数学建模方法详解三种最常用算法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模方法详解--三种最常用算法

一、层次分析法

层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用.

(一) 层次分析法的基本原理

层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.

1.递阶层次结构原理

一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.

2.测度原理

决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理

层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题. (二) 层次分析法的基本步骤

层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1]. 1. 成对比较矩阵和权向量

为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度.

假设要比较某一层n 个因素n C C ,,1 对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比,全

部比较结果可用成对比较阵

1

,0,ij ij ji n n

ij

A a a a a

表示,A 称为正互反矩阵. 一般地,如果一个正互反阵A 满足:

,ij jk ik a a a ,,1,2,,i j k n L (1)

则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质: ①A 的秩为1,A 的唯一非零特征根为n ;

②A 的任一列向量都是对应于特征根n 的特征向量.

如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,,1 对上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许范围内,用对应于A 最大特征根(记

作 )的特征向量(归一化后)作为权向量w ,即w 满足:

Aw w (2)

直观地看,因为矩阵A 的特征根和特征向量连续地依赖于矩阵的元素ij a ,所以当ij a 离一致性的要求不远时,A 的特征根和特征向量也与一致阵的相差不大.(2)式表示的方法称为由成对比较阵求权向量的特征根法.

2. 比较尺度

当比较两个可能具有不同性质的因素i C 和j C 对于一个上层因素O 的影响时,采用Saaty 等人提出的91 尺度,即ij a 的取值范围是9,,2,1 及其互反数91,,21,1 .

3. 一致性检验

成对比较阵通常不是一致阵,但是为了能用它的对应于特征根 的特征向量作为被比较因素的权向量,其不一致程度应在容许范围内.

若已经给出n 阶一致阵的特征根是n ,则n 阶正互反阵A 的最大特征根n ,而当n 时A 是一致阵.所以 比n 大得越多,

A 的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用n 数值的大小衡量A 的不一致程度.Saaty 将

1

n

CI n

(3)

定义为一致性指标.0CI 时A 为一致阵;CI 越大A 的不一致程度越严重.注意到A 的n 个特征根之和恰好等于n ,所以CI 相当于除 外其余1n 个特征根的平均值.

为了确定A 的不一致程度的容许范围,需要找到衡量A 的一致性指标CI 的标准,又引入所谓随机一致性指标RI ,计算RI 的

过程是:对于固定的n ,随机地构造正互反阵A ,然后计算A 的一致性指标CI .

表1 随机一致性指标RI 的数值

表中1,2n 时0RI ,是因为2,1阶的正互反

阵总是一致阵.

对于3n 的成对比较阵A ,将它的一致性指标CI 与同阶(指n 相同)的随机一致性指标RI 之比称为一致性比率CR ,当

0.1CI

CR RI

(4) 时认为A 的不一致程度在容许范围之内,可用其特征向量作为权向量.

对于A 利用(3),(4)式和表1进行检验称为一致性检验.当检验不通过时,要重新进行成对比较,或对已有的A 进行修正. 4. 组合权向量

由各准则对目标的权向量和各方案对每一准则的权向量,计算各方案对目标的权向量,称为组合权向量.一般地,若共有s 层,则第k 层对第一层(设只有1个因素)的组合权向量满足:

1,3,4,k

k

k w W w k s L (5)

其中 k

W 是以第k 层对第1k 层的权向量为列向量组成的矩阵.于是最下层对最上层的组合权向量为:

132s s s w W W W w L (6)

5. 组合一致性检验

在应用层次分析法作重大决策时,除了对每个成对比较阵进行一致性检验外,还常要进行所谓组合一致性检验,以确定组合

权向量是否可以作为最终的决策依据.

组合一致性检验可逐层进行.如第p 层的一致性指标为

p n p CI CI ,,1 (n 是第1 p 层因素的数目),随机一致性指标为

1,,p p n

RI RI L ,定义

11,,P p p p n CI CI CI w L 11,,p p p p n RI RI RI w

L 则第p 层的组合一致性比率为:

,3,4,,p p p CI CR

p s RI

L (7) 第p 层通过组合一致性检验的条件为 0.1p

CR .

定义最下层(第s 层)对第一层的组合一致性比率为:

2*s

P p CR CR (8)

对于重大项目,仅当*CR 适当地小时,才认为整个层次的比较判断通过一致性检验.

层次分析法的基本步骤归纳如下:

(1) 建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常称为准则

相关文档
最新文档