七年级数学一元一次方程应用题解题技巧
解一元一次方程应用题的方法与技巧
一元一次方程是初等数学中最基本的概念之一,解一元一次方程应用题则是数学中常见的问题类型之一。
本文将带领读者深入了解解一元一次方程应用题的方法与技巧,帮助读者更好地掌握这一知识点。
一、了解一元一次方程的概念在解一元一次方程应用题之前,我们首先需要了解一元一次方程的概念。
一元一次方程是指方程中只含有一个未知数,并且该未知数的最高次数为一。
一元一次方程的一般形式为ax+b=c,其中a、b、c为已知数,x为未知数。
解一元一次方程就是要找到使得该方程成立的未知数的值。
二、掌握解一元一次方程的基本方法在解一元一次方程应用题时,我们可以通过以下基本方法来求解。
1. 移项当方程中含有未知数的项和已知数的项时,我们可以通过移项的方法将未知数的项移到一个侧,以便进行下一步计算。
对于方程2x+3=7,我们可以通过移项将3移到等号的右侧,得到2x=7-3。
2. 消元如果方程中包含多个未知数的项,我们可以通过消元的方法化简方程。
消元的方法通常是通过加减乘除的运算,将未知数的系数相消,从而得到一个简化的方程。
对于方程3x-2y=5和2x+y=7,我们可以通过消元的方法将y的系数相消,从而仅含有一个未知数x的方程。
3. 求解通过移项和消元的方法,我们最终可以得到一个只含有一个未知数的简单方程,然后可以通过解方程的方法求解未知数的值。
解方程的方法包括凑平方、分式法、代入法等。
通过这些方法,我们可以得出未知数的值,从而求解一元一次方程。
三、应用题解题技巧在解一元一次方程应用题时,我们常常面临各种实际问题,而这些问题往往可以用一元一次方程来进行建模和求解。
以下是一些解一元一次方程应用题的常用技巧。
1. 建立方程在解题时,我们首先需要根据实际问题建立方程。
这就需要我们理解问题,将问题中的已知条件和未知量用数学符号表示出来,建立起方程模型。
2. 明确未知数在建立方程时,我们需要明确未知数代表的是什么,只有明确了未知数,才能建立准确的方程模型。
初一数学一元一次方程解应用题答题技巧须知
初一数学一元一次方程解应用题答题技巧须知一元一次方程内容比较复杂,我们完全能够打破常规,灵活、巧妙地变通解题步骤,避繁就简,使解题过程简捷明了,初一数学一元一次方程解应用题答题技巧,供同学们参考。
一样在解决问题时第一步确实是要设出未知数,未知数的设法要紧有以下几种:1,有比较关系时,如甲比乙多8,我们一样设较小的为X,如此运算时要紧用的是加法不易出错;2,有倍数关系时,如数学小组人数是英语小组的5倍,我们设一倍量为X,用乘法表示其余量利于运算;3,在分数应用题中,我们设单位'1'为X,4,在有比的问题中,我们设一份数为X,5,在有和的问题中,我们设其中任意一个为X都能够,比如说两个班共有50人.解应用题的差不多步骤有:1,依据题目要求设出合适的未知数;2,依照题目实际情形找出等量关系,用文字关系式表示出来;3,依据等量关系,把关系式中的每一项用数或者未知数表示出来列出方程;4,解方程,依据题目问题运算;5,把方程的解代入原题目检验.其中的难点是第二步,找出等量关系,有些题目中的关系是比较明显的,而有的则是隐含的,需要大伙儿去用心体会,下面我给大伙儿示例两题: 1: 爷爷与孙子下棋,爷爷赢一盘记1分,孙子赢一盘记3分,两人下了12盘(未显现和棋)后,得分相同,他们各赢了多少盘?分析:属于和的问题,因此任意设一个为X,设爷爷赢了X题,则孙子赢了(12-X)盘,题目中的等量关系是爷爷得分=孙子得分,爷爷得分用X表示,孙子得分用3(12-X)表示,因此本题方程为X=3(12-X),解之得X=9,则12-X=12-9= 3,因此爷爷赢9盘,孙子赢3盘.2:在一只底面直径为30cm,高为8cm,的圆锥形容器中倒满水,然后将水倒入一只底面直径为10cm的圆柱形空容器里,圆柱形容器中的水有多高?分析:本题没有明显类型因此直截了当设问题,设圆柱形容器中的水有X 厘米,题目中的等量关系是隐含的,是圆锥形容器中的水的体积=圆柱形容器中水的体积,分别表示后有方程要练说,得练看。
七年级数学上册---一元一次方程应用题归类解题思路PPT课件
1.市场经济问题 【例题】某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、 2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供 2280名学生就餐. 〔1〕求1个大餐厅、1个小餐厅分别可供多少名学生就餐; 解:设1个小餐厅可供名学生就餐,那么1个大餐厅可供〔1680-2y〕名学生就 餐,根据题意,得2〔1680-2y〕+y=2280解得:y=360〔名〕所以16802y=960〔名〕 〔2〕假设7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由. 解:因为960x5+360x2=5520>5300, 所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.
【例题】两列火车分别行驶在平行的轨道上,其中快车车长为100米,慢车 车长150米,当两车相向而行时,快车驶过慢车某个窗口所用的时间为5秒。 ⑴ 两车的速度之和与两车相向而行时慢车经过快车某一窗口所用的时间各是 多少? 解:两车的速度之和=100÷5=20〔米/秒〕 慢车经过快车某一窗口所用的时间=150÷20=7.5〔秒〕 ⑵ 如果两车同向而行,慢车速度为8米/秒,快车从后面追赶慢车,那么从快 车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需的时间至少 是多少秒? 解:设至少是x秒,〔快车车速为20-8〕 那么〔20-8〕x-8x=100+150 x=62.5 答:至少62.5秒快车从后面追赶上并全部超过慢车。
【例题】与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。 行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。如果一 列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时 间是26秒。 ⑴ 行人的速度为每秒多少米? 行人的速度是:3.6km/时=3600米÷3600秒=1米/秒 骑自行车的人的速度是: 10.8km/时=10800米÷3600秒=3米/秒 ⑵ 这列火车的车长是多少米?
一元一次方程解题方法和技巧应用题
一元一次方程应用题解题方法和技巧一元一次方程应用题解题方法和技巧如下:方法:(1)和差倍分问题:①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长,公率......”来体现。
②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。
(2)行程问题:基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间。
路程=速度×时间。
①相遇问题:快行距+慢行距=原距。
②追及问题:快行距-慢行距=原距。
③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度。
逆水(风)速度=静水(风)速度-水流(风)速度。
技巧:1、注意语言与解析式的互化:如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”等。
2、注意从语言叙述中写出相等关系:如,x比y大3,则x-y=3或x=y+3或x-3=y。
3、注意单位换算:如,“小时”、“分钟”的换算;s、v、t单位的一致等。
一元一次方程:一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。
一元一次方程只有一个根。
一元一次方程最早见于约公元前1600年的古埃及时期。
公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。
16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。
1859年,数学家李善兰正式将这类等式译为一元一次方程。
七年级数学一元一次方程应用——比赛计分问题
比赛计分问题列方程解应用题是初中数学的重要内容之一,其核心思想就是将等量关系从情景中剥离出来,把实际问题转化成方程或方程组,从而解决问题。
列方程解应用题的一般步骤(解题思路)(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设——设出未知数:根据提问,巧设未知数.(3)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答——检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)【典例探究】某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。
已知某人有5道题未作,得了103分,则这个人选错了多少道题。
解:设这个人选对了x道题目,则选错了(45-x)道题,于是3x-(45-x)=1034x=148解得 x=37则 45-x=8答:这个人选错了8道题.某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?因为共有12个班,且规定每两个班之间只进行一场比赛,所以这个班应该比赛11场,设胜了x场,那么负了(11-x)场,根据得分为18分可列方程求解.【解析】设胜了x场,那么负了(11-x)场.2x+1•(11-x)=18x=711-7=4那么这个班的胜负场数应分别是7和4.【方法突破】比赛积分问题的关键是要了解比赛的积分规则,规则不同,积分方式不同,常见的数量关系有:每队的胜场数+负场数+平场数=这个队比赛场次;得分总数+失分总数=总积分;失分常用负数表示,有些时候平场不计分,另外如果设场数或者题数为x,那么x最后的取值必须为正整数。
初一一元一次方程应用题不会做
初一一元一次方程应用题不会做一、问题背景初中数学中,一元一次方程是一个重要的知识点,它在解决实际问题时具有很大的应用价值。
然而,很多初一学生在学习一元一次方程应用题时,由于基础知识不扎实或者解题思路不清晰而感到困惑,甚至无从下手。
在这样的情况下,需要通过系统的学习和实践,来提高自己解决一元一次方程应用题的能力。
二、解决方案1. 系统学习初一学生面对一元一次方程应用题时,首先需要系统学习相关的基础知识。
在学习过程中,可以通过课本、参考书或者全球信息站资源来深入理解一元一次方程的概念、性质和解题方法。
还可以通过习题课或者作业来巩固所学知识,培养解决问题的能力。
2. 掌握解题方法解决一元一次方程应用题的关键在于掌握解题方法。
在学习过程中,需要重点掌握常见的一元一次方程应用题类型,比如“两个数的和为某个数”、“一个数是另一个数的几倍”等。
通过大量的练习和思考,逐步形成解题的思维模式,提高解题的效率和准确性。
3. 实际问题实践在学习过程中,可以结合实际问题来进行练习和实践。
可以通过日常生活中的购物、比赛、分工等场景,来设计一元一次方程应用题,让学生在解决问题的过程中,加深对知识的理解和掌握。
三、解决步骤1. 理解题意在解决一元一次方程应用题时,首先需要仔细阅读题目,理解题意。
可以通过画图、列方程、设变量等方法,来梳理问题的逻辑关系,找出问题的关键点和难点。
2. 设立方程在理解题意的基础上,需要根据题目所描述的问题,来设立对应的一元一次方程。
这一步是解题的关键,需要根据题目中的条件和要求,构建相应的数学模型,形成方程组。
3. 求解方程设立方程后,就可以根据已有的方程进行求解。
可以通过代入、化简、消元等方法,逐步计算出未知数的值,并最终得出问题的解答。
需要注意的是,求解过程中要保持逻辑清晰,避免犯错。
四、解决案例接下来,我们通过一个具体的案例来说明如何解决一元一次方程应用题。
案例:小明买了苹果和香蕉,一共花了15元。
七年级数学上册一元一次方程应用题常用公式
七年级数学上册一元一次方程应用题常用公式
一元一次方程是数学中一个重要的概念,它在解决实际问题中有着广泛的应用。
对于一元一次方程的应用题,我们通常需要使用一些常用的公式来简化计算过程。
下面是一元一次方程应用题中常用的几个公式:
1. 路程=速度×时间
这个公式是解决行程问题的基础,它表示物体在一定时间内移动的距离与速度和时间的关系。
2. 工作量=工作效率×工作时间
这个公式用于解决工作问题,它表示完成一项工作所需的总工作量与工作效率和时间的关系。
3. 利润=售价-进价
这个公式用于解决利润问题,它表示商家在销售商品时所获得的利润与商品的售价和进价的关系。
4. 利息=本金×利率×时间
这个公式用于解决利息问题,它表示在一定时间内,本金产生的利息与本金、利率和时间的关系。
5. 面积=长×宽
这个公式用于解决几何图形面积问题,它表示矩形面积与长和宽的关系。
6. 周长=4×半径
这个公式用于解决圆的周长问题,它表示圆的周长与半径的关系。
7. 体积=底面积×高
这个公式用于解决几何图形体积问题,它表示立方体体积与底面积和高度的关系。
这些公式是一元一次方程应用题中常用的,掌握它们可以帮助我们更快地解决问题。
七年级一元一次方程应用题解题方法和技巧
一、一元一次方程的基本概念1. 什么是一元一次方程一元一次方程是指方程中只含有一个未知数,并且未知数的最高次数为1的方程。
通常可以用形如ax+b=0的形式表示,其中a和b为已知数,x为未知数。
2. 一元一次方程的解解一元一次方程就是找到满足方程的未知数的取值,使得方程成立。
一元一次方程的解可以有一个或者多个,也可能没有解。
二、一元一次方程应用题的解题方法1. 理解问题在解一元一次方程应用题时,首先要理解问题的意思,明确题目中的已知量和未知量,搞清楚问题的关键信息。
2. 建立方程根据问题的描述和已知量,可以建立相应的一元一次方程。
通常可以根据关键词归纳出方程的形式,比如“某数的5倍加3等于17”可以转化为5x+3=17的方程。
3. 求解方程利用一元一次方程的基本解法,将方程化简为最简形式,然后进行运算求解未知数的值。
可以采用加法、减法、乘法、除法等运算,将未知数的系数移到一边,把常数移到另一边,最终得出未知数的值。
三、一元一次方程应用题的解题技巧1. 画图辅助对于涉及几何或者图形的一元一次方程应用题,可以画图辅助理解问题,建立方程。
通过图形直观地表达问题,更容易理解和解决。
2. 注意单位转化在一些物理或者工程类的应用题中,可能涉及到不同的单位,需要进行单位转化。
在建立方程时,要注意统一单位,以免造成计算错误。
3. 严格审题在解一元一次方程应用题时,要仔细审题,理解题目的要求和条件,确保没有遗漏重要信息。
同时要注意解题的逻辑和推理过程,保证每一步都准确无误。
四、案例分析举例说明一元一次方程应用题的解题过程,包括问题的理解、建立方程、求解方程和最终得出答案的过程。
五、总结总结一元一次方程应用题的解题方法和技巧,强化重点和难点,提醒注意事项,巩固解题思路和方法。
六、练习题设计一些不同类型的一元一次方程应用题,供读者练习和巩固所学知识。
七、结语总结全文内容,强调一元一次方程应用题解题方法和技巧的重要性,鼓励读者多加练习,提高解题能力。
七年级数学一元一次方程应用题怎么列等量关系
七年级数学一元一次方程应用题怎么列等量关系
一元一次方程的应用题是数学中的一个重要部分,它涉及到实际生活中的各种问题。
为了解决这类问题,我们首先需要找出等量关系。
等量关系是方程的基础,它表示两个量是相等的。
在应用题中,等量关系通常表示两个数学量之间的关系,例如:路程=速度×时间。
以下是一些常见的列等量关系的方法:
1. 直接描述法:如果题目中直接给出了两个量之间的关系,我们可以直接写出这个关系作为等量关系。
例如,题目说“小明走了10分钟,每分钟走100米”,那么等量关系就是“路程=速度×时间”。
2. 列表法:如果题目中有多个未知数和已知数,我们可以先列出所有的已知数和未知数,然后找出它们之间的关系。
例如,题目说“一个工人每小时可以生产10个零件,他工作了3小时”,那么我们可以列出“工人每小时生产的零件数”和“工作的小时数”,然后写出等量关系“生产的零件数=每小时生产的零件数×工作的小时数”。
3. 图示法:对于一些几何问题,我们可以使用图形来帮助我们找出等量关系。
例如,题目说“一个三角形的底是6厘米,高是4厘米”,那么我们可以画出这个三角形,然后写出等量关系“三角形的面积=底×高÷2”。
4. 转化法:有时候题目中的问题不容易直接转化为等量关系,这时我们可以尝试将问题转化为更容易处理的形式。
例如,题目说“一个长方形的长是5厘米,宽是3厘米,求它的周长”,我们可以将问题转化为“求两个长和两个宽的总和”,这样就可以写出等量关系“周长=2×长+2×宽”。
通过以上方法,我们可以更好地理解和解决一元一次方程的应用题。
人教版数学七年级上册一元一次方程应用题归类
人教,版,数学,七年级,上册,一元,一次方程,人教版数学七年级上册一元一次方程应用题归类一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。
一、行程问题基本的数量关系:(1)路程=速度×时间⑵ 速度=路程÷时间⑶ 时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴ 各段路程和=总路程⑵ 各段时间和=总时间⑶ 匀速行驶时速度不变4、行船问题与飞机飞行问题⑴ 顺水速度=静水速度+水流速度⑵ 逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
6、时钟问题:⑴ 将时钟的时针、分针、秒针的尖端看作一个点来研究⑵ 通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:① 时针的速度是0.5°/分② 分针的速度是6°/分③ 秒针的速度是6°/秒1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。
七年级一元一次方程应用题解题技巧
七年级一元一次方程应用题解题技巧在七年级的数学学习中,一元一次方程是一个非常重要的知识点。
它不仅是数学学习的基础,还在我们的日常生活中有着广泛的应用。
解决一元一次方程应用题需要我们掌握一定的解题技巧,下面我将详细介绍一些方法和技巧,希望能帮助大家更好地理解和掌握这一知识点。
一、理解题意,建立方程在解决一元一次方程应用题时,首先要仔细阅读题目,深入理解题意。
在理解题目的基础上,我们需要建立方程,这是解决问题的关键步骤。
建立方程需要根据题目中所描述的情景,将未知数表示出来,并根据题目中的条件建立等式。
如果题目中涉及到某个物品的价格和数量,我们可以用一个字母表示价格,用另一个字母表示数量,然后根据题目中的条件建立方程。
二、整理方程,求解未知数建立好方程之后,我们需要对方程进行整理,将同类项合并,化简方程。
我们就可以开始解方程,求解未知数。
在这一步,可以运用一些解方程的基本技巧,如去括号、去分母、合并同类项、移项变号等。
这些技巧在解决一元一次方程应用题时非常实用。
三、验证答案,总结回顾解出方程之后,我们需要将得到的解代入原方程中进行验证,确保得到的解是符合题意的。
如果验证结果正确,那么我们的答案就是正确的。
我们还需要对整个解题过程进行总结回顾,分析解题的思路和方法,总结解题的经验和技巧,这样才能更好地掌握解题的方法并且为以后的学习打下坚实的基础。
我的个人观点和理解通过学习一元一次方程应用题解题技巧,我深刻地认识到解题的重要性。
掌握这些解题技巧不仅能够帮助我们更好地理解和掌握数学知识,还能够培养我们的逻辑思维能力和解决问题的能力。
我相信,只要我们认真学习,多加练习,一定能够轻松地解决各种一元一次方程应用题。
总结通过本文的介绍,我们可以看到,解决一元一次方程应用题并不是一件困难的事情,只要我们掌握了解题的基本技巧,理解了解题的思路,相信每个人都能够轻松地完成这一任务。
希望大家能够在学习中多加练习,不断提高解题的能力,取得更好的成绩。
初一数学上册一元一次方程解题技巧与试题
初一数学上册一元一次方程技巧与试题列方程解应用题的方法及步骤:(1)审题:要明确已知什么,未知什么及其相互关系,并用x 表示题中的一个合理未知数。
(2)根据题意找出能够表示应用题全部含义的一个相等关系。
(关键一步)(3)根据相等关系,正确列出方程,即所列的方程应满足等号两边的量要相等;方程两边的代数式的单位要相同。
(4)解方程:求出未知数的值。
(5)检验后明确地、完整地写出答案。
检验应是:检验所求出的解既能使方程成立,又能使应用题有意义。
2.应用题的类型和每个类型所用到的基本数量关系:(1)等积类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积)。
(2)调配类应用题的特点是:调配前的数量关系,调配后又有一种新的数量关系。
(3)利息类应用题的基本关系式:本金×利率=利息,本金+利息=本息。
(4)商品利润率问题:商品的利润率,商品利润=商品售价-商品进价。
(5)工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,工作效率=工作总量÷工作时间。
(6)行程类应用题基本关系:路程=速度×时间。
相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。
追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。
环形跑道题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。
飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速航行问题,基本等量关系:①顺水速度=静水速度+水速②逆水速度=静水速度-水速(7)比例类应用题:若甲、乙的比为2:3,可设甲为2x,乙为3x。
(8)数字类应用题基本关系:若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这三位数为:。
1学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?2变题学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?分析设应调往甲处x人,题目中涉及的有关数量及其关系可以用下表表示:3某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?4某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)5 一张方桌由一张桌面和四根桌腿做成,已知一立方米木料可做桌面50个或桌腿300根,现在5立方米木料,恰好能做桌子多少张?6某班有50名学生,在一次数学考试中,女生的及格率为80%,男生的及格率为75%,全班的及格率为78%,问这个班的男女生各有多少人?7一份试卷共有25道题,每道题都给出了4个答案,其中只有一个正确答案,每道题选对得4分,不选或错选倒扣1分,如果一个学生得90分,那么他做对了多少道题。
一元一次方程应用题题型及解题技巧
一元一次方程应用题题型及解题技巧列一元一次方程解应用题的一般步骤如下:1.审题:理解题意,确定已知量和未知量,以及相等关系。
2.设元:找出能够表示问题含义的相等关系,设出未知数并列出方程。
3.用含未知数的代数式表示相关量。
4.寻找相等关系,列出方程,未知数个数与方程个数相同。
5.解方程并检验。
6.写出答案。
综上所述,列方程是解应用题的关键。
在解一元一次方程应用题时,常见的类型包括:1.和差倍分问题,其中倍数关系通过“是几倍,增加几倍,增加到几倍,增加百分之几,增长率”等关键词语来体现,多少关系通过“多、少、和、差、不足、剩余”等关键词语来体现。
2.行程问题,其中基本数量关系包括路程=速度×时间,时间=路程÷速度,速度=路程÷时间。
相遇问题中,快行距+慢行距=原距;追及问题中,快行距-慢行距=原距;航行问题中,顺水(风)速度=静水(风)速度+水流(风)速度,逆水(风)速度=静水(风)速度-水流(风)速度。
例题如下:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?两车同时开出,相背而行多少小时后两车相距600公里?两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?这类问题通常需要根据溶质质量或溶剂质量的配比来寻找等量关系。
为了更好地理解题意,可以采用列表的方法进行分析。
比例分配问题的一般解决思路是:假设其中一份为x,然后根据已知的比例关系,列出相应的代数式。
在解决过程中,常用的等量关系是各部分之和等于总量。
初一数学一元一次方程的应用
一元一次方程的应用例题解析考点一列方程解应用题时设未知数的方法列方程解应用题,一般有三种设未知数的方法:(1) ;(2) ;(3) ;考点二寻找题目中的等量关系(重点)列方程解应用题的关键是寻找题目中的等量关系,如何找出题目中的等量关系呢?(1)利用基本的等量关系,如路程=速度×时间;(2)要善于分析问题中的不变量;(3)要善于用不同的方式表示同一个量;(4)要善于利用“总量等于各分量之和”的关系.考点三正确列出方程解应用题(重、难点)列一元一次方程解应用题的一般步骤可归纳为:审、设、列、解、检验、答.(1)“审”是指读懂题目,弄清题意,明确哪些是以已知量,哪些是未知量,以及它们之间的等量关系;(2)“设”就是设未知数;(3)“列”就是列方程,这是最关键的一步,一般先找出能够表达应用题全部含义的一个等量关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程;(4)“解”就是解方程,求出未知数的值;(5)“检验”是指检验方程的解是否正确以及能否保证实际问题有意义;(6)“答”就是写出答案,有单位名称的要写上单位名称.题型一几何应用【例题1】一个长方形的周长是16cm,长与宽的差是2cm,那么长与宽分别是()A.9cm,7cmB.5cm,3cmC.7cm,5cmD.10cm,6cm【例题2】练习5.在长为10 m,宽为8 m的长方形空地中,沿平行于长方形各边的方向分割出三个完全相同的小长方形花圃,其示意图如图所示.求小长方形花圃的长和宽.【过关练习】1.一个长方形的周长是40cm,若将长减少8cm,宽增加2cm,长方形就变成了正方形,则正方形的边长为()A.6cmB.7cmC.8cmD.9cm2.一个长方形苗圃,长比宽多10cm,沿着苗圃走一圈要走40m,这个苗圃的占地面积为()A. B. C. D.3.一个三角形的三条边的长度之比为2:4:5,最长的边比最短的边长为6cm,求该三角形的周长.4.根据图中给出的信息,可得正确的方程是()A. B.C. D.5.欲将一个长、宽、高分别为150mm,150mm,20mm的长方体钢毛坯,锻造成直径为100mm的圆柱体零件,则圆柱体的高是()A. B. C. D.10.根据图中的信息,求梅花鹿和长颈鹿现在的高度.题型二打折销售应用【例题1】某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元。
一元一次方程解应用题的思路和解法(全)
一元一次方程解应用题的思路和解法一元一次方程应用题是初一数学学习的重点,也是一个难点。
主要困难体现在两个方面:一是难以从实际问题中找出相等关系,列出相应的方程;二是对数量关系稍复杂的方程,常常理不清楚基本量,也不知道如何用含未知数的式子来表示出这些基本量的相等关系,导致解题时无从下手。
事实上,方程就是一个含未知数的等式。
列方程解应用题,就是要将实际问题中的一些数量关系用这种含有未知数的等式的形式表示出来。
而在这种等式中的每个式子又都有自身的实际意义,它们分别表示题设中某一相应过程的数量大小或数量关系。
由此,解方程应用题的关键就是要“抓住基本量,找出相等关系”。
所以,我认为解题关键为:先找出等量关系,根据基本量设未知数。
一般是问什么设什么,但是一些特殊的题目为了使方程简便有时会设一些中间量为未知数。
初中一年级涉及到的一元一次方程应用题主要有以下几类:(1)行程问题;(2)工程问题;(3)溶液配比问题;(4)销售问题;(5)数字问题;(6)比例问题;(7)设中间变量的问题。
不管是什么问题,关键是要了解各个具体问题所具有的基本量,并了解各个问题所本身隐含的等量关系,结合具体的问题,根据等量关系列出方程。
下面针对以上七项分别进行讲解。
1 行程问题行程问题中有三个基本量:路程、时间、速度。
等量关系为:①路程=速度×时间;;②速度=路程时间。
③时间=路程速度特殊情况是航行问题,其是行程问题中的一种特殊情况,其速度在不同的条件下会发生变化。
①顺水(风)速度=静水(无风)速度+水流速度(风速);②逆水(风)速度=静水(无风)速度-水流速度(风速)。
由此可得到航行问题中一个重要等量关系:顺水(风)速度-水流速度(风速)=逆水(风)速度+水流速度(风速)=静水(无风)速度。
例1:一列火车从甲地开往乙地,每小时行90千米,行到一半时耽误了12分钟,当着列火车每小时加快10千米后,恰好按时到了乙地,求甲、乙两站距离?此题的等量关系是:列车改变速度以后所用的总时间=原计划的时间。
初一数学一元一次方程应用题技巧
初一数学一元一次方程应用题技巧
初一数学的一元一次方程应用题,是数学学习中的一个重要内容。
以下是一些解题技巧和步骤:
1.读懂题目:首先,需要仔细阅读题目,理解题目所描述的情境和问题。
2.找出未知数:在一元一次方程中,通常会有一个未知数,这个未知数可能是某个物体的数量、某个变量的值等。
找出这个未知数是很重要的。
3.建立数学方程:根据题目,可以建立关于这个未知数的方程。
这个方程通常会涉及一些基本的数学运算,如加法、减法、乘法、除法等。
4.解方程:一旦建立了方程,就可以通过一些数学方法来解这个方程,找出未知数的值。
5.检查答案:最后,需要检查计算结果是否符合题目的要求,是否符合实际情况等。
以下是一些常见的解题步骤:
1.去分母:如果方程中出现了分母,需要先去掉分母,使方程变得更加简单。
2.去括号:如果方程中出现了括号,需要先去括号,使方程变得更加简单。
3.移项:如果方程中的项移动了位置,需要将其移回原来的位置。
4.合并同类项:如果方程中出现了同类项,需要将其合并起来。
5.系数化为一:如果方程中出现了系数,需要将其化为一。
在解一元一次方程时,需要灵活运用这些步骤,并根据实际情况选择合适的方法。
同时,也需要多练习,提高自己的解题能力。
七年级初一数学-一元一次方程应用题教案
一元一次方程应用题专题【解题思路】1、审——读懂题意,找出等量关系。
2、设——巧设未知数。
3、列——根据等量关系列方程。
4、解——解方程,求未知数的值。
5、答——检验,写答案(注意写清单位和答话)。
6、练——勤加练习,熟能生巧。
触类旁通,举一反三。
【题型一:日历中的方程】 日历中的排列规律(1)每一行中,相邻的两个数相差1,右边的数比左边的数大1; (2)每一列中,相邻的两个数相差7,下边的数比上边的数大7。
例1 用一个正方形框架在日历上套出2×2个数,若这4个数的和为76,① 这四个数分别是多少?解:设最小的数为x ,则其余三个分别为1+x ,7+x 和8+x依题意得:_________________________________ 解方程得:=x ______∴=+1x ______ , =+7x _______ , =+8x ______ , 答:这四个数分别是_____________________________ ② 4个数的和能否是66? 112? 请说明理由。
期总和是60时,我们出发.”(1)爸爸所说的表示日期的3个数字有何关系?(2)如果设中间一个为未知数x.那么其余两个如何表示? _____________,所列方程为___________;(3)如果设第一个数为未知数x,那么其余两个如何表示? _____________,所列方程为___________;(4)还可以设哪一个未知数x,______________________ ,列方程为________________________,(5)爸爸他们几号出发? _________。
(6)如果爸爸说的总和是24,那么,他们几号出发? _____日。
(7)如果爸爸说的总和是57,他们几号出发? _____日。
(8)若爸爸说的总和是28,小新能算出几号出发吗?【基础练习】一、选择题:1.有几名同学在日历上圈出相邻的四个数,并计算出它们的和分别为54,62,88,44,10,29,20,其中错误的个数为()A.1个B.2个C.3个D.4个2.小菲在假期时参加了四天一期的夏令营,这四天各天的日期之和是86,则夏令营的开营日为()A.20日B.21日C.22日D.23日3.将正偶数按下表排成5列:第1列第2列第3列第4列第5列第1行 2 4 6 8第2行 16 14 12 10第3行 18 20 22 24第4行 28 26…… ….根据上面的排列规律,则2000应在()A.第125行,第1列B.第125行,第2列C.第250行,第1列D.第250行,第2列二、填空题:4.小慧在一张日历的一横列上圈了连续的四个数,它们的和为22,这四个数为.5.在某月的日历上,一个竖列相邻的3个数字和为69,这三个数分别是.6.一月的日历上,用正方形圈出2⨯2个数,其和是92,则这四个数为。
一元一次方程追及应用题解题技巧
一元一次方程追及应用题解题技巧概述在数学中,一元一次方程追及应用题是常见的应用题型之一。
它通常涉及到两个或多个变量之间的追及问题,需要通过建立数学模型、解方程等方法来求解问题。
本文将介绍一些解题技巧和方法,帮助读者更好地理解和解决一元一次方程追及应用题。
一、问题背景分析在解决一元一次方程追及应用题之前,首先需要明确问题的背景和条件。
通常,这类问题描述了两个物体或人以不同的速度运动,并在某一时刻相遇或离开的情况。
通过给定的条件和问题描述,我们可以建立一元一次方程来表示问题,然后通过解方程求解。
二、建立数学模型在解决一元一次方程追及应用题时,最重要的一步就是建立数学模型。
根据题目给出的条件和问题要求,我们可以得出以下一般性方程:$x=v t+s$其中,$x$表示两个物体或人的距离,$v$表示速度,$t$表示时间,$s$表示初位置。
根据题目具体的情况,我们可以确定方程中的各个参数。
三、解题步骤解决一元一次方程追及应用题的一般步骤如下:1.阅读题目,明确问题的条件和要求。
2.根据题目描述,建立数学模型,确定方程中的参数。
3.将问题转化为一元一次方程的形式。
4.解方程,求解未知数的值。
5.根据问题的要求,对结果进行判断和验证。
四、例题分析$1.$问题描述:小明以每小时$60$公里的速度骑自行车从甲地出发,$4$小时后,小红以每小时$40$公里的速度从已地出发,两人相遇于路程的$\fr ac{5}{6}$处,求甲地与已地的距离。
解题步骤:1.确定物体的初始距离和初位置:甲地与已地的距离为$x$公里,小明从甲地出发,初位置为$x$公里。
2.根据题目描述,建立小明和小红的数学模型:小明的速度$v_1=60$公里/小时,小红的速度$v_2=40$公里/小时。
小红出发后经过$4$小时,因此小红的初位置为$4\ti me s40=160$公里。
3.将问题转化为一元一次方程的形式:根据相遇时路程的$\f ra c{5}{6}$处的条件,可得方程:$\fr ac{5}{6}x=vt+s$4.解方程,求解未知数的值:将已知的数值代入方程,得到:$\f ra c{5}{6}x=60\ti me s4+160$,化简得到:$\f ra c{5}{6}x=400$5.根据问题的要求,对结果进行判断和验证:代入求解得到的结果,可得:$x=\fr ac{400\ti me s6}{5}=480$公里。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程应用题
1.列一元一次方程解应用题的一般步骤
(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.
2.和差倍分问题
增长量=原有量×增长率现在量=原有量+增长量
3.等积变形问题
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.
①圆柱体的体积公式 V=底面积×高=S·h= r2h
②长方体的体积 V=长×宽×高=abc
4.数字问题
一般可设个位数字为a,十位数字为b,百位数字为c.
十位数可表示为10b+a,百位数可表示为100c+10b+a.
然后抓住数字间或新数、原数之间的关系找等量关系列方程.
5.市场经济问题
(1)商品利润=商品售价-商品成本价(2)商品利润率=
商品利润
商品成本价
×100%
(3)商品销售额=商品销售价×商品销售量
(4)商品的销售利润=(销售价-成本价)×销售量
(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.
6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距
(2)追及问题:快行距-慢行距=原距
(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间
完成某项任务的各工作量的和=总工作量=1
8.储蓄问题
利润=每个期数内的利息
本金
×100% 利息=本金×利率×期数。