).同理可得,N(﹣2,0).故答案为:(2,0),(﹣2,0)16.以x为自变量的二次函数y=x2﹣(b﹣2)x+b﹣3的图象不经过第三象限,则实数b 的取值范围是b>3.【考点】H3:二次函数的性质.【分析】由于二次函数y=x2﹣(b﹣2)x+b﹣3的图象不经过第三象限,所以抛物线的顶点在x轴的上方或在x轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口方向向上,由此可以确定抛物线与x轴有无交点,抛物线与y轴的交点的位置,由此即可得出关于b的不等式组,解不等式组即可求解.【解答】解:∵二次函数y=x2﹣(b﹣2)x+b﹣3的图象不经过第三象限,∵二次项系数a=1,∴抛物线开口方向向上,当抛物线的顶点在x轴上方时,则b2﹣1≥0,△=(b﹣2)2﹣4(b﹣3)≥0,解得b为任意实数;当抛物线的顶点在x轴的下方时,设抛物线与x轴的交点的横坐标分别为x1,x2,∴x1+x2=(b﹣2)>0,b﹣3>0,∴△=(b﹣2)2﹣4(b﹣3)>0,①b﹣2>0,②b﹣3>0,③由①得b为任意实数,由②③得b>3,∴此种情况不存在,∴b>3,故答案为:b>3.三、解答题(本大题共5小题,共44分)17.计算:(1)计算:(﹣1)2017+2cos45°﹣(2)化简:÷(1﹣).【考点】6C:分式的混合运算;2C:实数的运算;T5:特殊角的三角函数值.【分析】(1)根据乘方、二次根式的化简、特殊角的三角函数值进行计算即可;(2)根据运算顺序,先算括号里面的,再算除法即可.【解答】解:原式=﹣1+﹣=﹣1;(2)原式=÷(﹣)=•=.18.如图,在平面直角坐标系中,△ABC的顶点A(1,0),B(4,2),C(2,3)均在正方形网格的格点上.(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.【考点】P7:作图﹣轴对称变换;Q4:作图﹣平移变换.【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接可得;(2)将△A1B1C1三顶点分别向左平移3个单位,得到其对应点,顺次连接即可得.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求,A2(﹣4,0)、B2(﹣7,2)、C2(﹣5,3).19.2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)条形统计图中,m=60,n=90;(3)扇形统计图中,热词B所在扇形的圆心角是多少度?【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)根据A的人数为105人,所占的百分比为35%,求出总人数,即可解答;(2)C所对应的人数为:总人数×30%,B所对应的人数为:总人数﹣A所对应的人数﹣C 所对应的人数﹣D所对应的人数,即可解答;(3)根据B所占的百分比×360°,即可解答.【解答】解:(1)105÷35%=300(人),答:一共调查了300名同学,(2)n=300×30%=90(人),m=300﹣105﹣90﹣45=60(人).故答案为:60,90;(3)×360°=72°.答:扇形统计图中,热词B所在扇形的圆心角是72度.20.某地2015年为做好“精准扶贫”,投入资金1500万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1440万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励9元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【考点】AD:一元二次方程的应用;C9:一元一次不等式的应用.【分析】(1)设年平均增长率为x,根据:2015年投入资金给×(1+增长率)2=2017年投入资金,列出方程求解可得;(2)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.【解答】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1500(1+x)2=1500+1440,解得:x=0.4或x=﹣2.4(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为40%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×9×400+(a﹣1000)×5×400≥5000000,解得:a≥1700,答:今年该地至少有1700户享受到优先搬迁租房奖励.21.如图,在Rt△ABC中,C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB 为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求AD的长.【考点】ME:切线的判定与性质.【分析】(1)连接OD,由BD为角平分线得到一对角相等,再根据等腰三角形的性质得出一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODA为直角,即可得证;(2)过O作OG垂直于BE,可得出四边形ODCG为矩形,利用勾股定理求出BG的长,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OD,如图,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,∴AC是⊙O的切线;(2)解:过O作OG⊥BC,连接OE,则四边形ODCG为矩形,∴GC=OD=OB=10,OG=CD=8,在Rt△OBG中,利用勾股定理得:BG=6,∵OG⊥BC,∠C=90°,∴OG∥AC,∴△BOG∽△BAC,∴,即=,∴AD=.二、填空题(本大题共4小题,每小题6分,共24分.请将最后答案直接写在答题卷的相应题中的横线上.)22.如果m是从﹣1,0,1,2四个数中任取的一个数,n是从﹣2,0,3三个数中任取的一个数,则二次函数y=(x﹣m)2+n的顶点在坐标轴上的概率为.【考点】X6:列表法与树状图法;H3:二次函数的性质.【分析】列表得出所有等可能的情况数,找出在二次函数y=(x﹣m)2+n的顶点在坐标轴上的情况数,即可求出所求的概率.【解答】解:列表如下:由列表可知所有等可能的情况数有12种,其中P(m,n)在在二次函数y=(x﹣m)2+n的顶点在坐标轴上的有6种,所以二次函数y=(x﹣m)2+n的顶点在坐标轴上的概率==,故答案为:.23.如图,点A的坐标为(﹣5,0),直线y=x+t与坐标轴交于点B,C,连结AC,如果∠ACD=90°,则t=﹣.【考点】F8:一次函数图象上点的坐标特征.【分析】由直线y=x+t与坐标轴交于点B,C,得B点的坐标(﹣t,0),C点的坐标为(0,t),由A点的坐标为(﹣5,0),∠ACD=90°,用勾股定理列出方程求出n的值.【解答】解:∵直线y=x+t与坐标轴交于点B,C,∴B点的坐标为(﹣t,0),C点的坐标为(0,t),∵A点的坐标为(﹣5,0),∠ACD=90°,∴AB2=AC2+BC2,∵AC2=AO2+OC2,BC2=OB2+OC2,∴AB2=AO2+OC2+OB2+OC2,即(﹣t+5)2=52+t2+(﹣t)2+t2解得t1=﹣,t2=0(舍去),故答案为﹣.24.如图,正方形ABCD的边长为15,AG=CH=12,BG=DH=9,连接GH,则线段GH的长为3.【考点】LE:正方形的性质.【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE ﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的长.【解答】解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=12,CE=BG=9,∠BEC=∠AGB=90°,∴GE=BE﹣BG=12﹣9=3,同理可得HE=3,在Rt△GHE中,GH=,故答案为:3.25.一列数a1,a2,a3,…满足条件:a1=,a n=(n≥2,且n为整数),则a1+a2+a3+…+a2017=1008.【考点】37:规律型:数字的变化类.【分析】求出数列的前4项,继而得出数列的循环周期,然后根据所得的规律进行求解即可.【解答】解:∵a1=,a n=,∴a2===2,a3===﹣1,a4===,…∴这列数每3个数为一循环周期,∵2017÷3=672…1,∴a2017=a1=,又∵a1+a2+a3=+2﹣1=,∴a1+a2+a3+…+a2017=672×+=1008.故答案为1008.四、解答题(本大题共3小题,每小题12分,共36分.解答时必须写出必要的文字说明、证明过程或推演步骤)26.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离d可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为d===.根据以上材料,解答下列问题:(1)点P(1,﹣1)到直线y=x+1的距离;(2)已知⊙Q的圆心Q的坐标为(0,4),半径r为2,判断⊙Q与直线y=x+8的位置关系并说明理由;(3)已知直线y=﹣2x+1与y=﹣2x+6平行,A、B是直线y=﹣2x+1上的两点且AB=8,P是直线y=﹣2x+6上任意一点,求△PAB的面积.【考点】MR:圆的综合题.【分析】(1)根据点到直线的距离公式计算即可;(2)求出点Q(0,4)到直线y=x+8的距离d即可判断;(3)在直线y=﹣2x+6上取一点Q(0,6),根据点到直线的距离公式可知:点Q(0,6),到直线y=﹣2x+1的距离d=,利用平行线的性质即可解决问题;【解答】解:(1)根据点到直线的距离公式可知:点P(1,﹣1)到直线y=x+1的距离d==.(2)结论:判断⊙Q与直线y=x+8相切.理由:根据点到直线的距离公式可知:点Q(0,4)到直线y=x+8的距离d==2.∵⊙Q的半径为2,∴d=r,∴⊙Q与直线y=x+8相切.(3)在直线y=﹣2x+6上取一点Q(0,6),根据点到直线的距离公式可知:点Q(0,6),到直线y=﹣2x+1的距离d==,∵直线y=﹣2x+1与y=﹣2x+6平行,∴S△PAB=•AB•d=•8•=4.27.如图,已知ABCD是菱形,△EFP的顶点E,F,P分别在线段AB,AD,AC上,且EP=FP.(1)证明:∠EPF+∠BAD=180°;(2)若∠BAD=120°,证明:AE+AF=AP;(3)若∠BAD=θ,AP=a,求AE+AF.【考点】L8:菱形的性质;KD:全等三角形的判定与性质.【分析】(1)如图1中,作PM⊥AD于M,PN⊥AC于N.由Rt△PMF≌Rt△PNE,推出∠MPF=∠NPE,推出∠EPF=∠MPF,由∠BAD+∠MPN=360°﹣∠AMP﹣∠ANP=180°,推出∠EPF+∠BAD=180°即可;(2)如图2中,作PM⊥AD于M,PN⊥AC于N.由Rt△PMF≌Rt△PNE,推出FM=NE,由PA=PA,PM=PN,推出Rt△PAM≌Rt△PAN,推出AM=AN,推出AF+AE=(AM+FM)+(AN﹣EN)=2AM,再证明PA=2AM即可解决问题;(3)结论:AF+AE=PA•cos.证明方法类似(2);【解答】解:(1)如图1中,作PM⊥AD于M,PN⊥AC于N.∵四边形ABCD是菱形,∴∠PAM=∠PAN,∴PM=PN,∵PE=PF,∴Rt△PMF≌Rt△PNE,∴∠MPF=∠NPE,∴∠EPF=∠MPF,∵∠BAD+∠MPN=360°﹣∠AMP﹣∠ANP=180°,∴∠EPF+∠BAD=180°.(2)如图2中,作PM⊥AD于M,PN⊥AC于N.由(1)可知Rt△PMF≌Rt△PNE,∴FM=NE,∵PA=PA,PM=PN,∴Rt△PAM≌Rt△PAN,∴AM=AN,∴AF+AE=(AM+FM)+(AN﹣EN)=2AM,∵∠BAD=120°,∴∠PAM=60°,易知PA=2AM,∴AE+AF=PA.(3)结论:AF+AE=PA•cos.理由:如图2中,作PM⊥AD于M,PN⊥AC于N.由(1)可知Rt△PMF≌Rt△PNE,∴FM=NE,∵PA=PA,PM=PN,∴Rt△PAM≌Rt△PAN,∴AM=AN,∴AF+AE=(AM+FM)+(AN﹣EN)=2AM,∵∠BAD=θ,∴∠PAM=,易知AM=PA•cos,∴AF+AE=PA•cos.28.已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(s,t)(s≠0).(1)当s=2时,t=1时,求抛物线对应的二次函数的表达式;(2)若(1)中的抛物线与x轴交于点B,过B作OA的平行线交抛物线于点D,求△BDO 三条高的和;(3)当点A在抛物线y=x2﹣x上,且﹣1≤s<2时,求a的取值范围.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式.【分析】(1)由题意可知A(2,1),设抛物线的解析式为y=a(x﹣2)2+1,由于抛物线过原点,所以将(0,0)代入即可求出a的值.(2)根据A(2,1)可求出OA的直线解析式,由于DB∥OA,所以一次项系数必定相等,从而可求出直线BD的解析式,联立直线BD与抛物线的解析式即可求出D的坐标,然后根据勾股定理分别求出OD、BD的长度,再求出△BOD的面积即可求出△BDO三条高的和.(3)t=s2﹣s,由于A(s,t)是y=ax2+bx+c(a≠0)的顶点,所以y=a(x﹣s)2+t,将(0,0)代入该式后可得s=(a+1)s2,利用s的范围即可求出a的范围.【解答】解:(1)由题意可知A(2,1),设抛物线的解析式为y=a(x﹣2)2+1,由于抛物线过原点,∴将(0,0)代入y=a(x﹣2)2+1,∴解得a=﹣,∴抛物线的解析式为:y=﹣(x﹣2)2+1,(2)令y=0代入y=﹣(x﹣2)2+1,∴解得x=4或x=0,∴B(4,0)设直线OA的解析式为:y=kx,将A(2,1)代入y=kx,∴k=,∵BD∥OA,∴设直线BD的解析式为:y=x+m,将B(4,0)代入y=x+m,∴m=﹣2∴直线BD的解析式为:y=x﹣2联立解得:x=4或x=﹣2∴D(﹣2,﹣3)∴由勾股定理可知:OD=,BD=3,设OB、OD、BD边上的高分别为h1,h2,h3,∴h1=3又∵OB=4,∴S△BDO=OB•h1=6,∴BD•h3=O D•h2=6,∴h2=,h3=,∴△BDO三条高的和h1+h2+h3=3++,(3)由题意可知:t=s2﹣s,∵A(s,t)是y=ax2+bx+c(a≠0)的顶点,∴y=a(x﹣s)2+t,又因为该抛物线经过原点,∴0=as2+t,∴0=as2+s2﹣s,∴s=(a+1)s2,当s=0时,此时,a全体实数,当s≠0时,此时﹣1≤s<0或0<s<2,∴a=,∴a≤﹣2或a>﹣,综上所述,a≤﹣2或a>﹣,。

山东省青岛第二中学2018-2019学年上学期高三期中数学模拟题

山东省青岛第二中学2018-2019学年上学期高三期中数学模拟题

山东省青岛第二中学2018-2019学年上学期高三期中数学模拟题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )A.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.2. 若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+, 则当14x y+取最小值时,CM CN ⋅=( ) A .6 B .5 C .4 D .3 3. 已知集合,则A0或 B0或3C1或D1或34.sin 15°sin 5°-2sin 80°的值为( ) A .1 B .-1 C .2D .-25. 已知全集为R ,且集合}2)1(log |{2<+=x x A ,}012|{>--=x x x B ,则=)(B C A R ( ) A .)1,1(- B .]1,1(- C .]2,1( D .]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.6.由直线与曲线所围成的封闭图形的面积为()AB1CD7.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是()ABCD8. 已知,,a b c 为ABC ∆的三个角,,A B C 所对的边,若3cos (13cos )b C c B =-,则s i n :s i n C A =( ) A .2︰3 B .4︰3 C .3︰1 D .3︰2 【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力.9. 已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为O 的体积为( )A .81πB .128πC .144πD .288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力. 10.已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是( )A .3个B .4个C .5个D .6个11.过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x = B .22y x = C .24y x = D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.12.已知2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩,若不等式(2)()f x f x -≥对一切x R ∈恒成立,则a 的最大值为( )A .716-B .916-C .12-D .14-二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.要使关于x 的不等式2064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力. 14.若6()mx y +展开式中33x y 的系数为160-,则m =__________.【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想. 15.已知函数22tan ()1tan xf x x=-,则()3f π的值是_______,()f x 的最小正周期是______. 【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力. 16.设全集______.三、解答题(本大共6小题,共70分。

山东省青岛市开发区第二中学2018-2019学年高三数学理模拟试题含解析

山东省青岛市开发区第二中学2018-2019学年高三数学理模拟试题含解析

山东省青岛市开发区第二中学2018-2019学年高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 设x,y满足约束条件,若目标函数的最大值为18,则a的值为()A.3 B.5 C.7 D.9参考答案:A根据不等式组得到可行域是一个封闭的四边形区域,目标函数化为当直线过点时,有最大值,将点代入得到故答案为:A.2. 已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且,则()A. -3B. -1C. 1D. 3参考答案:C试题分析:,分别是定义在上的偶函数和奇函数,所以,故.考点:函数的奇偶性.3. 复数,则实数的值是()A. B.C. D.—参考答案:A略4.设函数,若不等式有解.则实数的最小值为()A.B.C.D.参考答案:D考点:利用导数求最值和极值试题解析:因为不等式≤0有解,得有解,即的最小值,设,,,得为极小值点,即为的最小值,所以,实数的最小值为故答案为:D5. 若抛物线y2=2x上两点A(x1,y1)、B(x2,y2)关于直线y=x+b对称,且y1y2=-1,则实数b的值为( )参考答案:A6. 设为等比数列的前项和,已知,则公比()参考答案:A略7. 如图,给出的是计算的值的一个程序框图,则判断框内应填入的条件是A. i≤1007?B. i>1008?C. i≤1008?D. i>1007?参考答案:C代入程序框图,S=,S=,S=,…….S=,S=,所以选成立,而不成立,故选择C.8. 命题;命题双曲线的离心率为.则下面结论正确的是A. 是假命题B.是真命题C. 是假命题D. 是真命题参考答案:D略9. 在中,角所对的边分别为,,,,则的值等于()参考答案:C10. 设复数Z满足(,则|Z|=()A. B.C.1 D.2参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 从某校2015届高三年级随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,其频率分布直方图如图所示.若某高校A专业对视力的要求在0.9以上,则该班学生中能报A专业的人数为.参考答案:20考点:频率分布直方图.专题:概率与统计.分析:根据频率分布直方图,求出视力在0.9以上的频率,即可得出该班学生中能报A专业的人数.解答:解:根据频率分布直方图,得:视力在0.9以上的频率为(1.00+0.75+0.25)×0.2=0.4,∴该班学生中能报A专业的人数为50×0.4=20;故答案为:20.点评:本题考查了频率分布直方图的应用问题,解题时应利用频率分布直方图,会求某一范围内的频率以及频数,是基础题.12. 若,满足约束条件,则的最小值为_______________.参考答案:13. 若、为两条不重合的直线,、为两个不重合的平面,给出下列命题①若、都平行于平面,则、一定不是相交直线;②若、为都垂直于平面,则、一定是平行直线;③已知、互相垂直,、互相垂直,若;④、在平面内的射影互相垂直,则、互相垂直。

2018年青岛市市北二模数学试题(2021年整理精品文档)

2018年青岛市市北二模数学试题(2021年整理精品文档)
解:由AB是直径,可得;
由 = ,可得;
由小芳的思路可得:CD =;
因为AB=13,BC=12,
所以;
所以CD=.
3。青岛“最美地铁线"————-连接崂山和即墨的地铁11号线,在今年4月份开通,地铁11号线全长约58千米,58千米用科学记数法可表示为().
A. B. C. D.
4.图中所示几何体的左视图是().
5.如图,双曲线y=与直线y=kx+b交于点M、N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得,关于x的不等式的解为().
A. B.
C. D. 或
6。如图,过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF,若AB ,∠DCF 30°,则EF的长为().
A.4B.6C. D.
(第5题图) (第6题图)(第7题图)
7.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为().
三.作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.
15.如图,已知线段a和h.
求作:△ABC,使得AB=AC,BC=a,且BC边上的高AD=h.
四、解答题(本题满分74分,共有9道小题)
16.(本小题满分8分,每题4分)
(1)化简: .
(2)若二次函数 的图像与横轴有唯一交点,求c的值.
(完整版)2018年青岛市市北二模数学试题
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2018年青岛市市北二模数学试题)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

山东省青岛市崂山二中2018年自主招生数学试题

山东省青岛市崂山二中2018年自主招生数学试题

崂山二中2018年自主招生考试数学试题(考试时间:90分钟;满分:120分)本试题分第Ⅰ卷和第Ⅱ卷两部分,共有19道题.第Ⅰ卷1—6题为选择题,共24分;第Ⅱ卷7—19题为填空题,13—19题为解答题,共96分.要求所有题目均在答题卡、答题纸上作答,在本卷上作答无效.第Ⅰ卷一、选择题(本题满分24分,共有6道小题,每小题4分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.我国是一个严重缺水的国家,淡水资源总量为28000亿立方米,人均淡水资源低于世界平均水平,因此,珍惜水、保护水是我们每一位公民的责任,其中数据28000用科学记数法表示为()A.28×103B.2.8×104C.0.28×105D.2.8×1052.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()3.顺次连结一个平行四边形各边中点所得的四边形必定是( )。

A、平行四边形B、矩形C、菱形D、正方形4.如图,巳知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为()A.3B. 3C. 4D.45.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6 C.y=﹣2(x+1)2+6 D.y=﹣2(x+1)2﹣6 6.如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1 B.C.2 D.2第II卷二、填空题:(本题满分24分,共有6道小题,每小题4分)7.函数1yx=-中,自变量x的取值范围是 .8.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°,得到的点A′的坐标为.9.如图在Rt ABC△中,9042C AC BC===∠°,,,分别以AC.BC为直径画半圆,则图中阴影部分的面积为.(结果保留π)10.关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为 .11.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为.12.如图所示,以边长为1的正方形ABCD的边AB为对角线作第二个正方形AEBO1,再以BE为对角线作第三个正方形EFBO2,如此作下去,则所作的第n个正方形的面积S n=.三、解答下列各题(本题共有7道小题,满分72分)13. (本小题满分8分)先化简,再求值:÷(a﹣1﹣),其中a是方程x2+x=6的一个根14.(本小题满分8分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?15.(本小题满分10分)人民网为了解百姓对时事政治关心程度,特对18~35岁的青年人每天发微博数量进行调查,设一个人的“日均发微博条数”为m,规定:当m≥10时为甲级,当5≤m<10时为乙级,当0≤m<5时为丙级,现随机抽取20个符合年龄条件的青年人开展调查,所抽青年人的“日均发微博条数”的数据如下:0 8 2 8 10 13 7 5 7 312 10 7 11 3 6 8 14 15 12(1)样本数据中为甲级的频率为;(直接填空)(2)求样本中乙级数据的中位数和众数.(3)从样本数据为丙级的人中随机抽取2人,用列举法或树状图求抽得2个人的“日均发微博条数”都是3的概率.16. (本小题满分10分)如图,某小区楼房附近有一个斜坡,小张发现楼房在水平地面与斜坡处形成的投影中,在斜坡上的影子长CD=6m,坡角到楼房的距离CB=8m.在D点处观察点A的仰角为60°,已知坡角为30°,你能求出楼房AB的高度吗?17.(本小题满分10分)已知抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B左侧),其顶点为P,直线y=kx+b过抛物线与x轴的一个交点A,且与抛物线相交的另外一个交点为C,若S△ABC=10,请你回答下列问题:(1)求直线的解析式;(2)求四边形APBC的面积.18.(本小题满分12分)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.19. (本小题满分14分)如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B 出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′(3)当t为何值时,△APQ是等腰三角形?。

2019年最新山东省青岛市中考数学二模试卷及答案解析

2019年最新山东省青岛市中考数学二模试卷及答案解析

山东省青岛市中考数学二模试卷(解析版)一、选择题1.﹣5的绝对值为()A. ﹣5 B. 5C. ﹣D.2.下列图案中,是轴对称图形但不是中心对称图形的是()A. B. C.D.3.⊙O的半径r=5cm,直线l到圆心O的距离d=4,则直线l与圆的位置关系()A. 相离B. 相切 C. 相交 D. 重合4.已知空气的单位体积质量为1.24×10﹣3克/厘米3, 1.24×10﹣3用小数表示为()A. 0.000124B. 0.0124C. ﹣0.00124 D. 0.001245.某学习小组9名学生参加“数学竞赛”,他们的得分情况如表:人数(人)1 3 4 1分数(分)80 85 90 95众数和中位数分别是()A. 90,90B. 90,85 C. 90,87.5 D. 85,856.如图所示,左边的正方形与右边的扇形面积相等,扇形的半径和正方形的边长都是2cm,则此扇形的弧长为()cm.A. 4B. 4πC. 8D. 8﹣π7.函数y= 与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A. B. C.D.8.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC,DC 分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论中结论正确的有()①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若= ,则S△EDH=13S△CFH.A. 1个B. 2个 C. 3个 D. 4个二、填空题9.计算:()﹣1﹣(﹣)0=________.10.儿童节期间,游乐场里有一种游戏的规则是:在一个装有6个红球和若干白球(每个球除颜色外,其它都相同)的袋中,随机摸一个球,摸到一个红球就得欢动世界通票一张,已知参加这种游戏的有300人,游乐场为此游戏发放欢动世界通票60张,请你通过计算估计袋中白球的数量是________个.11.如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,连接BD,若∠C=40°,则∠B=________度.12.受季节变化影响,某品牌衬衣经过两次降价,由每件256元降至169元,则平均每次降价的百分率x所满足的方程为________.13.如图,把△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为________.14.如图是由一些棱长为1的小立方块所搭几何体的三种视图.若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个长方体,至少还需要________个小立方块.最终搭成的长方体的表面积是________.三、作图题15.用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,已知:△ABC中,∠C=90°求作:矩形CDEF,使点D,E,F分别在边CB,BA,AC上.四、解答题16.综合题化简及计算(1)化简:﹣(2)关于x的一元二次方程kx2﹣2x+3=0有两个不相等的实数根.求:k的取值范围.17.为了提高学生汉字书写的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试方法是:听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:组别成绩x(分)频数(人数)频率一50≤x<60 2 0.04二60≤x<70 10 0.2三70≤x<80 14 b四80≤x<90 a 0.32五90≤x<100 8 0.16请根据表格提供的信息,解答以下问题:(1)直接写出表中a=________,b=________;(2)请补全右面相应的频数分布直方图;(3)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为________.(4)请根据得到的统计数据,简要分析这些同学的汉字书写能力,并为提高同学们的书写汉字能力提一条建议(所提建议不超过20字)18.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?19.如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈ ,sin31°≈ ,tan39°≈ ,sin39°≈ )20.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?21.如图,已知平行四边形ABCD,延长AD到E,使DE=AD,连接BE与DC交于O点.(1)求证:△BOC≌△EOD;(2)当△ABE满足什么条件时,四边形BCED是菱形?证明你的结论.22.汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:x(元)3000 3200 3500 4000y(辆)100 96 90 80(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识,求按照表格呈现的规律,每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:租出的车辆数(辆)________ 未租出的车辆数(辆)________租出每辆车的月收益(元)________ 所有未租出的车辆每月的维护费(元)________(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请说明理由.23.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,则BN=________;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点;(3)如图3,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,四边形AMDC,四边形MNFE和四边形NBHG均是正方形,点P在边EF上,试探究S△ACN,S△APB,S△MBH 的数量关系.S△ACN=________;S△MBH=________;S△APB=________;S△ACN,S△APB,S△MBH的数量关系是________.24.如图,等腰三角形△ABC的腰长AB=AC=25,BC=40,动点P从B出发沿BC向C运动,速度为10单位/秒.动点Q从C出发沿CA向A运动,速度为5单位/秒,当一个点到达终点的时候两个点同时停止运动,点P′是点P关于直线AC的对称点,连接P′P和P′Q,设运动时间为t秒.(1)若当t的值为m时,PP′恰好经过点A,求m的值.(2)设△P′PQ的面积为y,求y与t之间的函数关系式(m<t≤4)(3)是否存在某一时刻t,使PQ平分角∠P′PC?存在,求相应的t值,不存在,请说明理由.答案解析部分一、<b >选择题</b>1.【答案】B【考点】绝对值【解析】【解答】解:﹣5的绝对值为5,故B符合题意.故答案为:B.【分析】根据绝对值的性质来判断.正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零.2.【答案】A【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】解:A、是轴对称图形但不是中心对称图形,A符合题意;B、是轴对称图形,也是中心对称图形,B不符合题意;C、不是轴对称图形,是中心对称图形,C不符合题意;D、不是轴对称图形,是中心对称图形,D不符合题意.故答案为:A.【分析】根据轴对称图形和中心对称图形的定义来判断.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.3.【答案】C【考点】直线与圆的位置关系【解析】【解答】解:∴⊙O的半径为5cm,如果圆心O到直线l的距离为4cm,∴5>4,即d<r,∴直线l与⊙O的位置关系是相交,故C符合题意.故答案为:C.【分析】根据直线与圆的位置关系的判定方法判断.圆的半径为r,圆心到直线的距离为a,当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交.4.【答案】D【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故D符合题意.故答案为:D.【分析】根据科学记数法的表示方法可得到答案.将科学记数法的表示的数a×10-n,“还原”成通常表示的数,就是把a 的小数点向右移动n位.5.【答案】A【考点】中位数、众数【解析】【解答】在这一组数据中90是出现次数最多的,故众数是90;排序后处于中间位置的那个数是90,那么由中位数的定义可知,这组数据的中位数是90;故答案为:A.【分析】依据表格可知得分为90分的人数最多,从而可找出这组数据的众数,将这组数据按照从小到大的顺序排列,中间一个数据就是这组数据的中位数.6.【答案】A【考点】正方形的性质,弧长的计算,扇形面积的计算【解析】【解答】解:设扇形的圆心角为n.由题意=4,∴n= ,∴扇形的弧长为= =4cm,故A符合题意.故答案为:A.【分析】先根据扇形的面积公式求出扇形的圆心角,然后再用弧长公式来求.扇形的面积S=,弧长l=.7.【答案】D【考点】反比例函数的图象,二次函数的图象【解析】【解答】解:A、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,A不符合题意.B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,B不符合题意;C、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,C不符合题意;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,D符合题意;故答案为:D.【分析】根据反比例函数的图象得到k的符号,再与二次函数的图象比较,判断是否一致. 8.【答案】D【考点】全等三角形的判定与性质,正方形的性质,相似三角形的判定与性质【解析】【解答】解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF﹣GF,DF=CD﹣FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH= ∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确;③由②知:△EHF≌△DHC,故③正确;④∵= ,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如图所示:设HM=x,则CF=2x,∴DF=2FC=4x,∴DM=5x,DH= x,CD=6x,则S△CFH= ×HM×CF= •x•2x=x2,S△EDH= ×DH2= × =13x2,∴则S△EDH=13S△CFH,故④正确;其中结论正确的有:①②③④,4个;故D符合题意.故答案为:D.【分析】①易得△CFG为等腰直角三角形,从而求得结果;②利用SAS证明△EHF≌△DHC,进而可得∠AEH+∠ADH=∠AEF+∠ADF=180°;③由②可知;④利用SAS证明△EGH≌△DFH,次那个人得到△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则CF=2x,从而表示出△CFH、△EDH的面积,可得结论.二、<b >填空题</b>9.【答案】2【考点】实数的运算,零指数幂,负整数指数幂【解析】【解答】解:()﹣1﹣(﹣)0=3﹣1=2故答案为:2.【分析】根据负指数幂的性质、零指数幂的性质化简,再计算可求得结果.10.【答案】24【考点】利用频率估计概率【解析】【解答】解:设袋中共有m个红球,则摸到红球的概率P(红球)= ,∴≈ .解得m≈24,故答案为:24.【分析】:设袋中共有m个红球,根据规律公式得到关于m的方程,解方程求得m的值,即可得到答案.11.【答案】25【考点】切线的性质【解析】【解答】解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故答案为25【分析】利用余角的性质和切线的性质定理、圆周角定理,可算出∠AOC,再得出∠ABD=25°.12.【答案】256(1﹣x)2=169【考点】一元二次方程的应用【解析】【解答】解:由题意可列方程是:256×(1﹣x)2=169.故答案为:256(1﹣x)2=169.【分析】可利用连续两次降价的公式,基数(1-降低率)2=最终量,可列出方程.13.【答案】(﹣a﹣2,﹣b)【考点】关于原点对称的点的坐标【解析】【解答】解:由图可知,△ABC关于点(﹣1,0)对称变换得到△A′B′C′,∵△ABC上的点P的坐标为(a,b),∴它的对应点P′的坐标为(﹣a﹣2,﹣b).故答案为:(﹣a﹣2,﹣b).【分析】分析图可知,△ABC关于点(﹣1,0)成中心对称变换得到△A′B′C′,可利用图形的全等形,符号加以变化,可得出答案.14.【答案】26;66【考点】几何体的表面积,由三视图判断几何体【解析】【解答】解:由俯视图易得最底层有7个小立方体,第二层有2个小立方体,第三层有1个小立方体,其小正方块分布情况如下:那么共有7+2+1=10个几何体组成.若搭成一个大长方体,共需3×4×3=36个小立方体,所以还需36﹣10=26个小立方体,最终搭成的长方体的表面积是3×4×2+3×3×2+3×4×2=66故答案为:26,66.【分析】可从俯视图入手,每摞小正方体个数结合主视图、左视图求出10个,求出共需小立方体36个,作差可求出还需26个.三、<b >作图题</b><b ></b>15.【答案】解:在BC上任意取一点D,作DM⊥BC交AB于E,作EN⊥AC垂足为F,则矩形CDEF即为所求.【考点】矩形的性质,作图—复杂作图【解析】【分析】利用“过直线上一点做已知直线垂线和直线外一点作已知直线垂线”基本作图,可做出矩形.四、<b >解答题</b>16.【答案】(1)解:原式= +==(2)解:根据题意得k≠0且△=(﹣2)2﹣4k•3>0,解得k<且k≠0【考点】分式的加减法,根的判别式【解析】【分析】(1)分式化简的基本方法有通分、约分,分子分母出现多项式时看能否分解因式,便于约分;(2)一元二次方程有两个不相等实数根的条件包括k0,>0.17.【答案】(1)16;0.28(2)补全相应的频数分布直方图如下:(3)48%(4)解:由频数分布直方图可知,50人主要分布在60~90分,90~100分人数较少,故应着重培养高分段学生【考点】频数(率)分布表,频数(率)分布直方图【解析】【解答】解:(1)本次调查的总人数为2÷0.04=50(人),∴a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)本次大赛的优秀率为0.32+0.16=0.48=48%,故答案为:48%;【分析】部分百分比=总数,具体量=样本容量相应百分比;(3)第四、五两组的频率之和即为优秀率.18.【答案】(1)解:∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)= =(2)解:∵P(红色)= ,P(黄色)= ,P(绿色)= = ,∴(元)∵40元>30元,∴选择转转盘对顾客更合算.【考点】概率公式【解析】【分析】(1)利用几何概型公式,关注的面积(红黄绿)除以整个圆形,即可得出概率;(2)利用加权平均数意义算出转转盘的平均获奖数为40元,大于30元,得出选择转转盘对顾客更合算.19.【答案】(1)解:过点A作AD⊥BE于D,设山AD的高度为(x)m,在Rt△ABD中,∵∠ADB=90°,tan31°= ,∴BD= ≈ = x,在Rt△ACD中,∵∠ADC=90°,tan39°= ,∴CD= ≈ = x,∵BC=BD﹣CD,∴x﹣x=80,解得:x=180.即山的高度为180米(2)解:在Rt△ACD中,∠ADC=90°,sin39°= ,∴AC= = ≈282.9(m).答:索道AC长约为282.9米.【考点】解直角三角形的应用【解析】【分析】(1)通过作垂线构造直角三角形,把已知角放到直角三角形中,设出未知数x,用x代数式表示出BD、CD,利用线段之差列出方程;(2)在Rt△ACD中利用sin39°,由AD求出AC.20.【答案】(1)解:设购买一个甲种足球需x元,则购买一个乙种足球需(x+20),可得:,解得:x=50,经检验x=50是原方程的解,答:购买一个甲种足球需50元,则购买一个乙种足球需70元(2)解:设这所学校再次购买y个乙种足球,可得:50×(1+10%)×(50﹣y)+70×(1﹣10%)y≤2900,解得:y≤18.75,由题意可得,最多可购买18个乙种足球,答:这所学校最多可购买18个乙种足球【考点】分式方程的应用,一元一次不等式的应用【解析】【分析】(1)由“购买甲种足球数量是购买乙种足球数量的2倍”可构建分式方程,得出答案;(2)由“此次购买甲、乙两种足球的总费用不超过2900元”可构建不等式50×(1+10%)×(50﹣y)+70×(1﹣10%)y≤2900,求出x 的整数解即可. 21.【答案】(1)证明:∵在平行四边形ABCD中,AD=BC,AD∥BC,∴∠EDO=∠BCO,∠DEO=∠CBO,∵DE=AD,∴DE=BC,在△BOC和△EOD中∵,∴△BOC≌△EOD(ASA)(2)证明:结论:当∠ABE=90°时,BE⊥CD,四边形BCED是菱形.∵DE=BC,DE∥BC,∴四边形BCED是平行四边形,∴EO=OB,∵DE=AD,∴OD∥AB,∴∠EOD=∠ABE,∴当∠ABE=90°时,BE⊥CD,四边形BCED是菱形.【考点】全等三角形的判定与性质,平行四边形的性质,菱形的判定【解析】【分析】(1)由平行四边形的对边平行且相等,可推出内错角相等,结合条件,利用“角边角”推出全等;(2)条件型探索题可由结论入手,由结论结合已知条件,推出结论,这个结论反过来可作为条件,即若四边形BCED是菱形,则DE=BD,又DE=AD,则BD=AE,可得出∠ABE=90°.22.【答案】(1)解:由表格数据可知y与x是一次函数关系,设其解析式为y=kx+b.由题:,解之得:,∴y与x间的函数关系是y=﹣x+160(2)﹣x+160;x﹣60;x﹣150;x﹣3000(3)解:设租赁公司获得的月收益为W元,依题意可得:W=(﹣+160)(x﹣150)﹣(x﹣3000)=(﹣x2+163x﹣24000)﹣(x﹣3000)=﹣x2+162x﹣21000=﹣(x﹣4050)2+307050当x=4050时,Wmax=307050,即:当每辆车的月租金为4050元时,公司获得最大月收益307050元【考点】二次函数的应用【解析】【解答】解:(2)如下表:租出的车辆数﹣x+160 未租出的车辆数x﹣60租出的车每辆的月收益x﹣150 所有未租出的车辆每月的维护费x﹣3000故答案为:﹣x+160,x﹣60,x﹣150,x﹣3000.【分析】(1)只要(函数变化量与自变量变化值)是常数,y与x就成一次函数关系;(3)最值问题需利用函数思想解决,月收益=租出车辆数(租金-维护费)-未出租车辆维护费,构建函数,配成顶点式,求出最值.23.【答案】(1)或(2)证明∵点F、M、N、G分别是AB、AD、AE、AC边上的中点,∴FM、MN、NG分别是△ABD、△ADE、△AEC的中位线,∴BD=2FM,DE=2MN,EC=2NG,∵点D,E是线段BC的勾股分割点,且EC>DE>BD,∴EC2=DE2+DB2,∴4NG2=4MN2+4FM2,∴NG2=MN2+FM2,∴点M,N是线段FG的勾股分割点(3)•AM2+ MN•AM;•BN2+ •MN•BN;MN2+ •MN•AM+ •MN•BN;S△=S△ACN+S△MBHAPB【考点】勾股定理的应用,相似三角形的性质【解析】【解答】解:(1)分两种情况:①当MN为最大线段时,∵点M、N是线段AB的勾股分割点,∴BN= = = ;②当BN为最大线段时,∵点M、N是线段AB的勾股分割点,∴BN= = = ;综上所述:BN的长为或.⑶∵四边形AMDC,四边形MNFE和四边形NBHG均是正方形,∴S△ACN= (AM+MN)•AC= (AM+MN)•AM= •AM2+ MN•AM,S△MBH= •(MN+BN)•BH= •(MN+BN)•BN= •BN2+ •MN•BN,S△PAB= •(AM+NM+BN)•FN= •(AM+MN+BN)•MN= MN2+ •MN•AM+ •MN•BN,∴S△APB=S△ACN+S△MBH,故答案为S△APB=S△ACN+S△MBH.【分析】(1)须分类讨论:当MN为最大线段时;当BN为最大线段时;即已知的两条线段中较长的线段MN可能为斜边或所求的BN也可能为斜边;(2)由已知“FG是中位线”得BD=2FM,DE=2MN,EC=2NG,由D,E是线段BC的勾股分割点,且EC>DE>BD得出EC2=DE2+DB2,再分别代换为2NG、2MN、2FM,约去系数4,即可得出结论;(3)由三角形面积公式,分别表示出S△ACN、S△MBH、S△PAB,观察3个式子中,出现的AM2、BN2、MN2,可得S△APB=S△ACN+S△MBH.24.【答案】(1)解:如图1中,作AM⊥BC于M.∵AB=AC=25,AM⊥BC,∴BM=MC=20,在Rt△ABM中,AM= = =15,当PP′恰好经过点A,∵cos∠C= = ,∴= ,∴t= .∴m= s(2)解:如图2中,设PP′交AC于N.当<t≤4时,由△PCN∽△ACM,可得PC=40﹣10t,PN=P′N=24﹣6t,CN=32﹣8t,∵CQ=5t,∴NQ=CN﹣CQ=32﹣13t,∴y= •PP′•NQ= (48﹣12t)•(32﹣13t)=78t2﹣504t+768(<t≤4)(3)解:存在.理由如下:如图3中,作QE⊥BC于E.∵PQ平分∠CPP′,QE⊥PC,QN⊥PP′,∴QN=QE,∵sin∠C= = ,∴t=2,∴t=2时,PQ平分角∠P′PC【考点】相似三角形的判定与性质,锐角三角函数的定义【解析】【分析】(1)由∠C的余弦定义既在Rt△APC,又可在Rt△ACM中列出比例式,二者相等,构建方程,求出m;(2)由△PCN∽△ACM,可表示出PC=40﹣10t,PN=P′N=24﹣6t,CN=32﹣8t,代入面积公式,即可得y= •PP′•NQ=78t2﹣504t+768;(3)利用∠C的正弦有两种表示的比例式,二者相等,可列出方程,求出t.。

山东省青岛市市北区2018中考数学二模试卷(含)

山东省青岛市市北区2018中考数学二模试卷(含)

觉安,合家幸福,恭喜发财! 14、感谢您的关怀,感谢您的帮助,感谢您对我所做的⼀切。

请接受我新年的祝愿,祝您平安幸福! 15、感谢领导对我们的关⼼,在这个寒冷的冬天,领导的关⼼和帮助就像是雪中送炭,温暖着我们的⼼。

再次感谢领导,同时在这⾥向领导拜个早年,顺祝领导⾝体健康,合家幸福,⼯作顺利。

16、感谢领导您⼀直以来对我的关怀,让我在⼯作中快速成长,我能有今天,真的要感谢⽼领导您! 17、难忘您慈爱的微笑,常想您⿎励的眼神,牢记您谆谆的教诲,铭刻您⽆微不⾄的关⼼。

祝您⾝体健康,万事如意! 18、偌⼤的地球上能和你相遇,真的不容易,感谢上天给了我们这次相识相知的缘份。

别忘了,你的世界我曾经来过。

19、您是我见过最美丽的树叶,让我的森林为您凋谢;您像⼀⾸旋律让我的⽣命多和谐,我只能⽤⼩⼩声⾳说感谢,⼩到只有您能了解! 20、在这充满温馨的⽇⼦⾥,让花朵和微笑回归您疲惫的⼼灵,让祝福长久的留在您的⼼中,我还要说声:领导,谢谢你! 21、感谢您坚强的笑容,为我照亮⼀⾓别愁的⾬空,此后的多少天⾥,我将因为这笑容⽽盼望着相遇的美丽。

22、最为咱们团队的⼀员很是荣幸,在此祝愿我们的公司发展的更好,我们的团队业绩更加辉煌!我先⼲了,⼤家随意! 23、在这充满温馨的⽇⼦⾥,让花朵和微笑回归您疲惫的⼼灵,让祝福长久的留在您的⼼中,我还要说声谢谢您! 24、没有各位领导的关⼼、缺少各位同事朋友的⽀持帮助,个⼈不可能在短期取得这样的成就,衷⼼谢谢各位领导⼀直以来的培养、教育、关怀!也真诚感谢各位同事、朋友的⼤⼒⽀持和⽆私帮助。

25、让我们怀着感恩的⼼情⾯对⽣活,为所有关⼼我们的⼈,展开我们的笑容! 26、感谢有你,我亲爱的朋友,在曾经的岁⽉⾥,我们⼀起⾛过飞扬的青春。

27、感谢领导对我们的关系和爱护,帮助我们成长进步,感谢您为⼯作操⼼,对我们⼀些错误的包容,还有岗位的奉献等等。

28、岁末甫⾄,福⽓东来,鸿运通天。

2019年山东省青岛市中考数学模拟试卷(二)(解析版)

2019年山东省青岛市中考数学模拟试卷(二)(解析版)

2019年山东省青岛市中考数学模拟试卷(二)一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)下列运算中,正确的是()A.(x2)3=x5B.x3•x3=x6C.3x2+2x3=5x5D.(x+y)2=x2+y22.(3分)在下图所示的四个三角形中,能由△ABC经过平移得到的是()A.B.C.D.3.(3分)如图是一个底面为正方形的几何体的实物图,则其俯视图为()A.B.C.D.4.(3分)如图,点A、B、C都是圆O上的点,在四边形ABCO中,∠AOC=140°,则∠B的度数为()A.110°B.70°C.140°D.100°5.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪.若草坪的面积为570m2,道路的宽为xm,则可列方程为()A.32×20﹣2x2=570B.32×20﹣3x2=570C.(32﹣x)(20﹣2x)=570D.(32﹣2x)(20﹣x)=5706.(3分)某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过97.(3分)如图,在正方形ABCD中,E位DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为()A.15°B.10°C.20°D.25°8.(3分)如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A.B.C.D.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)分解因式:4a3b﹣ab=.10.(3分)将点P(﹣3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,﹣1),则x+y =.11.(3分)如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使∠ABC不是直角三角形的概率是.12.(3分)如图,矩形ABCD中,以AD为直径的半圆与BC边相切于点E,且AD=8、AB=4,则图中阴影部分的面积是.13.(3分)如图,正方形AEFG的顶点E,G在正方形ABCD的边AB,AD上,连接BF,DF.则BE:CF的值为.14.(3分)如图,在平面直角坐标系xoy中,A(﹣3,0),B(0,1),形状相同的抛物线∁n(n =1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,根据上述规律,抛物线C2的顶点坐标为;抛物线C8的顶点坐标为.三、作图题(本题满分4分)15.(4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.已知线段a和∠α,求作:等腰△ABC,使得顶角∠A=∠α,a为底边上的高线.四、解答题(本题满分74分,共有9道小題)16.(8分)(1)计算:2cos30°﹣sin245°﹣tan60°+(tan30°+1)0(2)解方程:17.(6分)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.18.(6分)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.19.(6分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)20.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.21.(8分)如图,在▱ABCD中,点F是边BC的中点,连接AF并延长交DC的延长线于点E,连接AC、BE.(1)求证:AB=CE;(2)若∠AFC=2∠D,则四边形ABEC是什么特殊四边形?请说明理由22.(10分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.23.(10分)“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的x,y二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1•a2,把y2项系数c分解成两个因数,c1,c2的积,即c=c1•c2,并使a1•c2+a2•c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y)例:分解因式:x2﹣2xy﹣8y2解:如右图,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×(﹣4)+1×2∴x2﹣2xy﹣8y2=(x ﹣4y)(x+2y)而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,如图1,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);例:分解因式:x2+2xy﹣3y2+3x+y+2解:如图2,其中1=1×1,﹣3=(﹣1)×3,2=1×2;而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)请同学们通过阅读上述材料,完成下列问题:(1)分解因式:6x2﹣7xy+2y2=x2﹣6xy+8y2﹣5x+14y+6=(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m 的值.(3)已知x,y为整数,且满足x2+3xy+2y2+2x+4y=﹣1,求x,y.24.(12分)已知:Rt△EFP和矩形ABCD如图①摆放(点P与点B重合),点F,B(P),C 在同一直线上,AB=EF=6cm,BC=FP=8cm,∠EFP=90°,如图②,△EFP从图①的位置出发,沿BC方向匀速运动,速度为1cm/s,EP与AB交于点G,与BD交于点K;同时,点Q 从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连接AF,PQ,当点Q停止运动时,△EFP也停止运动设运动事件为(s)(0<t<6),解答下列问题:(1)当为何值时,PQ∥BD?(2)在运动过程中,是否存在某一时刻,使S五边形AFPQM :S矩形ABCD=9:8?若存在,求出t的值;若不存在,请说明理由.(3)在运动过程中,当t为秒时,PQ⊥PE.2019年山东省青岛市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)下列运算中,正确的是()A.(x2)3=x5B.x3•x3=x6C.3x2+2x3=5x5D.(x+y)2=x2+y2【分析】直接利用幂的乘方运算法则以及完全平方公式、合并同类项法则分别判断得出答案.【解答】解:A、(x2)3=x6,故此选项错误;B、x3•x3=x6,正确;C、3x2+2x3,无法计算,故此选项错误;D、(x+y)2=x2+2xy+y2,故此选项错误;故选:B.【点评】此题主要考查了幂的乘方运算以及完全平方公式、合并同类项,正确掌握相关运算法则是解题关键.2.(3分)在下图所示的四个三角形中,能由△ABC经过平移得到的是()A.B.C.D.【分析】根据平移和旋转的性质解答即可.【解答】解:观察可得C可由△ABC经过平移得到,故选:C.【点评】本题主要考查了生活中的平移现象,仔细观察各图中三角形的位置特点,找到对应角和对应线段是解答此题的关键.3.(3分)如图是一个底面为正方形的几何体的实物图,则其俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得到被一条直线分割成两个长方形的正方形.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.(3分)如图,点A、B、C都是圆O上的点,在四边形ABCO中,∠AOC=140°,则∠B的度数为()A.110°B.70°C.140°D.100°【分析】在优弧AOC上取一点D,连接AD,CD,根据圆周角定理求出∠ADC的度数,再根据圆内接四边形的性质即可得出结论.【解答】解:如图所示,在优弧AOC上取一点D,连接AD,CD,∵∠AOC=140°,∴∠ADC=70°,∵四边形ABCD是圆内接四边形,∴∠B=180°﹣70°=110°.故选:A.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.5.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪.若草坪的面积为570m2,道路的宽为xm,则可列方程为()A.32×20﹣2x2=570B.32×20﹣3x2=570C.(32﹣x)(20﹣2x)=570D.(32﹣2x)(20﹣x)=570【分析】设道路的宽为xm,则剩余的六块空地可合成长(32﹣2x)m、宽(20﹣x)m的矩形,根据矩形的面积公式结合草坪的面积为570m2,即可得出关于x的一元二次方程,此题得解.【解答】解:设道路的宽为xm,则剩余的六块空地可合成长(32﹣2x)m、宽(20﹣x)m的矩形,根据题意得:(32﹣2x)(20﹣x)=570.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.6.(3分)某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意;故选:D.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.7.(3分)如图,在正方形ABCD中,E位DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为()A.15°B.10°C.20°D.25°【分析】由旋转前后的对应角相等可知,∠DFC=∠BEC=60°;一个特殊三角形△ECF为等腰直角三角形,可知∠EFC=45°,把这两个角作差即可.【解答】解:∵△BCE绕点C顺时针方向旋转90°得到△DCF,∴CE=CF,∠DFC=∠BEC=60°,∠EFC=45°,∴∠EFD=60°﹣45°=15°.故选:A.【点评】本题考查旋转的性质和正方形的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.8.(3分)如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A.B.C.D.【分析】先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.【解答】解:∵OB=1,AB⊥OB,点A在函数y=﹣(x<0)的图象上,∴当x=﹣1时,y=2,∴A(﹣1,2).∵此矩形向右平移3个单位长度到A1B1O1C1的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数y=(x>0)的图象上,∴k=4,∴反比例函数的解析式为y=,O1(3,0),∵C1O1⊥x轴,∴当x=3时,y=,∴P(3,).故选:C.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)分解因式:4a3b﹣ab=ab(2a+1)(2a﹣1).【分析】先提取公因式ab,再根据平方差公式进行二次分解.平方差公式:a2﹣b2=(a﹣b)(a+b).【解答】解:原式=ab(4a2﹣1)=ab(2a+1)(2a﹣1).故答案为:ab(2a+1)(2a﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.10.(3分)将点P(﹣3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,﹣1),则x+y =﹣3.【分析】根据向下平移纵坐标减,向左平移横坐标减列方程求出x、y的值,然后相加计算即可得解.【解答】解:∵点P(﹣3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,﹣1),∴x=﹣3﹣2,y﹣3=﹣1,解得x=﹣5,y=2,所以,x+y=﹣5+2=﹣3.故答案为:﹣3.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11.(3分)如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使∠ABC不是直角三角形的概率是.【分析】找到可以组成直角三角形的点,根据概率公式解答即可.【解答】解:如图,C 1,C 2,C 3,C 4均可与点A 和B 组成直角三角形.P =,故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.12.(3分)如图,矩形ABCD 中,以AD 为直径的半圆与BC 边相切于点E ,且AD =8、AB =4,则图中阴影部分的面积是 4π .【分析】连接OE .先求空白部分DCE 的面积,再用△BCD 的面积﹣空白部分DCE 的面积得阴影面积.【解答】解:连接OE .阴影部分的面积=S △BCD ﹣(S 矩形ODCE ﹣S 扇形ODE )=×4×8﹣(4×4﹣π×4×4)=4π. 答:阴影部分的面积为4π.故答案为:4π【点评】本题考查了三角形的面积、矩形的性质、切线的性质的应用,关键是能把求不规则图形的面积转化成求规则图形的面积,题目比较典型,主要培养了学生的计算能力.13.(3分)如图,正方形AEFG的顶点E,G在正方形ABCD的边AB,AD上,连接BF,DF.则BE:CF的值为.【分析】设正方形ABCD的边长为a,正方形AEFG的边长为b,表示出BE,再根据正方形的性质表示出CF,然后相比计算即可得解.【解答】解:设正方形ABCD的边长为a,正方形AEFG的边长为b,则BE=a﹣b,∵正方形AEFG的顶点E,∴AF平分∠BAD,∵四边形ABCD是正方形,∴CA平分∠BAD,∴点F在正方形ABCD的对角线上,∵G在正方形ABCD的边AB,AD上,∴CF=a﹣b,∴BE:CF=(a﹣b):(a﹣b)=.故答案为:.【点评】本题考查了正方形的性质,主要利用了正方形的对角线与边长的关系,难点在于判断出点F在正方形ABCD的对角线上.14.(3分)如图,在平面直角坐标系xoy中,A(﹣3,0),B(0,1),形状相同的抛物线∁n(n =1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,根据上述规律,抛物线C2的顶点坐标为(3,2);抛物线C8的顶点坐标为(55,).【分析】根据A(﹣3,0),B(0,1)的坐标求直线AB的解析式为y=x+1,因为顶点C2的在直线AB上,C2坐标可求;根据横坐标的变化规律可知,C8的横坐标为55,代入直线AB的解析式y=x+1中,可求纵坐标.【解答】解:设直线AB的解析式为y=kx+b则解得k=,b=1∴直线AB的解析式为y=x+1∵抛物线C2的顶点坐标的横坐标为3,且顶点在直线AB上∴抛物线C2的顶点坐标为(3,2)∵对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…∴每个数都是前两个数的和∴抛物线C8的顶点坐标的横坐标为55∴抛物线C8的顶点坐标为(55,).【点评】此题考查了待定系数法求一次函数的解析式,还考查了点与函数关系式的关系,考查了学生的分析归纳能力.三、作图题(本题满分4分)15.(4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.已知线段a和∠α,求作:等腰△ABC,使得顶角∠A=∠α,a为底边上的高线.【分析】先作∠MAN=∠α,在作∠MON的平分线AP,在AP上截取AD=a,然后过点D作AP 的垂线分别交AM、AN于B、C,则△ABC为所作.【解答】解:如图,△ABC为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的判定定理.四、解答题(本题满分74分,共有9道小題)16.(8分)(1)计算:2cos30°﹣sin245°﹣tan60°+(tan30°+1)0(2)解方程:【分析】(1)原式利用特殊角的三角函数值,以及零指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2×﹣﹣+1=;(2)去分母得:3﹣x﹣2x+4=﹣1,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.17.(6分)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.【分析】(1)利用条形统计图结合表格中数据分别求出C,I两县的完成进度;(2)利用条形统计图结合表格中数据求出总的完成进度;(3)可从识图能力、数据分析能力以及综合运用能力分析得出答案.【解答】解:(1)C县的完全成进度=×100%=107%;I县的完全成进度=×100%≈27.3%,所以截止3月31日,完成进度最快的是C县,完成进度最慢的是I县;(2)全市的完成进度=(20.5+20.3+27.8+9.6+8.8+17.1+9.6+21.4+11.5+25.2)÷200×100%=171.8÷200×100%=85.9%;(3)A类(识图能力):能直接根据统计图的完成任务数对I县作出评价;B类(数据分析能力):能结合统计图通过计算完成对I县作出评价,如:截止5月4日,I县的完成进度=×100%≈104.5%,超过全市完成进度;C类(综合运用能力):能利用两个阶段的完成进度、全市完成进度的排序等方面对I县作出评价,如:截止3月31日,I县的完成进度=×100%≈27.3%,完成进度全市最慢;截止5月4日,I县的完成进度=×100%≈104.5%,超过全市完成进度,104.5%﹣27.3%=77.2%,与其它县(市、区)对比进步幅度最大.【点评】此题主要考查了条形统计图以及统计表的综合应用,利用图表获取正确信息是解题关键.18.(6分)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.【分析】(1)由转动转盘甲共有四种等可能结果,其中指针指向A区域只有1种情况,利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中确定指针指向每个区域的字母相同的结果数,利用概率公式计算可得.【解答】解:(1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A区域只有1种情况,∴享受9折优惠的概率为,故答案为:;(2)画树状图如下:由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果,所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)【分析】根据楼高和山高可求出EF,继而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根据CF=BD可建立方程,解出即可.【解答】解:如图,过点C作CF⊥AB于点F.设塔高AE=x,由题意得,EF=BE﹣CD=56﹣27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,则CF=≈=x+,在Rt△ABD中,∠ADB=45°,AB=x+56,则BD=AB=x+56,∵CF=BD,∴x+56=x+,解得:x=52,答:该铁塔的高AE为52米.【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.20.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.【分析】(1)根据三角形相似,可求出点C坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:(1)由已知,OA =6,OB =12,OD =4∵CD ⊥x 轴∴OB ∥CD∴△ABO ∽△ACD∴∴∴CD =20∴点C 坐标为(﹣4,20)∴n =xy =﹣80∴反比例函数解析式为:y =﹣ 把点A (6,0),B (0,12)代入y =kx +b 得:解得:∴一次函数解析式为:y =﹣2x +12(2)当﹣=﹣2x +12时,解得x 1=10,x 2=﹣4当x =10时,y =﹣8∴点E 坐标为(10,﹣8)∴S △CDE =S △CDA +S △EDA =(3)不等式kx +b ≤,从函数图象上看,表示一次函数图象不高于反比例函数图象∴由图象得,x ≥10,或﹣4≤x <0【点评】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图象解不等式.21.(8分)如图,在▱ABCD 中,点F 是边BC 的中点,连接AF 并延长交DC 的延长线于点E ,连接AC 、BE .(1)求证:AB=CE;(2)若∠AFC=2∠D,则四边形ABEC是什么特殊四边形?请说明理由【分析】(1)由在▱ABCD中,点F是边BC的中点,易证得△ABF≌△ECF,可得CE=AB即可;(2)由(1)易得四边形ABEC是平行四边形,又由∠AFC=2∠D,易证得AF=BF,即可得AE =BC,证得四边形ABEC是矩形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABF=∠ECF,∵点F是边BC的中点,∴BF=CF,在△ABF和△CEF中,,∴△ABF≌△ECF(ASA),∴AB=CE,(2)解:四边形ABEC是矩形.理由如下:∵AB∥CD,AB=CE,∴四边形ABEC是平行四边形,∴AE=2AF,BC=2BF,∵四边形ABCD是平行四边形,∴∠ABF=∠D,∵∠AFC=2∠D,∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF,∴AF=BF,∴AE=BC,∴四边形ABEC是矩形.【点评】此题考查了平行四边形的性质、全等三角形的判定与性质以及矩形的判定.证明三角形全等是解题的关键.22.(10分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.【分析】(1)直接利用待定系数法求一次函数解析式即可;(2)利用销量×售价=销售金额,进而利用二次函数最值求法求出即可;(3)分别表示出1,2月份的销量以及售价,进而利用今年2月份这种品牌手机的销售额为6400万元,得出等式求出即可.【解答】解:(1)设p=kx+b,把p=3.9,x=1;p=4.0,x=2分别代入p=kx+b中,得:,解得:,∴p=0.1x+3.8;(2)设该品牌手机在去年第x个月的销售金额为w万元,w=(﹣50x+2600)(0.1x+3.8)=﹣5x2+70x+9880=﹣5(x﹣7)2+10125,=10125,当x=7时,w最大答:该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)当x=12时,y=2000,p=5,1月份的售价为:2000(1﹣m%)元,则2月份的售价为:0.8×2000(1﹣m%)元;1月份的销量为:5×(1﹣1.5m%)万台,则2月份的销量为:[5×(1﹣1.5m%)+1.5]万台;∴0.8×2000(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400,解得:m1%=(舍去),m2%=,∴m=20,答:m的值为20.【点评】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,根据题意表示出2月份的销量与售价是解题关键.23.(10分)“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的x,y二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1•a2,把y2项系数c分解成两个因数,c1,c2的积,即c=c1•c2,并使a1•c2+a2•c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y)例:分解因式:x2﹣2xy﹣8y2解:如右图,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×(﹣4)+1×2∴x2﹣2xy﹣8y2=(x ﹣4y)(x+2y)而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,如图1,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);例:分解因式:x2+2xy﹣3y2+3x+y+2解:如图2,其中1=1×1,﹣3=(﹣1)×3,2=1×2;而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)请同学们通过阅读上述材料,完成下列问题:。

山东青岛2018-2019学年初三下学期二模数学试卷

山东青岛2018-2019学年初三下学期二模数学试卷

2018-2019下学期青岛初三二模数学试卷一、选择题(本题满分24分,共有8道小题,每题3分) 1.下列各组数中,互为倒数的是( ) A. -0.15和320 B.-3和31C.0.01和100D.1和-1 2. 下列图形中既不是轴对称也不是中心对称图形的是( )3. 下列代数式运算正确的是( )A. 862-a a a -=•)(B.632b 6-b 2-=)(C.3+333=D.(m -n )3322n -m n mn m =++)(4.如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是圆O 的直径,则∠BEC 的度数为( )A.15°B.30°C.45°D.60°5.如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△C B A ''',则点P 的坐标为( ) A.(1,2) B.(1,1) C.(0,4) D.(2,1)6.如图,△ABC 中,DE ∥BC ,DE 分别交AB ,AC 于D ,E ,DCE ADE S 2S △△=,则ABCADES △△S =( ) A.94 B.32 C.21 D.417. 为选拔一名选手参加全国中学生男子百米比赛,我市四名中学生参加了训练,他们成绩的平均数x 及其方差s ²如下表所示:如果从中选拔一名学生去参赛,应派( )去A. 甲B.乙C.丙D.丁8. 如图,点A (-2,0),B (0,1),以线段AB 为边在第二象限作矩形ABCD ,双曲线xky (k <0)过点D ,连接BD ,若四边形OADB 的面积为6,则k 的值是( ) A.-9 B.-12 C.-16 D.-18二、填空题(本小题满分18分,共有6道小题,每题3分)9.PM 2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为 m 。

山东省青岛二中中考提前招生提前招生数学模拟试卷

山东省青岛二中中考提前招生提前招生数学模拟试卷

山东省青岛二中中考提前招生提前招生数学模拟试卷一、选择题1.传染病负压隔离病房的室内气压低于室外大气压。

关于负压病房,下列说法正确的是()A.病房内处于真空状态B.病房内的气压一定是1个标准大气压C.病房内的空气可以通过门窗流向病房外D.可以通过从病房内抽气实现负压2.如图甲所示是某校九年級的同学们在参加“青羊区中学生物理科技创新大赛”时设计的空气质量测仪的原理,电源电压恒为3V,R0为10 的定值电阻,R为可以感知空气污染指数的可变电阻,其阻值随污染指数交化的情况如图乙所示。

用电压表示数反映污染指数,污染指数在50以下为空气质量优,90-102之间为空气质量良,100~150为轻微污染,151~200为轻度污染,201~250为中度污染,251~300为轻度重污染,300以上为重度污染,下列分析正确的是()A.污染指数越小,电压表示数越大B.比赛当天电压表示数为1V时,属于轻微污染C.污染指数越大,电路中消耗的总功率越小 D.污染指数为50时,电压表的示数为2.5V 3.如图,四个完全相同的玻璃瓶内装有质量不等的同种液体,用大小相同的力敲击四个玻璃瓶的同一位置,如果能分别发出“dou(1)”、“ruai(2)”、“mi(3)“、“fa (4)”四个音阶,则与这四个音阶相对应的玻璃瓶的序号是()A.丁丙乙甲B.乙甲丙丁C.丁甲丙乙D.甲丙乙丁4.如图所示,某一型号的锁设置了三种打开方式:密码(S1)、特定指纹(S2)或应急钥匙(S3),三者都可以单独使电动机M工作而打开门锁,下列电路设计符合要求的是A.B.C.D.5.如图所示,电源电压恒为6V,R1=10Ω,电流表量程为0~0.6A,电压表量程为0~3V,滑动变阻器R2规格“20Ω 0.5A”。

闭合开关S后,在保证电路安全的前提下移动滑片P,下列描述正确的是()A.电压表示数和电流表示数的关系B.R2的阻值和电流表示数的关系C.R1电功率和电流表示数的关系D.电路总功率和电流表示数的关系6.通电导体在磁场中受到力的作用。

山东省青岛二中中考提前招生提前招生数学模拟试卷

山东省青岛二中中考提前招生提前招生数学模拟试卷

山东省青岛二中中考提前招生提前招生数学模拟试卷一、选择题1.下列四幅图片与其对应的说法,正确的是()A.甲图中通过改变尺子伸出桌面的长度,可以探究音调与频率的关系B.乙图中用示波器显示两列声波的波形图,这两列声波的音色相同C.丙图中“GPS导航”是利用超声波在卫星与汽车之间传递信息的D.丁图中用手搓杯口,通过改变杯中的水量可以探究响度与振幅的关系2.如图是一种手摇式手机充电器,只要摇转手柄,就可以给手机充电。

以下四幅图中能反映手摇充电器原理的是()A.B.C.D.3.以下是我们生活中常见到的几种现象:①篮球撞击在篮板上被弹回;②用力揉面团,面团形状发生变化;③用力握小球,球变瘪了;④一阵风把地面上的灰尘吹得漫天飞舞.在这些现象中,物体因为受力而改变运动状态的是A.①②B.①④C.②③D.②④4.如图所示的物态变化现象中,需要吸热的是()A.霜的形成B.河水结冰C.樟脑丸逐渐变小D.露珠的形成5.如图所示是乘客刷身份证进站的情景,将身份证靠近检验口,机器的感应电路中就会产生电流,从而识别乘客身份,下图说明该原理的是()A.B.C.D.6.如图,将装有适量水的小玻璃瓶瓶口向下,使其漂浮在大塑料瓶内的水面上,拧紧大瓶瓶盖,通过改变作用在大瓶侧面的压力大小,实现小瓶的浮与沉.则()A.用力捏大瓶,小瓶不能实现悬浮B.用力捏大瓶,小瓶内的气体密度变大C.盖上小瓶瓶盖,捏大瓶也能使小瓶下沉D.打开大瓶瓶盖,捏大瓶也能使小瓶下沉7.隐型眼镜是一种直接贴在眼睛角膜表面的超薄镜片,可随眼球的运动而运动。

目前使用的软质隐型眼镜由甲醛丙烯酸羟乙酯(HEMA)制成,中心厚度只有 0.05mm.如图是某人观察物体时,物体在眼球内成像的示意图,则该人所患眼病及矫正时应配制的这种隐型眼镜的镜片边缘的厚度分别为()A.近视眼,大于 0.05mm B.近视眼,小于 0.05mmC.远视眼,大于 0.05mm D.远视眼,小于 0.05mm8.如图所示,使用中属于费力杠杆的是()A.核桃夹B.起子C.镊子D.羊角锤9.关于信息和能源,下列说法正确的是()A.电风扇工作时,电能主要转化为内能B.煤、石油、风能、天然气等都是不可再生能源C.目前的核电站是利用核裂变释放的核能工作的D.能量在转移、转化过程中总是守恒的,我们无需节约能源10.为了揭示大自然的奥秘,无数科学家进行了不懈的探索。

2019年山东省青岛市中考数学模拟试卷(6月份) 解析版

2019年山东省青岛市中考数学模拟试卷(6月份)  解析版

2019年山东省青岛市中考数学模拟试卷(6月份)一、选择题(本题共计8小题,每题3分,共计24分,)1.(3分)|﹣2018|的值是()A.B.2018C.D.﹣20182.(3分)在“创文明城,迎省运会”合唱比赛中,10位评委给某队的评分如下表所示,则下列说法正确的是()A.中位数是9.4分B.中位数是9.35分C.众数是3和1D.众数是9.4分3.(3分)如图图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)下列计算正确的是()A.a3+a2=a5B.a8÷a4=a2C.(2a3)2﹣a•a5=3a6D.(a﹣2)(a+3)=a2﹣65.(3分)如图,过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD 边于点F,分别连接AE、CF,若AB=2,∠DCF=30°,则EF的长为()A.4B.6C.D.26.(3分)将一张宽为5cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是()A.cm2B.cm2C.25cm2D.cm2 7.(3分)亚洲陆地面积约为4400万平方千米,用科学记数法正确表示44000000的是()A.44×106B.0.44×108C.4.4×103D.4.4×1078.(3分)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.二、填空题(本题共计6小题,每题3分,共计18分,)9.(3分)计算:=.10.(3分)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元,则乙商品每件元.11.(3分)如图AB、AC是⊙O的两条弦,∠A=32°,过点C的切线与OB的延长线交于点D,则∠D的度数为.12.(3分)甲、乙两组学生去距学校4.5千米的敬老院开展慰问活动,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,两组学生同时到达敬老院.已知步行速度是骑自行车速度的,设步行速度为x千米/时,则根据题意可以列出方程.13.(3分)如图,矩形ABCD的对角线AC、BD交于点O,E为AB的中点,G为BC延长线上一点,射线EO与∠ACG的角平分线交于点F,若AB=8,BC=6,则线段EF的长为.14.(3分)如图,在边长为12cm的正方形纸片ABCD中,EF∥AD,M、N是线段EF的六等分点,若把该正方形纸片折成一个正六棱柱,使AB与点DC重合,则M、N两点间的距离是cm.三、作图题(尺规作图,保留作图痕迹)15.(4分)如图,有一块三角形材料(△ABC),请你画出一个半圆,使得圆心在线段AC 上,且与AB、BC相切.结论:四、解答题16.(8分)(1)化简:(2)若二次函数y=x2+(c﹣1)x﹣c的图象与横轴有唯一交点,求c的值.17.(6分)如图,把可以自由转动的圆形转盘A,B分别分成3等份的扇形区域,并在每一个小区域内标上数字.小明和小颖两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针两区域的数字均为奇数,则小明胜;若指针两区域的数字均为偶数,则小颖胜;若有指针落在分割线上,则无效,需重新转动转盘.这个游戏规则对双方公平吗?请说明理由.18.(6分)中华文明,源远流长,中华汉字,寓意深广,为了传承优秀传统文化,某校九年级组织600名学生参加了一次“汉字听写”大赛.赛后发现所有参赛学生的成绩均不低于60分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本,成绩如下:90,92,81,82,78,95,86,88,72,66,62,68,89,86,93,97,100,73,76,80,77,81,86,89,82,85,71,68,74,98,90,97,100,84,87,73,65,92,96,60.对上述成绩进行了整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)a=,b=,c=,d=;(2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,请你估计参加这次比赛的600名学生中成绩“优”等的约有多少人?19.(6分)在一次综合实践课上,同学们为教室窗户设计一个遮阳篷,小明同学绘制的设计图如图所示,其中AB表示窗户,且AB=2米,BCD表示直角遮阳蓬,已知当地一年中正午时刻太阳光与水平线CD的最小夹角∠PDN=18.6°,最大夹角∠MDN=64.5°请你根据以上数据,帮助小明同学计算出遮阳篷中CD的长是多少米?(结果精确到0.1)(参考数据:sin18.6°≈0.32,tan18.6°≈0.34,sin64.5°≈0.90,tan64.5°≈2.1)20.(8分)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mgL.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,其中第3天时硫化物的浓度降为4mgL.从第3天起所排污水中硫化物的浓度y与时间x满足下面表格中的关系:(1)求整改过程中当0≤x<3时,硫化物的浓度y与时间x的函数表达式;(2)求整改过程中当x≥3时,硫化物的浓度y与时间x的函数表达式;(3)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mgL?为什么?21.(8分)已知:如图,在平行四边形中,点E在BC边上,连接AE.O为AE中点,连接BO并延长交AD于F.(1)求证:△AOF≌△BOE,(2)判断当AE平分∠BAD时,四边形ABEF是什么特殊四边形,并证明你的结论.22.(10分)5月13日是母亲节,为了迎接母亲节的到来,利客来商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于24件,并且商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?(3)在(2)条件下,若每件甲种玩具售价30元,每件乙种玩具售价45元,请求出卖完这批玩具获利W(元)与甲种玩具进货量m(件)之间的函数关系式,并求出最大利润为多少?23.(10分)如图,正方形ABCD的四个顶点分别在正方形EFGH的四条边上,我们称正方形EFGH是正方形ABCD的外接正方形.探究一:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍?如图,假设存在正方形EFGH,它的面积是正方形ABCD的2倍.因为正方形ABCD的面积为1,则正方形EFGH的面积为2,所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,∵Rt△AEB≌Rt△BFC∴BF=AE=﹣x在Rt△AEB中,由勾股定理,得x2+(﹣x)2=12解得,x1=x2=∴BE=BF,即点B是EF的中点.同理,点C,D,A分别是FG,GH,HE的中点.所以,存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍探究二:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍?(仿照上述方法,完成探究过程)探究三:已知边长为1的正方形ABCD,一个外接正方形EFGH,它的面积是正方形ABCD面积的4倍?(填“存在”或“不存在”)探究四:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍?(n>2)(仿照上述方法,完成探究过程)24.(12分)如图,四边形ABCD为矩形,AB=4cm,AD=3cm,动点M、N分别从D、B 同时出发,都以1cm/秒的速度运动,点M沿DA向点终点A运动,点N沿BC向终点C 运动.过点N作NP⊥BC,交AC于点P,连接MP,已知运动的时间为t秒(0<t<3).(1)当t=1秒时,求出PN的长;(2)若四边形CDMP的面积为s,试求s与t的函数关系式;(3)在运动过程中,是否存在某一时刻t使四边形CDMP的面积与四边形ABCD的面积比为3:8,若存在,请求出t的值;若不存在,请说明理由.(4)在点M、N运动过程中,△MP A能否成为一个等腰三角形?若能,试求出所有t的可能值;若不能,试说明理由.2019年山东省青岛市中考数学模拟试卷(6月份)参考答案与试题解析一、选择题(本题共计8小题,每题3分,共计24分,)1.(3分)|﹣2018|的值是()A.B.2018C.D.﹣2018【分析】根据负数的绝对值是它的相反数可得答案.【解答】解:|﹣2018|=2018,故选:B.【点评】此题主要考查了绝对值,关键是掌握绝对值的性质.2.(3分)在“创文明城,迎省运会”合唱比赛中,10位评委给某队的评分如下表所示,则下列说法正确的是()A.中位数是9.4分B.中位数是9.35分C.众数是3和1D.众数是9.4分【分析】分别利用中位数、众数的定义求得答案后即可确定符合题意的选项.【解答】解:∵共10名评委,∴中位数应该是第5和第6人的平均数,为9.3分和9.4分,∴中位数为9.35分,故A错误,B正确;∵成绩为9.2分和9.4分的并列最多,∴众数为9.2分和9.4分,故C错误,D错误.故选:B.【点评】本题考查了中位数、众数的知识,解题的关键是能够根据定义及公式正确的求解,难度不大.3.(3分)如图图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、是轴对称图形,也是中心对称图形.故本选项正确;C、不是轴对称图形,是中心对称图形.故本选项错误;D、是轴对称图形,不是中心对称图形.故本选项错误;故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(3分)下列计算正确的是()A.a3+a2=a5B.a8÷a4=a2C.(2a3)2﹣a•a5=3a6D.(a﹣2)(a+3)=a2﹣6【分析】根据合并同类项,同底数幂的除法,多项式乘以多项式,幂的乘方和积的乘方求出每个式子的值,再得出选项即可.【解答】解:A、a2和a3不能合并,故本选项不符合题意;B、a8÷a4=a4,故本选项不符合题意;C、(2a3)2﹣a•a5=4a6﹣a6=3a6,故本选项符合题意;D、(a﹣2)(a+3)=a2+a﹣6,故本选项不符合题意;故选:C.【点评】本题考查了合并同类项,同底数幂的除法,多项式乘以多项式,幂的乘方和积的乘方等知识点,能求出每个式子的值是解此题的关键.5.(3分)如图,过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD 边于点F,分别连接AE、CF,若AB=2,∠DCF=30°,则EF的长为()A.4B.6C.D.2【分析】求出∠ACB=∠DAC,然后利用“角角边”证明△AOF和△COE全等,根据全等三角形对应边相等可得OE=OF,再根据对角线互相垂直平分的四边形是菱形得到四边形AECF是菱形,再求出∠ECF=60°,然后判断出△CEF是等边三角形,根据等边三角形的三条边都相等可得EF=CF,根据矩形的对边相等可得CD=AB,然后求出CF,从而得解.【解答】解:∵矩形对边AD∥BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴OE=OF,又∵EF⊥AC,∴四边形AECF是菱形,∵∠DCF=30°,∴∠ECF=90°﹣30°=60°,∴△CEF是等边三角形,∴EF=CF,∵AB=2,∴CD=AB=2,∵∠DCF=30°,∴CF=2÷=4,∴EF=4,故选:A.【点评】本题考查了菱形的判定与性质,矩形的性质,全等三角形的判定与性质,等边三角形的判定与性质,难点在于判断出△CEF是等边三角形.6.(3分)将一张宽为5cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是()A.cm2B.cm2C.25cm2D.cm2【分析】当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,利用三角形面积公式即可求解.【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=5cm,∴S△ABC=×5×5=(cm2).故选:B.【点评】本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.7.(3分)亚洲陆地面积约为4400万平方千米,用科学记数法正确表示44000000的是()A.44×106B.0.44×108C.4.4×103D.4.4×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法正确表示44000000的是4.4×107.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.【分析】由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b﹣1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b﹣1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,即可进行判断.【解答】解:点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,∴x=ax2+bx+c,∴ax2+(b﹣1)x+c=0;由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个正实数根.∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,又∵﹣>0,a>0∴﹣=﹣+>0∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∴A符合条件,故选:A.【点评】本题考查了二次函数的图象,直线和抛物线的交点,交点坐标和方程的关系以及方程和二次函数的关系等,熟练掌握二次函数的性质是解题的关键.二、填空题(本题共计6小题,每题3分,共计18分,)9.(3分)计算:=6.【分析】直接利用二次根式的性质化简得出答案.【解答】解:原式====6.故答案为:6.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.10.(3分)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元,则乙商品每件70元.【分析】设甲商品的进价为x元/件,乙商品的进价为y元/件,根据总价=单价×数量结合“购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设甲商品的进价为x元/件,乙商品的进价为y元/件,根据题意得:,解得:.故答案为:70.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.11.(3分)如图AB、AC是⊙O的两条弦,∠A=32°,过点C的切线与OB的延长线交于点D,则∠D的度数为26°.【分析】连接OC,根据圆周角定理得到∠BOC=2∠A=64°,根据切线的性质解答.【解答】解:连接OC,由圆周角定理得,∠BOC=2∠A=64°,∵CD是⊙O的切线,∴∠OCD=90°,∴∠D=90°﹣∠BOC=26°,故答案为:26°.【点评】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.12.(3分)甲、乙两组学生去距学校4.5千米的敬老院开展慰问活动,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,两组学生同时到达敬老院.已知步行速度是骑自行车速度的,设步行速度为x千米/时,则根据题意可以列出方程﹣=.【分析】设步行速度为x千米/时,则骑自行车的速度为3x千米/时,根据时间=路程÷速度结合骑自行车比步行少用半小时,即可得出关于x的分式方程,此题得解.【解答】解:设步行速度为x千米/时,则骑自行车的速度为3x千米/时,依题意,得:﹣=.故答案为:﹣=.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.13.(3分)如图,矩形ABCD的对角线AC、BD交于点O,E为AB的中点,G为BC延长线上一点,射线EO与∠ACG的角平分线交于点F,若AB=8,BC=6,则线段EF的长为8.【分析】过F点作FM⊥BG于M,作FN⊥AC于N,根据矩形的性质,勾股定理可求BE,EO,OC,根据角平分线的性质可得FN,再根据三角形面积公式可求OF,进一步即可求解.【解答】解:过F点作FM⊥BG于M,作FN⊥AC于N,∵四边形ABCD是矩形,E为AB的中点,AB=8,BC=6,∴BE=4,EO=3,OC=AC=×=5,∵CF是∠ACG的角平分线,∴FN=FM=BE=4,∴OF=5×4÷2×2÷4=5,∴EF=EO+FO=3+5=8.故答案为:8.【点评】考查了矩形的性质,勾股定理,角平分线的性质,三角形面积,本题难点是求出OF的长.14.(3分)如图,在边长为12cm的正方形纸片ABCD中,EF∥AD,M、N是线段EF的六等分点,若把该正方形纸片折成一个正六棱柱,使AB与点DC重合,则M、N两点间的距离是2cm.【分析】根据正六边形的性质解答即可.【解答】解:如图所示:∵正六边形的周长为12cm,∴MQ=QN=2cm,∠MQN=120°,连接MN,过Q作QP⊥MN,在Rt△MQP中,MP=,同理可得PN=,∴MN=2,故答案为:2【点评】此题考查几何体的展开图,关键是根据正六边形的性质解答.三、作图题(尺规作图,保留作图痕迹)15.(4分)如图,有一块三角形材料(△ABC),请你画出一个半圆,使得圆心在线段AC 上,且与AB、BC相切.结论:【分析】根据切线的定义可知圆心到AB、BC的距离相等,再根据角平分线上的点到角的两边距离相等可知∠ABC的平分线与AC的交点O即为所求半圆的圆心,再过点O作BC的垂线,垂足为D,然后以O为圆心,以OD的长为半径作出半圆即可.【解答】解:如图所示.结论为:以O为圆心,以OD的长为半径作出半圆.【点评】本题考查了应用于设计作图,切线的判定,主要利用了角平分线上的点到角的两边距离相等的性质以及过直线外一点作已知直线的垂线的方法.四、解答题16.(8分)(1)化简:(2)若二次函数y=x2+(c﹣1)x﹣c的图象与横轴有唯一交点,求c的值.【分析】(1)利用平方差公式、化除为乘及消元法,即可将原分式进行化简;(2)由二次函数图象与x轴有唯一交点,可得出△=(c+1)2=0,解之即可得出c的值.【解答】解:(1)原式=×=﹣;(2)∵二次函数y=x2+(c﹣1)x﹣c的图象与横轴有唯一交点,∴△=(c﹣1)2﹣4×1×(﹣c)=(c+1)2=0,解得:c=﹣1,∴c的值为﹣1.【点评】本题考查了抛物线与x轴的交点以及分式的乘除法,解题的关键是:(1)牢记分式运算的法则;(2)牢记“△=b2﹣4ac=0时,抛物线与x轴有1个交点”.17.(6分)如图,把可以自由转动的圆形转盘A,B分别分成3等份的扇形区域,并在每一个小区域内标上数字.小明和小颖两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针两区域的数字均为奇数,则小明胜;若指针两区域的数字均为偶数,则小颖胜;若有指针落在分割线上,则无效,需重新转动转盘.这个游戏规则对双方公平吗?请说明理由.【分析】利用树状图列举出所有情况,分别求得两人获胜的概率,比较大小即可得知这个游戏规对双方是否公平.【解答】解:这个游戏规则对双方公平,如图所示:共9种情况,其中均为偶数的有2种结果,均为奇数的情况数有2种,所以小明获胜的概率为、小颖获胜的概率为,∵=,∴这个游戏规则对双方公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.(6分)中华文明,源远流长,中华汉字,寓意深广,为了传承优秀传统文化,某校九年级组织600名学生参加了一次“汉字听写”大赛.赛后发现所有参赛学生的成绩均不低于60分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本,成绩如下:90,92,81,82,78,95,86,88,72,66,62,68,89,86,93,97,100,73,76,80,77,81,86,89,82,85,71,68,74,98,90,97,100,84,87,73,65,92,96,60.对上述成绩进行了整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)a=14,b=0.35,c=12,d=0.3;(2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,请你估计参加这次比赛的600名学生中成绩“优”等的约有多少人?【分析】(1)由已知数据得出a、c的值,再根据频率=频数÷总数可得b、d的值;(2)由(1)中所求数据补全图形即可得;(3)总人数乘以样本中90≤x≤100的频率即可得.【解答】解:(1)由题意知a=14,b=14÷40=0.35,c=12,d=12÷40=0.3,故答案为:14、0.35、12、0.3;(2)补全频数直方图如下:(3)600×0.3=180,答:估计参加这次比赛的600名学生中成绩“优”等的约有180人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.(6分)在一次综合实践课上,同学们为教室窗户设计一个遮阳篷,小明同学绘制的设计图如图所示,其中AB表示窗户,且AB=2米,BCD表示直角遮阳蓬,已知当地一年中正午时刻太阳光与水平线CD的最小夹角∠PDN=18.6°,最大夹角∠MDN=64.5°请你根据以上数据,帮助小明同学计算出遮阳篷中CD的长是多少米?(结果精确到0.1)(参考数据:sin18.6°≈0.32,tan18.6°≈0.34,sin64.5°≈0.90,tan64.5°≈2.1)【分析】解直角三角求出BC=0.34x米,AC=2.1x米,得出方程,求出方程的解即可.【解答】解:设CD=x米,在Rt△BCD中,∠BCD=90°,∠CDB=∠PDN=18.6°,CB=CD×tan18.6°≈0.34x 米,在Rt△ACD中,∠ACD=90°,∠CDA=∠MDN=64.5°,AC=CD×tan64.5°≈2.1x 米,∵AB=2米,AB=AC﹣BC,∴2.1x﹣0.34x=2,解得:x≈1.1,即遮阳篷中CD的长约为1.1米.【点评】本题考查了解直角三角形和解方程,能通过解直角三角形求出AC和BC的长是解此题的关键.20.(8分)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mgL.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,其中第3天时硫化物的浓度降为4mgL.从第3天起所排污水中硫化物的浓度y与时间x满足下面表格中的关系:(1)求整改过程中当0≤x<3时,硫化物的浓度y与时间x的函数表达式;(2)求整改过程中当x≥3时,硫化物的浓度y与时间x的函数表达式;(3)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mgL?为什么?【分析】(1)根据图象知,函数是一次函数.用待定系数法可确定函数解析式;(2)由图象知,函数是反比例函数,用待定系数法确定函数解析式;(3)把15代入反比例函数解析式并计算,比较后得结果.【解答】解:(1)前三天的函数图象是线段,设函数表达式为:y=kx+b把(0,10)(3,4)代入函数关系式,得解得:k=﹣2,b=10所以当0≤x<3时,硫化物的浓度y与时间x的函数表达式为:y=﹣2x+10;(2)当x≥3时,设y=把(3,4)代入函数表达式,得4=所以k=12当x≥3时,硫化物的浓度y与时间x的函数表达式为:y=(3)能.理由:当x=15时,y==0.8因为0.8<1,所以该企业所排污水中硫化物的浓度,能在15天以内不超过最高允许的1.0mgL【点评】本题考查了一次函数的待定系数法、反比例函数及其应用.题目难度不大.会用待定系数法确定函数解析式,是解决本题的关键.21.(8分)已知:如图,在平行四边形中,点E在BC边上,连接AE.O为AE中点,连接BO并延长交AD于F.(1)求证:△AOF≌△BOE,(2)判断当AE平分∠BAD时,四边形ABEF是什么特殊四边形,并证明你的结论.【分析】(1)先利用平行四边形的性质得AD∥BC,则∠AFB=∠CBF,然后根据“AAS”可判断△AOF≌△BOE;(2)利用△AOF≌△BOE得到FO=BO,则可根据对角线互相平分可判定四边形ABEF 是平行四边形,根据AE平分∠BAD,得∠BAE=∠F AE,又∠F AE=∠AEB,得∠BAE =∠AEB,AB=BE,有一组对边相等的平行四边形是菱形,得四边形ABEF是菱形.【解答】(1)证明:∵O为AE中点,∴AO=EO,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠AFB=∠CBF,在△AOF和△BOE中,∴△AOF≌△BOE;(2)解:四边形ABEF是平行四边形.理由如下:∵△AOF≌△BOE,∴FO=BO,而AO=EO,∴四边形ABEF是平行四边形.∵AE平分∠BAD,∴∠BAE=∠F AE∵∠F AE=∠AEB∴∠BAE=∠AEB∴AB=BE∴四边形ABEF是菱形.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.22.(10分)5月13日是母亲节,为了迎接母亲节的到来,利客来商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于24件,并且商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?(3)在(2)条件下,若每件甲种玩具售价30元,每件乙种玩具售价45元,请求出卖完这批玩具获利W(元)与甲种玩具进货量m(件)之间的函数关系式,并求出最大利润为多少?【分析】(1)设甲种玩具进价为x元/件,则乙种玩具进价为(40﹣x)元/件,根据用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具m件,则购进乙种玩具(48﹣m)件,根据甲种玩具的件数少于24件,并且商场决定此次进货的总资金不超过1000元,可列出不等式组求解.(3)先列出有关总利润和进货量的一次函数关系式,然后利用一次函数的性质结合自变量的取值范围求最大值即可.【解答】解:(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据题意,得=,解得x=15,经检验x=15是原方程的解.则40﹣x=25.答:甲、乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具m件,则购进乙种玩具(48﹣m)件,由题意,得,解得20≤m<24.∵m是整数,∴m取20,21,22,23,故商场共有四种进货方案:方案一:购进甲种玩具20件,乙种玩具28件;方案二:购进甲种玩具21件,乙种玩具27件;方案三:购进甲种玩具22件,乙种玩具26件;方案四:购进甲种玩具23件,乙种玩具25件;(3)设购进甲种玩具m件,卖完这批玩具获利W元,则购进乙种玩具(48﹣m)件,根据题意得:W=(30﹣15)m+(45﹣25)(48﹣m)=﹣5m+960,∵比例系数k=﹣5<0,∴W随着m的增大而减小,∴当m=20时,有最大利润W=﹣5×20+960=860元.【点评】本题考查了一次函数的应用,列分式方程解实际问题的应用,一元一次不等式解方案设计问题的应用,找出题中的等量关系与不等关系是解题的关键.23.(10分)如图,正方形ABCD的四个顶点分别在正方形EFGH的四条边上,我们称正方形EFGH是正方形ABCD的外接正方形.探究一:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍?如图,假设存在正方形EFGH,它的面积是正方形ABCD的2倍.因为正方形ABCD的面积为1,则正方形EFGH的面积为2,所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,∵Rt△AEB≌Rt△BFC∴BF=AE=﹣x在Rt△AEB中,由勾股定理,得x2+(﹣x)2=12解得,x1=x2=。

山东省青岛二中2019届高三下学期期初(2月)考试数学(理科)试题(含解析)

山东省青岛二中2019届高三下学期期初(2月)考试数学(理科)试题(含解析)

)
x 3y 3 0
A.x | 0 x 1
B.x | 0 x 1或x 2
C. x |1 x 2
D.
x | 0 x 1或x 2
A. 1
B. 2
C. 2
D. 1
6.已知函数 f x x sin x ,则不等式 f 1 x2 f 3x 3 0 的解集是( )
49
A.
169
30
B.
169
49
C.
289
60
D.
289
10.如图,在长方体 ABCD A1B1C1D1 中, AB AD 3, AA1 1,而 对角线 A1B 上存在一点 P ,使得 AP D1P 取得最小值,则此最小值为(

A. 2
B. 3
C.1+ 3
D. 7
且满足 x1 x2 1 ,则实数 a 的最小值是( )
=
(2 (1
+ ������)(1 + ‒ ������)(1 +
������) ������)
=
1+ 1‒
3������ ������2
=
1 2
+
32������,
|������| = 则
(1)2 + (3)2 =
2
2
10
2 ,������的共轭复数为������
=
1 2

32������,
复数������的实部与虚部之和为2,������在复平面内对应点位于第一象限,故选 D.
DF

1
FC
,若
2
2

山东省青岛市2018-2019年最新最全中考数学模拟试卷(一)(含答案)

山东省青岛市2018-2019年最新最全中考数学模拟试卷(一)(含答案)

山东省青岛市2019届中考数学模拟试卷(一)(解析版)一、选择题(共8小题,每小题3分,满分24分)1.﹣0.2的倒数等于()A.0.2 B.﹣5 C.﹣ D.52.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.3.为了响应中央号召,2016年某市加大财政支农力度,全市农业支出累计约达到53200万元,其中53200万元用科学记数法可表示为()A.5.23×104元 B.5.23×107元 C.523×108元D.5.23×108元4.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5 B.96,95 C.95,94.5 D.95,955.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)7.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.48.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为()A.B.C.D.二、填空题(本题满分21分,共有6道小题,每小题3分)9.计算:(﹣1)2﹣×(2013﹣π)0+()﹣1=.10.将正面分别标有数字1,2,3,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,两张卡片组成的数恰好为“12”的概率是.11.王师傅检修一条长600米的自来水的管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务.设王师傅原计划每小时检修管道x米,依题意列方程是.12.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB=.13.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=度.14.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最小是个.15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.在一块三角形废料上,要裁下一个半圆形的材料,使直径在线段BC上,并且要尽可能的充分利用好原三角形废料,请画出这个半圆形.三、解答题(共9题,74分)16.(8分)计算(1)求一次函数y=﹣2x+2和y=x=1的交点坐标.(2)化简:(﹣)•.17.(6分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)18.(6分)某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?19.(6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)20.(8分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.21.(8分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC 于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.22.(10分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.23.(10分)阅读材料,回答问题:小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠A=30°,BC=a=1,AC=b=,AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着==的关系.”这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.请判断此时“==”的关系是否成立?(2)完成上术探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC中,BC=a,AC=b,AB=c.过点C作CD⊥AB于D.∵在Rt△ABC和Rt△BDC中,∠ADC=∠BDC=90°,∴sinA=,sinB=.∴=,=.∴=.同理,过点A作AH⊥BC于H,可证=.∴==的.请将上面的过程补充完整.(3)运用上述结论解答问题①如图4,在△ABC中,如果∠B=60°,∠C=45°,AB=2,那么AC=..②在锐角△ABC中,若∠B=30°,AB=2,AC=2,求S△ABC24.(12分)已知:矩形ABCD,DA=3cm,DC=4cm,点M从点A出发沿AB向终点B 运动,点N从点C出发沿CA向终点A运动,点M、N同时出发,且运动的速度均为1cm/秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t秒.(1)当点N运动1秒时,求线段DN的长;(2)试求出多边形DAMN的面积S与t的函数关系式;(3)t为何值时,D,N,M三点共线?(4)t为何值时,以△DAN的一边所在直线为对称轴翻折△DAN,翻折前后的两个三角形所组成的四边形为菱形?2019届山东省青岛市中考数学模拟试卷(一)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.﹣0.2的倒数等于()A.0.2 B.﹣5 C.﹣ D.5【分析】根据倒数的意义,乘积是1的两个数互为倒数,0 没有倒数,求一个数的倒数,把这个数的分子和分母掉换位置即可.【解答】解:﹣0.2的倒数等于﹣5,故选B【点评】此题考查的目的是理解倒数的意义,掌握求倒数的方法及应用,明确:1的倒数是1,0没有倒数.2.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.【分析】由主视图的定义可得.【解答】解:这个几何体的主视图是,故选:D【点评】本题主要考查简单几何体的三视图,熟练掌握三视图的定义是解题的关键.3.为了响应中央号召,2016年某市加大财政支农力度,全市农业支出累计约达到53200万元,其中53200万元用科学记数法可表示为()A.5.23×104元 B.5.23×107元 C.523×108元D.5.23×108元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:53200万=5.23×108,故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5 B.96,95 C.95,94.5 D.95,95【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中96是出现次数最多的,故众数是96;而将这组数据从小到大的顺序排列(90,91,94,95,96,96),处于中间位置的那个数是94、95,那么由中位数的定义可知,这组数据的中位数是(94+95)÷2=94.5.故这组数据的众数和中位数分别是96,94.5.故选:A.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个【分析】小明共摸了100次,其中20次摸到黑球,则有80次摸到白球;摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.【解答】解:3=12(个).故选:C.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)【分析】根据旋转前后的三角形全等及所在象限符号的特点可得所求点的坐标.【解答】解:∵△AOB≌△A′OB′,∴A′B′=AB=b,OB′=OB=a,∵A′在第二象限,∴A′坐标为(﹣b,a),故选C.【点评】考查点的旋转问题;用到的知识点为:旋转前后图形的形状不变.7.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【分析】等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=34.6,把相关数值代入计算即可.【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.【点评】主要考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为()A.B.C.D.【分析】本题需先设正方形的边长为m,然后得出y与x、m是二次函数关系,从而得出函数的图象.【解答】解:设正方形的边长为m,则m>0,∵AE=x,∴DH=x,∴AH=m﹣x,∵EH2=AE2+AH2,∴y=x2+(m﹣x)2,y=x2+x2﹣2mx+m2,y=2x2﹣2mx+m2,=2[(x﹣m)2+],=2(x﹣m)2+m2,∴y与x的函数图象是A.故选A.【点评】本题主要考查了二次函数的图象和性质,在解题时要能根据几何图形求出解析式,得出函数的图象.二、填空题(本题满分21分,共有6道小题,每小题3分)9.计算:(﹣1)2﹣×(2013﹣π)0+()﹣1=2.【分析】直接利用绝对值的性质以及特殊角的三角函数值和二次根式的性质化简求出答案.【解答】解:(﹣1)2﹣×(2013﹣π)0+()﹣1=1﹣2×1+3=2,故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.10.将正面分别标有数字1,2,3,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,两张卡片组成的数恰好为“12”的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片组成的数恰好为“12”的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,两张卡片组成的数恰好为“12”的只有1种情况,∴两张卡片组成的数恰好为“12”的概率是:.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.王师傅检修一条长600米的自来水的管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务.设王师傅原计划每小时检修管道x米,依题意列方程是﹣=2.【分析】设王师傅原计划每小时检修管道x米,根据在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,列方程即可.【解答】解:设王师傅原计划每小时检修管道x米,由题意得,﹣=2.故答案为﹣=2.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出等量关系,列出方程.12.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB=45°.【分析】连接OA,OB.根据正方形的性质,得∠AOB=90°再根据圆周角定理,即可求解.【解答】解:连接OA,OB.根据正方形的性质,得∠AOB=90°.再根据圆周角定理,得∠APB=45°,故答案为:45°.【点评】此题主要考查了圆周角定理,综合运用了正方形的性质以及圆周角定理是解答此题的关键.13.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=25度.【分析】根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等解答即可.【解答】解:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO==25°,故答案为:25.【点评】本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.14.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最小是5个.【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由题中所给出的主视图知物体共2列,且都是最高两层;由左视图知共行,所以小正方体的个数最少的几何体为:第一列第一行2个小正方体,第一列第二行2个小正方体,第二列第三行1个小正方体,其余位置没有小正方体.即组成这个几何体的小正方体的个数最少为:2+2+1=5个.故答案为:5.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.在一块三角形废料上,要裁下一个半圆形的材料,使直径在线段BC上,并且要尽可能的充分利用好原三角形废料,请画出这个半圆形.【分析】如图作∠BAC的平分线AM交BC于O,作ON⊥AB于D,以O为圆心,OD 为半径画半圆即可.【解答】解:如图作∠BAC的平分线AM交BC于O,作ON⊥AB于D,以O为圆心,OD为半径画半圆即可.半圆O即为所求.【点评】本题考查作图﹣应用与设计,角平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.三、解答题(共9题,74分)16.(8分)计算(1)求一次函数y=﹣2x+2和y=x=1的交点坐标.(2)化简:(﹣)•.【分析】(1)通过解方程组可得到两直线的交点坐标;(2)先把括号内通分后进行同分母的减法运算,然后把分子因式分解后约分即可.【解答】解:(1)解方程组得,所以一次函数y=﹣2x+2和y=x﹣1的交点坐标为(1,0);(2)原式=•=•=a+3.【点评】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了分式的混合运算.17.(6分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)【分析】(1)通过对比条形统计图和扇形统计图可知:学习态度层级为A级的有50人,占部分八年级学生的25%,即可求得总人数;(2)由(1)可知:C级人数为:200﹣120﹣50=30人,将图1补充完整即可;(3)各个扇形的圆心角的度数=360°×该部分占总体的百分比,所以可以先求出:360°×(1﹣25%﹣60%)=54°;(4)从扇形统计图可知,达标人数占得百分比为:25%+60%=85%,再估计该市近20000名初中生中达标的学习态度就很容易了.【解答】解:(1)50÷25%=200(人);故答案为:200;(2)C级人数:200﹣120﹣50=30(人).条形统计图如图所示:(3)C所占圆心角度数=360°×(1﹣25%﹣60%)=54°.(4)20000×(25%+60%)=17000(名).答:估计该市初中生中大约有17000名学生学习态度达标.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(6分)某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?【分析】(1)由转盘被等分成16个扇形,红色扇形有1个,黄色扇形有3个,蓝色扇形有5个,直接利用概率公式求解即可求得答案;(2)首先求得转转盘获得购物券的平均值,再与15元比较,即可知哪种方式对这位顾客更合算.【解答】解:(1)∵转盘被等分成16个扇形,红色扇形有1个,黄色扇形有3个,蓝色扇形有5个,∴P(获得50元购物券)=,P(获得30元购物券)=,P(获得10元购物券)=;(2)转转盘:×50+×30+×10=<15,∴直接获得购物券的方式对这位顾客更合算.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【分析】先根据等腰三角形的性质求出∠B的度数,过点A作AD⊥BC于点D,根据锐角三角函数的定义可求出BD的长,故可得出结论.【解答】解:∵△ABC是等腰三角形,∠A=150°,∴∠B=∠C==15°,过点A作AD⊥BC于点D,∴BD=AB•cos∠B≈12×0.97≈11.6cm,∴BC≈23.2>20cm,∴能画出一个半径为20cm的圆.【点评】本题考查的是解直角三角形的应用,熟知锐角三角函数的定义是解答此题的关键.20.(8分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设直拍球拍每副x元,横拍球每副y元,根据题意列出二元一次方程组,解方程组即可;(2)设购买直拍球拍m副,根据题意列出不等式,解不等式求出m的范围,根据题意列出费用关于m的一次函数,根据一次函数的性质解答即可.【解答】解:(1)设直拍球拍每副x元,横拍球每副y元,由题意得,,解得,,答:直拍球拍每副220元,横拍球每副260元;(2)设购买直拍球拍m副,则购买横拍球(40﹣m)副,由题意得,m≤3(40﹣m),解得,m≤30,设买40副球拍所需的费用为w,则w=(220+20)m+(260+20)(40﹣m)=﹣40m+11200,∵﹣40<0,∴w随m的增大而减小,∴当m=30时,w取最小值,最小值为﹣40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少.【点评】本题考查的是列二元一次方程组、一元一次不等式解实际问题,正确列出二元一次方程组和一元一次不等式并正确解出方程组和不等式是解题的关键.21.(8分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC 于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.【分析】(1)求出四边形ADFC是平行四边形,推出CF=AD=BD,根据平行四边形的判定得出四边形BDCF是平行四边形,求CD=BD,进而可证明BF=CF;(2)当AC=BC时,四边形BCFD为菱形,根据菱形的判定得出即可;【解答】解:(1)证明:DE⊥BC,∠ACB=90°,∴∠BED=∠ACB,∴DF∥AC,∵CF∥AB,∴四边形ADFC是平行四边形,∴AD=CF,∵D为AB的中点,∴AD=BD,∴BD=CF,∵BD∥CF,∴四边形BDCF是平行四边形,∴CD=BF,∴BF=CF;(2)当AC=BC时,四边形BDCF为菱形,∵∠ACB=90°,D为AB的中点,∴DC=BD,∵四边形BDCF是平行四边形,∴四边形BDCF是菱形.【点评】本题考查了平行四边形的判定和性质,菱形的判定,直角三角形的性质的应用,能熟记菱形的性质和判定定理是解此题的关键.22.(10分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.【分析】(1)设y=kx+b,则由图象可求得k,b,从而得出y与x之间的函数关系式,并写出x的取值范围100≤x≤180;(2)设公司第一年获利W万元,则可表示出W=﹣(x﹣180)2﹣60≤﹣60,则第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)假设两年共盈利1340万元,则﹣x2+36x﹣1800﹣60=1340,解得x的值,根据100≤x≤180,则x=160时,公司两年共盈利达1340万元.【解答】解:(1)设y=kx+b,则由图象知:,解得k=﹣,b=30,∴y=﹣x+30,100≤x≤180;(2)设公司第一年获利W万元,则W=(x﹣60)y﹣1500=﹣x2+36x﹣3300=﹣(x﹣180)2﹣60≤﹣60,∴第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)若两年共盈利1340万元,因为第一年亏损60万元,第二年盈利的为(x﹣60)y=﹣x2+36x﹣1800,则﹣x2+36x﹣1800﹣60=1340,解得x1=200,x2=160,∵100≤x≤180,∴x=160,∴每件产品的定价定为160元时,公司两年共盈利达1340万元.【点评】本题是一道一次函数的综合题,考查了二次函数的应用,还考查了用待定系。

山东省青岛市青岛大学附属中学2019届中考二模数学试题

山东省青岛市青岛大学附属中学2019届中考二模数学试题

2018-2019学年度第二学期学业水平模拟考试九年级数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.下面四个高校校微主体图案是中心对称图形的是( )A. B. C. D.2.城市中心生态文明建设在2018年取得突出成果,.通过大力推进能源结构调整,热电替代供热面积为17960000平方米.将17960000用科学计数法表示应为( )A.61.79610⨯B.617.9610⨯C.71.79610⨯D.70.179610⨯3.近年来,我国持续大面积雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某中学举行了“建设宜居白银,关注环境保护”的知识竞赛,某班学生的成绩统计如下表,则该班学生成绩的众数和中位数分别是( )A .70分 80分B .80分 80分C .90分 80分D .80分 90分4.下列的题中,是真命题的是( )A.对角线相等的平行四边形是正方形B.相似三角形的周长之比等于相似比的平方C.若方程2210kx x --=有两个不相等的实数根, 则1k >-D.若一个斜坡的坡度为30°5.下列说法正确的是( )A.为了检验一批零件的质量,从中抽取10件,在这个问题中,10是抽取的样本B.如果12,,,n x x x ⋯的平均数是x ,那么样本()()()110n x x x x x x -+-+⋯+-=C. 8,9,10,11,11这组数的众数是么D.一组数据的标准差是这组数据的方差的平方6.如图,在22⨯正方形网格中,以格点为顶点的ABC V 的面积等于32,则sin CAB ∠=( )35 D.310 7如图:二次函数2y ax bx c =++的图象所示,下列结论中:①0abc >;②20a b +=;③当1m ≠时,2a b am bm +>+:④0a b c -+>;⑤若221122ax bx ax bx +=+,且12x x ≠,则122x x +=,正确的个数为( )A.1个B.2个C.3个D.4个8.如图,ABC V 和ADE V 都是等腰直角三角形,90BAC DAE ∠=∠=︒,四边形ACDE 是平行四边形,连接CE 交AD 于点F ,连接BD 交CE 于点G ,连接BE .下列结论中:①CE BD =;②ADC V 是等腰直角三角形;③ADB AEB ∠=∠;④••CD AE EF CG =;一定正确的结论有( )A.1个B.2个C.3个D.4个二、填空题(本题满分18分,共有6道小题,每小题3分)9.16的平方根是 .10.若点1()6A x -,,2()2B x -,,3()2C x ,在反比例函数21(m y m x+=为常数)的图象上,则123,,x x x 的大小关系是 .11. 如图,ABC V 的周长为26,点D ,E 都在边BC 上,ABC ∠的平分线垂直于AE ,垂足为Q ,ACB ∠的平分线垂直于AD ,垂足为P ,若10BC =,则PQ 的长 .12.如图:在锐角ABC V 中,AB =45BAC ∠=︒,BAC ∠的平分线交BC 于点D , 且M ,N 分别是AD ,AB 上的动点,则BM NM +的最小值为 .13.如图,正方形ABCD 中,内部有4个全等的正方形,小正方形的顶点E F G H 、、、分别在边AB 、BC 、CD 、AD 上, 则tan AEH ∠= .14. 如图所示,点1A ,2A ,3A 在x 轴上,且11223OA A A A A ==,分别过点1A ,2A ,3A 作y 轴的平行线,与反比例函数8(0)y x x=>的图象分别交于点1B ,2B ,3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别于y 轴交于点1C ,2C ,3C ,连接1OB ,2OB ,3OB ,那么图中阴影部分的面积之和为 .三、作图题(本题满分4分,用圆规、直尺作图,不写作法,但要保留作图痕迹)15.如图OA ,OB 是两条笔直的公路,点P 是OB 上的一个超市,现在想建一个服务区C ,要求到两条公路的距离相等,且服务区到超市P 的距离最近,求作这个服务区.四、解答题(本题满分74分,共有9道小题)16. (1)先化简22121211x x x x x ÷---++,然后从-1,0,2中选一个合适的x 的值,代入求值. (2)解不等式组3(2)2513212x x x x +>+⎧⎪⎨+<⎪⎩17.在一个不透明的口袋中,放入除颜色外其余都相同的4个小球,其中1个白球,3个黑球搅匀后,随机同时摸出2个球,求摸出两个都是黑球的概率.18. 为了解深圳市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是 ;(2)补全条形统计图;(3)该市共有218000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.19. 已知,如图,在坡顶A 处的同一水平面上有一座古塔BC ,数学兴趣小组的同学在斜坡底P 处测得该塔的塔顶B 的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP 攀行了26米,在坡顶A 处又测得该塔的塔顶B 的仰角为76°.求古塔BC 的高度(结果精确到1米).(参考数据:760.97sin ︒≈,760.24cos ︒≈,76 4.01tan ︒≈)20. 小邱同学根据学习函数的经验,研究函数y =y 与自变量x 的几组对应值如下表,并画出了部分函数图象如图所示.(1)函数y =x 的取值范围是 ; (2)在图中补全当12x ≤<的函数图象;(3)观察图象,写出该函数的一条性质: ;(4)若关于xx b =+有两个不相等的实数根,结合图象,可知实数b 的取值范围是 .21. 如图,在等腰ABC V 中,AB AC =,分别以AB 和AC 为斜边,向ABC V 的外侧作等腰直角三角形,DF AB ⊥于点F ,EG AC ⊥于点G ,M 是BC 的中点,连接MD ,ME ,MF ,MG .证明:(1)四边形AFMG 为菱形;(2)DM EM ⊥.22. 据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量y (件)与销售单价x (元)之间的函数关系如图所示.(1)当销售单价定为50元时,求每月的销售件数;(2)设每月获得利润为w (元),求每月获得利润w (元)关于销售单价x (元)的函数解析式;(3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量).23. 已知点00)(P x y ,和直线y kx b =+,则点P 到直线y kx b =+的距离d可用公式d =算.例如:求点(12)P -, 到直线37y x =+的距离.解:因为直线37y x =+,其中37k b ==,. 所以点(12)P -,到直线37y x =+的距离为d === 根据以上材料,解答下列问题:(1)点(11)P -,到直线1y x =+的距离; (2)已知Q e 的圆心Q 的坐标为(04), ,半径r 为2,判断Q e与直线8y =+的位置关系并说明理由;(3)已知直线21y x =-+与26y x =-+平行,A 、B 是直线21y x =-+上的两点且8AB =,P 是直线26y x =-+上任意一点,求PAB V 的面积.(4)如图,直线2y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB V 沿直线AB 翻折后得到AO B 'V ,求OO '的长.24. 如图,四边形OABC 为直角梯形,(40)A , ,(34)B , ,(04)C ,.点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连接AC 交NP 于Q ,连接MQ .(1) 求AQM V 的面积s 与运动时间t 的函数关系式, 并写出自变量t 的取值范围, 当t 为何值时,s 的值最大?(2)是否存在点M ,使得AQM V 为直角三角形?若存在,求出点M 的坐标,若不存在,说明理由.(3) 当AQM V 为以QM 为底的等腰三角形时,求t 值.(4) 是否存在这样的t 值,使直线NP 将AOC V 的周长和面积同时平分?若存在,求出t 值,若不存在,说明理由.数学试题参考答案一、选择题. 1.B2.C17960000用科学记数法表示为:71.79610⨯.3.B由表可知,80分出现次数最多,所以众数为80分;由于一共调查了4+8+12+11+5=40人,所以中位数为第20、21个数据的平均数,即中位数为80+80=802(分), 故选:B .4.D解:A 、对角线相等的平行四边形是正方形,是假命题,应该是对角线相等的平行四边形是矩形;B 、相似三角形的周长之比等于相似比的平方,是假命题,应该是相似三角形的周长之比等于相似比;C 、若方程2210kx x --=有两个不相等的实数根,则1k ->,是假命题,应该是1k ->且0k ≠;D 、若一个斜坡的坡度为30°,是真命题;故选:D .5.B6.B解:如图:作CD AB ⊥于D ,AE BC ⊥于E ,由勾股定理,得AB AC BC ===由等腰三角形的性质,得12BE BC ==. 由勾股定理,得AE ==, 由三角形的面积,得1122AB CD BC AE ⋅=⋅即CD ==3sin 5CD CAB AC ∠===, 故选:B .7.C 解:由题意得:0,0,102b a c a<>-=>, ∴0b >,即0abc <,选项①错误;2b a -=,即20a b +=,选项②正确;当1x =时,y a b c =++为最大值,则当1m ≠时,2a b c am bm c ++++>,即当1m ≠时,2a b am bm ++>,选项③正确; 由图象知,当1x =-时,20ax bx c a b c ++=-+<,选项④错误;221122ax bx ax bx +=+Q ,22121212120[]0ax ax bx bx x x a x x b ∴-+-=-++=,()(),而12x x ≠,120a x x b ∴++=() ,1222b a x x a a-∴+=-=-=,所以⑤正确. 所以②③⑤正确,共3项,故选:C .8.D解:①90BAC DAE ∠=∠=︒Q ,BAC DAC DAE DAC ∴∠+∠=∠+∠,即:BAD CAE ∠=∠,∵ABC V 和ADE V 都是等腰直角三角形,∴AB AC AE AD ==,,BAD CAE SAS ∴V V ≌(), CE BD ∴=,故①正确;③∵四边形ACDE 是平行四边形, AC DE CD AE ∴==,AD DA =QADC DAE ∴V V ≌,ADE QV 是等腰直角三角形, ADC ∴V 是等腰直角三角形,故③正确, ②ADC QV 是等腰直角三角形,45CAD ∴∠=︒,9045135BAD ∴∠=︒+︒=︒,9045EAD BAC CAD ∠=∠=︒∠=︒Q ,,360909045135BAE ∴∠=︒-︒-︒-︒=︒,又AB AB AD AE ==,,BAE BAD SAS ∴V V ≌(),ADB AEB ∴∠=∠故②正确;④BAD CAE BAE BAD QV V V V ≌,≌,CAE BAE ∴V V ≌,BEA CEA BDA ∴∠=∠=∠,90AEF AFE ∠+∠=︒Q ,90AFE BEA ∴∠+∠=︒,GFD AFE ADB AEB ∠=∠∠=∠Q ,,90ADB GFD ∴∠+∠=︒,90CGD ∴∠=︒,90FAE GCD AEF ∠=︒∠=∠Q ,,CGD EAF ∴V V ∽, CD CG EF AE∴=. CD AE EF CG ∴⋅=⋅。

山东省青岛二中中考提前招生提前招生数学模拟试卷

山东省青岛二中中考提前招生提前招生数学模拟试卷

山东省青岛二中中考提前招生提前招生数学模拟试卷一、选择题1.除去下列各物质中的少量杂质,所用方法不可行的是()A.A B.B C.C D.D2.用含杂质(杂质不与酸反应,也不溶于水)的铁10g与50g稀硫酸恰好完全反应后,滤去杂质,所得溶液的质量为55.4g,则杂质的质量为()A.4.6 B.4.4g C.2.8g D.5.6g3.一定质量的Mg、Al、Fe的混合物,与足量稀硫酸反应,生成0.4g的H2。

则该金属混合物的质量可能是A.2.4gB.3.6gC.4.8gD.11.2g4.下列鉴别两种不同物质的方法,不正确的是()A.A B.B C.C D.D5.下列所示的四个图像,能正确反映对应变化关系的是A.向一定量的硝酸铜和硝酸镁的混合溶液中加入铁粉B.向pH=2的盐酸中加水稀释C.向一定量的含有盐酸的氯化铜溶液中滴加氢氧化钠溶液D.等质量的镁和铁分别与等质量、等浓度足量的稀硫酸反应6.下列各组转化中,一定条件下均能一步实现的组合是A.①②B.①③C.②③D.①②③7.已知FeCl3也可以催化H2O2的分解,现向一定量的H2O2溶液中滴入几滴一定溶质质量分数的FeCl3溶液,充分反应(忽略水的挥发).下列图象正确的是( )A.B.C.D.8.往硫酸和硫酸铜的混合溶液中,逐滴加入氢氧化钠溶液直至过量,根据实验实施绘制如图所示曲线,下列说法正确的是()A.a至b段有蓝色沉淀生成B.d点溶质种类为三种C.c至d段,溶液pH不断减少D.c点所含的溶质种类最少9.除去物质中的少量杂质,选用的试剂和操作均正确的是物质(括号内为杂质)试剂和操作A氢氧化钠溶液(氢氧化钙)加入过量碳酸钠溶液、过滤B CaCl2溶液(稀盐酸)加入过量碳酸钙、过滤C HCl气体(水蒸气)通过足量生石灰D C(CuO)通入氢气并加热A.A B.B C.C D.D10.下列有关生产生活中的化学知识整理有错误的是A ①一氧化碳会与血红蛋白结合,使人中毒②煤炉上放一壶水能防止煤气中毒B①人体含量最多的金属元素是Ca②缺Ca会引起骨质疏松C ①灌装汽水时加压,是为了增加气体溶解的量②碎鸡蛋壳加入食醋,会产生二氧化碳气体D①明矾具有净水作用②活性炭能吸附水中的色素和异味A.A B.B C.C D.D11.有一包白色粉末可能由氯化钠、硫酸钠、硫酸铜、碳酸钠、碳酸钙中的一种或几种组成,为确定其组成,进行如下实验:①称取一定质量的该白色粉末加足量水溶解,得无色溶液A;②在无色溶液A中加入过量氯化钡溶液,充分反应后过滤,分别得无色溶液B和白色沉淀C;将白色沉淀C洗涤,烘干后称得质量为19g;③在19g白色沉淀C中加入足量的稀硝酸,沉淀部分消失,并有气泡冒出;④在无色溶液B中滴加硝酸银溶液和稀硝酸,产生白色沉淀;根据上述实验现象判断,下列说法不正确的是()A.白色粉末中一定含有氯化钠B.实验①可以确定白色粉末中不含碳酸钙、硫酸铜C.无色溶液B中一定含有两种溶质D.步骤③生成的气体质量不可能是4.4g 12.下列各组物质的溶液,不用其他试剂没,仅通过观察和用组内溶液相互混合的方法,不能将其逐一鉴别出来的是()A.NaOH Ca(OH)2HCl Na2CO3B.KCl Ba(NO3)2CuSO4NaOH C.AgNO3HCl Na2CO3CaCl2D.Ba(OH)2KCl Na2SO4Na2CO3 13.一包固体粉末可能含有NaNO3、CaCO3、NaOH、CuCl2、NaCI和Ca(NO3)2中的一种或几种.为确定其组成,某同学设计了如下实验方案.下列判断正确的是A.该混合物中一定含有CaCO3、NaOH、CuCl2、Ca(NO3)2B.蓝色溶液B的溶质有2种C.无色溶液A呈中性D.该混合物中一定含有NaCI可能含有NaNO314.有一包白色固体样品,可能由CaCO3、NaOH、MgCl2、Na2SO4和BaCl2中的一种或几种物质组成,为探究该样品的组成,某小组取适量样品按下列流程进行实验。

【考试必备】2018-2019年最新山东省青岛第二中学初升高自主招生语文模拟精品试卷【含解析】【4套试卷】

【考试必备】2018-2019年最新山东省青岛第二中学初升高自主招生语文模拟精品试卷【含解析】【4套试卷】

2018-2019年最新山东省青岛第二中学自主招生语文模拟精品试卷(第一套)(满分:100分考试时间:90分钟)一、语文基础知识(18分,每小题3分)1.下列词语中加点的字,读音全都正确的一组是()A.连累(lěi) 角(juã)色河间相(xiàng) 冠冕(miǎn)堂皇B专横(hâng) 忖(cǔn)度涮(shuàn) 羊肉妄加揣(chuāi)测C.笑靥(yâ) 顷(qīng)刻汗涔(cãn)涔休戚(qì)相关D慨叹(kǎi) 俨(yǎn)然刽子手(kuàì) 刎(wěn)颈之交2、下列各项中字形全对的是()A、橘子州偌大急躁光阴荏苒B、蒙敝犄角慰籍书生意气C、敷衍磕绊笔竿艰难跋涉D、翱翔斑斓屏蔽自怨自艾3、依次填入下列各句横线上的词语,最恰当..的一项是()⑴虽然他尽了最大的努力,还是没能住对方凌厉的攻势,痛失奖杯。

⑵那些见利忘义,损人利己的人,不仅为正人君子所,还很可能滑向犯罪的深渊。

⑶我认为,真正的阅读有灵魂的参与,它是一种个人化的精神行为。

A.遏制不耻必需B.遏止不耻必需C.遏制不齿必须D.遏止不齿必须4、下列句中加点的成语,使用恰当的一句是()A、故宫博物院的珍宝馆里,陈列着各种奇珍异宝、古玩文物,令人应接不暇。

B、任何研究工作都必须从积累资料做起,如果不掌握第一手资料,研究工作只能是空中楼阁....。

C、电影中几处看来是闲笔,实际上却是独树一帜之处。

D、这部精彩的电视剧播出时,几乎万人空巷,人们在家里守着荧屏,街上显得静悄悄的。

5、下列句子中,没有语病的一项是()A 大学毕业选择工作那年,我瞒着父母和姑姑毅然去了西藏支援边疆教育。

B北京奥运会火炬接力的主题是‚和谐之旅‛,它向世界表达了中国人民对内致力于构建和谐社会,对外努力建设和平繁荣的美好世界。

C他不仅是社会的一员,同时还是宇宙的一员。

他是社会组织的公民,同时还是孟子所说的‚天民‛。

青岛二中高中自主招生试题附答案

青岛二中高中自主招生试题附答案

高中自主招生试题数学一.选择题(共12小题)1.已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C. D.22.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1,正八边形外侧八个扇形(阴影部分)面积之和为S2,则=()A.B.C.D.13.已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x﹣)2+4上,能使△ABP为等腰三角形的点P的个数有()A.3个B.4个C.5个D.6个4.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB.C.3+πD.8﹣π5.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>56.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<87.若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣8.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b9.如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A.B.C.D.10.如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D 的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B.C.D.11.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为()A.420 B.434 C.450 D.46512.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD 的面积是()A.15 B.30 C.45 D.60题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二.选择题(共6小题)第13题第14题第15题第17题13.如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为.14.如图,已知正方形ABCD边长为1,∠EAF=45°,AE=AF,则有下列结论:①∠1=∠2=22.5°;②点C到EF的距离是;③△ECF的周长为2;④BE+DF>EF.其中正确的结论是.(写出所有正确结论的序号)15.如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为.16.已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA 的距离之和的最小值是.17.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.18.如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.(1)b=(用含m的代数式表示);(2)若S△OAF+S四边形EFBC=4,则m的值是.三.解答题(共7小题)19.先化简,再求值:÷•,其中a=2016.20.为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:组别成绩x(分)频数(人数)频率一50≤x<60 2 0.04二60≤x<70 10 0.2三70≤x<80 14 b四80≤x<90 a 0.32五90≤x<100 8 0.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有名学生参加;(2)直接写出表中a=,b=;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.21.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y 件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?22.某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;(2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)23.如图,在Rt△ABC中,∠BAC=90°,O是AB边上的一点,以OA为半径的⊙O与边BC相切于点E.(1)若AC=5,BC=13,求⊙O的半径;(2)过点E作弦EF⊥AB于M,连接AF,若∠F=2∠B,求证:四边形ACEF是菱形.24.如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F 点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.25.如图1,已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,抛物线y=﹣x2+bx+c过A、B两点,且与x 轴交于另一点C.(1)求b、c的值;(2)如图1,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P为△ACG内一点,连接PA、PC、PG,分别以AP、AG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR①求证:PG=RQ;②求PA+PC+PG的最小值,并求出当PA+PC+PG取得最小值时点P的坐标.参考答案与试题解析一.选择题(共12小题)1.(2016•陕西)已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A .B .C .D.2【考点】抛物线与x轴的交点;锐角三角函数的定义.【分析】先求出A、B、C坐标,作CD⊥AB于D,根据tan∠ACD=即可计算.【解答】解:令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,不妨设A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图所示,作CD⊥AB于D.在RT△ACD中,tan∠CAD===2,故答案为D.【点评】本题考查二次函数与x轴交点坐标,锐角三角函数的定义,解题的关键是熟练掌握求抛物线与x轴交点坐标的方法,记住锐角三角函数的定义,属于中考常考题型.2.(2016•玉林)如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1,正八边形外侧八个扇形(阴影部分)面积之和为S2,则=()A .B .C .D.1【考点】扇形面积的计算;正多边形和圆.【分析】先根据正多边形的内角和公式可求正八边形的内角和,根据周角的定义可求正八边形外侧八个扇形(阴影部分)的内角和,再根据半径相等的扇形面积与圆周角成正比即可求解.【解答】解:∵正八边形的内角和为(8﹣2)×180°=6×180°=1080°,正八边形外侧八个扇形(阴影部分)的内角和为360°×8﹣1080°=2880°﹣1080°=1800°,∴==.故选:B.【点评】考查了扇形面积的计算,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.3.(2016•桂林)已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x ﹣)2+4上,能使△ABP为等腰三角形的点P的个数有()A.3个 B.4个 C.5个 D.6个【考点】二次函数图象上点的坐标特征;一次函数图象上点的坐标特征;等腰三角形的判定.【分析】以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,由直线y=﹣x+3可求出点A、B的坐标,结合抛物线的解析式可得出△ABC等边三角形,再令抛物线解析式中y=0求出抛物线与x轴的两交点的坐标,发现该两点与M、N重合,结合图形分三种情况研究△ABP为等腰三角形,由此即可得出结论.【解答】解:以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,如图所示.令一次函数y=﹣x+3中x=0,则y=3,∴点A的坐标为(0,3);令一次函数y=﹣x+3中y=0,则﹣x+3=0,解得:x=,∴点B 的坐标为(,0).∴AB=2.∵抛物线的对称轴为x=,∴点C的坐标为(2,3),∴AC=2=AB=BC,∴△ABC为等边三角形.令y=﹣(x ﹣)2+4中y=0,则﹣(x ﹣)2+4=0,解得:x=﹣,或x=3.∴点E 的坐标为(﹣,0),点F的坐标为(3,0).△ABP为等腰三角形分三种情况:①当AB=BP时,以B点为圆心,AB长度为半径做圆,与抛物线交于C、M、N三点;②当AB=AP时,以A点为圆心,AB长度为半径做圆,与抛物线交于C、M两点,;③当AP=BP时,作线段AB的垂直平分线,交抛物线交于C、M两点;∴能使△ABP为等腰三角形的点P的个数有3个.故选A.【点评】本题考查了二次函数与坐标轴的交点坐标、等腰三角形的判定、一次函数与坐标轴的交点坐标以及等边三角形的判定定理,解题的关键是依照题意画出图形,利用数形结合来解决问题.本题属于中档题,难度不小,本题不需要求出P点坐标,但在寻找点P的过程中会出现多次点的重合问题,由此给解题带来了难度.4.(2016•桂林)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB . C.3+πD.8﹣π【考点】扇形面积的计算;旋转的性质.【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积、利用扇形面积公式计算即可.【解答】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故选:D.【点评】本题考查的是扇形面积的计算、旋转的性质、全等三角形的性质,掌握扇形的面积公式S=和旋转的性质是解题的关键.5.(2016•桂林)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5【考点】根的判别式;一元二次方程的定义.【分析】根据方程为一元二次方程且有两个不相等的实数根,结合一元二次方程的定义以及根的判别式即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.【点评】本题考查了根的判别式以及一元二次方程的定义,解题的关键是得出关于k的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据方程根的个数结合一元二次方程的定义以及根的判别式得出不等式组是关键.6.(2016•上海)如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8【考点】圆与圆的位置关系;点与圆的位置关系.【分析】连接AD,根据勾股定理得到AD=5,根据圆与圆的位置关系得到r>5﹣3=2,由点B在⊙D外,于是得到r<4,即可得到结论.【解答】解:连接AD,∵AC=4,CD=3,∠C=90°,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5﹣3=2,∵BC=7,∴BD=4,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,故选B.【点评】本题考查了圆与圆的位置关系,点与圆的位置关系,设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.7.(2016•潍坊)若关于x 的方程+=3的解为正数,则m的取值范围是()A.m <B.m <且m ≠C.m >﹣ D.m >﹣且m ≠﹣【考点】分式方程的解.【分析】直接解分式方程,再利用解为正数列不等式,解不等式得出x的取值范围,进而得出答案.【解答】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,∵关于x 的方程+=3的解为正数,∴﹣2m+9>0,解得:m <,当x=3时,x==3,解得:m=,故m的取值范围是:m <且m ≠.故选:B.【点评】此题主要考查了分式方程的解以及不等式的解法,正确解分式方程是解题关键.8.(2016•潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a |+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【考点】二次根式的性质与化简;实数与数轴.【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示:a<0,a﹣b<0,则|a |+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.9.(2016•衡阳)如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y 轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P 作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A .B .C .D .【考点】动点问题的函数图象.【专题】反比例函数及其应用.【分析】结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP 面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM 的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:A.【点评】本题考查了反比例函数图象性质、锐角三角函数性质,解题的关键是明确点P在O→A、A→B、B→C三段位置时三角形OMP的面积计算方式.10.(2016•烟台)如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P 点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A .B .C .D .【考点】动点问题的函数图象.【专题】动点型;函数思想.【分析】根据题意分1<x ≤与<x≤2两种情况,确定出y与x的关系式,即可确定出图象.【解答】解:当P在OC上运动时,根据题意得:sin∠APB=,∵OA=1,AP=x,sin∠APB=y,∴xy=1,即y=(1<x ≤),当P 在上运动时,∠APB=∠AOB=45°,此时y=(<x≤2),图象为:故选C.【点评】此题考查了动点问题的函数图象,列出y与x的函数关系式是解本题的关键.11.(2016•日照)一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为()A.420 B.434 C.450 D.465【考点】规律型:数字的变化类.【分析】在类比推理中,200的所有正约数之和可按如下方法得到:根据200=23×52,可得200的所有正约数之和为(1+2+22+23)(1+5+52),即可得出答案.【解答】解:200的所有正约数之和可按如下方法得到:因为200=23×52,所以200的所有正约数之和为(1+2+22+23)×(1+5+52)=465.故选(D).【点评】本题属于类比推理的问题,类比推理的一般方法是:找出两类事物之间的相似性或一致性;用一类事物的性质去推测另一类事物的性质,得出一个明确的猜想.解决问题的关键是认真观察、仔细思考、善用联想,探寻变化规律.12.(2016•淮安)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N 为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【考点】角平分线的性质.【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键.二.选择题(共6小题)13.(2016•广安)如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为21.【考点】三角形的面积.【分析】根据正方形的性质来判定△ABE∽△ADG,再根据相似三角形的对应线段成比例求得BE的值;同理,求得△ACF∽△ADG,AC:AD=CF:DG,即CF=5;然后再来求梯形的面积即可.【解答】解:如图,根据题意,知△ABE∽△ADG,∴AB:AD=BE:DG,又∵AB=2,AD=2+6+8=16,GD=8,∴BE=1,∴HE=6﹣1=5;同理得,△ACF∽△ADG,∴AC:AD=CF:DG,∵AC=2+6=8,AD=16,DG=8,∴CF=4,∴IF=6﹣4=2;∴S梯形IHEF=(IF+HE)•HI=×(2+5)×6=21;所以,则图中阴影部分的面积为21.【点评】本题主要考查的是相似三角形的判定及性质、以及梯形面积的计算,解决本题的关键是利用三角形的性质定理与判定定理.14.(2016•玉林)如图,已知正方形ABCD边长为1,∠EAF=45°,AE=AF,则有下列结论:①∠1=∠2=22.5°;②点C到EF 的距离是;③△ECF的周长为2;④BE+DF>EF.其中正确的结论是①②③.(写出所有正确结论的序号)【考点】四边形综合题.【专题】综合题.【分析】先证明Rt△ABE≌Rt△ADF得到∠1=∠2,易得∠1=∠2=∠22.5°,于是可对①进行判断;连结EF、AC,它们相交于点H ,如图,利用Rt△ABE≌Rt△ADF得到BE=DF ,则CE=CF,接着判断AC 垂直平分EF,AH平分∠EAF,于是利用角平分线的性质定理得到EB=EH,FD=FH,则可对③④进行判断;设BE=x,则EF=2x,CE=1﹣x,利用等腰直角三角形的性质得到2x=(1﹣x),解得x=﹣1,则可对④进行判断.【解答】解:∵四边形ABCD为正方形,∴AB=AD,∠BAD=∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF,∴∠1=∠2,∵∠EAF=45°,∴∠1=∠2=∠22.5°,所以①正确;连结EF、AC,它们相交于点H,如图,∵Rt△ABE≌Rt△ADF,∴BE=DF,而BC=DC,∴CE=CF,而AE=AF,∴AC垂直平分EF,AH平分∠EAF,∴EB=EH,FD=FH,∴BE+DF=EH+HF=EF,所以④错误;∴△ECF的周长=CE+CF+EF=CE+BE+CF+DF=CB+CD=1+1=2,所以③正确;设BE=x,则EF=2x,CE=1﹣x,∵△CEF为等腰直角三角形,∴EF=CE,即2x=(1﹣x),解得x=﹣1,∴EF=2(﹣1),∴CH=EF=﹣1,所以②正确.故答案为①②③.【点评】本题考查了四边形的综合题:熟练掌握正方形的性质和角平分线的性质定理.解决本题的关键是证明AC垂直平分EF.15.(2016•毕节市)如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为π﹣1.【考点】扇形面积的计算.【分析】如图,作辅助线;首先求出半圆O的面积,其次求出△ABP的面积;观察图形可以发现:阴影部分的面积=4(S半圆O﹣S△ABP),求出值,即可解决问题.【解答】解:如图,连接PA、PB、OP;则S半圆O==,S△ABP=AB•OP=×1×=,由题意得:图中阴影部分的面积=4(S 半圆O ﹣S △ABP ) =4(﹣)=π﹣1,故答案为:π﹣1.【点评】该题主要考查了正方形的性质、圆的面积公式、三角形的面积公式等知识点及其应用问题;解题的关键是作辅助线,将阴影部分的面积转化为规则图形的面积和或差.16.(2016•潍坊)已知∠AOB=60°,点P 是∠AOB 的平分线OC 上的动点,点M 在边OA 上,且OM=4,则点P 到点M 与到边OA 的距离之和的最小值是 2 .【考点】轴对称﹣最短路线问题.【分析】过M 作MN′⊥OB 于N′,交OC 于P ,即MN′的长度等于点P 到点M 与到边OA 的距离之和的最小值,解直角三角形即可得到结论.【解答】解:过M 作MN′⊥OB 于N′,交OC 于P , 则MN′的长度等于PM +PN 的最小值,即MN′的长度等于点P 到点M 与到边OA 的距离之和的最小值, ∵∠ON′M=90°,OM=4, ∴MN′=OM•sin60°=2,∴点P 到点M 与到边OA 的距离之和的最小值为2.【点评】本题考查了轴对称﹣最短路线问题,解直角三角形,正确的作出图形是解题的关键. 17.(2016•烟台)如图,C 为半圆内一点,O 为圆心,直径AB 长为2cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B′OC′,点C′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为π cm 2.【考点】扇形面积的计算;旋转的性质.【分析】根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.【解答】解:∵∠BOC=60°,△B′OC′是△BOC 绕圆心O 逆时针旋转得到的, ∴∠B′OC′=60°,△BCO=△B′C′O , ∴∠B′OC=60°,∠C′B′O=30°, ∴∠B′OB=120°, ∵AB=2cm ,∴OB=1cm ,OC′=, ∴B′C′=,∴S 扇形B′OB ==π,S 扇形C′OC ==,∵∴阴影部分面积=S 扇形B′OB +S △B′C′O ﹣S △BCO ﹣S 扇形C′OC =S 扇形B′OB ﹣S 扇形C′OC =π﹣=π;故答案为:π.【点评】此题考查了旋转的性质和扇形的面积公式,掌握直角三角形的性质和扇形的面积公式是本题的关键.18.(2016•丽水)如图,一次函数y=﹣x +b 与反比例函数y=(x >0)的图象交于A ,B 两点,与x 轴、y 轴分别交于C ,D 两点,连结OA ,OB ,过A 作AE ⊥x 轴于点E ,交OB 于点F ,设点A 的横坐标为m . (1)b= m + (用含m 的代数式表示); (2)若S △OAF +S 四边形EFBC =4,则m 的值是.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据待定系数法点A 的纵坐标相等列出等式即可解决问题.(2)作AM ⊥OD 于M ,BN ⊥OC 于N .记△AOF 面积为S ,则△OEF 面积为2﹣S ,四边形EFBC 面积为4﹣S ,△OBC 和△OAD 面积都是6﹣2S ,△ADM 面积为4﹣2S=2(2﹣s ),所以S △ADM =2S △OEF ,推出EF=AM=NB ,得B (2m ,)代入直线解析式即可解决问题.【解答】解:(1)∵点A 在反比例函数y=(x >0)的图象上,且点A 的横坐标为m , ∴点A 的纵坐标为,即点A 的坐标为(m ,). 令一次函数y=﹣x +b 中x=m ,则y=﹣m +b , ∴﹣m +b= 即b=m +. 故答案为:m +.(2)作AM ⊥OD 于M ,BN ⊥OC 于N .∵反比例函数y=,一次函数y=﹣x +b 都是关于直线y=x 对称, ∴AD=BC ,OD=OC ,DM=AM=BN=CN ,记△AOF 面积为S ,则△OEF 面积为2﹣S ,四边形EFBC 面积为4﹣S ,△OBC 和△OAD 面积都是6﹣2S ,△ADM 面积为4﹣2S=2(2﹣s ), ∴S △ADM =2S △OEF ,由对称性可知AD=BC ,OD=OC ,∠ODC=∠OCD=45°,△AOM ≌△BON ,AM=NB=DM=NC , ∴EF=AM=NB , ∴EF 是△OBN 的中位线, ∴N (2m ,0),∴点B 坐标(2m ,)代入直线y=﹣x +m +, ∴=﹣2m +m +,整理得到m 2=2, ∵m >0, ∴m=.故答案为.【点评】本题考查反比例函数与一次函数图象的交点、对称等知识,解题的关键是利用对称性得到很多相等的线段,学会设参数解决问题,属于中考填空题中的压轴题. 三.选择题(共7小题)19.(2016•黄石)先化简,再求值:÷•,其中a=2016.【考点】分式的化简求值.【分析】先算除法,再算乘法,把分式化为最简形式,最后把a=2016代入进行计算即可. 【解答】解:原式=••=(a ﹣1)•=a +1,当a=2016时,原式=2017.【点评】本题考查的是分式的化简求值,在解答此类问题时要注意把分式化为最简形式,再代入求值. 20.(2016•毕节市)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x (分),且50≤x <100,将其按分数段分为五组,绘制出以下不完整表格:组别 成绩x (分) 频数(人数) 频率 一 50≤x <60 2 0.04 二60≤x <70100.2三70≤x<8014b四80≤x<90a0.32五90≤x<10080.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有50名学生参加;(2)直接写出表中a=16,b=0.28;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为48%.【考点】频数(率)分布直方图;频数(率)分布表.【专题】探究型;统计与概率.【分析】(1)根据表格中的数据可以求得本次决赛的学生数;(2)根据(1)中决赛学生数,可以求得a、b的值;(3)根据(2)中a的值,可以将频数分布直方图补充完整;(4)根据表格中的数据可以求得本次大赛的优秀率.【解答】解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)补全的频数分布直方图如右图所示,(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48%,故答案为:48%.【点评】本题考查频数分布直方图、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.21.(2016•咸宁)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?【考点】二次函数的应用;一元二次不等式.【分析】(1)根据售量y(件)与售价x(元/件)之间的函数关系即可得到结论.(2))设每星期利润为W元,构建二次函数利用二次函数性质解决问题.(3)列出不等式先求出售价的范围,再确定销售数量即可解决问题.【解答】解:(1)y=300+30(60﹣x)=﹣30x+2100.(2)设每星期利润为W元,W=(x﹣40)(﹣30x+2100)=﹣30(x﹣55)2+6750.∴x=55时,W最大值=6750.∴每件售价定为55元时,每星期的销售利润最大,最大利润6750元.(3)由题意(x﹣40)(﹣30x+2100)≥6480,解得52≤x≤58,当x=52时,销售300+30×8=540,当x=58时,销售300+30×2=360,∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.【点评】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,学会利用图象法解一元二次不等式,属于中考常考题型.22.(2016•无锡)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

是(
)
x+ 1>0,
A.
x- 3>0
x+ 1>0,
B.
3- x>0
x+ 1<0,
C.
x- 3>0
x+ 1<0,
D.
3- x>0
8.已知二次函数的图象 (0 ≤ x≤ 3) 如图所示, 关于该函数在所给自变
量取值范围内,下列说法正确的是
(
)
A.有最小值 0,有最大值 3
B.有最小值- 1,有最大值 0
2018-2019
年最新青岛二中自主招生考试 数学模拟精品试卷 (第一套)
考试时间: 90 分钟总分: 150 分
一、选择题(本题有 12 小题,每小题 3 分,共 36 分)
下面每小题给出的四个选项中, 只有一个是正确的, 请你把正确
选项前的字母填涂在答题卷中相应的格子内.
注意可以用多种不同的
方法来选取正确答案 .
( 1)观察下列算式:
2
① 1 3 3 - 2 = 3- 4=- 1
2
② 2 3 4 - 3 = 8- 9=- 1
2
③ 3 3 5 - 4 = 15- 16=- 1
④ __________________________
……
(1) 请你按以上规律写出第 4 个算式;
(2) 把这个规律用含字母的式子表示出来;
B
.8
C
. 10
D
. 17
6、今年 5 月,我校举行“庆五 四”歌咏比赛,有 17 位同学参加选
拔赛,所得分数互不相同,按成绩取前
8 名进入决赛,若知道某同学
分数,要判断他能否进入决赛,只需知道
17 位同学分数的(

A. 中位数
B.
众数
C.
平均数 D. 方差
7.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能
k (3) 过原点 O的直线 l 与反比例函数 y= x的图象交于 P、Q两点, 试根据图象直接写出线段 PQ长度的最小值 .
2018-2019 年最新青岛二中自主招生考试
数学模拟精品试卷答案 (第一套)
1. 答案 B
解析 据绝对值的意义,一个数的绝对值是一个非负数,
| a| ≥
0.
2.C
3. 答案 C
8. 答案 C
解析 当 0≤ x ≤ 3 时,观察图象,可得图象上最低点 (1 ,- 1) ,
最高点 (3,3) ,函数有最小值- 1,最大值 3.
9. 答案 D
2
2
解析 在 Rt △ OAB中,∠ OAB= 90 °,所以 OB= 1 + 2 = 5
10. 答案 A
2
2
解析 y =- x + 4x=- ( x- 2) + 4,抛物线开口向下, 函数有最
x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是
2
抛物线 y=- x + 4x( 单位:米 ) 的一部分,则水喷出的最大高度是
(
)
A. 4 米 B . 3 米 C . 2 米 D . 1 米 11 、两个大小不同的球在水平面上靠在一起,
组成如图所示的几何体,
则该几何体的左视图是(

( A)两个外离的圆 ( B) 两 个 外切 的圆 ( C) 两 个相 交的 圆
16.如图, C 岛在 A 岛的北偏东 60°方向,在 B 岛的北偏西 45° 方向,则从 C岛看 A、 B 两岛的视角∠ ACB= ________.
17.若一次函数 y= (2 m- 1) x+ 3- 2m的图象经过 一、二、四象
限,则 m的取值范围是 ________ .
18 .将一些半径相同的小圆按如图所示的规律摆放,
4a- 2b+ c>0,把 b=- 2a 代入,得 4a- 2( - 2a) + c= 8a+ c>0,故
③正确.当 x=- 1 时, y<0,所以 x= 3 时,也有 y<0,即 9a+ 3b+
c <0 ,故④正确.
二.填空题
13. 答案 ≠ 3
解析 因为分式有意义,所以 3- x ≠ 0,即 x≠ 3.
照 2∶ 5∶ 3 的比确定, 计算三名候选人的平均成绩, 成绩高的将被录
取,应该录取谁?
22.(本题 12 分)如图,已知直线 AB与 x 轴交于点 C,与双曲
k
20
线 y = x交于 A(3 , 3 ) 、 B( - 5, a) 两点. AD⊥ x 轴于点 D, BE∥ x 轴
且与 y 轴交于点 E.
O
E D
C
B AF
k
2
24.(本题 12 分)已知双曲线 y=x 与抛物线 y= ax + bx + c 交于
A(2,3) 、 B( m,2) 、 c( - 3, n) 三点.
(1) 求双曲线与抛物线的解析式;
(2) 在平面直角坐标系中描出点 A、点 B、点 C,并求出△ ABC的
面积.
25.(本题共 2 个小题,每题 7 分,共 14 分)
面积的方法:随着圆内接正多边形边数的增加,它的周
O
长和面积越来越接近圆周长和圆面积, “割之弥细,所失弥少,割之
又割,以至于不可割,则与圆周合体而无所失矣”
。试用这个方法解
决问题: 如图,⊙的内接多边形周长为 3 ,⊙ O 的外切多边形周长为
3.4 ,则下列各数中与此圆的周长最接近的是(

A .6
因为正五边形和正六边形的周长相等,
2
2
所以 5( x + 17) = 6( x + 2x) .
2
2
整理得 x + 12x- 85= 0,配方得 ( x+ 6) = 121 ,
解得 x1= 5, x2=- 17( 舍去 ) .
2
故正五边形的周长为 53 (5 + 17) = 210(cm) .
又因为两段铁丝等长,所以这两段铁丝的总长为
420 cm.
x 1= 1+ 3>0, x2= 1- 3<0.
当 x= 1+ 3时,
1
13
原式= 1+
= 3- 1
= 3
3
.
2
x - 2x+ 1 x- 1 ÷ x =x2
x x- 1 2=
20. ( 1) . 解:由已知得,正五边形周长为
2
周长为 6( x + 2x) cm.
2
5( x + 17) cm ,正六边形
大值 4.
11.D
12. 答案 D
2
解析 由图知:抛物线与 x 轴有两个不同的交点,则△= b -
4ac >0,故①正确.抛物线开口向上,得 a>0;又对称轴为直线 b 2a= 1, b=- 2a<0. 抛物线交 y 轴于负半轴,得
x =-
c<0,所以 abc>0,②正确.根据图象,可知当
x =- 2 时, y>0,即
(1) 求点 B 的坐标及直线 AB的解析式; (2) 判断四边形 CBED的形状,并说明理由.
23 、(本题 12 分)如图,△ ABC内接于⊙ O,且 AB=AC,点 D 在⊙ O上, AD⊥ AB 于点 A, AD 与 BC 交于点 E, F 在 DA的延长线上,且 AF=AE.
( 1)试判断 BF 与⊙ O的位置关系,并说明理由; (2 )若⊙ O的半径为 2.∠ F=60,求弓形 AB 的面积
1
17. 答案 m<2
解析 因为直线经过第一、二、四象限,所以
1
之,得
m<
. 2
18. 答案
2
n( n+ 1) + 4 或 n + n+ 4
2m- 1<0,

3- 2m>0,
解析 第 1 个图形有 2+ 4= (1 3 2+ 4) 个小圆,第 2 个图形 6+ 4
= (2 3 3+ 4) 个小圆,第 3 个图形有 12+ 4= (3 3 4+ 4) 个小圆,……
( D)两个内切的圆
主视方向
水平面
12 .已知二次函数 论:
2
y= ax + bx+ c( a≠ 0) 的图象如图所示,有下列结
2
① b - 4ac>0;
② abc>0;
③ 8a+ c >0;
④ 9a+ 3 b+ c<0.
其中,正确结论的个数是 (
)
A. 1 B . 2 C . 3 D . 4
二、填空题(本小题有 6 小题,每小题 4 分,共 24 分)
2
解析 □= 3a b÷ 3ab= a.
4. 答案 A
解析 x ( x- 2) = 0, x= 0 或 x- 2= 0, x1= 0, x2= 2,方程有两
个不相等的实数根. 5.C
6.A
7. 答案 B 解析 观察数轴,可知-
1< x <3.
x+ 1>0, 1< x <3,只有
3- x>0
的解集为-
1.下列事件中,必然事件是 (
)
A.掷一枚硬币,正面朝上
B. a 是实数, | a| ≥ 0
C.某运动员跳高的最好成绩是 20.1 米
ቤተ መጻሕፍቲ ባይዱ
D.从车间刚生产的产品中任意抽取一个,是次品
2、如图是奥迪汽车的标志,则标志图中所包含的图形变换没有的是
() A.平移变换
B .轴对称变换
C .旋转变换
D .相似变换
x -1
2x- 1
x
2

x
÷
x-
x
,其中 x 是一元二次方程
根.
2
x - 2x- 2= 0 的正数
相关文档
最新文档