02第二章质点动力学
大学物理课件第二章质点动力学
![大学物理课件第二章质点动力学](https://img.taocdn.com/s3/m/ec96baf0910ef12d2af9e726.png)
m0g N
N
a’ B mg
联立解得
(m m0 )sin m cos sin a g, a ' g 2 2 m0 m sin m0 m sin
例题2 质量为m的快艇以速率v0行驶,关闭发动 机后,受到的摩擦阻力的大小与速度的大小成 正比,比例系数为k,求关闭发动机后 (1)快艇速率随时间的变化规律; (2)快艇位置随时间的变化规律
B
A
F
B
m0g
A
解:隔离两物体,分别受力分析, aA-地对楔块A N sin m0a
N
F ( N cos m0 g ) 0
N
对物体B(aB地 aB A aA地 )
B
a
B-A
a
N sin m(aB A cos a)
A-地
mg
N cos mg m(aB A sin 0)
m0 m sin
(m m0 )sin 联立解得 a m cos sin g , aB A g 2 2 m0 m sin
B
A
F A a
解:隔离两物体,分别受力分析, 对楔块A N sin m0a N cos m0 g F 物体B相对楔块A以a’加速下滑
二、牛顿第二定律 1.动量: p mv
2.力的定义: dp d (mv ) F dt dt --牛顿第二定律(质点运动微分方程)
v c 物体质量为常量时:
dv F m ma dt
惯性演示实验
当锤子敲击在一大铁块上时,铁块下的手 不会感到有强烈的冲击;而当用一块木头取代 铁块时,木块下的手会感到明显的撞击。
大学物理课件 第2章,质点动力学
![大学物理课件 第2章,质点动力学](https://img.taocdn.com/s3/m/da51ca8d8662caaedd3383c4bb4cf7ec4afeb6b4.png)
本章题头§2-1 牛顿运动定律英国物理学家, 经典物理学的奠基人.创立了经典力学的 基本体系光学,牛顿致力于光的颜色和光 的本性数学,建立了二项式定理,创立 了微积分牛顿 Issac Newton (1643-1727)天文学,发现了万有引力定律, 创制反射望远镜,初步观察到了 行星运动的规律。
一、牛顿第一定律 (Newton first law)惯性定律 任何物体都保持静止或匀速直线运动的状态, 直到受到力的作用迫使它改变这种状态为止。
意义惯性以及力的概念 1、定义了物体(质点)的惯性;2、说明了力是物体运动状态改变的原因定义了惯性参考系二、牛顿第二定律 (Newton second law)质点加速度的大小与所受合力的大小成正比 , 与质点自身的质量成反比; 加速度方向与合力方向相同。
牛顿第二定律的数学形式为 Fma 原始形式:F dPd mv dmvm dvdtdtdtdt当 v c 时,m 为常量 Fm dvmadt宏观低速运动时1、瞬时性: 之间一一对应(同生、同向、同变、同灭) n 2、力的叠加性:F F1 F2 Fi Fii =13、矢量性:具体运算时应写成分量式直角坐标系中: Fma maximay jmaz k Fxmaxmdv x dt Fyma ymdv y dt Fzmazmdvz dt 自然坐标系中: Fmam at anF mdv dtFnmv24、说明了质量是物体惯性的量度5、在一般情况下力, F是一个变力常见的几中变力形式:F F x kx常见的几中变力形式:F F t F F v kv弹性力 打击力 阻尼力6、适用对象:质点 7、成立的参考系:惯性系 8、成立的条件:宏观低速10'T 三、牛顿第三定律(Newton third law)物体A 以力F AB 作用于物体B 时, 物体B 也必定同时以力F BA 作用于物体A , F AB 与F BA 大小相等, 方向相反, 并处于同一条直线上,(物体间相互作用规律)mmT P 'P 地球F AB = F BA作用力与反作用力:1、它们总是成对出现。
第二章 动量定理质点动力学
![第二章 动量定理质点动力学](https://img.taocdn.com/s3/m/9f7b2602c281e53a5802ff4f.png)
m
F1
F F1 F2
dP 更一般有: Fi dt
•力的叠加原理:质点动量对时间的变化率等于作用 在该质点上所有力的矢量和,或者说多个力对质点 的作用等于所有力的矢量和的作用。
一、牛顿运动定律的表述
1、力、力的独立作用原理
•力:力是一物体对另一物体的作用,物体所受的力 可用其动量变化率来量度。
dP d F ( mv ) dt dt
F
v
m
•力的独立作用原理:当有多个力同时作用在一个质 点上时,这些力各自产生自己的效果而不互相影响。
•牛顿第一定律:任何物体都保持静止或匀速直线运 动的状态,直到作用在它上面的力迫使它改变这种 状态为止。——惯性定律。 •牛顿第二定律:质点所受的合力等于质点的质量与 其加速度的乘积。
N2
F f1 f 2 m1a1 N1 N 2 m1 g 0 f 2 m2 a2 , N 2 m2 g 0
代入
f2
N1
m2g
f2
N2
f1 1 N1 , f 2 2 N2
a1
F
m1g
f1
求出
F [ 2 m2 1 ( m1 m2 )]g a1 0 m1 a2 2 g 2.45m / s 2
建立坐标系x 轴水平向左,y 轴竖直向上。列出有关 运动方程
N 2 sin Ma1 , N1 N 2 cos Mg 0 N 2 sin m(a1 a cos), N 2 cos mg ma sin
求出:
大学物理第二章质点动力学PPT课件
![大学物理第二章质点动力学PPT课件](https://img.taocdn.com/s3/m/994024c9b7360b4c2f3f6489.png)
•若物体与流体的相对速度接近空气中的声速时,阻 力将按 f v3 迅速增大。
•常见的正压力、支持力、拉力、张力、弹簧的恢复 力、摩擦力、流体阻力等,从最基本的层次来看, 都属于电磁相互作用。
2021
12
五、牛顿定律的应用
•应用牛顿运动定律解题时,通常要用分量式:
如在直角坐标系中:
在自然坐标系中:
Fn
man
mv2
2021
6
三、牛顿第三定律
物体间的作用是相互的。两个物体之间的作用
力和反作用力,沿同一直线,大小相等,方向相反,
分别作用在两个物体上。
F21F12
第三定律主要表明以下几点:
(1)物体间的作用力具有相互作用的本质:即力总 是成对出现,作用力和反作用力同时存在,同时消 失,在同一条直线上,大小相等而方向相反。
(4)由于力、加速度都是矢量,第二定律的表示式 是矢量式。在解题时常常用其分量式,如在平面直 角坐标系X、Y轴上的分量式为 :
2021
5
Fx mxamddxvtmdd22xt Fy myamddyvtmd d22yt
在处理曲线运动问题时,还常用到沿切线方向 和法线方向上的分量式,即:
Ft
mat
mdv dt
2021
27
1983年第17届国际计量大会定义长度单位用真空中 的光速规定:
c = 299792458 m/s
因而米是光在真空中1299,792,458秒的时间间 隔内所经路程的长度。
❖其它所有物理量均为导出量,其单位为导出单位
如:速度 V=S/ t, 单位:米/秒(m/s)
加速度a=△V/t,单位:米/秒2(m/s2)
•摩擦力:两个相互接触的物体在 沿接触面相对运动时,或者有相对 运动趋势时,在接触面之间产生的
《大学物理》第2章 质点动力学
![《大学物理》第2章 质点动力学](https://img.taocdn.com/s3/m/22d077e4482fb4daa48d4b57.png)
TM
Tm
2Mm M m
g
a
ar
M M
m m
g
a
FM
TM
ar
F m
Tm m
a
M PM
ar
Pm
注:牛顿第二 定律中的加速 度是相对于惯 性系而言的 。
例2 在倾角 θ 30 的固定光滑斜面上放一质量为
M的楔形滑块,其上表面与水平面平行,在其上 放一质量为m的小球, M 和m间无摩擦,
且 M 2m 。
解:以弹簧原长处为坐标原点 。
Fx kx
F Bm A
元功:
O xB x
xA x
dW Fx dx kxdx
dx
弹力做功:W
xB xA
kxdx
1 2
kxA2
1 2
kxB2
2.3.4 势能 Ep
W保 Ep Ep0 Ep
Ep重 mgh
牛顿 Issac Newton(1643-1727) 杰出的英国物理学家,经 典物理学的奠基人.他的 不朽巨著《自然哲学的数 学原理》总结了前人和自 己关于力学以及微积分学 方面的研究成果. 他在光 学、热学和天文学等学科 都有重大发现.
第2章 质点动力学
2.1 牛顿运动定律 2.1.1 牛顿运动定律
1 牛顿第一定律(惯性定律) • 内容:一切物体总保持静止状态或匀速直线运动 状态,直到有外力迫使它改变这种状态为止。 • 内涵: 任何物体都有保持静止或匀速直线运动状态的趋势。 给出了力的定义 。 定义了一种参照系------惯性参照系。
非惯性参照系:相对于已知的惯性系作变速运动 的参照系。
惯性定律在非惯性系 中不成立。
2.2 动量定理 动量守恒定律
第二章质点运动学(2)
![第二章质点运动学(2)](https://img.taocdn.com/s3/m/e35a1ddc49649b6648d747ee.png)
F
F
t1
t2 t
例 质量M=3t的重锤,从高度h=1.5m处自由落 到受锻压的工件上,工件发生形变。如果作用 的时间 (1) =0.1s, (2) =0.01s 。试求锤对工件 的平均冲力。 解法一利用动量定理,取竖 直向上为正。
( N Mg ) Mv Mv0
初状态动量为 M 2 gh , 末状态动量为 0。
第二章 质点动力学
(2) 动量守恒定律 火箭运动 质心运动定律
2-3 冲量‧动量定理
1、冲量
dp 把牛顿第二定律的微分形式 F dt 改写为 F d t d p
考虑一过程,力对质点的作用时间从t1 — t2, t2 p2 两端积分 Fdt dp p 2 p1 mv2 mv1
mi ri
d vi mi d vc dt ac dt mi
由牛顿第二定律得
mi ai
m
i
m1a1 m2 a2 mn an
d v1 m1 F1 f12 f13 f1n dt d v2 m2 F2 f 21 f 23 f 2 n dt d vn mn Fn f n 2 f n 3 f n ( n 1) dt
x g v x g 2 gx 3x g 所以桌面受的压力 N N 3x g
2
例 2 一柔软链条长为 l ,单位长度的质量为。 链条放在桌上,桌上有一小孔,链条一端由小孔稍 伸下,其余部分堆在小孔周围。由于某种扰动,链 条因自身重量开始落下。求链条下落速度与落下距 离之间的关系。设链与各处的摩擦均略去不计,且 认为链条软得可以自由伸开。 解 以竖直悬挂的链条 m2 和桌面上的链条为一系统, O 建立如图坐标。 则 F m1 g yg 动量定理 m1
02质点动力学(守恒定律)
![02质点动力学(守恒定律)](https://img.taocdn.com/s3/m/51aa176427284b73f2425099.png)
冲量为 I
t
0
Fdt mv4 mv0 16kg m s 1
(2)由动能定理
1 2 1 2 W mv4 mv0 176J 2 2
2. 如图所示,长为l 的细线一端固定,一质量为m的小球系在 细线的另一端,并可在竖直面内摆动。若先拉动小球使线保 持平直,并在水平位置静止,然后放手使小球下落,在线下 摆至 角时,求: (1)小球的速率v; (2)细线中的张力T。
I Fdt 25t 2dt
0 0
3
3
25 3 t 225N s 3 0
I 225 0.9m s 1 m1 250
3
由动量定理:
I m1v1 0 225 I m2 v2 0 225 v1
I 225 v2 0.45m s 1 m2 500
由质点动能定理得
1 1 1 2 2 W mv4 mv2 0.5 1625 425 300 J 2 2 2
4.一竖直悬挂的轻弹簧下系一小球,平衡时弹簧伸长量为d, 现用手将小球托住使弹簧不伸长,然后放手。不计一切摩擦, 则弹簧的最大伸长量为 (A) 2d; (B) 2d; (C) d ; (D) 条件不足无法判定。 解:由胡克定律,平衡时有
外 外
非保内
E E0 0 E E0
非保内
2. 质量m=1kg的质点,从原点处由静止开始沿Ox轴运动,所 受力为 F 3 2 x(SI),那么物体在运动到3 m时的速度为 __________ 6m s 1 。
解: W Fdx
3 2xdx 3x x
解:作图:
v0
30
大学物理第2章-质点动力学基本定律
![大学物理第2章-质点动力学基本定律](https://img.taocdn.com/s3/m/75346203dcccda38376baf1ffc4ffe473368fd2b.png)
势能的绝对值没有意义,只关心势能的相对值。 势能是属于具有保守力相互作用的系统 计算势能时必须规定零势能参考点。但是势能差是一定的,与零点的选择无关。 如果把石头放在楼顶,并摇摇欲坠,你就不会不关心它。 一块石头放在地面你对它并不关心。
重力势能:以地面为势能零点
01
万有引力势能:以无限远处为势能零点
m
o
θ
设:t 时刻质点的位矢
质点的动量
运动质点相对于参考原点O的角动量定义为:
大小:
方向:右手螺旋定则判定
若质点作圆周运动,则对圆心的角动量:
质点对轴的角动量:
质点系的角动量:
设各质点对O点的位矢分别为
动量分别为
二.角动量定理
对质点:
---外力对参考点O 的力矩
力矩的大小:
力矩的方向:由右手螺旋关系确定
为质点系的动能,
令
---质点系的动能定理
讨论
内力和为零,内力功的和是否为零?
不一定为零
A
B
A
B
S
L
例:炸弹爆炸,过程内力和为零,但内力所做的功转化为弹片的动能。
内力做功可以改变系统的总动能
例 用铁锤将一只铁钉击入木板内,设木板对铁钉的阻力与铁钉进入木板之深度成正比,如果在击第一次时,能将钉击入木板内 1 cm, 再击第二次时(锤仍以第一次同样的速度击钉),能击入多深? 第一次的功 第二次的功 解:
(1)重力的功
重力做功仅取决于质点的始、末位置za和zb,与质点经过的具体路径无关。
(2) 万有引力的功
*
设质量M的质点固定,另一质量m的质点在M 的引力场中从a运动到b。
M
a
b
第2章 质点动力学
![第2章 质点动力学](https://img.taocdn.com/s3/m/48f435c69ec3d5bbfd0a74f7.png)
b
mg
也可以写成
∫ mg ⋅ dr = 0
17
2.4 势能 机械能守恒定律
3. 弹性力的功
f O xA
xB
fx = −kx
AAB = ∫ fx ⋅ dx =
xA xB
xB
x
∫ (−kx) ⋅ dx
xA
1 1 2 2 = kxA − kxB 2 2
弹性力对运动质点所做的功与质点运动的路径无 弹性力对运动质点所做的功与质点运动的路径无 只与其始、末位置有关。 关,只与其始、末位置有关。
=
( L) ra
rb
∫ ∫
b
FG ⋅ dr
GMm − 3 r ⋅ dr r
r
ra
rb
a
GMm = ∫ − 2 dr ( L) ra r GMm GMm = − rb ra
r ⋅ dr = r⋅ | dr | ⋅ cosϕ
= r ⋅ dr
15
2.4 势能 机械能守恒定律
万有引力的功
GMm GMm 1 1 A = − = −GMm( − ) ab rb ra ra rb
势 参 点 能 考
若选末态为势能零点
EPa =
∫f
(a)
保
⋅dr
20
2.4 势能 机械能守恒定律
常见的势能函数 1)重力势能 1)重力势能
EP = mgh
地面为势能零点 末态为势能零点
2)弹性势能 2)弹性势能
1 2 EP = kx 以弹簧原长为势能零点 2
M m 以无限远为势能零点 3)万有引力势能 3)万有引力势能 EP = −G r
12
2.3 动 能 定 理
大物b课后题02-第二章质点动力学
![大物b课后题02-第二章质点动力学](https://img.taocdn.com/s3/m/b98b64a2b90d6c85ed3ac628.png)
习题2-1质量为0.25kg 的质点,受力为()F ti SI =r r的作用,式中t 为时间。
0t =时,该质点以102v jm s -=⋅r r的速度通过坐标原点,则该质点任意时刻的位置矢量是_____.解 因为40.25dv F ti ti dt m ===r r r r ,所以()4dv ti dt =r r ,于是有()004v t v dv ti dt =⎰⎰r r ,222v t i j =+r r r ;又因为dr v dt=r r ,所以()222dr t i j dt =+r r r ,于是有()222dr t i j dt =+⎰⎰r r r ,3223r t i tj C =++rr r ,而t=0时质点通过了原点,所以0C =,故该质点在任意时刻的位置矢量为3223r t i tj =+rr r 。
2-2一质量为10kg 的物体在力(12040)()f t i SI =+r r作用下,沿x 轴运动。
0t =时,其速度106v im s -=⋅r r,则3t s =时,其速度为( )A. 110im s -⋅rB. 166im s -⋅rC. 172im s -⋅rD. 14im s -⋅r解 本题正确答案为C 在x 方向,动量定理可写为()312040t dt mv mv+=-⎰,即0660mv mv -=所以 ()1066066067210v v m s m -=+=+=•。
2-3一物体质量为10kg 。
受到方向不变的力3040()F t SI =+的作用,在开始的2s 内,此力的冲量大小等于______;若物体的初速度大小为110m s -• ,方向与F同向,则在2s 末物体的速度大小等于_______.解 在开始的2s 内,此力的冲量大小为 ()23040140()I t dt N s =+=•⎰由质点的动量定理得0I mv mv =-当物体的初速度大小为110m s -•,方向与F r同向时,在2s 末物体速度的大小为101401024()10I v v m s m -=+=+=•2-4一长为l 、质量均匀的链条,放在光滑的水平桌面上。
第2章 质点动力学 习题答案
![第2章 质点动力学 习题答案](https://img.taocdn.com/s3/m/68708b553c1ec5da50e2707b.png)
2-8. 长为l的轻绳,一端固定,另一端系一质量为m的小 长为 的轻绳,一端固定,另一端系一质量为 的小 的轻绳 开始运动, 球,使小球从悬挂着的位置以水平初速度 v 0 开始运动, 求小球沿逆时针转过 解:法向方程 角度时的角速度和绳子张力。 角度时的角速度和绳子张力。 θ
T − mg cos θ = m ω 2 l m v + 2 gl (cos θ − 1) = l
r2
r
2
,求电子从 r1 运动到 r2 ( r1 > r2 )
r1
r r r2 k 1 1 f ⋅dr = − ∫ 2 dr = k − r r r1 r 2 1
2-14. 质量为 m = 2 × 10 −3 kg的子弹,在枪筒中前进时受到 的子弹, 的合力为 F = 400 − 300m/s,试计算枪筒的长度。 ,试计算枪筒的长度。 解:设枪筒的长度为
其速度是? 其速度是?
r 2-3. 一物体质量为 一物体质量为10kg,受方向不变的力 F = 30 + 40t ,
的作用,在开始的 内 此力的冲量大小为? 的作用,在开始的2s内,此力的冲量大小为?若物体的 方向与力同向,则在2s末物体 初速度大小为 10 m ⋅ s ,方向与力同向,则在 末物体 速度的大小等于? 速度的大小等于?
r r 2-2. 一质量为 一质量为10kg的物体在力 f = (120t + 40) i 作用 的物体在力 r r v0 = 6i m ⋅ s −1 ,则t=3时 轴运动, 时其速度 下,沿x轴运动,t=0时其速度 轴运动 时
r r r r f (120t + 40)i = = (12t + 4) i 解:a = m 10 r r r t r t r 2 v = ∫ adt = ∫ (12t + 4) i dt =(6t + 4t ) i + v0 0 0 r = ( 6t 2 + 4t + 6) i r r v ( 3) = 72i m ⋅ s −1
质点动力学二
![质点动力学二](https://img.taocdn.com/s3/m/2f1dad8f27fff705cc1755270722192e453658cc.png)
例 如图所示,轻弹簧一端固定在墙上,另一端系一质量为m 旳物体,物体放在水平桌面上。弹簧旳劲度系数为k,物体与桌 面间旳摩擦系数为μ。若以不变旳力F将物体自平衡位置向右拉, 求物体到达最远时系统旳势能。
解:将物体m和弹簧k选为系统。 物体受重力mg,桌面支承力FN, 弹簧弹性力f,桌面摩擦力fr,以及水 平拉力F;弹簧受物体旳拉力f’和墙 施于弹簧旳力FN’。
f21 2 ' r2
m2
2
r1 , r2
v20 v2
F2
对 m1 、m2 应用质点动能定理,
W1外 W1内 E k 1 E k 10
W 2 外 W 2内 E k 2 E k 20
因为 m1 、m2 为一种系统,将上两式相加:
n
n
n
n
Wi外 Wi内 E ki E ki 0
单位:瓦特,W 千瓦,KW 1KW=103W
例 如图3-3所示,已知一单摆摆球质量为m,摆长为l。用一水平力 F无限缓慢地把摆球从平衡位置拉到使摆线与竖直方向成θ0角旳位 置。求力F对摆球所作旳功。
解 因为过程是无限缓慢旳,所以摆线与竖直方向成任意角度 θ时,摆球所受拉力F、重力mg和绳子张力FN三力平衡。沿水平 方向和竖直方向旳牛顿第二定律分量式为
当
W ex
W in nc
0
时,有 E E0
机械能守恒定律 只有保守内力作功旳情况下, 质点系旳机械能保持不变 .
Ek Ek0 (Ep Ep0 ) E Ek Ep 常量
Ek Ep
阐明 守恒定律旳意义 不研究过程细节而能对系统旳状态下结论,这
是各个守恒定律旳特点和优点 . 守恒定律是对一种系统而言旳
第二章--质点动力学2
![第二章--质点动力学2](https://img.taocdn.com/s3/m/94fb3a0dac02de80d4d8d15abe23482fb5da025e.png)
W W1 W2
o
r
r1 dr r2
(3)功是过程量:功总是和质点旳某个运
动过程相联络
W dW F dr F cos d r
2、重力、引力、弹性力旳功
(1)重力作功
物体m沿途径 A 过B程中重力
旳功
W
B
dW
B mg dr
y2 mgdy
W
A
mgy2A
mgy1
y1
t1
i1 若 Fi合 0
i 1 n
则 P
mivi
恒矢量
i 1
动量守恒定律:
当系统合外力为零时,系统
旳总动量保持不变。t2
nn
讨论:
Fi合dt mivi mivi0
t1
i 1
i 1
(1)合外力为零或不受外力作用系统总
动量保持不变。
(2)合外力不为零,但合力在某方向分量 为零,则系统在该方向上旳动量守恒。
W mgy2 mgy1 重力势能 Ep mgh
W
G
m'm rB
G
m'm rA
W
1 2
kx22
1 2
kx12
引力势能 弹性势能
Mm
Ep G r
Ep
1 2
kx2
所以能够得到保守力旳功与势 能旳关系式
W Ep2 Ep1 Ep
(2)势能旳讨论 势能是属于存在保守内力旳系统旳, 具有保守力才干引入势能旳概念。 势能是状态旳函数。 势能值旳相对性与势能差旳绝对性。
式
(2)直角坐标系中,定理分量式 t2
I x Fxdt px2 px1
t1 t2
I y Fydt py2 py1
大学物理第2章_质点动力学_知识框架图和解题指导和习题
![大学物理第2章_质点动力学_知识框架图和解题指导和习题](https://img.taocdn.com/s3/m/52324b0b680203d8cf2f2452.png)
第2章 质点动力学一、基本要求1.理解冲量、动量,功和能等基本概念;2.会用微积分方法计算变力做功,理解保守力作功的特点;3.掌握运用动量守恒定律和机械能守恒定律分析简单系统在平面内运动的力学问题的思想和方法。
二、基本内容(一)本章重点和难点:重点:动量守恒定律和能量守恒定律的条件审核、综合性力学问题的分析求解。
难点:微积分方法求解变力做功。
(二)知识网络结构图:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧公式只有保守内力做功条件能量守恒定律公式合外力为条件动量守恒定律守恒定律动能定理动量定理基本定理能功冲量动量基本物理量)()0((三)容易混淆的概念: 1.动量和冲量动量是质点的质量与速度的乘积;冲量是合外力随时间的累积效应,合外力的冲量等于动量增量。
2.保守力和非保守力保守力是做功只与始末位置有关而与具体路径无关的力,沿闭合路径运动一周保守力做功为0;非保守力是做功与具体路径有关的力。
(四)主要内容: 1.动量、冲量动量:p mv =u r r冲量:⎰⋅=21t t dt F I ϖϖ2.动量定理:质点动量定理:⎰∆=-=⋅=2112t t v m P P dt F I ϖϖϖϖϖ 质点系动量定理:dtPd F ϖϖ=3.动量守恒定律:当系统所受合外力为零时,即0=ex F ϖ时,或in ex F F u r u r ? 系统的总动量保持不变,即:∑===n i i i C v m P 1ϖϖ4.变力做功:dr F r d F W BAB A⎰⎰=⋅=θcos ϖϖ(θ为)之间夹角与r d F ϖϖ直角坐标系中:)d d d ( z F y F x F W z y BAx ++=⎰5.动能定理:(1)质点动能定理:k1k221222121E E mv mv W -=-=(质点所受合外力做功等于质点动能增量。
)(2)质点系动能定理:∑∑==-=+ni ni E E W W1kio1ki inex(质点系所受外力做功和内力做功之和等于质点系动能增量。
大学物理_第2章_质点动力学_习题答案
![大学物理_第2章_质点动力学_习题答案](https://img.taocdn.com/s3/m/acdddd48e518964bcf847c40.png)
第二章 质点动力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数。
解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-2(2)s ∴=把式(2)代入式(1)得,220.198u =2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。
解:小球在运动的过程中受到重力G 和轨道对它的支持力T.取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdtv F T mg m Rαα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )m cos 3cos '3cos ,e v vdv rg d v vrv mg mg rmg αααωααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ 的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两习题2-2图者间摩擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。
解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。
第02章 质点动力学习题
![第02章 质点动力学习题](https://img.taocdn.com/s3/m/aefa3b8a6529647d272852f7.png)
dt v0 = 3(m / s ), v 4 = 19(m / s)
1 1 2 2 根据动能定律,有: A = mv 4 − mv 0 = 176( J ) 2 2 dv = 6t − 8 或: a =
A=∫
( 2)
4
(1)
0
dt ( 2) Fdx = ∫ madx
(1)
= ∫ (6t − 8) d (3t − 4t 2 + t 3 ) = 176 ( J )
dv 解:(1) f = − kv = m , dt vm
2
∴ 得: v =
v 1 k ∫0 m dt = ∫v0 v 2 dv t
0
(2)∵ dx = vdt ∴
m + kv0t
∫
x
k dv dv dv 2 ∴− dx = = mv = − Kv , (3) f = m m v dt dx k − x v0 k 积分可得: x = ln , v = v0 e m m v
m kv0 得x = ln( dt 0 m + kv t 0
t
11
7
3.已知氢原子中电子的质量为 已知氢原子中电子的质量为9.11×10-31 kg,它绕原子核 已知氢原子中电子的质量为 × 它绕原子核 运动的平均半径为5.29×10-11 m,角速度为 ,角速度为4.13×1016 × 运动的平均半径为 × × rad/s,则它绕原子核运动的角动量为 1.05×10-34 kg·m2/s 。 , 分析:
dv dv dx 2 1) F = ma = m =m ⋅ = mkv = mk x dt dx dt
dx dx dx , dt = = 2)根据 v = dt v kx t2 x1 dx 1 x1 两边积分得:∆t = dt = ∫ = ln ∫t1 x0 kx k x0
第2章_质点动力学
![第2章_质点动力学](https://img.taocdn.com/s3/m/c6ba520031126edb6f1a10e1.png)
重点掌握变力的问题!
11
例:一根长为L,质量为M的柔软的链条,开始时链条 静止,长为L-l 的一段放在光滑的桌面上,长为l 的一段 铅直下垂。(1)求整个链条刚离开桌面时的速度;(2)求 链条由刚开始运动到完全离开桌面所需要的时间。 M dv dv dx dv xg 解: F xg Ma , a v L dt dt dx L dx
(1) F合 ma (2) a a a0
在加速平动参照系中: F惯 ma0 此时,F F惯 ma (4)
(4)式就在形式上与牛顿第二定律保持一致。
18
在加速平动参照系中:F惯 ma0
惯性力大小: 运动质点的质量m与非惯性系加速度 a的乘积。
*2.1.4 非惯性系 惯性力 非惯性系:相对于惯性系做加速运动的参考系。
在非惯性系内牛顿定律不成立。 1.平动加速系
设有一质点质量为m,相对于某一惯性系S,根据 牛顿第二定律,有: (1) F ma
合
设有另一参照系S/,相对于惯性系S以加速度
动,在S/参照系中,质点的加速度为
由运动的相对性,有:a a a0
2
牛顿第二定律:物体受到外力作用时,它所获得的加 速度的大小与合外力的大小成正比,与物体的质量成 反比,加速度的方向与合外力的方向相同。
数学形式:F ma 或 F m dv dt
在直角坐标系Oxyz中: 在自然坐标系中 :
Fix max Fiy ma y Fiz maz
在匀角速转动参考系中应用牛顿定律, 必须设想物体又受到另外一个与拉力大小相 等但方向相反的惯性力的作用,
2 Fi mω r
大学物理 质点动力学
![大学物理 质点动力学](https://img.taocdn.com/s3/m/19fbdd26647d27284b735184.png)
a物惯 a物A a A惯
解方程
3.列方程
大学 物理学
例2.1 一细绳跨过一轴承光滑的定滑轮,绳的两端分别悬 有质量为m1 和 m2的物体( m1 < m2 ),如图2.2所示.设滑轮和 绳的质量可忽略不计,绳不能伸长,试求物体的加速度以 及悬挂滑轮的绳中张力.
m2 定滑轮为研究 解 分别以 m1 , 对象,其隔离体受力如图所示.
T1 T2 T, a1 a2 a
m2 m1 a g, m1 +m2
解①和②两式得
2m1m 2 T g. m1 +m2
由牛顿第三定律知:T1' T1 T, T2' T2 T ,又考虑到定滑轮质量不 计,所以有
容易证明
4m1m2 T 2T g m1 +m2
1 7.3 10 rad s
5
1
由于地球的自转, 地球上的物体有法向 加速度。
大学 物理学
大量的事实和实验表明:
地球不是一个严格的惯性系。
傅科摆 河岸冲刷 赤道附近的信风 强热带风暴漩涡 落体偏东
地球自转:科里奥利加速度
Rse
Rse 1.5 108 km 1Au
a自转 3 6 g , a公转 g 1000 10000
明朝1644年灭亡,康熙皇帝:1654-1722
大学 物理学
动力学:研究作用于物体上的力和
物体机械运动状态变化之间的关系。
• 本章主要内容: • §2.1 牛顿运动定律 • §2.2 动量 动量守恒定律 • §2.2 功 动能 势能 机械能守 恒定律 • §2.2 角动量 角动量守恒定律
大学 物理学
对 m1,它在绳子拉力 T1 及重力 m1 g 的作用下以加速度 a1向上运动,取 向上为正向,则有
大学物理(上)课件-第02章质点动力学3-2
![大学物理(上)课件-第02章质点动力学3-2](https://img.taocdn.com/s3/m/55fa13e1551810a6f52486fa.png)
(
)
50
� � � dL � 质点系角动量定理: M = ∑ ri × Fi = dt
质点系对某一参考点的角动量随时间的变化率等 于系统所受各个外力对同一参考点力矩之矢量和。 质点系角动量定理的积分式:
∫
t2
t1
� � � Mdt = L2 − L1
作用于质点系的冲量矩等于质点系在作用时 间内的角动量的增量 。
例6 宇宙飞船在宇宙尘埃中飞行,尘埃密度为ρ。如 果质量为mo的飞船以初速vo穿过尘埃,由于尘埃粘在 飞船上,致使飞船速度发生变化。求飞船的速度与其 在尘埃中飞行的时间的关系。(设飞船为横截面面积 为S的圆柱体) 解: 某时刻飞船速度: v,质量:m 动量守恒: 质量增量:
m0v0 = mv
dm = ρ Sv dt
2.质点系的动量定理:
∫
t
t0
� � � � ∑ Fi dt = p − p0 = ∆p
� � dp ∑ Fi = dt
质点系统所受合外力的冲量等于系统总动量的增量。 微分式:
注意:系统的内力不能改变整个系统的总动量。
31
设 有n个质点构成一个系统 第i个质点: 质量
� � 内力 F 外力 Fi 内i
O
y
48
3. 质点的角动量定理
� � dL MO = dt
质点对某一参考点的角动量随时间的变化率等于 质点所受的合外力对同一参考点的力矩。 角动量定理的积分式:
∫
t2
t1
� � � M O dt = L2 − L1
∫
t2
t1
� M O dt
称为“冲量矩”
49
n � n � � � 质点系的角动量: L = ∑ Li = ∑ ( ri × pi ) i =1 i =1
《大学物理》第二章《质点动力学》课件
![《大学物理》第二章《质点动力学》课件](https://img.taocdn.com/s3/m/dac358dcdc88d0d233d4b14e852458fb770b3821.png)
相对论中的质点动力学
相对论简介
01
相对论是由爱因斯坦提出的理论,包括特殊相对论和广义相对
论,对经典力学和电动力学进行了修正和发展。
质点动力学
02
在相对论中,质点的运动遵循质点动力学规律,需要考虑相对
论效应。
实际应用
03
相对论中的质点动力学在粒子物理、宇宙学和天文学等领域具
有重要意义,如解释宇宙射线、黑洞和宇宙膨胀等现象。
牛顿运动定律的应用
通过牛顿第二定律分析质点在各种力作用下的运动规律。
弹性碰撞和非弹性碰撞
碰撞的定义
两个物体在极短时间内相互作用的过 程。
弹性碰撞
两个物体碰撞后,动能没有损失,只 发生形状和速度方向的改变。
非弹性碰撞
两个物体碰撞后,动能有一定损失, 不仅发生形状和速度方向的改变,还 可能有物质交换。
01
运动分析
火箭发射过程中,需要分析火箭的加速 度、速度和位移等运动参数,以确定最 佳发射时间和条件。
02
03
实际应用
火箭发射的运动分析对于航天工程、 军事和商业发射等领域具有重要意义。Fra bibliotek球自转的角动量守恒
1 2
地球自转
地球绕自身轴线旋转,具有角动量。
角动量守恒
在没有外力矩作用的情况下,地球自转的角动量 保持不变。
相对论和量子力学
随着科学技术的不断发展,相对论和量子力学逐 渐兴起,对质点动力学产生了深远的影响。相对 论提出了新的时空观念和质能关系,而量子力学 则揭示了微观世界的奇特性质。
牛顿时代
牛顿在《自然哲学的数学原理》中提出了三大运 动定律和万有引力定律,奠定了经典力学的基础 。
现代
现代物理学在继承经典理论的基础上,不断探索 新的理论框架和实验手段,推动质点动力学的发 展和完善。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、质点的动能定理
用dr点乘牛顿第二定律等式的两边得:
dp 1 2 F dr dr d( mv ) v d( mv ) dt 2
将上式两边对一个有限过程积分得:
1 2 1 2 1 2 A F dr d( mv ) mvb mva a a 2 2 2
b b
第8页
解:
dv m kv (式中负号表示力和速度的方向相反 ) dt dv dx dv mv kv 作如下变换 : m dx dt dx
分离变量后两边积分,并设所能前进的最大距离为L:
即可解得:
0
v0
mdv kdx
0
L
m L v0 k
第9页
例( 教材习题2–16) 一质量为m的均匀细绳长度为l,将其一端固 定,另一端绕固定端在光滑水平面上以匀角速度旋转。设绳 子不可伸长,试求距离固定端半径为r处绳中的张力。 解: 在距离固定端x处取长度为dx的一段细绳,其质量为dm m d m dx l
1 2 显然, mv 是一个状态量。我们定义它为质点的动能: 2
1 2 Ek mv 2
质点的动能定理——作用在一个质点上的合力在一个过程中所做的 功(过程量)等于质点始末状态动能(状态量)的增量。
第 25 页
三、几种常见力的功
万有引力的功 :F G
Mm ˆ r 2 r
Mm Mm ˆ dl G 2 dl cos dA F dl G 2 r r r Mm G 2 dr r
d2r 解:由牛顿第二定律 F ma m 2 dt d2 F m 2 A sin(t )i B cos(t ) j dt 2 2 m A sin(t )i m B cos(t ) j
m 2 r
第7页
第二类问题:已知作用于质点的力和初始条件,求质点的运动规 律。 这类问题情况比较复杂,须据受力情况来定:如果力是恒力,或是 时间、速度的函数,这时,或用“隔离体法”求解,或对动力学方程 分离变量后积分;如果力是坐标x的函数,则需先作变量变换,再 利用分离变量求积分的方法来解决。 例2 质量为m的轮船在停靠码头之前停机,这时轮船的速率为v0。 设水的阻力与轮船的速率成正比,比例系数为k,求轮船在发 动机停机后所能前进的最大距离。
M
M dm v dv (v u )dm Mv Mgdt M dM v dv (v u )dM Mv Mgdt
Mdv udM Mgdt
第 21 页
设发射的一瞬间,火箭和燃料的总质量为M0,燃料喷射完后,火箭 的质量为Mf ,速度大小为vf,经历的时间为tf
冲力(impulsive force) :
F
F
t2
t1
Fdt
t2 t1
p2 p1 t2 t1
F
平均冲力常用来估算碰撞、冲击过程 中的作用力。
t0
第 13 页
t t
二、质点系的动量定理
由相互作用的若干个质点组成的系统称为质点系。 我们将牛顿第二 定律应用在由两个质点组成的质点系上:
第二章 质点动力学 Chap.2 Kinetics
本章要点
动量、冲量、动量定理与动量守恒定律 动能、势能、机械能 动能定理、功能原理与机械能守恒 质点的角动量、角动量定理与角动量守恒
第2页
第一节 牛顿运动定律
一、牛顿运动三定律
牛顿第一定律(Newton's first law): 任何物体都将保持静止或沿一直线作匀速运动的状态,除非有力加 于其上迫使它改变这种状态。 惯性(inertia): 物体保持其运动状态不变的性质。 惯性参照系的概念 力(force): 物体间相互作用,是改变速度的原因。
第 16 页
三、动量守恒定律
如果质点系所受外力的矢量和为零 ,即:
N
F Fi 0
i 1
N
则:
p pi 常矢量
i 1
当一个质点系所受外力的矢量和为零时,该质点系的动量就保持不 变,这称为动量守恒定律。
第 17 页
由于力和动量都是矢量,因此动量守恒定律在直角坐标系中可以表 示为:
第3页
牛顿第二定律(Newton's second law): “运动的改变和所加的动力成正比,并且发生在这力所沿直线的方 向上。” “运动的量是用速度和质量一起来度量的”。 动量(momentum):p=mv
d( mv ) dp F dt dt
理解牛顿第二定律的要点: (1) 质点 惯性系 (2) 瞬时性 矢量性 (3) m 不变时,F ma (4)力为合力, F F1 F2 Fn
d N Fi fij pi dt i 1 i 1 i 1 j i
N N
N N N
f ij 0
i 1 j i
d N Fi pi dt i 1 i 1
质点系动量定理的微分形式 :
N i i 1 N i i 1
N
F dt d p
电磁力: 除万有引力外,几乎所有宏观力都是电磁力。长程力。 引力: 强力: 强度仅为电磁力的1/1037 原子核内的短程力,其强度是电磁力的百倍。力程约为 10-15m
弱力: 存在于基本粒子之间,强度只是强力的一百万亿分之 一。力程:约为10-17m
第6页
三、牛顿定律的应用 动力学中的两类基本问题
第 12 页
冲量和动量都是矢量,我们可以将动量定理在直角坐标系中进行分 解,得到的分量式为:
I t F dt p p mv mv x 0x x 0x x t0 x t I y t Fy dt p y p0 y mv y mv0 y 0 I t F dt p p mv mv z 0z z 0z z t0 z
vf
0
dv u
Mf
M0
tf dM g dt 0 M
M0 v f u ln gt f Mf
如何提高火箭的末态速度?
第 22 页
第三节 机械能守恒定律
一、功(Work) 功率(Power)
我们再从力对质点作用的空间过程考虑问题。 考察其中一个元过程,由于在此元过程 中,位移趋于0,因而此元过程经历的时 间也必然趋于0。 因此,可以认为该元过程的运动为一直 线,此元过程中的力也可以看做恒力。 元功——任一元过程中力的功。它定义为:
a
( Fx dx Fy dy Fz dz )
a
b
合力 F Fi 的功:
i
A F dr
a
b
b
a
F
i
i
dr Fi dr Ai
i a i
b
功率——功对时间的变化率,表示做功的快慢,单位为瓦特(W) dA F dr P F v dt dt
当链条落在地面上的长度为L3时:
2h L F mg L
第 20 页
例4 不考虑空气的阻力并将重力看作恒力,分析火箭上升过程中速 度大小的变化。 解:令竖直向上方向为正方向,考虑某一时刻, 火箭和燃料的总质量及速度分别为:M,v,燃料 相对火箭的喷射速度为u,经dt时间后,火箭喷射 dm的燃料,同时火箭速度为v+dv。对该元过程 应用动量定理得:
第4页
牛顿第三定律(Newton's third law): “每一个作用总有一个相等的反作用与它对抗;或者说,两个物体 之间的相互作用永远相等,并且指向对方。”
F12 F21
(1)作用力和反作用力同时存在。 (2)分别作用于两个物体上,不能抵消。 (3)属于同一种性质的力。
第5页
二、基本力简介
dp1 F1 f12 dt F2 f21 dp2 dt
F2
由于: f12 f21 0 ,容易得:
F1 F2 dp1 dp2 d ( p1 p2 ) dt dt dt
f12
m1
f 21
F1
m2
第 14 页
很容易将上式推广到N个质点所组成的质点系的情况 :
第 15 页
N
令: p pi ,为质点系内所有质点动量的和
i 1 N
令: F Fi ,为系统所受合外力
i 1
则: Fdt dp
t
t0
Fdt dp p p0
p0
p
质点系的动量定理:系统所受的合外力的冲量等于系统总动量 的增量。 显然,外力可以改变系统的总动量,而内力不会影响系统的总 动量,但是内力可以使系统内部各质点之间进行动量交换。
N
Fx 0, Fy 0, Fz 0,
px pix 常量
i N
p y piy 常量
i N
p x piz 常量
i
第 18 页
例3 质量为m的匀质柔软链条,全长为L,手持一端,使下端离地面 的高度为h,然后由静止释放,让其自由下落到地面。求链条 落在地面上的长度为L3时,地面所受链条的作用力大小 。 解:链条落到地上l 后,其速度大小为 v,考虑此时的元过程:在dt时间 内,落下一小段dl,其速度大小由 v变为0。设此时地面对下落链条冲 力的大小为f,向下的方向为正方 向,由动量定理得: m 0 ( d l ) v fd t L
第一类问题:已知质点的运动规律,即已知质点的运动学方程 r=r (t),求作用于质点的力。 将运动学方程对时间求二阶导数,算出质点的加速度,进而便可求 得作用于质点的力。 例1 一个质量为m的质点在xy平面上运动,运动方程为:
r A sin(t )i B cos(t ) j