人教版A版(教案2)3.1函数与方程
新人教A版高中数学(必修1)3.1《函数与方程》教案2篇
“方程的根与函数的零点”教学设计(1)一、内容和内容解析本节课是在学生学习了《基本初等函数(Ⅰ)》的基础上,学习函数与方程的第一课时,本节课中通过对二次函数图象的绘制、分析,得到零点的概念,从而进一步探索函数零点存在性的判定,这些活动就是想让学生在了解初等函数的基础上,利用计算机描绘函数的图象,通过对函数与方程的探究,对函数有进一步的认识,解决方程根的存在性问题,为下一节《用二分法求方程的近似解》做准备.从教材编写的顺序来看,《方程的根与函数的零点》是必修1第三章《函数的应用》一章的开始,其目的是使学生学会用二分法求方程近似解的方法,从中体会函数与方程之间的联系.利用函数模型解决问题,作为一条主线贯穿了全章的始终,而方程的根与函数的零点的关系、用二分法求方程的近似解,是在建立和运用函数模型的大背景下展开的.方程的根与函数的零点的关系、用二分法求方程的近似解中均蕴涵了“函数与方程的思想”和“数形结合的思想”,建立和运用函数模型中蕴含的“数学建模思想”,是本章渗透的主要数学思想.从知识的应用价值来看,通过在函数与方程的联系中体验数学中的转化思想的意义和价值,体验函数是描述宏观世界变化规律的基本数学模型,体会符号化、模型化的思想,体验从系统的角度去思考局部问题的思想.基于上述分析,确定本节的教学重点是:了解函数零点的概念,体会方程的根与函数零点之间的联系,掌握函数零点存在性的判断.二、目标和目标解析1.通过对二次函数图象的描绘,了解函数零点的概念,渗透由具体到抽象思想,领会函数零点与相应方程实数根之间的关系,2.零点知识是陈述性知识,关键不在于学生提出这个概念。
而是理解提出零点概念的作用,沟通函数与方程的关系。
3.通过对现实问题的分析,体会用函数系统的角度去思考方程的思想,使学生理解动与静的辨证关系.掌握函数零点存在性的判断.4.在函数与方程的联系中体验数形结合思想和转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.三、教学问题诊断分析1.零点概念的认识.零点的概念是在分析了众多图象的基础上,由图象与轴的位置关系得到的一个形象的概念,学生可能会设法画出图象找到所有任意函数的可能存在的所有零点,但是并不是所有函数的图象都能具体的描绘出,所以在概念的接受上有一点的障碍.2.零点存在性的判断.正因为f(a)·f(b)<0且图象在区间[a,b]上连续不断,是函数f(x)在区间[a,b]上有零点的充分而非必要条件,容易引起思维的混乱就是很自然的事了.3.零点(或零点个数)的确定.学生会作二次函数的图象,但是要作出一般的函数图象(或图象的交点)就比较困难,而在这一节课最重要的恰恰就是利用函数图象来研究函数的零点问题.这样就在零点(或零点个数)的确定上给学生带来一定的困难.基于上述分析,确定本节课的教学难点是:准确认识零点的概念,在合情推理中让学生体会到判定定理的充分非必要性,能利用适当的方法判断零点的存在或确定零点.四、教学支持条件分析考虑到学生的知识水平和理解能力,教师可借助计算机工具和构建现实生活中的模型,从激励学生探究入手,讲练结合,直观演示能使教学更富趣味性和生动性.通过让学生观察、讨论、辨析、画图,亲身实践,在函数与方程的联系中体验数形结合思想、转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.五、教学过程设计(一)引入课题问题引入:求方程3x2+6 x-1=0的实数根。
2018-2019学年人教A版高中数学必修1课件:3.1.1函数的应用
(6)在(k1,k2)内有且仅有一个实根的充要条件是
Δ=0, f(k1)f(k2)<0,或k1<-2ba<k2.
例3 方程x2-2ax+4=0的两根均大于1,求实数a的取值范 围.
【解析】 方法一:设f(x)=x2-2ax+4,由于方程x2-2ax
由于相邻两个零点之间的所有函数值保持同号,函数的图 像如图所示.
(2)不等式xf(x)<0同解于
x>0, f(x)<0
或xf(<0x,)>0,
结合函数图
像得不等式的解集为(0,2)∪(-2,0).
探究 根据函数的零点定义与性质,可以用来帮助画函数
的图像,结合函数图像不仅可以直观的研究函数的性质,而且
∴函数y=-x2-2x+3的零点为-3,1. y=-x2-2x+3=-(x+1)2+4. 画出这个函数的简图(如右图),从图像 上可以看出,当-3<x<1时,y>0.
当x<-3或x>1时,y<0. ∴函数y=-x2-2x+3的零点是-3,1. y>0时,x的取值范围是(-3,1); y<0时,x的取值范围是(-∞,-3)∪(1,+∞). 探究2 由于一元二次不等式在前面没有讲过,因此对本题 的解法要正确作出函数的简图,从而解决问题.
课时学案
题型一 求函数的零点 例1 求函数f(x)=(x2+x-2)(x2-2x-8)的零点,并指出使 y<0成立的x的取值范围.
【解析】 y=(x2+x-2)(x2-2x-8)=(x+2)(x-1)(x+2)(x -4)=(x+2)2(x-1)(x-4),
高中数学人教a版必修1学案:3.1函数与方程
函 数零点求解三法
我们知道,如果函数 y= f(x)在 x= a 处的函数值等于零,即 f(a)= 0,则称 a 为函数的零
点.本文现介绍函数零点求解三法.
一、代数法 例 1 求函数 f(x) =x2+2x- 3 的零点. 解 令 x2+2x- 3= 0,Δ= 22- 4× (- 3)=16>0 ,
方法二 配方法
x2+ 2x- 3= (x+1) 2- 4= 0,
所以 x+1= ±2.所以零点 x1=1, x2=- 3.
方法三 公式法
- b± b2- 4ac - 2±4
x1,1= 1, x2=- 3. 点评 本题用了由求函数 f (x)的零点转化为求方程 f(x)= 0 的实数根的办法. 运用因式分
x6=
1.437
5+ 1.468 2
75
=1.453 125
f ( x6)>0
[1.437 5 , 1.453 125]
x7= 1.445 312 5
f ( x7)>0
因为 1.445 312 5- 1.437 5= 0.007 812 5<0.01 ,
[1.437 5 , 1.445 312 5]
方程有两个不相等实数根.
方法一 因式分解法或试根法
x2+ 2x- 3= (x+3)( x- 1) 或由 f( x)= x2+ 2x -3, 试一试 f (1)= 12+ 2×1- 3= 0,
f(-3) = (-3) 2+ 2× (- 3)- 3= 0.
所以 f(x)的零点为 x1=1, x2=- 3.
1.25+ 1.5
x3=
2
= 1.375
f(x3)=- 0.400 <0
必修一高中数学人教版A版必修一第三单元3.1.1方程的根与函数的零点
课堂互动
课堂反馈
§3.1 函数与方程
3.1.1 方程的根与函数的零点
学习目标 1.理解函数零点的定义,会求某些函数的零点(重 点).2.掌握函数零点的判定方法(重、难点).3.了解函数的零点与 方程的根的联系(重点).
课前预习
课堂互动
课堂反馈
预习教材 P86-P88,完成下面问题: 知识点 1 函数的零点
课前预习
课堂互动
课堂反馈
课堂小结
1.在函数零点存在性定理中,要注意三点:(1)函数是连续 的;(2)定理不可逆;(3)至少存在一个零点.
2.方程f(x)=g(x)的根是函数f(x)与g(x)的图象交点的横坐标, 也是函数y=f(x)-g(x)的图象与x轴交点的横坐标.
3.函数与方程有着密切的联系,有些方程问题可以转化为函 数问题求解,同样,函数问题有时可以转化为方程问题, 这正是函数与方程思想的基础.
答案 C
课前预习
课堂互动
课堂反馈
题型三 判断函数零点所在的区间
【例3】 (1)二次函数f(x)=ax2+bx+c的部分对应值如下表:
x -3 -2 -1 0 1 2 3 4 y 6 m -4 -6 -6 -4 n 6
不求a,b,c的值,判断方程ax2+bx+c=0的两根所在区间
是( )
A.(-3,-1)和(2,4) B.(-3,-1)和(-1,1)
是 0,-12. 答案 0,-12
课前预习
课堂互动
课堂反馈
题型二 确定函数零点的个数
【例 2】 判断下列函数零点的个数. (1)f(x)=x2-34x+58; (2)f(x)=ln x+x2-3. 解 (1)由 f(x)=0,即 x2-34x+58=0,得 Δ=-342-4×58= -3116<0, 所以方程 x2-34x+58=0 没有实数根,即 f(x)零点的个数为 0.
人教A版高中数学必修1第三章 函数的应用3.1 函数与方程教案(2)
山东省泰安市肥城市第三中学高考数学一轮复习函数与方程教案学习内容学习指导即时感悟学习目标:1、结合二次函数的图像,了解函数的零点与方程的联系,判断一元二次方程根的存在性和根的个数。
2、根据函数的图像,能够用二分法求相应方程的近似解。
3、体会数形结合、函数与方程、分类讨论的数学思想。
学习重点:函数的零点与方程的联系,用二分法求相应方程的近似解。
学习难点:理解函数的零点与方程的联系,用二分法求相应方程的近似解。
回顾﹒预习1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈D),把使成立的实数x叫做函数y=f(x)(x∈D)的零点.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与有交点⇔函数y=f(x)有.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得,这个c也就是f(x)=0的根.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系⊿>0 ⊿=0 ⊿<0y=ax2+bx+c(a>0)的图像与x轴的交点零点个数3.二分法(1)二分法的定义对于在区间[a,b]上连续不断且的函数y=f(x),通过不断地把函数f(x)的零点所在的区间,使区间的两个端点逐步逼近,进而得到零点近似值的方法叫做二分法.(2)用二分法求函数零点近似值的步骤:课前自测1.若函数f (x )=ax -b (b ≠0)有一个零点3,那么函数g (x )=bx 2+3ax 的零点是 ( C )A .0B .-1C .0,-1D .0,1 2.函数图象与x 轴均有交点,但不宜用二分法求交点横坐标的是( B ) 3、方程125x x +-=的解所在区间( B )A (0,1)B (1,2)C (2,3) D(3,4) 4、函数()xx x f 1-=的零点个数 ( C ) A 0 B 1 C 2 D 无零点5、用二分法求方程0523=--x x 在区间[]3,2内的根,取区间的中点1x =2.5,则下一个有根区间是 (2,2.5)。
高中数学人教A版必修1第三章3、1、1方程的根与函数的零点的近似值 - 教案
3.1.1 方程的根与函数的零点第二课一、教学目标:① 进一步巩固函数零点的概念,会求基本初等函数的零点;② 掌握方程的根与函数零点之间的等价关系,体会函数方程的转化思想; ③ 对函数零点,零点所在的区间及零点个数各题型有所思有所为。
二、课前预习:(务必课前总结)1、我们学习过的那些函数?它们的图像特点?①一次函数()0y kx b k =+≠:0k >时,是一条递增的直线;0k <时,是一条递减的直线。
b 是图像与y 轴交点的纵坐标,如0b =时,直线过原点。
②二次函数 ③指数函数 ④对数函数 ⑤幂函数2、默写函数零点定理与函数零点存在性定理三、教学过程探讨1:求函数()324f x x x =--+的零点。
探讨2:解决下列两个问题,并试图发现问题中的共性①确定正整数k 的值,使得函数()324f x x x =--+在区间(),1k k +上存在零点。
②试画出函数3y x =与24y x =-+的图像,并分析两个图像交点情况。
你所发现的共性:找出一个数0x 作为函数()324f x x x =--+零点的近似值。
(精度为0.1) 课堂练习:判断下列函数的零点个数①()22f x x x =-+②()lg 2f x x x =-+ ③()2log 2xf x x =+④()()2ln 23f x x x =-- ⑤()32221f x x x x =--+ 课后练习: 1.函数6)(2-+=x x x f 的零点为2.函数2)(+=ax x f 在区间)2,1(-上有零点,则a 的取值范围是3.函数11ln )(--=x x x f 的零点的个数是 ( )A .0个B .1个C .2个D .3个4.设函数3y x =与22xy -=的图象的交点为00()x y ,,则0x 所在的区间是 ( )A .(01),B .(12),C .(23),D .(34),5.根据表格中的数据,可以判定方程20x e x --=的一个零点所在的区间为))(1,(N k k k ∈+,则k 的值为 ;6、函数()11f x x =-的图像与函数()31y x =-的图像所有交点的横坐标之和等于 ( ) A. 2 B.4 C.6 D8.7、已知函数()21log 2xf x x ⎛⎫=- ⎪⎝⎭,且实数0a b c <<<满足()()()0f a f b f c <,若实数0x 是函数()y f x =的一个零点,那么下列不等式中不可能成立的是 ( ) A. 0x a < B. 0x c < C. 0x b > D. 0x c >8、确定正整数k 的值,使得函数()237xf x x =+-在区间(),1k k +上存在零点,并确定零点的一个近似值。
人教A版(2019)高中数学必修第一册第三章3.1函数的基本概念教案
函数的基本概念教学目标:1.理解函数的概念,掌握函数三要素及求法.2.掌握函数解析式的求法,以及同一函数的判断标准.3.学会转化与化归、数形结合思想.问题导入:1.函数的定义:一般地,设A,B 是非空的实数集,如果对于A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 与之对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作)(x f y =,A x ∈.注:判断对应关系是否为函数,主要从以下三个方面去判断:(1)A ,B 必须是非空实数集;(2)A 中任何一个元素在B 中必须有元素与其对应;(3)A 中任何一个元素在B 中的对应元素必须唯一.2.函数三要素:定义域、值域、对应关系 .定义域:x 叫做自变量,x 的取值范围A 叫做函数的定义域.值域:函数值的集合{}f (x )|x ∈A 叫做函数的值域同一函数:如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数是同一个函数. 注:函数定义域及值域的求法总结(1)常见函数求定义域:①分式函数中分母不为0;①偶次根式函数被开方式大于等于0;①对数函数的定义域大于0.(2)抽象函数求定义域:①已知原函数)(x f 的定义域为()b a ,,求复合函数()[]x g f 的定义域:只需解不等式b x g a <<)(,不等式的解集即为所求函数定义域.①已知复合函数()[]x g f 的定义域为()b a ,,求原函数)(x f 的定义域:只需根据b x a <<求出)(x g 的值域,即得原函数)(x f 的定义域.(3)求值域的常规方法ⓐ观察法:一些简单函数,通过观察法求值域.ⓑ配方法:“二次函数类”用配方法求值域.ⓒ换元法:形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且ac ≠0)的函数常用换元法求值域,形如y =ax +a -bx 2的函数也可以用换元法代换求值域.ⓓ分离常数法:形如y =cx +dax +b (a ≠0)的函数可用此法求值域.ⓔ单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其增减性进而求最值和值域.ⓕ数形结合法:画出函数的图象,找出坐标的范围或分析条件的几何意义,在图上找其变化范围. 3. 求函数解析式的方法(1)待定系数法:当函数的类型已知时,可设出函数解析式,根据条件列出方程(组),进而求得函数的解析式.(2)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式.(3)换元法:已知)]([x g f y =,求)(x f 的解析式:令)(x g t =,并写出t 的取值范围,用t 表示x ,再将用t 表示的x 回代入原式,求出解析式.(4)方程组法:已知关于f (x )与)(xf 1或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).4.分段函数的概念:若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数被称为分段函数. 分段函数虽由几个部分组成,但它表示的是同一个函数.注:(1)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集.(2) 分段函数是一个函数而不是几个函数,处理分段函数问题时,首先确定自变量的取值属于哪个区间,再选取相应的对应关系,离开定义域讨论分段函数是毫无意义的.知识点1:函数定义[例1] 下列图象中,可作为函数图象的是________.(填序号)[对点演练1]下列对应关系式中是A 到B 的函数的是( )A .A ⊆R ,B ⊆R ,x 2+y 2=1B .A ={-1,0,1},B ={1,2},f :x →y =|x |+1C .A =R ,B =R ,f :x →y =1x -2D .A =Z ,B =Z ,f :x →y =2x -1知识点2:求函数的定义域和值域[例2] 下列选项中能表示同一个函数的是( )A .y =x +1与y =x 2-1x -1B .y =x 2+1与s =t 2+1C .y =2x 与y =2x (x ≥0)D .y =(x +1)2与y =x 2[例3] 求下列函数的定义域.(1) y =2x -1-7x ;(2) y =(x +1)0x +2;(3) y =4-x 2+1x.[例4] 求下列函数的定义域:(1)已知函数的定义域为,求函数的定义域.(2)已知函数的定义域为,求函数的定义域. (3)已知函数的定义域为,求函数的定义域.[例5]求下列函数的值域.(1)y =x 2+2x (x ∈[0,3]);(2) y =1-x 21+x 2; (3)3254)(-+-=x x x f[对点演练2]1. 下列各组式子是否表示同一函数?为什么?(1) f (x )=|x |,φ(t )=t 2;(2) y =1+x ·1-x ,y =1-x 2;(3) y =(3-x )2,y =x -3.[2,2]-2(1)y f x =-(24)y f x =+[0,1]f (x)f (x)[1,2]-2(1)(1)y f x f x =+--2. 求下列函数的定义域.(1) y =(x +1)2x +1-1-x ;(2) y =2x 2-3x -2+14-x. 3.已知函数)(x f y =的定义域是]2,0[,那么)1lg(1)()(2++=x x f x g 的定义域是? 4. 求下列函数的值域(1)f(x)=x -3x +1;(2)f(x)=x 2-x x 2-x +1. (3)f(x)=x 2-1x 2+1;(4)f(x)=1x -x 2.知识点3:求函数解析式[例6]待定系数:若)(x f 是一次函数,[()]94f f x x =+,则)(x f = _________________.[例7].配凑:函数2(1)f x x -=,则函数()f x =[例8].换元:已知2(1)2f x x x +=+,求函数)(x f 的解析式为 .[例9] 方程组:已知函数()f x 满足()2()f x f x x --=-,则()f x =________.[对点演练3]1.若f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2,则f (x )的解析式为________.2.若,,则( )A .9B .17C .2D .3()43f x x =-()()21g x f x -=()2g =3.已知函数2)1(2-=x x f ,则f (x )=________. 4.已知函数f (x )的定义域为(0,+∞),且f (x )=2)1(xf ·x -1,则f (x )=________.知识点4:分段函数[例10]. 已知函数f (x )=-x 2+2,g (x )=x ,令φ(x )=min{f (x ),g (x )}(即f (x )和g (x )中的较小者). (1)分别用图象法和解析式表示φ(x );(2)求函数φ(x )的定义域,值域.[对点演练4]2. 已知函数f (x )=⎩⎪⎨⎪⎧ x +1,x ∈[-1,0],x 2+1,x ∈(0,1],则函数f (x )的图象是()习题演练:1.下列四种说法中,不正确的一个是( )A .在函数值域中的每一个数,在定义域中都至少有一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域中只含有一个元素,则值域也只含有一个元素2. 下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=(x -1)2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )23.下列函数中,与函数y =x 相等的是( )A .y =(x )2B .y =3x 3C .y =x 2D .y =x 2x3. 函数y =6-x|x |-4的定义域用区间表示为________.4. 若函数y =f (x )的定义域M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是()5.已知函数f (x )=x +3+1x +2.(1)求函数的定义域;(2)求f (-3),)32(f 的值; (3)当a >0时,求f (a ),f (a -1)的值.6.函数y =x +1+12-x 的定义域为________.7.已知函数()2y f x =-定义域是[]0,4,则()11f x y x +=-的定义域是 .8. 求下列函数的值域:(1)y =3x +1x -2; (2)y =52x 2-4x +3; (3)y =x +41-x9.已知)(x f 是一次函数且满足()())(,1721213x f x x f x f 求+=--+.10. 若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( )A .g (x )=2x 2-3xB .g (x )=3x 2-2xC .g (x )=3x 2+2xD .g (x )=-3x 2-2x 11. 已知函数()f x 满足()2()f x f x x --=-,则()f x =________.12. 定义在)1,1(-内的函数)(x f 满足)1lg()()(2+=--x x f x f ,求函数)(x f 的解析式.13.已知f (x )满足2f (x )+)1(xf =3x ,则f (x )的解析式为 .14.已知1)f x =+,求函数)(x f 的解析式.15.已知f (2x +1)=3x -4,f (a )=4,则a =________.。
高中数学人教A版必修1教案-3.1_函数与方程_教学设计_教案_3
教学准备1. 教学目标一.教学目标情感态度和价值观目标:培养探索问题的能力和合作交流的精神,体会数学在实际生活中的应用价值,感受精确与近似的相对统一。
知识与技能目标:能够借助计算器用二分法求方程的近似解,了解二分法是求方程近似解的常用方法,理解二分法的步骤和思想。
过程与方法目标:进一步体会方程和函数的转化思想,在应用二分法求解方程的近似解的过程中,体会算法的思想和“逐步逼近”的思想。
2. 教学重点/难点二.教学重点掌握用二分法求给定方程的近似解三.教学难点二分法的概念,精确度的概念,二分法实施步骤中的算法思想3. 教学用具4. 标签教学过程(2)下面的这些方程:、、能用我们以前的方法求解吗?2.展示学习目标3.复习回顾上节课的知识要点(1)方程的根与函数零点之间的等价关系的根可以转化为函数零点存在性定理4.两个生活情境问题(1)找假币:有八枚硬币,其中有一枚硬币是假币,假币的质量要比真币的质量小。
可以使用天平作为工具,要想把这枚假币找出来,最少可以称量几次?如何操作?(2)猜价格:播放中央电视台经济频道《购物街》节目中“猜价格”的视频片段。
思考:两个生活情境你有什么启发?5.(1)通过两个生活实例,结合零点存在定理,可以发现:我们可以用“取中点”的方法来逐步缩小零点所在的区间,从而把函数的零点逼近出来。
小组合作探究,利用这个思想方法,借助计算器,逐步缩小函数的零点所在的区间。
(2)计算何时终止?提出“精确度”的概念。
(3)讨论探究:为什么只要区间长度,就可以把区间内的任何一个数作为零点的近似值。
(4)展示探究结果6.给出二分法的定义和二分法的操作步骤,并用口诀的方式帮助学生记忆二分法的操作步骤:定区间,找中点,中值计算两边看;同号去,异号算,零点落在异号间;周而复始怎么办?精确度上来判断。
7.分别从二分法的概念,二分法的操作步骤两个方面给出两类题型:8.当堂完成下面的题目9.(1)提问:这节课你有什么收获?(2)课件展示本节课的知识框架,并对本节课的重点内容和难点内容加以强调。
3.1函数与方程新人教A版必修1优秀教案资料
3.1函数与方程新人教A版必修1优秀教案第三章函数的应用本章教材分析函数的应用是学习函数的一个重要方面.学生学习函数的应用,目的就是利用已有的函数知识分析问题和解决问题.通过函数的应用,对完善函数的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强实践的能力等,都有很大的帮助.本章主要内容:函数与方程、函数模型及其应用、实习作业和小结.在函数与方程这一节中课本从学生最熟悉的二次函数入手,通过研究方程的根与函数的零点的关系,使函数的图象与性质得到充分的应用,同时也展现了函数和方程的密切关系.求函数零点的近似解不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.在函数模型及其应用这一节中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣.“数学建模”也是高考考查的重点.本章还是数学思想方法的载体,学生在学习中会经常用到“函数方程思想”“数形结合思想”“转化思想”,从而提高自己的数学能力.因此应从三个方面把握本章:(1)知识间的联系;(2)数学思想方法;(3)认知规律.本章教学时间约需9课时,具体分配如下(仅供参考):3.1函数与方程约3课时3.2函数模型及其应用约4课时实习作业约1课时本章复习约1课时3.1 函数与方程3.1.1 方程的根与函数的零点整体设计教学分析函数作为高中的重点知识有着广泛应用,与其他数学内容有着有机联系.课本选取探究具体的一元二次方程的根与其对应的二次函数的图象与x轴的交点的横坐标之间的关系作为本节内容的入口,其意图是让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系.本节设计特点是由特殊到一般,由易到难,这符合学生的认知规律;本节体现的数学思想是:“数形结合”思想和“转化”思想.本节充分体现了函数图象和性质的应用.因此,把握课本要从三个方面入手:新旧知识的联系,学生认知规律,数学思想方法.另外,本节也是传统数学方法与现代多媒体完美结合的产物.三维目标1.让学生明确“方程的根”与“函数的零点”的密切联系,学会结合函数图象性质判断方程根的个数,学会用多种方法求方程的根和函数的零点.2.通过本节学习让学生掌握“由特殊到一般”的认知规律,在今后学习中利用这一规律探索更多的未知世界.3.通过本节学习不仅让学生学会数学知识和认知规律,还要让学生充分体验“数学语言”的严谨性,“数学思想方法”的科学性,体会这些给他们带来的快乐.重点难点根据二次函数图象与x轴的交点的个数判断一元二次方程的根的个数;函数零点的概念.课时安排2课时教学过程第1课时方程的根与函数的零点导入新课思路1.(情景导入)据新华社体育记者报道:昨晚足球比赛跌宕起伏,球迷经历了大喜到大悲,再到大喜的过程(领先则喜,落后即悲).请问:整场足球比赛出现几次“比分相同”的时段?学生思考或讨论回答:三次:(1)开场;(2)由领先到落后必经过“比分相同”时段;(3)由落后到领先必经过“平分”时段. 教师点拨:足球比赛有“落后”“领先”“比分相同”,函数值有“负”“正”“零”,函数图象与足球比赛一样跌宕起伏.由此导入课题,为后面学习埋好伏笔.思路2.(事例导入)(多媒体动画演示)一枚炮弹从地面发射后,炮弹的高度随时间变化的函数关系式为h=20t-5t2,问炮弹经过多少秒回到地面?炮弹回到地面即高度h=0,求方程20t-5t2=0的根,得t=4秒.如图3-1-1-1.图3-1-1-1思路3.(直接导入)教师直接点出课题:上一章我们研究函数的图象性质,这一节我们讨论函数的应用,方程的根与函数的零点.推进新课新知探究提出问题①求方程x2-2x-3=0的根,画函数y=x2-2x-3的图象.②求方程x2-2x+1=0的根,画函数y=x2-2x+1的图象.③求方程x2-2x+3=0的根,画函数y=x2-2x+3的图象.④观察函数的图象发现:方程的根与函数的图象和x轴交点的横坐标有什么关系?⑤如何判断一元二次方程根的个数,如何判断二次函数图象与x轴交点的个数,它们之间有什么关系?⑥归纳函数零点的概念.⑦怎样判断函数是否有零点?⑧函数的图象不易画出,又不能求相应方程的根时,怎样判断函数是否有零点?活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路:问题①:先求方程的两个根,找出抛物线的顶点,画出二次函数的图象(图3-1-1-2).问题②:方程有一个根,说明抛物线的顶点在x轴上(图3-1-1-3).问题③:方程没有实数根,抛物线与x轴没有交点,找出抛物线的顶点是画二次函数图象的关键(图3-1-1-4).问题④:方程的根与函数的图象和x轴交点的横坐标都是实数.问题⑤:对于其他函数这个结论正确吗?问题⑥:函数的零点是一个实数.问题⑦:可以利用“转化思想”.问题⑧:足球比赛中从落后到领先是否一定经过“平分”?由此能否找出判断函数是否有零点的方法?函数图象穿过x轴则有零点,怎样用数学语言描述呢?讨论结果:①方程的两个实数根为-1,3.②方程的实数根为1.③方程没有实数根.④方程的根就是函数的图象与x轴交点的横坐标.⑤一元二次方程根的个数,就是二次函数图象与x轴交点的个数,可以用判别式来判定一元二次方程根的个数.a.当Δ>0时,一元二次方程有两个不等的实根x1、x2,相应的二次函数的图象与x轴有两个交点(x1,0)、(x2,0);b.当Δ=0时,一元二次方程有两个相等的实根x1=x2,相应的二次函数的图象与x轴有唯一的交点(x1,0);c.当Δ<0时,一元二次方程没有实根,相应的二次函数的图象与x轴没有交点.⑥一般地,对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.⑦方程f(x)=0有实根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.⑧观察二次函数f(x)=x2-2x-3的图象,我们发现函数f(x)=x2-2x-3在区间[-2,1]上有零点.计算f(-2)与f(1)的乘积,发现这个乘积特点是小于零.在区间[2,4]同样如此.可以发现,f(-2)f(1)<0,函数y=x2-2x-3在区间(-2,1)内有零点x=-1,它是方程x2-2x-3=0的一个根.同样地,f(2)f(4)<0,函数y=x2-2x-3在(2,4)内有零点x=3,它是方程x2-2x-3=0的另一个根.图3-1-1-2 图3-1-1-3 图3-1-1-4应用示例思路1例1已知函数f(x)=|x2-2x-3|-a分别满足下列条件,求实数a的取值范围.(1)函数有两个零点;(2)函数有三个零点;(3)函数有四个零点.活动:根据零点概念,学生先思考或讨论后再回答,教师点拨、提示并及时评价学生.因为函数f(x)=|x2-2x-3|-a的零点个数不易讨论,所以可转化为方程|x2-2x-3|-a=0根的个数来讨论,即转化为方程|x2-2x-3|=a的根的个数问题,再转化为函数f(x)=|x2-2x-3|与函数f(x)=a交点个数问题.解:设f(x)=|x2-2x-3|和f(x)=a分别作出这两个函数的图象(图3-1-1-5),它们交点的个数,即函数f(x)=|x2-2x-3|-a的零点个数.图3-1-1-5(1)若函数有两个零点,则a=0或a>4.(2)若函数有三个零点,则a=4.(3)函数有四个零点,则0<a<4.变式训练1.判断函数y=|x-1|-2零点的个数.解:通过分类讨论把绝对值函数转化为分段函数,作出函数图象(图3-1-1-6),图3-1-1-6函数y=|x-1|-2的图象与x 轴有两个交点,所以函数y=|x-1|-2有两个零点.2.求证:函数f(x)=2x 2-3x-2有两个零点.证法一:因为一元二次方程2x 2-3x-2=0的判别式Δ=32+4×2×2=25>0,所以一元二次方程2x 2-3x-2=0有两个不相等的实根,所以函数f(x)=2x 2-3x-2有两个零点. 证法二:因为一元二次方程2x 2-3x-2=0可化为(2x+1)(x-2)=0,所以一元二次方程2x 2-3x-2=0有两个不相等的实根x 1=2,x 2=21 . 所以函数f(x)=2x 2-3x-2有两个零点.证法三:因为函数f(x)=2x 2-3x-2的图象是一条开口向上的抛物线,且顶点在x 轴的下方,即f(0)=-2<0,所以函数f(x)=2x 2-3x-2有两个零点.如图3-1-1-6.图3-1-1-7点评:判断函数零点个数可以结合函数的图象. 方法:零点函数方程的根两图象交点.数学思想:转化思想和数形结合思想.例2若关于x 的方程3x 2-5x+a=0的一根在(-2,0)内,另一个根在(1,3)内,求a 的取值范围. 活动:学生自己思考或讨论,再写出(最好用实物投影仪展示写的正确的答案).教师在学生中巡视其他学生的解答,发现问题及时纠正,并及时评价.如果用求根公式与判别式来做,运算量很大,能否将问题转化?借助二次函数的图象,从图象中抽出与方程的根有关的关系式,使得问题解答大大简化.引导学生画出函数的图象观察分析.解:设f(x)=3x 2-5x+a,则f(x)为开口向上的抛物线,如图3-1-1-8:图3-1-1-8因为f(x)=0的两根分别在区间(-2,0)、(1,3)内,所以⎪⎪⎩⎪⎪⎨⎧><<>-,0)3(,0)1(,0)0(,0)2(f f f f 即⎪⎪⎩⎪⎪⎨⎧>+<+-<>+.012,02,0,022a a a a 故所求a 的取值范围是-12<a<0. 变式训练关于x 的方程x 2-ax+a 2-7=0的两个根一个大于2,另一个小于2,求实数a 的取值范围. 解:设f(x)=x 2-ax+a 2-7,图象为开口向上的抛物线(如图3-1-1-9).因为方程x 2-ax+a 2-7=0的两个根一个大于2,另一个小于2,所以函数f(x)=x 2-ax+a 2-7的零点一个大于2,另一个小于2.即函数f(x)=x 2-ax+a 2-7的图象与x 轴的两个交点在点(2,0)的两侧.只需f(2)<0,即4-2a+a 2-7<0,所以-1<a<3.图3-1-1-9思路2例1若方程2ax 2-x-1=0在(0,1)内有解,求实数a 的取值范围.活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:①有解包括有一解和有两解,要分类讨论.②用一般解法固然可以,若结合函数图象观察分析,可以找到捷径.③有两种情况:a.a=0;b.a≠0,Δ≥0.解:令f(x)=2ax 2-x-1,(1)当方程2ax 2-x-1=0在(0,1)内恰有一个解时,f(0)·f(1)<0或a ≠0且Δ=0,由f(0)·f(1)<0,得(-1)(2a-2)<0,所以a>1.由Δ=0,得1+8a=0,a=81-∴方程为41-x 2-x-1=0,即x=-2∉(0,1)(舍去).综上可得a>1. (2)当方程2ax 2-x-1=0在(0,1)内有两个解时,则⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧<<<>>>0)41(,1410,0)1(,0)0(,0a f a f f a 或⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧><<<<<,0)41(,1410,0)1(,0)0(,0af a f f a 容易解得实数a 不存在.综合(1)(2),知a>1.变式训练若方程ax 2+3x+4a=0的根都小于1,求实数a 的取值范围.解:(1)当a=0时,x=0满足题意.(2)当a≠0时,设f(x)=ax 2+3x+4a.方法一:若方程ax 2+3x+4a=0的根都小于1,则⎪⎪⎩⎪⎪⎨⎧><-≥-=∆,0)1(,123,01692af a a ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧-<>-<>≤≤-,6.00,5.10,4343a a a a a 或或∴0<a≤43. 综上(1)(2),得0≤a≤43. 方法二:若方程ax 2+3x+4a=0的根都小于1,则⎪⎩⎪⎨⎧>--<+≥-=∆,0)1)(1(,2,016921212x x x x a ∴⎪⎩⎪⎨⎧>++-<+≥-=∆,01)(,2,01692121212x x x x x x a ⎪⎪⎪⎩⎪⎪⎪⎨⎧>++<-≥-=∆,0134,23,01692a a a 解得0<a≤43. 综上(1)(2),得0≤a≤43. 点评:有两种方法:(1)结合函数图象利用函数符号列不等式组.(2)代数方法,利用根与系数关系结合判别式列不等式组.例2设二次函数f(x)=ax 2+bx+c(a>0),方程f(x)-x=0的两个根为x 1、x 2,满足0<x 1<x 2<a1. (1)当x ∈(0,x 1)时,求证:x<f(x)<x 1;(2)设函数f(x)的图象关于直线x=x 0对称,求证:x 0<21x . 活动:根据方程与函数关系,学生先思考或讨论后再回答,教师点拨、提示并及时评价学生.因为方程f(x)-x=0的两个根为x 1、x 2,可考虑把f(x)-x 设为双根式,然后判断其符号,再考虑二次函数的双根与二次函数对称轴的关系.证明:(1)∵x 1、x 2是方程f(x)-x=0的两个根,且0<x 1<x 2<a1, ∴当x ∈(0,x 1)时,有f(x)-x=a(x-x 1)(x-x 2)=a(x 1-x)(x 2-x)>0,即f(x)-x>0.又∵f(x)-x=a(x 1-x)(x 2-x)<a·a 1(x 1-x)=x 1-x,即f(x)-x<x 1-x,故0<f(x)-x<x 1-x,即x<f(x)<x 1.(2)∵f(x)-x=ax 2+(b-1)x+c,且f(x)-x=0的两个根为x 1、x 2,∴二次函数f(x)-x 的对称轴为x=221x x +=a b 21--.∴21x =22122x a a b -+-. 又由已知,得x 0=a b 2-,∴21x =x 0+2212x a -. 又∵x 2<a 1,∴2212x a ->0.故21x =x 0+2212x a ->x 0,即x 0<21x . 变式训练1.已知二次函数f(x)满足f(3-x)=f(3+x),且其两零点分别为x 1、x 2,求x 1+x2.解:∵对任意x 都有f(3-x)=f(3+x),∴函数f(x)的图象上有两点(3-x,y)、(3+x,y)关于x=3对称.∴二次函数f(x)的对称轴为x=3.∵x 1、x 2为二次函数f(x)的两个零点,∴x 1+x 2=6.2.若函数f(x)满足f(3-x)=f(3+x),且函数f(x)有6个零点,求所有零点的和.解:同理函数f(x)的对称轴为x=3,∴3(x 1+x 2)=18.点评:①二次函数的双根与二次函数解析式的关系是:若二次项系数为a,两个根为x 1、x 2,则二次函数解析式为f(x)=a(x-x 1)(x-x 2).②二次函数的双根与二次函数对称轴的关系是:二次函数f(x)的对称轴为x=221x x +. 总之:二次函数的双根是联系函数与方程的桥梁和纽带,应仔细体会、准确把握. 知能训练讨论函数y=e x +4x-4的零点的个数.活动:鼓励学生说出自己的见解,并说明理由.函数零点问题是函数的重要应用,离不开函数的图象和性质.(1)利用f(a)f(b)<0及函数的单调性.(2)作出y=e x 和y=4-4x 的图象,把函数y=e x +4x-4的零点的个数转化为方程e x =4-4x 根的个数,再转化为上述两函数图象交点的个数. 解:(方法一)利用计算机作出x ,f(x)的对应值表:x0 1 f(x) -3 2.71828由表和图可知,f(0)<0,f(1)>0,则f(0)f(1)<0,这说明f(x)在区间(0,1)内有零点,由于函数在定义域(-∞,+∞)内是增函数,所以它仅有一个零点.(方法二)作出y=e x 和y=4-4x 的图象(图3-1-1-10),即可直观地看出零点的个数为1.图3-1-1-10总结点评:讨论函数零点个数问题是函数的重要应用,由于函数与方程的特殊关系,所以这个问题常用的方法是:(1)解方程;(2)画图象;(3)利用f(a)f(b)<0及函数的单调性;同时这些方法是有机联系的.拓展提升1.2007山东青岛高三教学质量检测,理19已知m ∈R ,设P:x 1和x 2是方程x 2-ax-2=0的两个根,不等式|m-5|≤|x 1-x 2|对任意实数a ∈[1,2]恒成立;Q :函数f(x)=3x 2+2mx+m+34有两个不同的零点,求使P 和Q 同时成立的实数m 的取值范围.解:由题意知x 1+x 2=a,x 1x 2=-2,∴|x 1-x 2|=21221x 4x -)x (x +=8a 2+. 当a ∈[1,2]时,8a 2+的最小值为3.要使|m-5|≤|x 1-x 2|对任意实数a ∈[1,2]恒成立,只需|m -5|≤3,即2≤m≤8.由已知得Q 中:f(x)=3x 2+2mx+m+34的判别式Δ=4m 2-12(m+34)=4m 2-12m-16>0,得m<-1或m>4. 综上,要使P 和Q 同时成立,只需⎩⎨⎧>-<≤≤,41,82m m m 或解得实数m 的取值范围是(4,8]. 2.如果函数y=f(x)在区间[a,b ]上的图象是连续不断的一条曲线,并且f(a)f(b)>0,那么函数y=f(x)在区间(a,b)内是否有零点?可能有几个零点?活动:学生先思考或讨论,再回答.利用函数图象进行探索分析:①有没有零点?②零点的个数是奇数还是偶数?解析:零点个数可以是任意自然数.下面讨论在区间[-3,3]上函数零点个数,(1)可能没有零点如图(图3-1-1-11).图3-1-1-11 图3-1-1-12(2)可能有一个零点如图(图3-1-1-12).(3)可能有两个零点如图(图3-1-1-13).图3-1-1-13 图3-1-1-14(4)可能有三个零点如图(图3-1-1-14).(5)可能有n(n ∈N *)个零点,图略.点评:在区间[-3,3]上函数零点个数可以是任意自然数.借助计算机可以验证同学们的判断,激发学生学习兴趣.课堂小结本节学习了:①零点的概念;②零点的判断方法;③利用函数的单调性证明零点的个数;④零点的应用.学习方法:由特殊到一般的方法.数学思想:转化思想、数形结合思想.作业课本P 88练习1.设计感想本节以事例导入,该事例是学生很感兴趣的话题,发人深思而紧贴本节主题,为后面讲解埋好了伏笔.因为二次函数、二次方程永远是高考的重点,所以本节结合二次函数的图象性质详实讨论了有关二次函数的零点和二次方程的根的问题.本节不仅选用了一些传统经典的题目进行方法总结,还搜集了一些最新的高三模拟题加以充实提高.另外,本节目的明确、层次分明、难度适中,对学生可能产生兴趣的问题进行了拓展,希望大家喜欢.第2课时 方程的根与函数的零点复习提出问题①已知函数f(x)=mx 2+mx+1没有零点,求实数m 的范围.②证明函数f(x)=x 2+6x+10没有零点.③已知函数f(x)=2mx 2-x+21m 有一个零点,求实数m 的范围. ④已知函数f(x)=2(m+1)x 2+4mx+2m-1有两个零点,求实数m 的范围.活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:①因为Δ=m 2-4m<0或m=0,∴0≤m<4.②因为Δ=36-40=-4<0,∴没有零点.③Δ=1-4m 2=0或m=0,∴m=21或m=21 或m=0. ④Δ=16m 2-8(m+1)(2m-1)=-8m+8>0且2(m+1)≠0,∴m<1且m≠-1.导入新课思路1.(情景导入)歌中唱到:再“穿过”一条烦恼的河流明天就会到达,同学们知道生活中“穿过”的含义. 请同学们思考用数学语言是怎样描述函数图象“穿过”x 轴的?学生思考或讨论回答:利用函数值的符号,即f(a)f(b)<0.思路2.(直接导入)教师直接点出课题:这一节我们将进一步巩固有关方程的根与函数的零点的知识,总结求方程的根与函数的零点的方法,探寻其中的规律.推进新课新知探究提出问题①如果函数相应的方程不易求根,其图象也不易画出,怎样讨论其零点?②用数学语言总结判断零点存在性定理,并找出好的理解记忆方法.活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:①在闭区间[a,b]上,若f(a)f(b)<0,y=f(x)连续,则(a,b)内有零点.②如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.我们把它叫做零点存在性定理.因为闭区间端点符号相反的连续函数在开区间内有零点,可以简记为:“闭端反连(脸),开内零点.”应用示例思路1例1求函数f(x)=lnx+2x-6的零点的个数.活动:根据零点概念,学生先思考或讨论后再回答,教师点拨、提示:因为方程lnx+2x-6=0的根不易求得,函数f(x)=lnx+2x-6的图象不易画出,如果不借助计算机,怎么判断零点个数?可以利用f(a)f(b)<0,及函数单调性.解:利用计算机作出x,f(x)的对应值表:x 1 2 3 4 5 6 7 8 9f(x) -4 -1.3069 1.0986 3.3863 5.6094 7.7918 9.9450 12.0794 14.1972 由表和图3-1-1-15可知,f(2)<0,f(3)>0,则f(2)f(3)<0,这说明f(x)在区间(2,3)内有零点.由于函数在定义域(0,+∞)内是增函数,所以它仅有一个零点.图3-1-1-15 图3-1-1-16变式训练证明函数f(x)=lgx+x-8有且仅有一个零点.证明:如图3-1-1-16,因为f(1)=-7,f(10)=3,∴f(1)f(10)<0.∴函数f(x)=lgx+x-8有一个零点.∵y=lgx为增函数,y=x-8是增函数,∴函数f(x)=lgx+x-8是增函数.∴函数f(x)=lgx+x-8有且仅有一个零点.点评:判断零点的个数:(1)利用零点存在性定理判断存在性;(2)利用单调性证明唯一性. 例2已知函数f(x)=3x +12+-x x , (1)判断函数零点的个数. (2)找出零点所在区间. 解:(1)设g(x)=3x ,h(x)=12+-x x , 作出它们的图象(图3-1-1-17),两函数图象交点的个数即为f(x)零点的个数. 所以两函数图象有且仅有一个交点,即函数f(x)=3x +12+-x x 有且仅有一个零点.图3-1-1-17(2)因为f(0)=-1,f(1)=2.5,所以零点x ∈(0,1). 变式训练证明函数f(x)=2x +4x-4有且仅有一个零点. 证明:利用计算机作出x ,f(x)的对应值表: x -1 0 1 2 3 4 5 6 7 f(x)-7.5-32816284884172图3-1-1-18由表和图3-1-1-18可知,f(0)<0,f(1)>0,则f(0)f(1)<0,这说明f(x)在区间内有零点.下面证明函数在定义域(-∞,+∞)内是增函数. 设x 1,x 2∈(-∞,+∞),且x 1<x 2, f(x 1)-f(x 2)=21x+4x 1-4-(22x +4x 2-4)=21x-22x +4(x 1-x 2)=22x (21x-x 2-1)+4(x 1-x 2).∵x 1<x 2,∴x 1-x 2<0,21x-x 2-1<0,22x >0.∴f(x 1)-f(x 2)<0.∴函数在定义域(-∞,+∞)内是增函数. 则函数f(x)=2x +4x-4有且仅有一个零点.思路2例1证明函数y=2|x|-2恰有两个零点.图3-1-1-19证明:如图3-1-1-19,∵f(-2)=2,f(0)=-1,f(2)=2, ∴f(-2)f(0)<0,f(0)f(2)<0. ∴函数y=2|x|-2有两个零点. 要证恰有两个零点,需证函数y=2|x|-2在(0,+∞)上为单调的,函数y=2|x|-2在(-∞,0)上为单调的. ∵在(0,+∞)上,函数y=2|x|-2可化为y=2x -1, 下面证明f(x)=2x -1在(0,+∞)上为增函数.证明:设x 1,x 2为(0,+∞)上任意两实数,且0<x 1<x 2, ∵f(x 1)-f(x 2)=21x-2-(22x -2)=21x-22x =22x (21x-x 2-1),∵0<x 1<x 2,∴x 1-x 2<0,21x-x 2<1. ∴22x >0,21x-x 2-1<0. ∴22x (21x-x 2-1)<0.∴f(x 1)-f(x 2)<0. ∴f(x 1)<f(x 2).∴函数y=2|x|-2在(0,+∞)上为增函数.同理可证函数y=2|x|-2在(-∞,0)上为减函数. ∴函数y=2|x|-2恰有两个零点. 变式训练证明函数f(x)=x+x1-3在(0,+∞)上恰有两个零点. 证明:∵f(31)=31,f(1)=-1,f(3)=31,∴f(31)f(1)<0,f(1)f(3)<0.∴函数f(x)=x+x1-3在(0,+∞)上有两个零点.要证恰有两个零点, 需证函数f(x)=x+x 1-3在(0,1)上为单调的,函数f(x)=x+x1-3在(1,+∞)上为单调的. 证明:设x 1,x 2为(0,1)上的任意两实数,且x 1<x 2. ∵f(x 1)-f(x 2)=x 1+11x -3-(x 2+21x -3)=(x 1-x 2)+(11x 21x )=(x 1-x 2)+2112x x x x -=(x 1-x 2)(21211x x x x -),∵0<x 1<x 2<1,∴x 1-x 2<0,2112x x x x -<0.∴(x 1-x 2)(21211x x x x -)>0.∴f(x 1)-f(x 2)>0.∴函数f(x)=x+x 1-3在(0,1)上为减函数. 同理函数f(x)=x+x 1-3在(1,+∞)上为增函数.∴函数f(x)=x+x1-3在(0,+∞)上恰有两个零点(如图3-1-1-20).图3-1-1-20点评:证明函数零点的个数是一个难点和重点,对于基本初等函数可以借助函数图象和方程来讨论.对于较复杂的函数证明函数恰有n 个零点,先找出有n 个,再利用单调性证明仅有n 个.例2已知函数f(x)=ax 3+bx 2+cx+d 有三个零点,分别是0、1、2,如图3-1-1-21, 求证:b<0.图3-1-1-21活动:根据零点概念,学生先思考或讨论后再回答,教师点拨、提示: 方法一:把零点代入,用a 、c 表示b. 方法二:用参数a 表示函数. 证法一:因为f(0)=f(1)=f(2)=0, 所以d=0,a+b+c=0,4a+2b+c=0.所以a=3b -,c=32- b. 所以f(x)=3b -x(x 2-3x+2)=3b-x(x-1)(x-2).当x<0时,f(x)<0,所以b<0.证法二:因为f(0)=f(1)=f(2)=0,所以f(x)=ax(x-1)(x-2).当x>2时,f(x)>0,所以a>0.比较同次项系数,得b=-3a.所以b<0.变式训练函数y=ax 2-2bx 的一个零点为1,求函数y=bx 2-ax 的零点. 答案:函数y=bx 2-ax 的零点为0、2.点评:如果题目给出函数的零点,这涉及到零点的应用问题. (1)可以考虑把零点代入用待定系数法解决问题. (2)利用零点的特殊性把解析式的设法简单化. 知能训练1.函数f(x)=lgx-2x 2+3的零点一定位于下列哪个区间?( )A.(4,5)B.(1,2)C.(2,3)D.(3,4)2.若函数f(x)=2mx+4在[-2,1]上存在零点,则实数m 的取值范围是( ) A.[254] B.(-∞,-2]∪[1,+∞) C.[-1,2] D.(-2,1) 3.已知函数f(x)=-3x 5-6x +1,有如下对应值表:x -2 -1.5 0 1 2 f(x)10944.171-8-107函数y =f(x)在哪几个区间内必有零点?为什么? 答案:1.B 2.B 3.(0,1),因为f(0)·f(1)<0.点评:结合函数图象性质判断函数零点所在区间是本节重点,应切实掌握. 拓展提升方程lnx+2x+3=0根的个数及所在的区间,能否进一步缩小根所在范围? 分析:利用函数图象(图3-1-1-22)进行探索分析.图3-1-1-22解:(1)观察函数的图象计算f(1)、f(2),知f(x)=lnx+2x+3有零点. (2)通过证明函数的单调性,知f(x)=lnx+2x+3有一个零点x ∈(1,2).请同学们自己探究能否进一步缩小根所在范围?借助计算机可以验证同学们判断,激发学生学习兴趣. 课堂小结(1)学会由函数解析式讨论零点个数,证明零点个数.(2)思想方法:函数方程思想、数形结合思想、分类讨论思想. 作业课本P 88练习2.设计感想如何用数学语言描述“穿过”是本节的关键,本节从导入开始让学生体会数学语言与文字语言的区别,并进一步让学生学会应用数学语言描述零点存在性定理.本节多次用计算机作图来感知函数零点,在零点证明题中又经常用到函数的单调性进行严格证明,所以本节是数与形的完美统一.3.1.2 用二分法求方程的近似解整体设计教学分析求方程的解是常见的数学问题,这之前我们学过解一元一次、一元二次方程,但有些方程求精确解较难.本节从另一个角度来求方程的近似解,这是一种崭新的思维方式,在现实生活中也有着广泛的应用.用二分法求方程近似解的特点是:运算量大,且重复相同的步骤,因此适合用计算器或计算机进行运算.在教学过程中要让学生体会到人类在方程求解中的不断进步.三维目标1.让学生学会用二分法求方程的近似解,知道二分法是科学的数学方法.2.了解用二分法求方程的近似解特点,学会用计算器或计算机求方程的近似解,初步了解算法思想.3.回忆解方程的历史,了解人类解方程的进步历程,激发学习的热情和学习的兴趣.重点难点用二分法求方程的近似解.课时安排1课时教学过程导入新课思路1.(情景导入)师:(手拿一款手机)如果让你来猜这件商品的价格,你如何猜?生1:先初步估算一个价格,如果高了再每隔10元降低报价.生2:这样太慢了,先初步估算一个价格,如果高了每隔100元降低报价.如果低了,每50元上升;如果再高了,每隔20元降低报价;如果低了,每隔10元上升报价……生3:先初步估算一个价格,如果高了,再报一个价格;如果低了,就报两个价格和的一半;如果高了,再把报的低价与一半价相加再求其半,报出价格;如果低了,就把刚刚报出的价格与前面的价格结合起来取其和的半价……师:在现实生活中我们也常常利用这种方法.譬如,一天,我们华庄校区与锡南校区的线路出了故障,(相距大约3 500米)电工是怎样检测的呢?是按照生1那样每隔10米或者按照生2那样每隔100米来检测,还是按照生3那样来检测呢?生:(齐答)按照生3那样来检测.师:生3的回答,我们可以用一个动态过程来展示一下(展示多媒体课件,区间逼近法).思路2.(事例导入)有12个小球,质量均匀,只有一个球是比别的球重,你用天平称几次可以找出这个球,要求次数越少越好.(让同学们自由发言,找出最好的办法)解:第一次,两端各放六个球,低的那一端一定有重球.第二次,两端各放三个球,低的那一端一定有重球.第三次,两端各放一个球,如果平衡,剩下的就是重球,否则,低的就是重球.其实这就是一种二分法的思想,那什么叫二分法呢?推进新课新知探究提出问题①解方程2x-16=0.②解方程x2-x-2=0.③解方程x3-2x2-x+2=0.④解方程(x2-2)(x2-3x+2)=0.⑤我们知道,函数f(x)=lnx+2x-6在区间(2,3)内有零点.进一步的问题是,如何找出这个零点的近似值?⑥“取中点”后,怎样判断所在零点的区间?⑦什么叫二分法?⑧试求函数f(x)=lnx+2x-6在区间(2,3)内零点的近似值.⑨总结用二分法求函数零点近似值的步骤.⑩思考用二分法求函数零点近似值的特点.讨论结果:①x=8.②x=-1,x=2.③x=-1,x=1,x=2.④x=2-,x=2,x=1,x=2.⑤如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围.〔“取中点”,一般地,我们把x=2ba称为区间(a,b)的中点〕⑥比如取区间(2,3)的中点2.5,用计算器算得f(2.5)<0,因为f(2.5)·f(3)<0,所以零点在区间(2.5,3)内.⑦对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection).⑧因为函数f(x)=lnx+2x-6,用计算器或计算机作出函数f(x)=lnx+2x-6的对应值表.x 1 2 3 4 5 6 7 8 9f(x) -4 -1.306 1.0986 3.3863 5.6094 7.7918 9.9459 12.0794 14.1972 由表可知,f(2)<0,f(3)>0,则f(2)·f(3)<0,这说明f(x)在区间内有零点x0,取区间(2,3)的中点x1=2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)·f(3)<0,所以x0∈(2.5,3).同理,可得表(下表)与图象(如图3-1-2-1).区间中点的值中点函数的近似值(2,3) 2.5 -0.084(2.5,3) 2.75 0.512(2.5,2.75) 2.625 0.215(2.5,2.625) 2.5625 0.066(2.5,2.5625) 2.53-1-2-5 -0.009(2.53-1-2-5,2.5625) 2.546875 0.029(2.53-1-2-5,2.546875) 2.5390625 0.010(2.53-1-2-5,2.5390625) 2.53515625 0.001。
高中数学人教A版必修1教案-3.1_函数与方程_教学设计_教案_6
教学准备1. 教学目标教学目的:掌握两种思想:函数方程思想;数形结合思想,三种题型:求函数零点、确定零点个数、求零点所在区间。
2. 教学重点/难点重难点:1、函数方程思想;数形结合思想2、求函数零点、确定零点个数、求零点所在区间。
3. 教学用具4. 标签教学过程【环节一:巧设疑云,轻松渗透】设置问题情境,渗透数学思想教师活动:请同学们思考这个问题。
解方程:学生活动:回答,思考解法。
教师活动:第四个方程我们没有学过它的解法,通过这节课的学习我们来解决这个问题。
上一章我们学习了基本初等函数,这节课我们就通过研究函数来解决方程根的问题。
画出前三个方程相应函数的图象,并求出图象和x轴交点.学生活动:动手画图并求解。
教师活动:用屏幕显示方程的根、函数的图象以及函数图象与x轴交点的坐标。
观察三者之间的关系。
学生活动:观察图象,思考作答。
得到方程的实数根是函数图象与x轴交点的横坐标,是使函数值为零的x的结论。
教师活动:我们就把使f(x)=0的实数x称做函数的零点.设计意图:通过纯粹靠代数运算无法解决的方程,引起学生认知冲突,激起探求的热情.通过回顾一次函数、二次函数、指数函数图象与x轴的交点和相应方程的根的关系,将结论推广到一般函数,为零点概念做好铺垫.【环节二:形成概念,升华认知】引入零点定义,确认等价关系教师活动:这是我们本节课的第一个知识点。
板书函数零点的定义。
教师活动:结合函数零点的定义和我们刚才的探究过程,你认为方程的根与函数的零点究竟是什么关系?学生活动:思考作答。
教师活动:这是我们本节课的第二个知识点。
板书方程的根与函数零点的等价关系。
在屏幕上显示:函数y=f(x)有零点方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点教师活动:强调方程与函数的思想。
教师活动:屏幕显示函数图象,指出这几个函数的零点是?学生活动:对比定义回答。
教师活动:强调:零点就是使函数值为0的实数而不是点!教师活动:对于函数y=f(x)有零点,从“数”的角度理解,就是方程f(x)=0有实根,从“形”的角度理解,就是图象与x轴有交点。
人教A版高中数学必修一函数与方程教案第课时
课题:§3.1.1方程的根与函数的零点理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,零点的概念及存在性的判定.零点的确定.⑴方程0322=--x x 与函数322--=x x y⑵方程0122=+-x x 与函数122+-=x x y⑶方程0322=+-x x 与函数322+-=x x y对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点.⑴函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标.即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.⑵函数零点的求法:求函数)(x f y =的零点:①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.⑶二次函数的零点: )0(2≠++=a c bx ax y .① △>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.② △=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.③ △<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点.二、函数零点存在性定理⑴零点存在性的探索观察二次函数32)(2--=x x x f 的图象:在区间]1,2[-上有零点______; =-)2(f _______,=)1(f _______,)2(-f ·)1(f _____0(<或>).在区间]4,2[上有零点______;)2(f ·)4(f ____0(<或>).观察下面函数)(x f y =的图象在区间],[b a 上______(有/无)零点;)(a f ·)(b f _____0(<或>).在区间],[c b 上______(有/无)零点;)(b f ·)(c f _____0(<或>).在区间],[d c 上______(有/无)零点;)(c f ·)(d f _____0(<或>).由以上两步探索,你可以得出什么样的结论?⑵零点存在性定理如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有)(a f ·)(b f <0,那么,函数)(x f y =在区间),(b a 内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也就是方程0)(=x f 的根。
高中数学人教A版必修1教案-3.1_函数与方程_教学设计_教案_2
教学准备1. 教学目标1.知识与技能①理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.②培养学生的观察能力.③培养学生的抽象概括能力.2.过程与方法①通过观察二次函数图象,并计算函数在区间端点上的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法.②让学生归纳整理本节所学知识.3.情感、态度与价值观在函数与方程的联系中体验数学中的转化思想的意义和价值.2. 教学重点/难点重点零点的概念及存在性的判定.难点零点的确定.3. 教学用具4. 标签教学过程四、教学设想(一)创设情景,揭示课题1、提出问题:一元二次方程ax2+bx+c=0 (a≠0)的根与二次函数y=ax2+bx+c(a≠0)的图象有什么关系?2.先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:(用投影仪给出)1.师:引导学生解方程,画函数图象,分析方程的根与图象和轴交点坐标的关系,引出零点的概念.生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流.师:上述结论推广到一般的一元二次方程和二次函数又怎样?(二)互动交流研讨新知函数零点的概念:1.师:引导学生仔细体会左边的这段文字,感悟其中的思想方法.生:认真理解函数零点的意义,并根据函数零点的意义探索其求法:①代数法;②几何法.2.根据函数零点的意义探索研究二次函数的零点情况,并进行交流,总结概括形成结论.二次函数的零点:二次函数由以上两步探索,你可以得出什么样的结论?怎样利用函数零点存在性定理,断定函数在某给定区间上是否存在零点?4.生:分析函数,按提示探索,完成解答,并认真思考.师:引导学生结合函数图象,分析函数在区间端点上的函数值的符号情况,与函数零点是否存在之间的关系.生:结合函数图象,思考、讨论、总结归纳得出函数零点存在的条件,并进行交流、评析.师:引导学生理解函数零点存在定理,分析其中各条件的作用.(三)、巩固深化,发展思维1.学生在教师指导下完成下列例题例1.求函数f(x)=㏑x+2x -6的零点个数。
统编人教A版数学高中必修第一册《3.1 函数的概念及其表示》优秀教案教学设计
【新教材】3.1.1 函数的概念(人教A版)函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。
2.掌握判定函数和函数相等的方法。
3.学会求函数的定义域与函数值。
数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。
重点:函数的概念,函数的三要素。
难点:函数概念及符号y=f(x)的理解。
教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入初中已经学过:正比例函数、反比例函数、一次函数、二次函数等,那么在初中函数是怎样定义的?高中又是怎样定义?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本60-65页,思考并完成以下问题1. 在集合的观点下函数是如何定义?函数有哪三要素?2. 如何用区间表示数集?3. 相等函数是指什么样的函数?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个属x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x)x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.区间概念(a,b为实数,且a<b)3.其它区间的表示四、典例分析、举一反三题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )【答案】D解题技巧:(判断是否为函数)1.(图形判断)y 是x 的函数,则函数图象与垂直于x 轴的直线至多有一个交点.若有两个或两个以上的交点,则不符合函数的定义,所对应图象不是函数图象.2.(对应关系判断)对应关系是“一对一”或“多对一”的是函数关系;“一对多”的不是函数关系. 跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )【答案】C题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 解题技巧:(判断函数相等的方法) 定义域优先原则1.先看定义域,若定义域不同,则函数不相等.2.若定义域相同,则化简函数解析式,看对应关系是否相等. 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√x x,g(x)=√x;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 解题技巧:(如何用区间表示集合)1.正确利用区间表示集合,要特别注意区间的端点值能否取到,即“小括号”和“中括号”的区别.2.用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示. 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3). 题型四 求函数的定义域 例4 求下列函数的定义域: (1)y=(x+2)|x |-x; (2)f(x)=x 2-1x -1−√4-x .【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 解题方法(求函数定义域的注意事项)(1)如果函数f(x)是整式,那么函数的定义域是实数集R;(2)如果函数f(x)是分式,那么函数的定义域是使分母不等于零的实数组成的集合;(3)如果函数f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合; (4)如果函数f(x)是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合(即求各式子自变量取值集合的交集). 跟踪训练四1.求函数y=√2x +3√2-x1x的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−1√2-x+1x的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32. ∴函数f(2x+1)的定义域是[-1,32]. 题型五 求函数值(域) 例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x ; ④y =2x -√x −1. 【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.解题方法(求函数值(域)的方法)1.已知f(x)的表达式时,只需用数a 替换表达式中的所有x 即得f(a)的值.2.求f(g(a))的值应遵循由内到外的原则.3. 求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法或二次函数图像求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为 “反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax+b+√cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法. 跟踪训练五1.求下列函数的值域:(1)y = √2x +1 +1;(2)y =1−x 21+x 2. 【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计 七、作业课本67页练习、72页1-5本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,尤其在求抽象函数定义域时,先根据特殊函数的规律总结一般规律.。
31函数与方程 新人教A版必修1优秀教案.docx
3・1函数与方程新人教A版必修1优秀教案第三章函数的应用本章教材分析函数的应用是学习函数的一个重要方而.学生学习函数的应用,目的就是利用C有的函数知识分析问题和解决问题.通过函数的应用,对完善函数的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强实践的能力等,都有很大的帮助.本章主要内容:函数与方程、函数模型及其应用、实习作业和小结.在函数与方稈这一节屮课木从学生最熟悉的二次函数入手,通过研究方程的根与函数的零点的关系,使函数的图象与性质得到充分的应用,同时也展现了函数和方稈的密切关系.求函数零点的近似解不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.在函数模型及其应用这一节中让学生近距离接近社会生活,从生活屮学习数学,使数学在社会生活屮得到应用和提高,让学生体会到数学是有川的,从而培养学生的学习兴趣f数学建模”也是高考考杏的重点.木章还是数学思想方法的载体,学生在学习屮会经常用到“函数方稈思想数形结合思想杠转化思想",从而提高H己的数学能力.因此应从三个方血把握木章:(1)知识间的联系;(2)数学思想方法;(3)认知规律. 木章教学时间约需9课时,具体分配如下(仅供参考):3.13.1.1方程的根与函数的零点整体设计教学分析函数作为高中的重点知识有着广泛应川,与其他数学内容有着有机联系.课木选取探究具体的一元二次方程的根与其对应的二次函数的图彖与x轴的交点的横坐标Z间的关系作为木节内容的入口,貝意图是让学生从熟悉的环境屮发现新知识,使新知识与原有知识形成联系.木节设计特点是由特殊到一般,由易到难,这符合学生的认知规律;木节体现的数学思想是:“数形结合”思想和“转化”思想.木节充分体现了函数图象和性质的应用.1大I此,把握课木要从三个方面入手:新I口知识的联系,学生认知规律,数学思想方法.另外,木节也是传统数学方法与现代多媒体完美结合的产物.三维目标1.让学生明确“方稈的根”与“函数的零点”的密切联系,学会结合函数图象性质判断方稈根的个数,学会用多种方法求方程的根和函数的零点.2.通过本节学习让学生掌握“由特殊到一般”的认知规律,在今示学习中利用这一规律探索更多的未知世界.3.通过木节学习不仅让学生学会数学知识和认知规律,还要让学生充分体验“数学语言”的严谨性,“数学思想方法”的科学性,体会这些给他们带来的快乐.重点难点根据二次函数图彖与x轴的交点的个数判断一元二次方程的根的个数;函数零点的概念.课时安排2课时教学过程第1课时方程的根与函数的零点导入新课思路1・(情1景导入)据新华社体冇记者报道:昨晚足球比赛跌宕起伏,球迷经历了大喜到大悲,再到大喜的过稈(领先则喜,落后即悲).请问:整场足球比赛岀现几次“比分相同''的时段?学生思考或讨论回答:三次:⑴开场;⑵由领先到落后必经过“比分相同”时段;(3)由落后到领先必经过“平分”时段. 教师点拨:足球比赛有“落后'”领先叫匕分相同”,函数值有“负正”“零",函数图象与足球比赛一样跌宕起伏•由此导入课题,为后面学习埋好伏笔.思路2・(事例导入)(多媒体动呦演示)•枚炮弹从地血发射后,炮弹的高度随时间变化的函数关系式为h=20t-5t2,|nJ炮弹经过多少秒回到地面?炮弹回到地面即高度h=0,求方程20t-5t2=0的根,得t=4秒.如图3-1-1-1.思路3・(肓接导入)教师岚接点出课题:上一章我们研究函数的图象性质,这一节我们讨论函数的应用,方程的根与函数的零点.推进新课新知探究提出问题①求方程X2-2X-3=0的根,画函数y=x2-2x-3的图象.②求方稈X2-2X+1=0的根,画函数y=x2・2x+l的图象.③求方程X2-2X+3=0的根,画函数y=x2-2x+3的图象.④观察函数的图象发现:方程的根与函数的图象和x轴交点的横坐标有什么关系?⑤如何判断一元二次方程根的个数,如何判断二次函数图彖与x轴交点的个数,它们之间有什么关系?⑥归纳函数零点的概念.⑦怎样判断函数是否有零点?⑧函数的图象不易画出,又不能求相应方程的根时,怎样判断函数是否有零点?活动:先让学生思考或讨论后再冋答,经教师提示、点拨,对I叫答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路:问题①:先求方稈的两个根,找出抛物线的顶点側出二次函数的图象(图3-I-1-2). 问题②:方程有一个根,说明抛物线的顶点在x轴上(图3-1-1-3).问题③:方程没有实数根,抛物线与x轴没有交点,找出抛物线的顶点是曲二次函数图彖的关键(图 3-1-1-4).问题④:方稈的根与函数的图象和x 轴交点的横坐标都是实数. 问题⑤:对于其他函数这个结论正确吗? 问题⑥:函数的零点是一个实数. 问题⑦:可以利用“转化思想,问题⑧:足球比赛屮从落麻到领先是否一定经过“平分"?由此能占找出判断函数是否有零点 的方法?函数图彖穿过x 轴则有零点,怎样用数学语言描述呢?讨论结果:①方程的两个实数根为・1, 3. ② 方程的实数根为1. ③ 方程没有实数根.④ 方程的根就是函数的图象与x 轴交点的横坐标.⑤ 一元二次方程根的个数,就是二次函数图象与x 轴交点的个数,可以用判别式来判定一元 二次方稈根的个数a 当△>()时,一元二次方稈有两个不等的实根X|、X2,相应的二次函数 的图彖与X 轴有两个交点(X],0)、(X2,0);b.当A=0时,一元二次方程有两个相等的实根XLX2, 相应的二次函数的图象与x 轴有唯一的交点(x h O);c.当△<()时,一元二次方程没有实根,相 应的二次函数的图象与x 轴没有交点.⑥ 一般地,对于函数y=f(x),我们把使f(x)=O 的实数x 叫做函数y=f(x)的零点. ⑦ 方程f(x)=O 有实根O 函数y=f(x)的图象与x 轴有交点O 函数y=f(x)有零点.⑧ 观察二次函数f!x)=x 2-2x-3的图象,我们发现函数f(x)=x 2-2x-3在区间[-2,1] 上有零点.计算f (・2)与f(l)的乘积,发现这个乘积特点是小于零.在区间[2,4]同样如此.可以发现,f(-2)f(l)<0,函数y=x 2-2x-3在区间(・2, 1)内有零点x=-l,它是方稈 X 2-2X -3=0的一个根.同样地,f(2)f(4)<0,函数y=x 2-2x-3在(2, 4)内有零点x=3,它是方程 X 2-2X -3=0的另一个根.应用示例思路1例1已知函数f(x)=|x 2-2x-3|-a 分别满足下列条件,求实数a 的取值范围.(1) 函数有两个零点; (2) 函数有三个零点; (3) 函数有四个零点.活动:根据零点概念,学生先思考或讨论后再冋答,教师点拨、提示并及时评价学生.因为 函数f(x)=|x 2-2x-3|-a 的零点个数不易讨论,所以可转化为方程|x 2-2x-3|-a=0根的个数来讨论, 即转化为方程|x 2-2x-3|=a 的根的个数问题,再转化为函数f(x)=|x 2-2x-3|与函数f(x)=a 交点个数 问题.解:设f(x)=|x 2-2x-3|和f(x)=a 分别作出这两个函数的图象(图3-1-1-5),它们交点的个数,即 函数f(x)=|x 2-2x-3|-a 的零点个数.y\\ /3 ;/ 2I1 1 1 1■ 一 2-10 1 2 x-1图 3-1-1-4图3-1-1-5(1)若函数有两个零点,则a=0或a>4.(2)若函数有三个零点,则a=4.⑶函数有四个零点,则0<a<4.变式训练1.判断函数y=|x-l|-2零点的个数.解:通过分类讨论把绝对值函数转化为分段函数,作出函数图彖(图3-1-1-6),函数y=|x-l|-2的图象与x轴有两个交点,所以函数y=|x-l|-2有两个零点.2.求证:函数f(x)=2x2-3x-2有两个零点.证法一:因为一元二次方程2X2-3X-2=0的判别式23‘+4><2><2=25>0,所以一元二次方程2X2-3X-2=0有两个不相等的实根,所以函数f(x)=2x2-3x-2有两个零点. 证法二:因为一元二次方程2X2-3X-2=0可化为(2x+l)(x・2)=0,所以一元二次方稈2X2-3X-2=0有两个不相等的实根X|=2,x2=- —.2所以函数f(x)=2x2-3x-2有两个零点.证法三:因为函数f(x)=2x2-3x-2的图彖是一条开口向上的抛物线,且顶点在x轴的下方,即f(0)=-2<0,所以函数f(x)=2x2-3x-2有两个零点.如图3-1-1-6.点评:判断函数零点个数可以结合函数的图彖.方法:零点函数方程的根两图象交点.数学思想:转化思想和数形结合思想.例2若关于x的方程3x'・5x+a=0的一根在(・2, 0)内,另一个根在(1, 3)内,求a的取值范围. 活动:学生白己思考或讨论,再写出(最好用实物投影仪展示写的正确的答案).教师在学生屮巡视其他学生的解答,发现问题及时纠正,并及时评价.如果用求根公式与判别式来做,运算量很大,能否将问题转化?借助二次函数的图象,从图象屮抽出与方稈的根有关的关系式,使得问题解答大大简化.引导学生画出函数的图象观察 分析.解:设f(x)=3x 2-5x+a,则f(x)为开口向上的抛物线,如图3-1-1-8:因为f(x)=O 的两根分别在区间(・2, 0)、(1, 3)内,思路2例]若方程2农%匸0在(0, 1)内有解,求实数a 的取值范围.活动:学生先思考或讨论,再冋答.教师根据实际,可以提示引导: ①有解包括有一解和有两解,要分类讨论.② 用一般解法固然可以,若结合函数图象观察分析,可以找到捷径. ③ 有两种情况:a.a=0;b.a^0,A>0.解:令 f(x)=2ax 2-x-l,⑴当方程2ax 2-x-l=0在(0, 1)内恰有一个解时,f(0)-f(l)<0或妙0且△=(), 由 R0)・f(l)v0,得(・l)(2a ・2)<0,所以 a>l .由 20,得 l+8a=0,a=--8・•・方程为- -x 2-x-l= 0,即x=-2电(0,1)(舍却•综上可得a>l. 4 (2)当方程2ax2・x ・l=0在(0, 1)内有两个解时,则/(-2) > 0,22 + a > 0,所以 /(0)< 0, / ⑴ < 0,/(3) > °,即"V °’故所求a 的取值范囤是-12<a<0. —2 + a < 0,12 + a 〉0. 变式训练关于x 的方稈x 2-ax+a 2-7=0的两个根一个大于2,另一个小于2,求实数a 的収值范序I. 解:设f(x)=x 2-ax+a 2-7,图彖为开口向上的抛物线(如图3-1-1-9). 因为方程x 2-ax+a 2-7=0的两个根一个大于2,另一个小于2, 所以函数f(x)=x 2-ax+a 2-7的零点一个大于2,另一个小于2.即函数f(x)=x 2-ax+a 2-7的图象与x 轴的两个交点在点(2, 0)的两侧. 只需 fi[2)<0,即 4・2a+a 「7<0,所以-l<a<3.a > 0, /(0) > 0, /(I ) > 0, 0v 丄<1,或<4a /(丄)< 0 4aa < 0, /(0)< o, /(l )<0, 0<丄<1,4a /(丄)> 0, 4a容易解得实数a 不存在. 综合⑴⑵,知a>l.变式训练若方程ax 2+3x+4a=0的根都小于1,求实数a 的取值范围.解:⑴当a=0时,x=0满足题意.(2)当 a 工0 时,设"x)=ax'+3x+4a. 方法一:若方稈ax 2+3x+4a=0的根都小于1,贝9——< a4 4a > 0或a < -1.5, ,\o<a <2.、 ~ 4 a > 0或a < -0.6,△ = 9-16/ >0,_±<!2a ' 妙⑴> 0,综上⑴⑵M 0<a< -.4方法二:若方程ax 2+3x+4a=0的根都小于1,则A = 9 — 16cr > 0, v 兀I + x 2 < 2,(兀[一 1)(兀2 一 1)> °, △ = 9 — 16d~ > 0,X )+ x 2 < 2,%!x 2 -(X] +X ・2)+ 1 > 0,A = 9-16«2>0,3 3 * --- V 2,解得0<aW —.a44 + - + 1>0,综上⑴⑵,得0<a< -.4点评:有两种方法:(1)结合函数图彖利用函数符号列不等式纽.. (2)代数方法,利用根与系数关系结合判别式列不等式组.例 2 设二次函数 f(x)=ax2+bx+c(a>0),方程 f(x)-x=O 的两个根为 x r x?,满足 0<X|<x 2<—. a ⑴当 XW(O,X])时,求证:x<f(x)<xi ;⑵设函数f(x)的图彖关于肓线X=Xo对称,求证:x0<—.2活动:根据方稈与函数关系,学生先思考或讨论后再I川答,教师点拨、提示并及时评价学生. 因为方程f(x)-x=o的两个根为X|、X2,可考虑把f(x)・x设为双根式,然后判断其符号,再考虑二次函数的双根与二次函数对称轴的关系.证明:(1)VX|> X2是方程f(x)-x=O的两个根,且0<X|<X2<—,a・••当xW(O,xJ时,有f(x)-x=a(x-x 1 )(x-x2)=a(x l-x)(x2-x)>0,即f(x)-x>0.又fi(x)-x=a(xrx)(x2-x)<a- — (xi-x)=xi-x,即fi[x)-x<x l-x,故O<fi[x)-x<xi-x,即x<fi(x)<X|.a(2) Vf(x)-x=ax2+(b-l)x+c,K f(x)-x=O 的两个根为x【、x2,・・・二次函数f(x)-x的对称轴为x= 土士2 = 一1.・・・玉=—2 +丄—乞.22a 2 2a 2a 2又由已知,W x()=-—,・*. — =x()+ ——土.2a 2 2a 2又x2< ————土>0.故—=x()+ 丄一土>x(),即x0< —.a la 2 2 2a 2 2变式训练1.已知二次函数f(x)满足f(3・x)=f(3+x),且其两零点分别为Xi、x?,求X|+x2.解:T对任意x都有f(3-x)=f(3+x), /.函数f(x)的图象上有两点(3・x,y)、(3+x,y)关于x=3对称.・・・二次函数f(x)的对称轴为x=3.・・・xi、X2为二次函数f(x)的两个零点,.*.X|+X2=6.2.若函数f(x)满足f(3-x)=f(3+x),且函数f(x)有6个零点,求所有零点的和.解:同理函数f(x)的对称轴为x=3, /.3(xi+x2)=18.点评:①二次函数的双根与二次函数解析式的关系是:若二次项系数为a,两个根为xi、x2, 则二次函数解析式为f(x)=a(x-xi)(x-x2).②二次函数的双根与二次函数对称轴的关系忌二次函数f(X)的对称轴为x=^.总二次函数的双根是联系函数与方程的桥梁和纽带,应仔细体会、准确把握.知能训练讨论函数y=e x+4x-4的零点的个数.活动:鼓励学生说出H己的见解,并说明理由.函数零点问题是函数的重要应用,离不开函数的图象和性质.⑴利川f(a)f(b)<0及函数的单调性.⑵作出y=e x和y=4-4x的图象,把函数y=e'+4x-4的零点的个数转化为方程e x=4-4x根的个数,再转化为上述两函数图彖交点的个数.解:(方法一)利用计算机作出x, f(x)的对应值表:由表和图可知,f(0)<0,f(l)>0,则f(0)f(l)<0,这说明f(x)在区间(0,1)内有零点,由于函数在定义域(~,炖)内是增函数,所以它仅有一个零点.(方法二)作出尸h和y=4-4x的图象(图3-1-1-10),即可直观地看出零点的个数为1.总结点评:讨论函数零点个数问题是函数的重要应用,由于函数与方程的特殊关系,所以这个问题常用的方法是:⑴解方程;⑵呦图彖;(3)利用fl:a)f(b)<0及函数的单调性;同时这些方法是有机联系的.拓展提升1.2007山东青岛高三教学质量检测,理19已知mWR,设P:x】和x?是方x2 3-ax-2=0的两个根,4不等式|m-5|<|x i-x2|Xt任意实数aG [1, 2]恒成立;Q:函数f(x)=3x2+2mx+m+ —有两个不同的零点,求使P和Q同时成立的实数m的取值范I韦I.解:由题意知xi+x2=a,X|X2=-2, |xi-x2|= + X2)2-4X(X2 = Va2 + 8.当aw [1,2] H、J,Ja: +8的最小值为3.要使|m-5|<|x r x2|^j任意实数泻[1, 2]恒成立,只需|m—5|<3,B|J 2<m<8.4 4由已知得Q 'I l:f(x)=3x2+2mx+m+-的判别式△=4n?・12(m+—)=4n?・12m・16>0,得m<・l 或m>4.f2 < m < 8,综上,要使P和Q同时成立,只需4 / 解得实数m的取值范围是(4,8] •[m <一 1 或加 > 4,2.如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)f(b)>0,那么函数y=f(x)在区间(a ,b)内是否有零点?可能有几个零点?活动:学生先思考或讨论,再冋答•利用函数图象进行探索分析:①有没有零点?②零点的个数是奇数还是偶数?解析:零点个数可以是任意白然数.下血讨论在区间[-3,31上函数零点个数,(1)可能没有零点如图(图3-1-1-11).2 可能有一个零点如图(图3-1-1-12).3 可能有两个零点如图(图3-1-1-13).(4)可能有三个零点如图(图3-1-1-14).(5)可能有n(nGN)个零点,图略.点评:在区间[-3,31 ±函数零点个数可以是任意白然数.借助计算机可以验证同学们的判断, 激发学生学习兴趣.课堂小结木节学习了:①零点的概念;②零点的判断方法;③利用函数的单调性证明零点的个数;④零点的应用.学习方法:由特殊到一般的方法.数学思想:转化思想、数形结合思想.作业课本Pgs练习1.设计感想木节以事例导入,该事例是学生很感兴趣的话题,发人深思而紧贴木节主题,为示面讲解埠好了伏笔•因为二次函数、二次方程永远是高考的重点,所以木节结合二次函数的图象性质详实讨论了有关二次函数的零点和二次方稈的根的问题•木节不仅选用了一些传统经典的题目进行方法总结,还搜集了一些最新的高三模拟题加以充实提高•另外,木节目的明确、层次分明、难度适屮,对学生可能产生兴趣的问题进行了拓展,希望大家喜欢.第2课时方程的根与函数的零点复习提出问题①已知函数f(x)=mx2+mx+l没有零点,求实数m的范围.②证明函数f(x)=x2+6x4-10没有零点.③已知函数fl;x)=2mx2-x+ — m有一个零点,求实数m的范围.④已知函数fi[x)=2(m+l)x2+4mx+2m-l有两个零点,求实数m的范围.活动:先让学生动手做题示再冋答,经教师提示、点拨,对冋答正确的学生及时表扬,对冋答不准确的学生提示引导考虑问题的思路.讨论结果:①因为A=m2-4m<0或m=0,二0Wm<4.②因为△=36・40二4<0,・・・没有零点.(3)A= 1 -4m2=0 或m=0, m=—或m= 一丄或m=0._ 2 2④厶=16m2-8(m+1 )(2m-1 )=-8m+8>0 且2(m+1 )#),/. m< 1 且m/-l.导入新课思路1・(情景导入)歌中唱到:再“穿过,,一条烦恼的河流明天就会到达,同学们知道生活中“穿过”的含义.请同学们思考用数学语言是怎样描述函数图象“穿过、轴的?学生思考或讨论冋答:利用函数值的符号,即f(a)f(b)<0.思路2・(直接导入)教师玄接点出课题:这一节我们将进一步巩固有关方程的根与函数的零点的知识,总结求方程的根与函数的零点的方法,探寻其中的规律.推进新课新知探究①如果函数相应的方稈不易求根,其图象也不易画出,怎样讨论其零点?②用数学语言总结判断零点存在性定理,并找出好的理解记忆方法.活动:先让学生动手做题后再冋答,经教师提不、点拨,对冋答正确的学生及时表扬,对冋答不准确的学生提示引导考虑问题的思路.讨论结果*①在闭区间[a,b]上,若f(a)f(b)<0, y=f(x)连续,则(a,b)内有零点.②如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在cW(a,b),使得f(c)=O,这个c也就是方程f(x)=O的根. 我们把它叫做零点存在性定理.因为闭区间端点符号相反的连续函数在开区间内有零点,可以简记为:“闭端反连(脸),开内零占”应用示例思路1例1求函数f(x)=lnx+2x-6的零点的个数.活动:根据零点概念,学生先思考或讨论后再冋答,教师点拨、提示:因为方稈lnx+2x-6=0的根不易求得,函数f(x)=lnx+2x-6的图象不易向出,如果不借助计算机,怎么判断零点个数?可以利用f(a)f(b)<0,及函数单调性.解:利用计算机作出x, f(x)的对应值表:由表和图3-1-1-15可知,f(2)<0,f(3)>0,则f(2)f(3)<0,这说明賈x)在区间(2,3)内有零点.由于函变式训练证明函数f(x)=lgx+x-8有且仅有一个零点. 证明:如图3-1-1-16,0为f(l)=-7,f(10)=3,Af(l)fi[10)<0.・•・函数f(x)=lgx+x-8有一个零点.Vy=lgx为增函数,y=x-8是增函数,・•・函数fi[x)=lgx+x-8是增函数.・•・函数fi[x)=lgx+x-8有且仅有一个零点.点评:判断零点的个数:⑴利用零点存在性定理判断存在性;(2)利用单调性证明唯一性.X— 2 例2已知函数f(x)=3x+-——,x + \(1)判断函数零点的个数.(2)找出零点所在区间.Y— 2解:⑴设g(x)=3\h(x)=-——-,x + 1作出它们的图象(图3-1-1-17),两函数图象交点的个数即为f(x)零点的个数.X— 2 所以两函数图象有且仅有一个交点,即函数f(x)=3"+ —有且仅有一个零点.兀+ 1图3-1-1-17(2)因为f(0)=・l,f(l)=2.5,所以零点泻(0,1). 变式训练x图3-1-1-18由表和图3-1-M8可知,f(O)<O,f(l)>0,则f(0)f(l)<0,这说明f(x)在区间内有零点.下面证明函数在定义域(8,+g)内是增函数.设X b X2^ (-00,4-00),且X02,nx1)-fi[x2)=2X1 +4X|・4・(2 勺+4X2-4)=2V,-2X2 +4(x r x2)=2 V2 (2X, -x2-l)+4(xrx2).Vxi<x2,・•.X|-X2<0,2V,・X2・l<0,2勺>0..•.f(Xi)-f(X2)<0.函数在定义域(4,+8)内是增函数. 则函数f(x)=2x+4x-4有且仅有一个零点.思路2例1证明函数y=2|x!-2恰有两个零点.图3-1-1-19证明:如图3-l-l-19,V f(-2)=2,f(0)=-1 卫2)=2,・•・ f(-2)f(0)<0,f(0)f(2)<0.・・・函数y=2|x!-2有两个零点.要证恰有两个零点,需证函数y=2|x|-2在(0, +©上为单调的,函数y=2|x|-2在(s 0)上为单调的. •・•在(0, +oo)上,函数y=2x|-2可化为y=2x-l, 下面证明f(x)=2x-l在(0, +oo)上为增函数.证明:设X],X2为(0, +oo)上任意两实数,且0<X]<x2,•・・ f(x!)-f(X2)=2 x, -2-(2 X2 -2)=2 x, -2 紐=2 七(2 x, -x2-l),V 0<X]<x2, /.X|-x产0,2Al・x产1./. 2 V2 >0,2 v,・X2・l<0.:.2X2 (2 v, -x2-l)<0.・・・f(xJ・f(X2)<0.・・・f(X|)<fi[X2).・•・函数y=2|x-2在(0, p)上为增函数. 同理可证函数y=2|x|-2在(s, 0)上为减函数.・•・函数y=2|x-2恰有两个零点.变式训练证明函数f(x)=x+ — -3在(0, +8)上恰有两个零点.证明:Vf(|)=|,f(l)=-l,f(3)=|,1/.f(-)f(l)<0,f(l)fi[3)<0.・・・函数f(x)=x+--3在(0, +oo)上有两个零点.X要证恰有两个零点,需证函数f(x)=x+ — -3在(0, 1)上为单调的,函数f(x)=x4- — -3在(1, +cc)上为单调的. X X证明:设X[,X2为(0, 1)上的任意两实数,且X1<X2.•・• f(X])・f(X2)=X|+ —-3-(X2+ 丄-3)=(X|-X2)+( ---- )=(X|・X2)+ 土— =(X r X2)( —-),x^x2x{x2— Xi X|X?— 1T 0<X|<x2<l, Ax r X2<0, ------ ------ <0. /• (x r x2)( ------ ---- )>0.x t x2x,x2.•.f(X!)-f(X2)>0.・•・函数f(x)=x+--3在(0, 1)上为减函数. 同理函数f(x)=x+丄・3在(1, +8)上为增函数.X・•・函数f(x)=x+-1- -3在(0, +00)上恰有两个零点(如图3-1-1-20).x点评:证明函数零点的个数是一个难点和重点,对于基木初等函数可以借助函数图象和方稈来讨论.对于较复杂的函数证明函数恰有n个零点,先找出有n个,再利用单调性证明仅有n 个.例2已知函数f(x)=ax3+bx24-cx4-d有三个零点,分别是0、1、2,如图3-1-1-21,求证:b<0.活动:根据零点概念,学生先思考或讨论后再冋答,教师点拨、提示: 方法一:把零点代入,用a、c表示b.方法二:用参数a表示函数.证法一:因为f(0)=f(l)=f(2)=0,所以d=0,a+b+c=0,4a+2b+c=0.… b 2所以a= ---- £= ------ b.3 3b r b所以f(x)= ---- x(x-3x+2)= ------- x(x-1 )(x-2).当x<0 时,f(x)<0,所以b<0.证法二因为f(0)=f(l)=f(2)=0,所以f(x)=ax(x-l)(x-2).当x>2时,f(x)>0,所以a>0.比较同次项系数,得b=・3a.所以b<0.变式训练函数y=ax2-2bx的一个零点为1,求函数y=bx2-ax的零点. 答案:函数y=bx2-ax的零点为0、2.点评:如果题li给出函数的零点,这涉及到零点的应川问题.(1)可以考虑把零点代入用待定系数法解决问题. ⑵利用零点的特殊性把解析式的设法简单化. 知能训练1.函数f(x)=lgx-2x2+3的零点一定位于下列哪个区间?()A.(4,5)B.(l,2)C.(2,3)D.(3,4)2.若函数f(x)=2mx+4在[・2,1]上存在零点,则实数m的取值范围是()A. [--4]B.(・®・2] U [l,+oo)2C. L-1,2]D.(-2,l)3.已知函数f(x)=—3x> — 6x +1,有如下对应值表:函数y=f(x)在哪儿个区间内必有零点?为什么?答案:1.B 2.B 3.(0, 1),因为f(0)<l)<0.点评:结合函数图彖性质判断函数零点所在区间是木节重点,丿应切实掌握. 拓展提升方程lnx+2x+3=0根的个数及所在的区间,能否进一步缩小根所在范弗I? 分析:利用函数图象(图3-1-1-22)进行探索分析.图3-1-1-22解:⑴观察函数的图象计算f(l)、f(2),知f(x)=lnx+2x+3有零点.(2)通过证明函数的单调性,知f(x)=lnx+2x+3有一个零点xe(l,2).请同学们白己探究能否进一步缩小根所在范I韦I?借助计算机可以验证同学们判断,激发学生学习兴趣.课堂小结(1)学会由函数解析式讨论零点个数,证明零点个数.(2)思想方法:函数方稈思想、数形结合思想、分类讨论思想.作业课本卩88练习2.设计感想如何用数学语言描述“穿过"是本节的关键,本节从导入开始让学生体会数学语言与文字语言的区别,并进一步让学生学会应用数学语言描述零点存在性定理•木节多次用计算机作图来感知函数零点,在零点证明题中又经常用到函数的单调性进行严格证明,所以木节是数与形的完美统一.3丄2用二分法求方程的近似解整体设计教学分析求方程的解是常见的数学问题,这Z前我们学过解一元一次、一元二次方程,但有些方程求精确解较难•木节从另一个角度来求方程的近似解,这是一种崭新的思维方式,在现实生活中也有着广泛的应用.用二分法求方程近似解的特点是:运算量大,且重复相同的步骤,因此适合用计算器或计算机进行运算.在教学过程屮要让学生体会到人类在方稈求解屮的不断进步.三维目标1.让学生学会用二分法求方程的近似解,知道二分法是科学的数学方法.2.了解用二分法求方稈的近似解特点,学会用计算器或计算机求方程的近似解,初步了解算法思想.3.冋忆解方程的历史,了解人类解方程的进步历程,激发学习的热情和学习的兴趣.重点难点用二分法求方程的近似解.课时安排1课时教学过程导入新课思路1・(情景导入)师:(手拿一款手机)如果让你来猜这件商品的价格,你如何猜?生1:先初步估算一个价格,如果高了再每隔10元降低报价.生2:这样太慢了,先初步估算一个价格,如果高了每隔100元降低报价.如果低了,每50 元上升;如果再高了,每隔20元降低报价;如果低了,每隔10元上升报价……生3:先初步估算一个价格,如果高了,再报一个价格;如果低了,就报两个价格和的一半; 如果高了,再把报的低价与一半价相加再求其半,报出价格;如果低了,就把刚刚报出的价格与前血的价格结合起来取其和的半价……师:在现实生活屮我们也常常利用这种方法.譬如,一天,我们华庄校区与锡南校区的线路出了故障,(相距大约3 500米)电工是怎样检测的呢?是按照生1那样毎隔10米或者按照生2那样每隔100米来检测,还是按照生3那样来检测呢?生:(齐答)按照生3那样来检测.师:生3的冋答,我们可以用一个动态过程来展示一下(展示多媒体课件,区间逼近法). 思路2・(事例导入)有12个小球,质量均匀,只有一个球是比别的球重,你用天平称几次可以找出这个球,要求次数越少越好•(让同学们白由发言,找出最好的办法)解:第一次,两端各放六个球,低的那一端一定有重球.第二次,两端各放三个球,低的那一端一定有重球.笫三次,两端备放一个球,如果平衡,剩下的就是重球,否则,低的就是重球.其实这就是一种二分法的思想,那什么叫二分法呢?推进新课新知探究提出问题①解方程2x-16=0.②解方程X2-X-2=0.③解方稈x '-2x~・x+2=0.④解方程(X L2)(X L3X+2)=0.⑤我们知道,函数f(x)=lnx+2x-6在区间(2, 3)内有零点.进一步的问题是,如何找出这个零点的近似值?⑥“取屮点''后,怎样判断所在零点的区间?⑦什么叫二分法?⑧试求函数f(x)=lnx+2x-6在区间(2, 3)内零点的近似值.⑨总结用二分法求函数零点近彳以值的步骤.⑩思考用二分法求函数零点近似値的特点.讨论结果:①x=&②x=・l,x=2.③x=・l,x=l,x=2.④x=-近,x= V2 ,x= 1 ,x=2.⑤如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值•为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围.(“取中点”,一般地,。
新课标人教A版必修一 3.1函数与方程(课件)
⇔
观察二次函数f(x)=x2-2x-3的图象 如图 我们 的图象(如图 例:观察二次函数 观察二次函数 的图象 如图),我们 发现函数f(x)=x2-2x-3在区间 发现函数 在区间[-2,1]上有零点 计 上有零点.计 在区间 上有零点 的乘积,你能发现这个乘积有什么特 算f(-2)与f(1)的乘积 你能发现这个乘积有什么特 与 的乘积 在区间[2,4]上是否也具有这种特点呢 上是否也具有这种特点呢? 点?在区间 在区间 上是否也具有这种特点呢
函数零点的性质: 函数零点的性质
如果函数在区间[a,b]上的图象是连续不断的一条曲线 上的图象是连续不断的一条曲线, 如果函数在区间 上的图象是连续不断的一条曲线 并且有f(a) • f(b)<0,那么 函数 那么,函数 在区间(a,b)内有零 并且有 那么 函数y=f(x)在区间 在区间 内有零 即存在c 使得f(c)=0,这个 也就是方程 这个c也就是方程 点,即存在 ∈ (a,b),使得 即存在 使得 这个 f(x)=0的根 的根. 的根
方法2:将函数 方法 将函数f(x)=lnx+2x-6零点个数转化为函 将函数 零点个数转化为函 的图象交点的个数. 数y=lnx,y=-2x+6的图象交点的个数 的图象交点的个数
练习:书本 页 . 练习 书本97页1.2 书本
小结:1方程的根与函数的零点的关系 小结 方程的根与函数的零点的关系; 方程的根与函数的零点的关系 2.判定方程在某个区间上存在根的基本步骤 判定方程在某个区间上存在根的基本步骤. 判定方程在某个区间上存在根的基本步骤 3体现特殊到一般的思想 数形结合 转化的思想 体现特殊到一般的思想,数形结合 转化的思想. 体现特殊到一般的思想 数形结合,转化的思想
求函数f(x)=lnx+2x-6的零点的个数 的零点的个数. 例1:求函数 求函数 的零点的个数
人教A版数学必修一3.1《函数与方程》课时2课件
A.(1,0) B.(1,2) C .(0,1) D.(2,3)
x
-1
0
1
2
3
f ( x) -1
-1
-1
5
23
试一试
变式训练1下列函数图像与x轴均有交点,其中不能用二分
法求图中交点横坐标的是() B
y
y
y
y
x
x
x
A
B
C
温馨
提示 二分法只能用来求变号零点
x
D
例2.求函数零f (点x()精确x度3 0.1)x 1 解: f (1) 0, f (2) 0
x
-1
0
1
2
3
4
5
y -9.5
-6
-2
3
10
21
40
由f(1)·f(2)<0可知,这个函数在(1,2)有零点x0. 计算f(1.5)≈0.33,可知x0∈(1,1.5)… 同理可得x0∈(1.375,1.5),x0∈(1.375,1.4375)
∵|1.375-1.4375|=0.0625<0.1
∴原方程的近似解可取为1.4375。
二分法求方程近似解的口诀:
定区间,找中点, 中值计算两边看; 同号去,异号算, 零点落在异号间; 周而复始怎么办? 精确度上来判断.
课后练习 课后习题
∴函数的零点近似值可取为1.3125.
区间长度
1 0.5 0.25 0.125 0.0625
2.给定精确度ε,用二分法求函数y=f(x)零点近似值的步骤:
第一步:确定区间[a,b](使f(a)·f(b)<0) 第二步:求区间(a,b)的中点c 第三步:计算f(c)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.1.2用二分法求方程的近似解
一、教学目标
1.知识与技能
(1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解;
(2)体会程序化解决问题的思想,为算法的学习作准备。
2.过程与方法
(1)让学生在求解方程近似解的实例中感知二分法思想;
(2)让学生归纳整理本节所学的知识。
3.情感、态度与价值观
①体会二分法的程序化解决问题的思想,认识二分法的价值所在,使学生更加热爱
数学;
②培养学生认真、耐心、严谨的数学品质。
二、教学重点、难点
重点:用二分法求解函数f(x)的零点近似值的步骤。
难点:为何由︱a - b ︳<ε便可判断零点的近似值为a(或b)?
三、学法与教学用具
1.想-想。
2.教学用具:计算器。
四、教学设想
(一)、创设情景,揭示课题
提出问题:
(1)一元二次方程可以用公式求根,但是没有公式可以用来求解方程㏑x+2x-6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的根呢?
(2)通过前面一节课的学习,函数f(x)=㏑x+2x-6在区间内有零点;进一步的问题是,如何找到这个零点呢?
(二)、研讨新知
一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。
取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)*f(3)<0,所以零点在区间(2.5,3)内;
再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)≈0.512,因为f(2.75)*f(2.5)<0,所以零点在(2.5,2.75)内;
由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。
例如,当精确度为0.01时,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我们可以将x=2.54作为函数f(x)=㏑x+2x-6零点的近似值,也就是方程㏑x+2x-6=0近似值。
这种求零点近似值的方法叫做二分法。
1.师:引导学生仔细体会上边的这段文字,结合课本上的相关部分,感悟其中的思想方法.
生:认真理解二分法的函数思想,并根据课本上二分法的一般步骤,探索其求法。
2.为什么由︱a - b ︳<ε便可判断零点的近似值为a(或b)?
先由学生思考几分钟,然后作如下说明:
设函数零点为x0,则a<x0<b,则:
0<x0-a<b-a,a-b<x0-b<0;
由于︱a - b ︳<ε,所以
︱x0- a ︳<b-a<ε,︱x0- b ︳<∣ a-b∣<ε,
即a或b 作为零点x0的近似值都达到了给定的精确度ε。
㈢、巩固深化,发展思维
1.学生在老师引导启发下完成下面的例题
例2.借助计算器用二分法求方程2x+3x=7的近似解(精确到0.01)问题:原方程的近似解和哪个函数的零点是等价的?
师:引导学生在方程右边的常数移到左边,把左边的式子令为f(x),则原方程的解就是f(x)的零点。
生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用二分法求解.
(四)、归纳整理,整体认识
在师生的互动中,让学生了解或体会下列问题:
(1)本节我们学过哪些知识内容?
(2)你认为学习“二分法”有什么意义?
(3)在本节课的学习过程中,还有哪些不明白的地方?
(五)、布置作业。