河南省高考数学一轮复习:42 空间向量及其运算(理科专用)(II)卷

合集下载

2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算

2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算

2024年高考数学总复习第八章《立体几何与空间向量》§8.5空间向量及其运算最新考纲1.经历向量及其运算由平面向空间推广的过程.2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a =b相反向量方向相反且模相等的向量a 的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb .(2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量.(3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律①(λa )·b =λ(a ·b );②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c .4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示坐标表示数量积a·ba 1b 1+a 2b 2+a 3b 3共线a =λb (b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3垂直a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示不相同.平行于同一平面的向量就为共面向量.2.零向量能作为基向量吗?提示不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a ,b 共面.(√)(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).(×)(3)对于非零向量b ,由a ·b =b ·c ,则a =c .(×)(4)两向量夹角的范围与两异面直线所成角的范围相同.(×)(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.(√)(6)若a·b <0,则〈a ,b 〉是钝角.(×)题组二教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是()A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案A解析BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________.答案2解析|EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,∴|EF →|=2,∴EF 的长为2.题组三易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是()A .垂直B .平行C .异面D .相交但不垂直答案B解析由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________.答案26解析∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0,∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C四点共面,则实数t =______.答案18解析∵P ,A ,B ,C 四点共面,∴34+18+t =1,∴t =18.题型一空间向量的线性运算例1如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.解(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP→=-12a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→+12b ++12c =32a +12b +32c .思维升华用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1(1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案12AB →+12AD →+AA 1→解析∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.(2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于()A.12(-a +b +c )B.12(a +b -c )C.12(a -b +c )D.12(-a -b +c )答案B解析NM →=NA →+AM →=(OA →-ON →)+12AB→=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC→=12(a +b -c ).题型二共线定理、共面定理的应用例2如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证:BD ∥平面EFGH .证明(1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH→=EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .思维升华证明三点共线和空间四点共面的方法比较三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA →=λPB →且同过点P MP →=xMA →+yMB→对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB→对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB→跟踪训练2如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面?(2)直线MN 是否与平面ABB 1A 1平行?解(1)∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN →=kC 1A →+AB →+kBC →=k (C 1A →+BC →)+AB →=k (C 1A →+B 1C 1→)+AB →=kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →)=(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面.(2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内,又由(1)知MN →与AB →,AA 1→共面,∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内;当0<k ≤1时,MN ∥平面ABB 1A 1.题型三空间向量数量积的应用例3如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值.(1)证明设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB→=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.∴MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD .(2)解设向量AN →与MC →的夹角为θ.∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r -12p2-12q ·p +r ·q -12r ·2-12a 2cos 60°+a 2cos 60°-12a 2cos2-a 24+a 22-=a 22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cosθ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.解(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2+12+6,∴|AC 1→|=6,即AC 1的长为6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1,→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于()A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)答案B解析由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面;③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是()A .0B .1C .2D .3答案A解析a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于()A.32B .-2C .0 D.32或-2答案B解析当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m ,解得m =-2.4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为()A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)答案C 解析设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.5.已知a =(1,0,1),b =(x ,1,2),且a·b =3,则向量a 与b 的夹角为()A.5π6 B.2π3 C.π3 D.π6答案D解析∵a·b =x +2=3,∴x =1,∴b =(1,1,2),∴cos 〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是()A.3B.2C .1 D.3-2答案D 解析∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,故|BD→|=3-2.7.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ=________.答案-9解析由题意知c=x a+y b,即(7,6,λ)=x(2,1,-3)+y(-1,2,3),x-y=7,+2y=6,3x+3y=λ,解得λ=-9.8.已知a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,则c=________.答案(3,-2,2)解析因为a∥b,所以x-2=4y=1-1,解得x=2,y=-4,此时a=(2,4,1),b=(-2,-4,-1),又因为b⊥c,所以b·c=0,即-6+8-z=0,解得z=2,于是c=(3,-2,2).9.已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,VP→=13VC→,VM→=23VB→,VN→=23VD→.则VA与平面PMN的位置关系是________.答案平行解析如图,设VA→=a,VB→=b,VC→=c,则VD→=a+c-b,由题意知PM→=23b-13c,PN→=23VD→-13VC→=23a-23b+13c.因此VA→=32PM→+32PN→,∴VA→,PM→,PN→共面.又VA⊄平面PMN,∴VA∥平面PMN.10.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确的序号是________.答案①②解析①中,(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面;(2)判断点M 是否在平面ABC 内.解(1)由题意知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,∴M ,A ,B ,C 四点共面.∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点)解(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2.(2)令AE →=tAB →(t ∈R ),所以OE →=OA →+AE →=OA →+tAB→=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t ,4-2t ),若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E -65,-145,13.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案56解析连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a+12c -12a =16a +13b +13c .又OG →=xOA →+yOB →+zOC →,所以x =16y =13,z =13,因此x +y +z =16+13+13=56.14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是()A .钝角三角形B .锐角三角形C .直角三角形D .不确定答案C 解析∵M 为BC 中点,∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0.∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB→取最小值时,点Q 的坐标是________.答案(1,1,2)解析由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明设CA →=a ,CB →=b ,CC ′→=c ,根据题意得|a |=|b |=|c |,且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a ,∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=AC ′,→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。

2024年高考指导数学(人教A版理科第一轮复习)目录

2024年高考指导数学(人教A版理科第一轮复习)目录

课时规范练(A)课时规范练1集合的概念与运算课时规范练3命题及其关系、充要条件课时规范练5函数及其表示课时规范练7函数的奇偶性与周期性课时规范练9指数与指数函数课时规范练11函数的图象课时规范练13函数模型及其应用课时规范练15利用导数研究函数的单调性课时规范练17定积分与微积分基本定理课时规范练19同角三角函数基本关系式及诱导公式课时规范练21简单的三角恒等变换课时规范练23函数y=A sin(ωx+φ)的图象及三角函数的应用课时规范练25平面向量的概念及线性运算课时规范练27平面向量的数量积及其应用课时规范练29数列的概念课时规范练31等比数列课时规范练33二元一次不等式(组)与简单的线性规划问题课时规范练35合情推理与演绎推理课时规范练37数学归纳法课时规范练39空间几何体的表面积与体积课时规范练41空间直线、平面的平行关系课时规范练43空间向量及其运算课时规范练45直线的倾斜角、斜率与直线的方程课时规范练47圆的方程课时规范练49椭圆课时规范练51抛物线课时规范练53算法初步课时规范练55用样本估计总体课时规范练57分类加法计数原理与分步乘法计数原理课时规范练59二项式定理课时规范练61古典概型与几何概型课时规范练63二项分布与正态分布课时规范练65极坐标方程与参数方程课时规范练67绝对值不等式课时规范练(B)课时规范练2简单不等式的解法课时规范练4简单的逻辑联结词、全称量词与存在量词课时规范练6函数的单调性与最大(小)值课时规范练8幂函数与二次函数课时规范练10对数与对数函数课时规范练12函数与方程课时规范练14导数的概念及运算课时规范练16利用导数研究函数的极值、最大(小)值课时规范练18任意角、弧度制及任意角的三角函数课时规范练20两角和与差的正弦、余弦与正切公式及二倍角公式课时规范练22三角函数的图象与性质课时规范练24余弦定理、正弦定理及应用举例课时规范练26平面向量基本定理及向量坐标运算课时规范练28复数课时规范练30等差数列课时规范练32数列求和课时规范练34基本不等式及其应用课时规范练36直接证明与间接证明课时规范练38空间几何体的结构及其三视图、直观图课时规范练40空间点、直线、平面之间的位置关系课时规范练42空间直线、平面的垂直关系课时规范练44空间几何中的向量方法课时规范练46点与直线、两条直线的位置关系课时规范练48直线与圆、圆与圆的位置关系课时规范练50双曲线课时规范练52直线与圆锥曲线的位置关系课时规范练54随机抽样课时规范练56变量间的相关关系、统计案例课时规范练58排列与组合课时规范练60随机事件的概率课时规范练62离散型随机变量及其分布列课时规范练64离散型随机变量的均值与方差课时规范练66极坐标方程与参数方程的应用课时规范练68不等式的证明解答题专项解答题专项一函数与导数的综合问题第1课时利用导数证明不等式第2课时利用导数研究不等式恒(能)成立问题第3课时利用导数研究函数的零点解答题专项二三角函数与解三角形解答题专项三数列解答题专项四立体几何中的综合问题解答题专项五直线与圆锥曲线第1课时圆锥曲线中的最值(或范围)问题第2课时圆锥曲线中的定点(或定值)问题第3课时圆锥曲线中的存在性(或证明)问题解答题专项六概率与统计单元质检卷单元质检卷一集合与常用逻辑用语单元质检卷二函数单元质检卷三导数及其应用单元质检卷四三角函数、解三角形单元质检卷五平面向量、数系的扩充与复数的引入单元质检卷六数列单元质检卷七不等式、推理与证明单元质检卷八立体几何单元质检卷九解析几何单元质检卷十算法初步、统计与统计案例单元质检卷十一计数原理单元质检卷十二概率。

2024届高考数学一轮复习+第七章《立体几何与空间向量》第五节+空间向量及其运算+课件

2024届高考数学一轮复习+第七章《立体几何与空间向量》第五节+空间向量及其运算+课件

(5)空间向量基本定理定理:如果三个向量 , , 不共面,那么对空间任一向量 ,存在唯一有序实数组 使得 _____________.推论:设 , , , 是不共面的四点,则对平面 内任一点 都存在唯一的有序实数组 ,使 ,且 .
2.数量积及坐标运算
(1)两个向量的数量积 ; _________( , 为非零向量); ____.
10
[解析] , , , .
关键能力·突破
考点一 空间向量的线性运算
1. (2022广东深圳重点中学高三联考)如图,空间四边形 中, , , ,点 在 上,且满足 ,点 为 的中点,则 ( )
B
A. B. C. D.
[解析] 由题意得, ,又 , , , .
③ ,正确;④ 与 不是一对相反向量,是相等向量,错误.正确结论的个数为1,故选A.
4. 已知四边形 为正方形, 是正方形 所在平面外一点, 在平面 上的射影恰好是正方形的中心 , 是 的中点,求下列各题中 , 的值:
(1) ;
[解析] 如图, , .
(2) .
迁移应用
2. (2022江苏南通期末)试写出一个点 的坐标:_ _______________________,使之与点 , 共线.
(答案不唯一)
[解析] 设 ,令 ,则 ,故 , ,不妨令 ,则 ,故 .
3. (2022山西运城二模)如图,在几何体 中, , , 均为边长为2的等边三角形,平面 平面 ,平面 平面 .求证: , , , 四点共面.
5. (2022福建宁德期末)如图,在平行六面体 中, , , ,点 是 中点,则异面直线 与 所成角的余弦值是_ ____.
[解析] , .又 , ,从而有 , , .
方法感悟用已知向量表示某一向量的三个关键点(1)用已知向量来表示某一向量,一定要结合空间图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义.(3)在空间中,向量的三角形法则、平行四边形法则仍然成立.

2021版新高考数学一轮集训42 空间向量的运算及应用

2021版新高考数学一轮集训42 空间向量的运算及应用

空间向量的运算及应用 建议用时:45分钟一、选择题1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( ) A .(0,3,-6) B .(0,6,-20) C .(0,6,-6)D .(6,6,-6)B [由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).]2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ) A .相交 B .平行C .在平面内D .平行或在平面内D [∵AB →=λCD →+μCE →,∴AB →,CD →,CE →共面. 则AB 与平面CDE 的位置关系是平行或在平面内.]3.已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则下列结论正确的是( )A .a ∥c ,b ∥cB .a ∥b ,a ⊥cC .a ∥c ,a ⊥bD .以上都不对C [∵c =(-4,-6,2)=2(-2,-3,1)=2a ,∴a ∥c ,又a·b =-2×2+(-3)×0+1×4=0,∴a ⊥b .]4.如图所示,三棱锥O -ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →=( )A .12(-a +b +c ) B .12(a +b -c )C .12(a -b +c ) D .12(-a -b +c )B [NM →=NA →+AM →=(OA →-ON →)+12AB →=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC →=12(a +b -c ).]5.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定C [∵M 为BC 中点,∴AM →=12(AB →+AC →), ∴AM →·AD →=12(AB →+AC →)·AD → =12AB →·AD →+12AC →·AD →=0.∴AM ⊥AD ,△AMD 为直角三角形.] 二、填空题6.在空间直角坐标系中,A (1,1,-2),B (1,2,-3),C (-1,3,0),D (x ,y ,z )(x ,y ,z ∈R ),若A ,B ,C ,D 四点共面,则2x +y +z =________.1 [∵A (1,1,-2),B (1,2,-3),C (-1,3,0),D (x ,y ,z )(x ,y ,z ∈R ),∴AB →=(0,1,-1),AC →=(-2,2,2),AD →=(x -1,y -1,z +2).∵A ,B ,C ,D 四点共面,∴存在实数λ,μ使得AD →=λAB →+μAC →,即(x -1,y -1,z +2)=λ(0,1,-1)+μ(-2,2,2),∴⎩⎨⎧x -1=-2μ,y -1=λ+2μ,z +2=-λ+2μ,解得2x +y +z =1.] 7.在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱AA 1和BB 1的中点,则sin 〈CM →,D 1N 〉的值为________.459 [如图建立空间直角坐标系D -xyz ,设正方体棱长为2,则易得CM →=(2,-2,1),D 1N =(2,2,-1),∴cos 〈CM →,D 1N 〉=CM →·D 1N |CM →||D 1N |=-19,∴sin 〈CM →,D 1N 〉=1-⎝ ⎛⎭⎪⎫-192=459.]8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.①②③ [∵AB →·AP →=0,AD →·AP →=0, ∴AB ⊥AP ,AD ⊥AP ,则①②正确. 又AB →与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确.∵BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1), ∴BD →与AP →不平行,故④错误.] 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)若|c |=3,且c ∥BC →,求向量c ; (2)求向量a 与向量b 的夹角的余弦值.[解] (1)∵c ∥BC →,BC →=(-3,0,4)-(-1,1,2) =(-2,-1,2),∴c =mBC →=m (-2,-1,2)=(-2m ,-m ,2m ), ∴|c |=(-2m )2+(-m )2+(2m )2=3|m |=3,∴m =±1.∴c =(-2,-1,2)或(2,1,-2). (2)∵a =(1,1,0),b =(-1,0,2), ∴a ·b =(1,1,0)·(-1,0,2)=-1, 又∵|a |=12+12+02=2, |b |=(-1)2+02+22=5, ∴cos 〈a ,b 〉=a ·b |a |·|b |=-110=-1010, 故向量a 与向量b 的夹角的余弦值为-1010.10.如图,在棱长为a 的正方体OABC -O 1A 1B 1C 1中,E ,F 分别是棱AB ,BC 上的动点,且AE =BF =x ,其中0≤x ≤a ,以O 为原点建立空间直角坐标系O -xyz .(1)写出点E ,F 的坐标; (2)求证:A 1F ⊥C 1E ;(3)若A 1,E ,F ,C 1四点共面,求证:A 1F =12A 1C 1+A 1E . [解] (1)E (a ,x ,0),F (a -x ,a ,0). (2)证明:∵A 1(a ,0,a ),C 1(0,a ,a ), ∴A 1F =(-x ,a ,-a ),C 1E =(a ,x -a ,-a ), ∴A 1F ·C 1E =-ax +a (x -a )+a 2=0, ∴A 1F ⊥C 1E , ∴A 1F ⊥C 1E .(3)证明:∵A 1,E ,F ,C 1四点共面, ∴A 1E ,A 1C 1,A 1F 共面.选A 1E 与A 1C 1为在平面A 1C 1E 上的一组基向量,则存在唯一实数对(λ1,λ2), 使A 1F =λ1A 1C 1+λ2A 1E ,即(-x ,a ,-a )=λ1(-a ,a ,0)+λ2(0,x ,-a ) =(-aλ1,a λ1+xλ2,-aλ2),∴⎩⎨⎧-x =-aλ1,a =aλ1+xλ2,-a =-aλ2,解得λ1=12,λ2=1.于是A 1F =12A 1C 1+A 1E .1.在空间四边形ABCD 中,则AB →·CD →+AC →·DB →+AD →·BC →的值为( ) A .-1 B .0 C .1D .2B [法一:(直接法)如图,令AB →=a ,AC →=b ,AD →=c, 则AB →·CD →+AC →·DB →+AD →·BC →=AB →·(AD →-AC →)+AC →·(AB →-AD →)+AD →·(AC →-AB →) =a ·(c -b )+b ·(a -c )+c ·(b -a ) =a ·c -a ·b +b ·a -b ·c +c ·b -c ·a =0.法二:(特值法)在三棱锥A -BCD 中,不妨令其各棱长都相等,则正四面体的对棱互相垂直.所以AB →·CD →=0,AC →·DB →=0,AD →·BC →=0. 所以AB →·CD →+AC →·DB →+AD →·BC →=0.]2.(2019·四川名校联考)如图所示,正方体ABCD ­A 1B 1C 1D 1的棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定B [∵正方体棱长为a ,A 1M =AN =2a3, ∴MB →=23A 1B ,CN →=23CA →, ∴MN →=MB →+BC →+CN →=23A 1B +BC →+23CA →=23(A 1B 1+B 1B )+BC →+23⎝⎛⎭⎫CD →+DA →=23B 1B +13B 1C 1. 又∵CD →是平面B 1BCC 1的法向量, 且MN →·CD →=⎝ ⎛⎭⎪⎫23B 1B +13B 1C 1·CD →=0,∴MN →⊥CD →,∴MN ∥平面B 1BCC 1.故选B.]3.△ABC 的顶点分别为A (1,-1,2),B (5,-6,2),C (1,3,-1),则AC 边上的高BD 等于________.5 [设AD →=λAC →,D (x ,y ,z ), 则(x -1,y +1,z -2)=λ(0,4,-3), ∴x =1,y =4λ-1,z =2-3λ, ∴D (1,4λ-1,2-3λ), ∴BD →=(-4,4λ+5,-3λ), ∵AC →·BD →=0,∴4(4λ+5)-3(-3λ)=0,解得λ=-45,∴BD →=⎝ ⎛⎭⎪⎫-4,95,125,∴|BD →|=(-4)2+⎝ ⎛⎭⎪⎫952+⎝ ⎛⎭⎪⎫1252=5.]4.如图所示,在平行四边形ABCD 中,AB =AC =CD =1,∠ACD =90°,把△ADC 沿对角线AC 折起,使AB 与CD 成60°角,求BD 的长.[解] ∵AB 与CD 成60°角, ∴〈BA →,CD →〉=60°或120°.又∵AB =AC =CD =1,AC ⊥CD ,AC ⊥AB ,∴|BD →|=BD →2=(BA →+AC →+CD →)2=BA →2+AC →2+CD →2+2BA →·AC →+2AC →·CD →+2BA →·CD → =1+1+1+0+0+2×1×1×cos 〈BA →,CD →〉 =3+2cos 〈BA →,CD →〉,∴|BD →|=2或 2.∴BD 的长为2或 2.1.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB →取最小值时,点Q 的坐标是________.(1,1,2) [由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).]2.如图所示,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,点P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面P AC ,若存在,求SE ∶EC 的值;若不存在,试说明理由.[解] (1)证明:连接BD ,设AC 交BD 于点O ,则AC ⊥BD .连接SO ,由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图.底面边长为a ,则高SO =62a ,于是S ⎝⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,B ⎝ ⎛⎭⎪⎫22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,OC →=⎝ ⎛⎭⎪⎫0,22a ,0,SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a ,则OC →·SD →=0.故OC ⊥SD .从而AC ⊥SD . (2)棱SC 上存在一点E ,使BE ∥平面P AC .理由如下:由已知条件知DS →是平面P AC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝ ⎛⎭⎪⎫0,-22a ,62a ,BC →=⎝ ⎛⎭⎪⎫-22a ,22a ,0.设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at ,而BE →·DS →=0⇒t =13.即当SE ∶EC =2∶1时,BE ⊥DS . 而BE ⊄平面P AC , 故BE ∥平面P AC .快乐分享,知识无界!感谢您的下载!由Ruize收集整理!。

2022-2023学年高三年级新高考数学一轮复习专题-空间向量的应用(含答案)

2022-2023学年高三年级新高考数学一轮复习专题-空间向量的应用(含答案)

空间向量的应用学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题共3小题,共15.0分。

在每小题列出的选项中,选出符合题目的一项)1.若平面,的法向量分别取为=(2,3,5),=(-3,1,-4),则,的位置关系是()A. 平行B. 垂直C. 相交但不垂直D. 重合2.已知两个不重合的平面与平面,若平面的法向量为,向量,,则()A. 平面平面B. 平面平面C. 平面、平面相交但不垂直D. 以上均有可能3.如图所示,在正方体ABCD-A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线ON,AM的位置关系是()A. 平行B. 相交C. 异面垂直D. 异面不垂直二、填空题(本大题共8小题,共40.0分)4.如图,正三角形ABC与正三角形BCD所在的平面互相垂直,则直线CD与平面ABD所成角的正弦值为.5.已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,=,=,=.则VA与平面PMN的位置关系是.6.如图,在直四棱柱ABCD-中,底面四边形ABCD为菱形,E,F分别为,的三等分点(==),若AB==6,BAD=,则点E到平面BDF的距离为 .7.如图,正方体的棱长为4,M为底面ABCD两条对角线的交点,P为平面内的动点,设直线PM与平面所成的角为,直线PD与平面所成的角为若,则动点P的轨迹长度为.8.正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=4,E为AB的中点,点F满足,动点M在侧面AA1D1D内运动,且MB∥平面D1EF,则|MD|的取值范围是 .9.如图,在正方体中,E为棱的中点,动点沿着棱DC从点D向点C移动,对于下列三个结论:①存在点P,使得;②的面积越来越小;③四面体的体积不变.所有正确的结论的序号是 .10.如图,在棱长为的正方体中,点为棱的中点,点为底面内一点,给出下列三个论断:①;②;③.以其中的一个论断作为条件,另一个论断作为结论,写出一个正确的命题: .11.如图,正三棱柱ABC-A1B1C1的所有棱长都相等,E,F,G分别为AB,AA1,A1C1的中点,则B1F与平面GEF所成角的正弦值为.三、解答题(本大题共7小题,共84.0分。

高考数学一轮复习第八篇立体几何第6讲空间向量及其运算课件理

高考数学一轮复习第八篇立体几何第6讲空间向量及其运算课件理
第6讲 空间向量及其运算
第6讲 空间向量及其运算
【2013年高考会这样考】 1.考查空间向量的线性运算及其数量积. 2.利用向量的数量积判断向量的关系与垂直. 3.考查空间向量基本定理及其意义. 【复习指导】 空间向量的运算类似于平面向量的运算,复习时又对比论证, 重点掌握空间向量共线与垂直的条件,及空间向量基本定理的 应用.
面的充要条件是存在实数x,y使p=xa+yb. (3)空间向量基本定理:如果三个向量a,b,c 不共面 ,那么对 空间任一向量p,存在一个唯一的有序实数组x,y,z, 使 p=xa+yb+zc .
一种方法 用空间向量解决几何问题的一般方法步骤是: (1)适当的选取基底{a,b,c}; (2)用a,b,c表示相关向量; (3)通过运算完成证明或计算问题.
基础梳理 1.空间向量的有关概念 (1)空间向量:在空间中,具有 大小 和 方向 的量叫做空间向 量. (2)相等向量:方向 相同 且模相等 的向量. (3)共线向量:表示空间向量的有向线段所在的直线互 相 平行或重合 的向量. (4)共面向量:平行于 同一个平面 的向量.
2.空间向量的线性运算及运算律
→ AD

→ AA1
两两的夹角均为60°,且|
→ AB
|=1,|
→ AD
|=2,|
→ AA1
|=
3,则|A→C1|等于( ).
A.5 B.6 C.4 D.8
解析 设A→B=a,A→D=b,A→A1=c,则A→C1=a+b+c, A→C12=a2+b2+c2+2a·b+2b·c+2c·a=25,
因此|A→C1|=5. 答案 A
5.在四面体O-ABC中,O→A=a,O→B=b,O→C=c,D为BC的中 点,E为AD的中点,则O→E=________(用a,b,c表示). 解析 如图,O→E=12O→A+12O→D=12O→A+14O→B+14O→C=12a+14b+ 1 4c. 答案 12a+14b+14c

2023年高考数学一轮复习精讲精练(新高考专用)专题38:空间向量及其运算 (练习版)

2023年高考数学一轮复习精讲精练(新高考专用)专题38:空间向量及其运算  (练习版)

专题38:空间向量及其运算精讲温故知新1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性 2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a +=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b a λλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a //。

(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a =λb 。

(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中(4)与a共线的单位向量为a±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。

(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP +=<=>)1(=++++=z y x OC z OB y OA x OP 其中5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

【精品含答案】高考一轮复习9.8空间向量的坐标运算基础训练题(理科)

【精品含答案】高考一轮复习9.8空间向量的坐标运算基础训练题(理科)

2009届高考一轮复习9.8 空间向量的坐标运算基础训练题(理科)注意:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

满分100分,考试时间45分钟。

第I 卷(选择题部分 共36分)一、选择题(本大题共6小题,每小题6分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 在空间直角坐标系中,已知点P (x ,y ,z ),关于下列命题:①点P 关于x 轴对称点的坐标是1P (x ,y -,z );②点P 关于yOz 平面对称点的坐标是2P (x ,y -,z -);③点P 关于y 轴对称点的坐标是3P (x ,y -,z );④点P 关于原点对称的点的坐标是4P (x -,y -,z -)。

其中正确的个数是( )A. 3B. 2C. 1D. 0 2. 已知=(-3,2,5),=(1,x ,-1),则下列判断不正确的是( ) A. 对于任意实数x ,a ,b 两个向量都不能平行B. 若2=⋅,则实数5x =C. 不存在实数x ,使b a ⊥D. 若=(2,-1,-3),且()∥-,则0x =3. 若A 、B 两点的坐标是)1,sin 2,cos 2(B ),1,sin 3,cos 3(A θθαα,则|AB |的取值范围是( )A.]5,0[B.]5,1[C.)5,1(D. ]25,1[ 4. 如图,在正方体1AC 中,M 是棱1DD 的中点,O 是平面ABCD 的中心,P 是11B A 上的任意一点,则直线AM 与OP 所成角是( )A.6π B. 4π C. 3π D. 2π 5. (思维拓展题)△ABC 的顶点分别为A (1,-1,2),B (5,-6,2),C (1,3,-1),则AC 边上的高BD 等于( )A. 5B. 41C. 4D. 526. 设E ,F 分别是正方体1AC 的棱AB 和11C D 的中点,在正方体的12条面对角线中,与截面ECF A 1成︒60角的对角线的数目是( )A. 0B. 2C. 4D. 6第II 卷(非选择题部分 共64分)二、填空题(本大题共3小题,每小题6分,共18分。

高考理科第一轮复习练习(7.6空间向量及其运算)

高考理科第一轮复习练习(7.6空间向量及其运算)

课时提升作业(四十七)一、选择题1.在下列条件中,使M与A,B,C一定共面的是( )(A)=2--(B)=++(C)++=0(D)+++=02.若向量c垂直于不共线的向量a和b,d=λa+μb(λ,μ∈R,且λμ≠0),则( )(A)c∥d(B)c⊥d(C)c不平行于d,c也不垂直于d(D)以上三种情况均有可能3.若a,b是两个非零向量,且a2·b=b2·a,则向量a,b的关系是( )(A)a=b(B)a,b共线但不一定相等(C)a,b不共线(D)a,b为任意非零向量4.如图,已知空间四边形的每条边和对角线长都等于a,点E,F,G分别为AB,AD,DC的中点,则a2等于( )(A)2·(B)2·(C)2·(D)2·5.(2013·福州模拟)如图,在底面为平行四边形的四棱柱ABCD - A1B1C1D1中,M是AC与BD的交点,若=a,=b,=c,则下列向量中与相等的向量是( )(A)-a+b+c (B)a+b+c(C)a-b+c(D)-a-b+c6.(2013·六安模拟)已知空间四边形ABCD中,O是空间中任意一点,=a,=b,=c,点M在OA上,且OM=2MA,N为BC中点,则= ( )(A)a-b+c(B)-a+b+c(C)a+b-c(D)a+b-c7.设A,B,C,D是空间不共面的四个点,且满足·=0,·=0,·=0,则△BCD的形状是( )(A)钝角三角形(B)直角三角形(C)锐角三角形(D)无法确定8.正方体ABCD -A1B1C1D1的棱长为1,点M在AC1上且=,N为B1B的中点,则||为( )(A)(B)(C)(D)9.(2013·武汉模拟)平面α与平面β的夹角为60°,A,B是l上的两点,AC,BD分别在半平面α,β内,AC⊥l,BD⊥l,且AB=AC=a,BD=2a,则CD的长为( )(A)2a (B) a (C)a (D)a10.(能力挑战题)已知ABCD为四面体,O为△BCD内一点(如图),则=(++)是O为△BCD的重心的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分又不必要条件二、填空题11.在空间四边形ABCD中,·+·+·= .12.(2013·焦作模拟)已知空间四边形ABCD的对角线为AC,BD,设G是CD的中点,则+(+)等于.13.已知G是△ABC的重心,O是空间与G不重合的任一点,若++=λ,则λ= .14.(2013·长沙模拟)空间四边形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,∠OAB=60°,则OA与BC的夹角的余弦值等于.三、解答题15.正方体ABCD -A1B1C1D1中,M,N分别为正方形ABCD和AA1B1B的中心.(1)求证:AC1⊥平面A1BD.(2)求与夹角的余弦值.答案解析1.【解析】选C.++=0,即=-(+),所以M与A,B,C共面.2.【解析】选B.由题意,c垂直于由a,b确定的平面.∵d=λa+μb,∴d与a,b共面.∴c⊥d.3.【解析】选B.∵a2·b=b2·a,即|a|2·b=|b|2·a,∴b=22ba·a,∴a与b共线,但不一定相等.4.【解析】选B.2·=2·a·a·cos60°=a2.5.【解析】选A.=+=+=c+(-)=c+(b-a)=-a+b+c.6.【解析】选B.不妨设O点与D点重合,则=++=+(-)+(-)=-++=-a +b +c . 7.【思路点拨】通过·,·,·的符号判断△BCD 各内角的大小,进而确定出三角形的形状. 【解析】选C.·=(-)·(-)=·-·-·+2AB =2AB >0,同理·>0,·>0.故△BCD 为锐角三角形. 8.【解析】选A.如图,设=a ,=b ,=c ,则a ·b =b ·c =c ·a =0.由条件知=++=-(a +b +c )+a +c =a -b +c ,∴2222411MN 9936=++ a b c ==,∴||=.9.【解析】选A.∵AC ⊥l ,BD ⊥l , ∴<,>=60°,且·=0,·=0,又=++,∴||===2a. 10.【解析】选C.若O 是△BCD 的重心,则=+=+×(+)=+(+)=+(-+-)=(++),若=(++),则-+-+-=0,即++=0.设BC的中点为P,则-2+=0,∴=-2,即O为△BCD的重心.11.【解析】设=b,=c,=d,则=d-c,=d-b,=c-b.原式=b·(d-c)+d·(c-b)-c·(d-b)=0.答案:012.【解析】因为G是CD的中点,∴=(+),∴+(+)=+=.答案:13.【解析】因为+=,+=,+=,且++=0,所以++=3.答案:314.【解析】由题意知·=·(-)=·-·=8×4×cos45°-8×6×cos60°=16-24.∴cos<,>===.∴OA与BC的夹角的余弦值为.答案:【误区警示】本题常误认为<,>即为OA与BC的夹角.15.【解析】设=a,=b,=c,正方体棱长为1, (1)∵·=(a+b+c)·(b-a)=a·b-a2+b2-b·a+c·b-c·a=0-1+1-0+0-0=0,∴⊥.同理·=0,∴⊥,∴AC1⊥平面A1BD.(2)∵=+=-c+(a-b),=+=-b+(c-a),∴||2=[-c+(a-b)]2=c2+(-c)(a-b)+(a-b)2=1-0+0+×(1-0+1)=,∴||=,同理||=.又·=[-c+(a-b)]·[-b+(c-a)]=0+×(-1+0)-×(0-1)+×(0-1-0+0)=-,∴cos<,>==-.【方法技巧】用向量法解题的常见类型及常用方法1.常见类型利用向量可解决空间中的平行、垂直、长度、夹角等问题.2.常用的解题方法(1)基向量法先选择一组基向量,把其他向量都用基向量表示,然后根据向量的运算解题.(2)坐标法根据条件建立适当的空间直角坐标系,并求出相关点的坐标,根据向量的坐标运算解题即可.。

2023版高考数学一轮总复习:空间向量及其应用课件理

2023版高考数学一轮总复习:空间向量及其应用课件理
(5)a⊥b⇔a·b=0⇔ a1b1+a2b2+a3b3=0 ;
(6)|a|= · =
(7)cos<a,b>=
12 + 22 + 23 ;
·
||||
=
+ +
+ + · + +
.
考点1
空间向量及其运算
4. 空间两点间的距离及中点坐标
l∥α
n·m=0
n⊥m⇔_______
平面α的法向量为m.
l⊥α
n∥m⇔n=λm(λ∈R)
平面α,β的法向量分
α∥β
n∥m⇔n=λm(λ∈R)
别为n,m.
α⊥β
n⊥m⇔_________
n·m=0
考点2
空间向量的应用
3. 直线与平面所成的角
(1)
直角
射影
(2)线面角θ的取值范围:
π
[0, ]
2
.
(3)最小角定理:平面的斜线和它在平面内的射影所成的角是这条斜线和
( C )
A.直线的方向向量是唯一确定的
ቤተ መጻሕፍቲ ባይዱ
B.若直线a的方向向量和平面α的法向量平行,则a∥α
C.若两平面的法向量平行,则两平面平行
考点1
空间向量及其运算
3. 空间向量的坐标运算
设a=(a1,a2,a3),b=(b1,b2,b3),则
(1)a±b=(a1±b1,a2±b2,a3±b3);
(2)λa=(λa1,λa2,λa3)(λ∈R);
(3)a·b= a1b1+a2b2+a3b3 ;
(4)a∥b⇔a=λb(b≠0)⇔ a1=λb1,a2=λb2,a3=λb3(λ∈R) ;

高考数学一轮复习第7章 第6节 空间向量及其运算(理)

高考数学一轮复习第7章 第6节 空间向量及其运算(理)

单击此处编辑母版文本样式
第定二理级
内容
• 第三级对于空间任意两个向量a,b(b≠0),a∥b的充要条 –定第理 四件级是存在实数λ,使 a=λb .
共线向 量定理
»第+t五如a图①级所其示中,a叫点做P在直l线上l的的充方要向条向件量是,:t∈O→RP,=在Ol→上A
取A→B=a,则①可化为O→P=
题,填空题的形式出现.若
3.掌握空间向量的数量积 作为解题的工具,则出现在
及其坐标表示,能运用向 解答题中,且与线面关系、
量的数量积判断向量的共 求角、求距离等问题结合在
线与垂直.一起考查,Fra bibliotek中档题. 单击此处编辑母版文本样式
第二级
名称 • 第三级
定义
空间向量 在量– 空的第长间四度中级,或具_模_有_ 大小 和 方向 的量叫做空间向量,其大小叫做向
解:如图,连接AF, 则E→F=E→A+A→F. 由已知ABCD是平行四边形, 故A→C=A→B+A→D=b+c, A→1D=A→1A+A→D=-a+c.
又E→A=-13A→C=-13(b+c), 由已知A→1F=2F→D, ∴A→F=A→D+D→F=A→D-F→D =A→D-13A→1D=c-13(c-a)=13(a+2c), ∴E→F=E→A+A→F=-13(b+c)+13(a+2c)=13(a-b+c).
④(B→1D1+A→1A)+D→D1=B→1D+D→D1=B→1D1≠B→D1,
综上,①②符合题意.
单击此处编辑母版文本样式 第二级 • 第三级 – 第四级 »第五级
(3)解:①∵P是C1D1的中点, ∴A→P=A→A1+A→1D1+D→1P=a+A→D+12D→1C1 =a+c+12A→B=a+c+12b. ②∵M是AA1的中点, ∴M→P=M→A+A→P=12A→1A+A→P =-12a+(a+c+12b)=12a+12b+c.

高考数学复习空间向量及其运算理专题训练(含答案)

高考数学复习空间向量及其运算理专题训练(含答案)

高考数学复习空间向量及其运算理专题训练(含答案)空间中具有大小和方向的量叫做空间向量。

向量的大小叫做向量的长度或模。

以下是查字典数学网整理的空间向量及其运算理专题训练,请考生练习。

一、填空题1.已知A(1,0,1),B(4,4,6),C(2,2,3),D(10,14,17),则这四个点________(填共面或不共面).[解析] =(3,4,5),=(1,2,2),=(9,14,16),设=x+y,即(9,14,16)=(3x+y,4x+2y,5x+2y),得x=2,y=3. [答案] 共面2.(2019济南调研)在下列命题中:若向量a,b共线,则向量a,b所在的直线平行;若向量a,b所在的直线为异面直线,则向量a,b一定不共面;若三个向量a,b,c,两两共面,则向量a,b,c共面;已知空间的三个向量a,b,c.则对于空间的任意一个向量p 总存在实数x,y,z得p=xa+yb+zc.其中不正确的命题是________(填序号).[解析] a与b共线,a,b所在直线也可能重合,故不正确.根据平移向量的意义知,空间任两向量a,b都共面,故错误.三个向量a,b,c中任两个一定共面,但它们三个却不一定共面,故不正确.只有当a,b,c不共面时,空间任意一向量p才能表示为p=xa+yb+zc,故不正确.[答案]3.已知空间四边形OABC中,点M在线段OA上,且OM=2MA,点N为BC中点,设=a,OB=b,=c,则=________.(用a,b,c表示)[解析] =-=(+)-=b+c-a.[答案] b+c-a4.(2019上海高考)若a,b,c为任意向量,mR,则下列等式不一定成立的是________.(填序号)(a+b)c=ac+b(a+b)+c=a+(b+c);m(a+b)=ma+nb;(ab)c=a(bc).[解析] (ab)c=|a||b|cos c,a(bc)=|b||c|cos a,a与c的模不一定相等且不一定同向,故错.[答案] (4)5.已知P,A,B,C四点共面且对于空间任一点O都有=2++,则=________.[解析] 根据共面向量知P,A,B,C四点共面,则=x+y+z,且x+y+z=1,所以2++=1,=-.[答案] -6.若向量a=(1,,2),b=(2,-1,2)且a与b的夹角的余弦值为,则等于________.[解析] 由已知得==,解得=-2或=.[答案] -2或7.(2019徐州模拟)已知O点为空间直角坐标系的原点,向量=(1,2,3),=(2,1,2),=(1,1,2),且点Q在直线OP上运动,当取得最小值时,的坐标是________.[解析] 点Q在直线OP上,设点Q(,,2),则=(1-,2-,3-2),=(2-,1-,2-2),=(1-)(2-)+(2-)(1-)+(3-2)(2-2)=62-16+10=62-.当=时,取得最小值-.此时=.[答案]图768.如图76所示,已知空间四边形OABC,OB=OC,且AOB=AOC=,则cos〈,〉的值为________.[解析] 设=a,=b,=c,由已知条件〈a,b〉=〈a,c〉=,且|b|=|c|,=a(c-b)=ac-ab=|a||c|-|a||b|=0,即〈〉=,所以cos〈,〉=0.[答案] 0二、解答题9.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5),(1)求以,为边的平行四边形的面积;(2)若|a|=,且a分别与,垂直,求a的坐标.[解] (1)由题意可得:=(-2,-1,3),=(1,-3,2),cos〈,〉===,sin〈,〉=,以,为边的平行四边形的面积为S=2||||sin〈,〉=14=7.(2)设a=(x,y,z),由题意得解得或向量a的坐标为(1,1,1)或(-1,-1,-1).图7710.(2019张家港调研)如图77,在棱长为a的正方体ABCDA1B1C1D1中,G为BC1D的重心,(1)试证:A1,G,C三点共线;(2)试证:A1C平面BC1D.[证明] (1)=++=++,可以证明:=(++)=,∥,即A1,G,C三点共线.(2)设=a,CD=b,=c,则|a|=|b|=|c|=a,且ab=bc=ca=0,=a+b+c,=c-a,=(a+b+c)(c-a)=c2-a2=0,因此,即CA1BC1,同理CA1BD,又BDBC1=B,A1C平面BC1D.要练说,得练看。

高考数学一轮复习 第八章 立体几何 第6讲 空间向量及其运算 理(2021年最新整理)

高考数学一轮复习 第八章 立体几何 第6讲 空间向量及其运算 理(2021年最新整理)

2018版高考数学一轮复习第八章立体几何第6讲空间向量及其运算理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第八章立体几何第6讲空间向量及其运算理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第八章立体几何第6讲空间向量及其运算理的全部内容。

第6讲空间向量及其运算一、选择题1.以下四个命题中正确的是().A.空间的任何一个向量都可用其他三个向量表示B.若{a,b,c}为空间向量的一组基底,则{a+b,b+c,c+a}构成空间向量的另一组基底C.△ABC为直角三角形的充要条件是错误!·错误!=0D.任何三个不共线的向量都可构成空间向量的一组基底解析若a+b、b+c、c+a为共面向量,则a+b=λ(b+c)+μ(c+a),(1-μ)a=(λ-1)b+(λ+μ)c,λ,μ不可能同时为1,设μ≠1,则a=错误!b+错误!c,则a、b、c为共面向量,此与{a,b,c}为空间向量基底矛盾.答案B2.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(c-a)·(2b)=-2,则x =().A.-4 B.-2 C.4 D.2解析∵a=(1,1,x),b=(1,2,1),c=(1,1,1),∴c-a=(0,0,1-x),2b=(2,4,2).∴(c-a)·(2b)=2(1-x)=-2,∴x=2。

答案D3.若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是().A.{a,a+b,a-b}B.{b,a+b,a-b}C.{c,a+b,a-b} D.{a+b,a-b,a+2b}解析若c、a+b、a-b共面,则c=λ(a+b)+m(a-b)=(λ+m)a+(λ-m)b,则a、b、c为共面向量,此与{a,b,c}为空间向量的一组基底矛盾,故c,a+b,a-b可构成空间向量的一组基底.答案C4。

高考数学一轮复习全程复习构想数学(理)第2课时 空间向量的综合应用(课件)

高考数学一轮复习全程复习构想数学(理)第2课时 空间向量的综合应用(课件)

反思感悟 探索性问题的求解策略
空间向量最适合于解决这类立体几何中的探索性问题,它无须进行 复杂的作图、论证、推理,只需通过坐标运算进行判断.
(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当 作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐 标是否有解,是否有规定范围内的解”等.
(1)求证:A1D⊥平面BCED;
(2) 在 线 段 BC 上 是 否 存 在 点 P , 使 直 线 PA1 与 平 面 A1BD 所 成 的 角 为 60°,若存在,求出PB的长;若不存在,请说明理由.
反思感悟 翻折问题的2个解题策略
确定翻折前 后变与不变
的关系
确定翻折后 关键点的位

(2)求直线BC1与平面AC1D所成角的正弦值.
(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结 论列出等式,解出参数.
【对点训练】
如图,四边形ABCD是正方形,四边形 BDEF为矩形,AC⊥BF,G为EF的中点. (1)求证:BF⊥平面ABCD;
解 析 : (1) 证 明 : 因 为 四 边 形 ABCD 是 正 方 形 , 四 边 形 BDEF 为 矩 形 , 所 以 BF⊥BD,又因为AC⊥BF,AC,BD为平面ABCD内两条相交直线,所以BF⊥平 面ABCD.
画好翻折前后的平面图形与立体图形,分清翻折前后图 形的位置和数量关系的变与不变.一般地,位于“折痕 ”同侧的点、线、面之间的位置和数量关系不变,而位 于“折痕”两侧的点、线、面之间的位置关系会发生变 化;对于不变的关系应在平面图形中处理,而对于变化 的关系则要在立体图形中解决. 所谓的关键点,是指翻折过程中运动变化的点.因为这 些点的位置移动,会带动与其相关的其他的点、线、面 的关系变化,以及其他点、线、面之间位置关系与数量 关系的变化.只有分析清楚关键点的准确位置,才能以 此为参照点,确定其他点、线、面的位置,进而进行有 关的证明与计算.

近年高考数学一轮复习课时规范练42空间向量及其运算理新人教B版(2021学年)

近年高考数学一轮复习课时规范练42空间向量及其运算理新人教B版(2021学年)

2019高考数学一轮复习课时规范练42 空间向量及其运算理新人教B版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习课时规范练42 空间向量及其运算理新人教B版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习课时规范练42 空间向量及其运算理新人教B版的全部内容。

课时规范练42空间向量及其运算基础巩固组1.已知空间四边形OABC中,=a,=b,=c,点M在OA上,且OM=2MA,N为BC中点,则=()A。

a-b+c B.-a+b+cC。

a+b—cﻩ D.a+b-c2.设一地球仪的球心为空间直角坐标系的原点O,球面上的两个点A,B的坐标分别为A(1,2,2),B(2,-2,1),则|AB|等于()A.18ﻩB。

12 C.3D.23.已知正方体ABCD—A1B1C1D1中,点E为上底面A1C1的中心,若+x+y,则x,y的值分别为()A。

x=1,y=1ﻩB.x=1,y=C。

x=,y=ﻩD。

x=,y=14.向量a=(-2,—3,1),b=(2,0,4),c=(-4,—6,2),下列结论正确的是()A.a∥b,a∥c B。

a∥b,a⊥cC。

a∥c,a⊥b D。

以上都不对5.A,B,C,D是空间不共面的四点,且满足=0,=0,=0,M为BC中点,则△AMD是()A.钝角三角形B。

锐角三角形C。

直角三角形ﻩ D.不确定6.(2017浙江舟山模拟)平行六面体ABCD—A1B1C1D1中,向量两两的夹角均为60°,且||=1,||=2,||=3,则||等于()A.5ﻩB.6ﻩC.4ﻩD.87.已知空间向量a,b,满足|a|=|b|=1,且a,b的夹角为,O为空间直角坐标系的原点,点A,B满足=2a+b,=3a-b,则△OAB的面积为.8.在空间直角坐标系中,以点A(4,1,9),B(10,—1,6),C(x,4,3)为顶点的△ABC是以BC为斜边的等腰直角三角形,则实数x的值为。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15. (1分) (2015高二下·伊宁期中) 若 =(1,1,0), =(﹣1,0,2),则与 + 同方向的单位向量是________.
16. (1分) (2018高二下·孝感期中) 已知空间三点 , , ,则以 , 为邻边的平行四边形的面积为________.
17. (1分) (2015高二下·上饶期中) 如图,已知三棱柱ABC﹣A1B1C1中,D是棱BC1上一点,且 =2 ,设 = , = , = ,用 、 、 表示向量 ,则 =________.
①; ② ;③ ;④ .
A . 1个
B . 2个
C . 3个
D . 4个
9. (2分) 已知点A(4,1,3),B(2,﹣5,1),C为线段AB上一点,且3| |=|| |,则点C的坐标是( )
A .
B .
C .
D .
10. (2分) (2017高二上·邢台期末) 如图,空间四边形OABC中, = , = , = ,点M在线段OA上,且OM=2MA,点N为BC的中点,则 =( )
B . (2,3,1)
C . (-3,1,5)
D . (5,13,-3)
2. (2分) 已知向量 =(1,1,0), =(-1,0,1),且k + 与 互相垂直,则k=( )
A .
B .
C . -
D . -
3. (2分) (2015高二上·福建期末) 以正方体ABCD﹣A1B1C1D1的顶点D为坐标原点O,如图建立空间直角坐标系,则与 共线的向量的坐标可以是( )
A . ﹣ + +
B . ﹣ +
C . + ﹣
D . + ﹣
11. (2分) 在正方体ABCD﹣A1B1C1D1中,下列各 式运算结果为向量 的是( )
①( ﹣ )﹣ ;
②( + )﹣ ;
③( ﹣ )﹣ ;
④( ﹣ )+ .
A . ①②
B . ②③
C . ③④
D . ①④
12. (2分) 已知向量 =(3,﹣1,2), =(x,y,﹣4),且 ∥ , 则x+y=( )
河南省高考数学一轮复习:42 空间向量及其运算(理科专用)(II)卷
姓名:________班级:________ 成绩:________
一、 单选题 (共13题;共26分)
1. (2分) 已知ABCD为平行四边形,且A(4,1,3),B(2,-5,1),C(3,7,-5),则点D的坐标为( )
A . ( , 4,-1)
B . 垂直
C . 所成的二面角为锐角
D . 所成的二面角为钝角
7. (2分) 设O-ABC是四面体,G1是△ABC的重心,G是OG1上的一点,且OG=3GG1 , 若 =x +y +z , 则(x,y,z)为( )
A .
B .
C .
D .
8. (2分) 在正方体 中,下列各式中运算的结果为向量 的共有( )
参考答案
一、 单选题 (共13题;共26分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
二、 填空题 (共7题;共7分)
14-1、
15-1、
16-1、
17-1、
18-1、
19-1、
20-1、
三、 解答题 (共2题;共10分)
21-1、
D . ﹣3
5. (2分) (2015高二上·莆田期末) 已知 =(﹣3,2,5), =(1,5,﹣1)则 + 的值为( )
A . (2,8,4)
B . (1,3,6)
C . (5,8,9)
D . (﹣2,7,4)
6. (2分) 已知 分别是平面 , 的法向量,则平面 , 的位置关系式( )
A . 平行
A . 8
B . 4
C . -4
D . -8
13. (2分) 如图:在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若 , 则下列向量中与 相等的向量是( )
A .
B .
C .
D .
二、 填空题 (共7题;共7分)
14. (1分) (2018·全国Ⅲ卷文) 已知向量 , , ,若 ,则 ________。
A . (2,﹣2,2)
B . (﹣2,﹣2,2)
C . (﹣2,2,2)
D . (﹣2,﹣2,﹣2)
4. (2分) (2017高二上·张家口期末) 在空间直角坐标系中,A,B,C三点到坐标分别为A(2,1,﹣1),B(3,4,λ),C(2,7,1),若 ,则λ=( )
A . 3
B . 1ຫໍສະໝຸດ C . ±322-1、18. (1分) (2015高二上·昌平期末) 已知 =(1,﹣3,1), =(﹣1,1,﹣3),则| ﹣ |=________.
19. (1分) 设{ , , }是空间向量的一个单位正交基底, =2 ﹣4 +5 , = +2 ﹣3 , 则向量 , 的坐标分别为________
20. (1分) 已知 为单位正交基底,且 ,则向量 的坐标是________.
三、 解答题 (共2题;共10分)
21. (5分) (2019高二上·丽水期末) 已知 两两垂直, , 为 的中点,点 在 上, .
(Ⅰ)求 的长;
(Ⅱ)若点 在线段 上,设 ,当 时,求实数 的值.
22. (5分) 已知空间四边形OABC中, ,且OA=OB=OC,M,N分别是OA,BC的中点,G是MN的中点,求证:
相关文档
最新文档