北京交通大学海滨学院线性代数复习
线性代数前四章复习PPT课件
(
A)1
=
1
A1(
0)
A1 = A 1
逆矩阵求法:(1)待定系数法 (2)伴随矩阵法 (3)初等变换法
4. 分块矩阵
分块矩阵的运算规则与普通矩阵的运算规则相类似.
-
9
5. 初等变换
对调变换、倍乘变换、倍加变换
三种初等变换都是可逆的,且其逆变换是同一类型的 初等变换.
矩阵的等价:如果矩阵A经过有限次初等变换变成矩阵B,
4 ) Amn , Bnp r( AB) r( A) r(B) n
当 AB = 0 时,r( A) r(B) n
5)
A 0
r
0
B
=
r(
A)
r(B)
6) r( A B) r( A) r(B)
Ⅳ、秩的求法: 1)初等变法: A 阶梯形T
2)若P可逆,则 秩AP = 秩A
-
13
3) A 有r阶子式不为0
20
(2) 极大无关组的证明
方法1:利用定义 1,2 , ,r 线性无关; 其它向量都可由 1,2 , ,r 线性表示。 (即向量组中任意r+1个向量都线性相关)
方法2:已知 1,2 , ,r 是向量组A的一个极大无关组, 又A中部分组 l1 ,l2 , , lr 与 1,2 , , r 等价, 则 l1 , l2 , , lr 也是A的一个极大无关组。
同型矩阵:两个矩阵的行数相等、列数也相等
矩阵相等: 两个矩阵同型,且对应元素相等
矩阵加(减)法、数与矩阵相乘 矩阵与矩阵相乘:
乘法满足:( AB)C = A(BC );
( AB) = (A)B = A(B), (其中为数);
A(B C ) = AB AC , (B C )A = BA CA;
数值分析(交通类)讲义_第五章
(2)回代过程
( n) 若 ann 0, 则
( n) a ( n) xn bn nn
(k ) n ( k ) ( k ) xk bk akj x j akk , (k n 1,,1) j k 1
BJTU
说明: 若线性方程组的系数矩阵非奇异,则它总可 以通过带行交换的高斯消去法进行求解。
1.00 105 x 1.00 y 1.00 5 5 1.00 10 y 1.00 10
BJTU
x 0.00, y 1.00
解法2:
5 1 . 00 10 x 1.00 y 1.00 1.00 x 1.00 y 2.00 5 5 ( 1 . 00 1 . 00 10 ) y ( 1 . 00 2 . 00 10 ) 1.00 x 1.00 y 2.00 1.00 y 1.00
(1) x b (1) a1 1 n 1 ( 2) ( 2) ( 2) x2 b a22 a2 n 2 . ( n) ( n) x 0 ann bn n (1) a12
其中
( 2) (1) (1) aij aij mi1 a1 j , (i, j 2,3,, n)
(1) bi( 2) bi(1) mi1 b1 , (i 2,3,, n)
第2步:若 „ „
BJTU
( 2) a22 0,
用„ „.
Байду номын сангаас
第k步:若
(k ) akk 0,
例1(见板书)
一般地,顺序高斯消去法:
BJTU
(完整版)线性代数课后习题答案第1——5章习题详解
第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=ec b e c b ec b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bzay y x by ax x z bxaz z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ 齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x , 故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B . 解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB ⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134; 解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635. (2)⎪⎪⎭⎫⎝⎛123)321(; 解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛; 解 )21(312-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876. (5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗?解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗?解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以(AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以AB =(AB)T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A(A -E)=2E ,或E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A|=2,即 |A||A -E|=2, 故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有|A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以 (A*)-1=|A|-1A .又*)(||)*(||1111---==A A A A A , 所以(A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A*, 证明: (1)若|A|=0, 则|A*|=0; (2)|A*|=|A|n -1. 证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得 A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到|A||A*|=|A|n . 若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立. 因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B . 解 由A*BA =2BA -8E 得 (A*-2E)BA =-8E , B =-8(A*-2E)-1A -1 =-8[A(A*-2E)]-1 =-8(AA*-2A)-1 =-8(|A|E -2A)-1 =-8(-2E -2A)-1 =4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021100101002000021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则⎪⎭⎫⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫ ⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。
以专业需求为导向的大学数学教学改革研究--以沧州交通学院为例
响 ,课上及课下注意力被严重分散 ,在有限的课时内 ,教学 质量难以得到保证。针对以上问题 ,我校大学数学课程的 改革一直在持续进行中。
2 学校所做的具体工作
(1)编写了适用于应用型本科学生的数学教材 ,并配套 相应 PPT、教学大纲。目前现有的大学数学各科目教材理论 性 和 学 术 性 较 强 ,实践性和应用能力培养相对薄弱 ,已经不 能满足国家对地方应用型本科院校的定位和应用型人才培养 目标的需求[1]。
我校数学教研室全体成员通过教学实践和多方面的调 查研究,于 2012 年编写了适用于应用型本科学生的《高等数 学》上下册教材。教材力求严谨 ,注重应用 ,概念的引入尽 量从实际问题出发 ,将概念延伸到应用中去 ,书中还多处联 系了物理、经济等应用问题,渗透了数学建模思想。2019 年 出版了符合我校学生特点的《线性代数》教材 ,坚持“主线统 一、弱化理论、注重应用、循序渐进”的原则 ,在每章最后一 节加入了应用实例和数学实验内容 ,突出了对学生应用能 力的培养 ,解决了学生在学习过程中容易产生的“线性代数 有什么用”的困惑。2020 年出版了符合我校学生特点的《概 率论与数理统计》教材 ,本书在习题上设置节后习题供学生 基础练习 、章后习题供学生考研练习 ,满足了不同学生的需 求 ,并 在 最 后 一 章 加 入 了 数 学 实 验 与 应 用 ,让 学 生 体 会 MATLAB 给数值计算带来的便捷。
线性代数知识点
第一讲 基本知识 二.矩阵和向量1.线性运算与转置 考研数学知识点-线性代数反对称矩阵A T= − A 。
① A + B = B + A ② (A + B ) + C = A + (B +C )③ c ())三.矩阵的初等变换,阶梯形矩阵⎧初等行变换初等变换分 ⎨A +B = cA + cB(c + d A = cA + dA④ c ( ) ( ) cd A⑤ cA = 0 ⇔ c = 0 或 A = 0 。
向量组的线性组合α1,α2,Λ ,αs,⎩初等列变换三类初等行变换①交换两行的上下位置A → B②用非零常数 c 乘某一行。
③把一行的倍数加到另一行上(倍加变换) 阶梯形矩阵ααα⎛ 4 1 0 2 0⎞ 1 1+c 22Λc+ + c ss 。
⎜ ⎟ 1 0 转置⎜ 0 − 1 2 5 1⎟ ⎜ ⎟ 2 1A 的转置 A T(或 A ′ )⎜⎜0 0 2 3 ⎟⎟ 4 3( )T= A(A ± B )T=T ±T⎝ 0 0 0 0 0⎠①如果有零行,则都在下面。
②各非零行的第一个非 0 元素的列号自上而下严格 单调上升。
A B( )T= c ( )。
3. n 阶矩阵n 行、 n 列的矩阵。
对角线,其上元素的行标、列标相等⎛* 0 0⎞a 11, a 22,Λ 或各行左边连续出现的 0 的个数自上而下严格单调 上升,直到全为 0 。
台角:各非零行第一个非 0 元素所在位置。
简单阶梯形矩阵:3.台角位置的元素都为 14.台角正上方的元素都为 0。
每个矩阵都可用初等行变换化为阶梯形矩阵和简单⎜ ⎟阶梯形矩阵。
对角矩阵 ⎜0 * 0⎟⎜ ⎟ 如果 A 是一个 n 阶矩阵⎝0 0 *⎠ ⎛ 3 0 0⎞如 A 是阶梯形矩阵 ⇒ A 是上三角矩阵,反之不一定,⎜ ⎟数量矩阵 ⎜0 3 0⎟ = 3E⎛ 0 0 1 ⎞ ⎜ ⎟⎝⎜00 3⎟⎠⎛1 0 0⎞ ⎜ 0 1 0 ⎟ 是上三角,但非阶梯形 ⎜00 1 ⎟⎠⎝⎜ ⎟单位矩阵 ⎜0 1 0⎟E 或I⎜ ⎟四.线性方程组的矩阵消元法⎝0 0 1 ⎠⎛* * *⎞用同解变换化简方程再求解三种同解变换:⎜⎟①交换两个方程的上下位置。
大学课程《线性代数》综合练习题集及答案
03D(1)R、;2,用3,>4)=2;向量组的一个极大无关组为、辽,、;4;
:'1 =2(、七亠'::4),■?23如
(2)R( :-1^-2, :-3, :-4, :-5) =3;向量组的一个极大无关组为:■1, :3 >5;
「2=「1:'5,「4 = :^':^':'5 ;
,其中k为任意常数.
当•=1时,有解,解为
(1)当“且•时,方程组有唯一解;
5
<0A
-1
+k
1
丿
当’=1时,其通解为
,其中k为任意实数;
当,二-4时,原方程组无解;
5
广1、
—4
04F (1) C 3, (CER);
7
/ >
2
-22
1
0
+k2
0
15
5
I2」
,(k1,k^R);
(2) k1
J2、
0
十k!
a =b =0时,r (A) =0;当a = b才0时,r( A) =1;
a-'b,且
a-'b,且
a亠(n -1) b =0时,r (A) =n -1;
a • (n _1) b =0时,r(A) =n.
05G
05H
* *
r[(A )]
05K
05M
05O
06A
n ,如果r(A)=n,
0,如果r(A)cn.
011
排列的逆序数为
k2;
当k为偶数时,
排列为偶排列,当k为奇数时,排列为奇排列.
线性代数第3版习题全解(上海交通大学)
(完整版)线性代数复习——选择题.doc
《线性代数》复习一:选择题a11 a12 a13 2a11 2a12 2a131.如果a21 a22 a23 = M,则2a21 2a22 2a23 = ()a31 a32 a33 2a31 2a32 2a33A. 8MB. 2MC. MD.6M2. 若 A,B 都是方阵,且 |A|=2, |B|=-1,则 |A -1B|= ()A. -2B.2C. 1/2D. –1/23. 已知可逆方阵 A 1 3 7则 A ()1 2A. 2 7B.2 7C.3 7D.3 7 1 3 1 3 1 2 1 24. 如果 n 阶方阵 A 的行列式 |A| 0 则下列正确的是()A.AOB. r(A)> 0C. r(A)< nD. r( A) 05. 设 A B 均为 n 阶矩阵 A O 且 AB O 则下列结论必成立的是()A. BA OB. B OC. (A B)( A B) A2 B2D. (A B)2 A2 BA B26. 下列各向量组线性相关的是()A. 1 (1 0 0) 2 (0 1 0) 3 (0 0 1)B. 1 (1 2 3) 2 (4 5 6) 3 (2 1 0)C. 1 (1 2 3) 2 (2 4 5)D. 1 (1 2 2) 2 (2 1 2) 3 (2 2 1)7. 设 AX b 是一非齐次线性方程组 1 2 是其任意 2 个解则下列结论错误的是()A. 1 2是 AX O 的一个解 B. 1 12是 AX b 的一个解+ 2 1 2C. 1 2是AX O 的一个解D.2 1 2是AX b 的一个解8. 设 A为 3阶方阵 A的特征值为 1 2 3 则 3A 的特征值为()A. 1/6 1/3 1/2B. 3 6 9C.12 3D. 1 1/2 1/39. 设 A 是 n 阶方阵且 |A| 2 A*是 A 的伴随矩阵则 |A*| ()A. 1B. 2nC. 1D. 2n 12 2 n 11 y 210. 若 x z 3 正定则 x y z 的关系为()0 0 1A. x+y zB. xy zC. z xyD. z x+y参考答案 :1.A 2.D 3. B 4. C 5. D 6. B 7. A 8. B 9. D 10. C1. 设30 ,则取值为()2 1A. λ=0 或λ=-1/3B. λ=3C. λ≠0 且λ≠ -3D. λ≠02. 若 A 是 3 阶方阵,且 |A|=2, A* 是 A 的伴随矩阵,则 |A A* |=()A. -8B.2C.8D. 1/23. 在下列矩阵中可逆的是()0 0 01 1 0 1 1 0 1 0 0 A. 0 1 0B.2 2 0 C. 0 1 1D. 1 1 10 0 10 0 1 1 2 11 0 14. 设 n 阶矩阵 A 满足 A 2 2A+3E O 则 A 1 ( )A. EB. 1C. 2A 3ED. A(2E A)31 a a a5. 设 Aa 1 a aa a 1 a ,若 r(A) 1, 则 a ( )aaa 1A.1B.3C.2D.46.x 1 x 2 x 3 0,若齐次线性方程组x 1 x 2x 3 0, 有非零解则常数( )x 1 x 2 x 3 0A.1B.4C.2D.1 7. 设 A B 均为 n 阶矩阵则下列结论正确的是( )A. BA ABB.(A B)2 A 2BA ABB 2C. (A B)(A B) A 2B 2D. (A B)2A 22 AB B 28. 已知 1(10 0) 2(200)3 (0 0 3) 则下列向量中可以由123 线性表示的是()A. (1 2 3)B.(12 0)C. (0 2 3)D. (3 0 5)9. n 阶方阵 A 可对角化的充分条件是()A. A 有 n 个不同的特征值B.A 的不同特征值的个数小于 nC. A 有 n 个不同的特征向量D. A 有 n 个线性相关的特征向量10. 设二次型的标准形为fy 12y 223 y 32 ,则二次型的正惯性指标为()A.2B.-1C.1D.3参考答案 : 1.A 2. C 3. D 4. B 5. A 6. A 7. B 8. D 9. A 10. A1. 设A 是4 阶方阵,且 |A|=2,则 |-2A |=( )A. 16B. -4C. -32D. 32 2. 3 4 6行列式 k 5 7 中元素 k 的余子式和代数余子式值分别为()1 2 8A. 20, -20B.20,20C. -20,20D. -20,-203. 已知可逆方阵 A2 7则 A1)1 3 (A.2 7B.2 7C.3 7 D.371 31 31 2 124. 如果 n 阶方阵 A 的行列式 |A | 0则下列正确的是()A.AOB. r (A )> 0C. r(A)< nD. r(A ) 05. 设 A B 均为 n 阶矩阵 则下列结论中正确的是()A. (A B)(A B) A2 B 2B. (AB )k A k B kC. |kAB | k|A | |B |D. |(AB )k| |A |k |B|k6. 设矩阵 A n n的秩 r(A ) n 则非齐次线性方程组 AX b()A. 无解B. 可能有解C. 有唯一解D. 有无穷多个解7. 设 A 为 n 阶方阵 A 的秩 r(A) r n 那么在 A 的 n 个列向量中()A.必有 r 个列向量线性无关B.任意 r 个列向量线性无关C. 任意 r 个列向量都构成最大线性无关组D. 任何一个列向量都可以由其它r 个列向量线性表出8.已知矩阵 A4 4的四个特征值为 4, 2, 3, 1,则 A =()A.2B.3C.4D.249. n 阶方阵 A 可对角化的充分必要条件是()A. A 有 n 个不同的特征值B. A 为实对称矩阵C. A 有 n 个不同的特征向量D. A 有 n 个线性无关的特征向量10. n 阶对称矩阵 A 为正定矩阵的充要条件是()A. A 的秩为 nB. |A| 0C. A 的特征值都不等于零D. A 的特征值都大于零参考答案 : 1.D 2. A 3. D 4.C 5.D 6.C 7.A 8.D 9.D 10.D3 4 61. 行列式 2 5 7 中元素y的余子式和代数余子式值分别为()y x 8A. 2,-2B. –2, 2C. 2,2D. -2, -22. 设 A B 均为 n(n 2)阶方阵则下列成立是()A. |A+B| |A |+|B|B. AB BAC. |AB | |BA |D. (A+B) 1 B 1+A 13. 设 n 阶矩阵 A 满足 A2 2A E 则(A-2E ) 1 ()A. AB. 2 AC. A+2ED. A-2E4. 矩阵A 1 1 1 12 2 2 2 的秩为()3 3 3 3A.1B.3C.2D.45. 设 n 元齐次线性方程组AX O 的系数矩阵 A 的秩为 r 则方程组 AX 0 的基础解系中向量个数为()A. rB. n- rC. nD. 不确定6. 若线性方程组x1 x2 2x3 1无解则等于()x1 x2 x3 2A.2B.1C.0D. 17. n 阶实方阵 A 的 n 个行向量构成一组标准正交向量组,则 A 是()A. 对称矩阵B. 正交矩阵C. 反对称矩阵D.| A |= n8. n 阶矩阵 A 是可逆矩阵的充要条件是()A. A 的秩小于 nB. A 的特征值至少有一个等于零C. A 的特征值都等于零D. A 的特征值都不等于零9. 设 1 2 是非齐次线性方程组Ax=b 的任意 2 个解则下列结论错误的是()A.1+ 2 是 Ax =0 的一个解 B. 1 η1η2 1 2 2是 Ax =b 的一个解C.12 是 Ax =0 的一个解D. 2 1 2 是Ax=b的一个解10.设二次型的标准形为f y12y223y32,则二次型的秩为()A.2B.-1C.1D.3参考答案 : 1. D 2.C 3.A 4.A 5.B 6.A 7.B 8.D 9.A10.D1.a b 0设 D b a 0 0 ,则 a, b 取值为()1 0 1A. a=0, b≠ 0B. a=b=0C. a≠ 0, b=0D. a≠0, b≠ 02. 若 A 、B 为 n 阶方阵且AB=O 则下列正确的是()A. BA OB. |B | 0 或|A| 0C.B O或A OD. (A B)2 A2 B23. 设A是3 阶方阵,且 | A | 2,则|A 1|等于()A. 2B. 1C.2D.1 2 24. 设矩阵 A B C满足AB AC 则 B C 成立的一个充分条件是()A. A 为方阵B. A 为非零矩阵C. A 为可逆方阵D. A 为对角阵5. 如果 n 阶方阵 A O 且行列式 |A| 0 则下列正确的是()A. 0<r( A) < nB. 0 r(A) nC. r(A )= nD. r(A) 07 x1 8x2 9x3 06. 若方程组x2 2 x3 0 存在非零解则常数 b ()2 x2 bx3 0A.2B.4C.-2D.-47. 设 A 为 n 阶方阵且 |A| 0 则()A.A 中必有两行 (列 )的元素对应成比例B.A 中任意一行 (列 )向量是其余各行 (列) 向量的线性组合C.A 中必有一行 (列 )向量是其余各行 (列 )向量的线性组合D.A 中至少有一行 (列 ) 的元素全为零8. 设A为 3阶方阵 A 的特征值为 1 2 3 则 3A 的特征值为()A. 1/6 1/3 1/2B. 369C.123D. 1 1/2 1/39. 如果 3阶矩阵 A 的特征值为 -1,1,2 ,则下列命题正确的是()A. A 不能对角化B. A 0C. A 的特征向量线性相关D. A 可对角化10. 设二次型的标准形为 f y12 y22 3 y32,则二次型的正惯性指标为()A.2B.-1C.1D.3参考答案:1.B 2.B 3. B 4. C 5.A 6.D 7.C 8.B 9.D10.Ca11 a12a13 4a a a a11 11 12 131. 如果 a21 a22a23 =M,则 4a21 a21 a22 a23 =()a31 a32a33 4a31a31a32a33A. -4MB. 0C. -2 MD. M2. 设 A ij 是 n 阶行列式 D |a ij |中元素 a ij的代数余子式则下列各式中正确的是()nB. n nD.nA. a ij A ij 0 a ij A ij 0 C. a ij A ij D a i1A i 2 Di 1 j 1 j 1 i 11 0 02 0 03. 已知A 0 1 0 ,B 2 2 1 ,则 |AB |=()3 0 1 3 3 3A.18B.12C.6D.364. 方阵 A 可逆的充要条件是()A.AOB. |A| 0C. A* OD. |A| 15. 若 A 、B 为 n 阶方阵 A 为可逆矩阵且 AB O 则()A. B O 但 r( B) nB. B O 但 r(A) n, r (B ) nC. B OD. B O 但 r(A) n, r(B) n6. 设 1 2 是非齐次线性方程组AX b 的两个解则下列向量中仍为方程组解的是()A. 1 2B. 1 2C. 1D.+2(β1 2β2)7. n 维向量组 1 2 s线性无关为一 n 维向量则()A. 12 s 线性相关B. 一定能被12C. 一定不能被12 s 线性表出D. 当 s n 时一定能被8. 设 A 为三阶矩阵 A 的特征值为 2 1 2 则A 2E 的特征值为(3β2β1 25s线性表出12s 线性表出)A. 212B.-4-10C.124D.41-49.若向量α=( 1, -2,1)与β=( 2, 3, t)正交,则 t=()A.-2B.0C.2D.41 y 210. 若x z 3 正定则 x y z 的关系为()0 0 1A. x+y zB. xy zC. z xyD. z x+y参考答案:1.A 2.C 3.C 4.B 5.C 6.D 7.D 8.B 9.D 10.C3 4 6中元素 x 的余子式和代数余子式值分别为(1. 行列式 2 5 7 )y x 8A. –9, -9B. –9,9C. 9, -9D. 9,91 1 1 12.2 3 4 53 3 3 3 =( )4 3 4 4A.2B.4C.0D.1 3. 设A 为4 阶矩阵 |A | 3 则其伴随矩阵A *的行列式 |A *| ()A.3B.81C.27D.9 4. 设 A B 均为 n 阶可逆矩阵则下列各式中不正确的是()A. (A+B)T A T +B TB.(A +B) 1 A 1+B 1C.(AB)1B 1A 1D. (AB )T B T A T 5. 设 n 阶矩阵 A 满足 A 2 +A +EO 则(A+E ) 1( )A. AB. -(A+E )C. –AD. -(A 2+A )6. 设 n 阶方阵 A B 则下列不正确的是( )A. r(AB )r(A)B. r(AB )r(B)C. r( AB ) min{ r(A ), r(B )}D. r(AB )>r (A )7. 已知方程组 AX b 对应的齐次方程组为 AX O , 则下列命题正确的是()A. 若AX O 只有零解 则 AX b 有无穷多个解B. 若AX O 有非零解 则 AX b 一定有无穷多个解C. 若AX b 有无穷解 则 AX O 一定有非零解D. 若AXb 有无穷解 则 AXO 一定只有零解8.10 1已知矩阵 A 02 0 的一个特征值是 0 则 x ( )1 0 xA.1B.2C.0D.31 09.与A02 1 相似的对角阵是()0 1 21111A.Λ1B.Λ2C. Λ1 D. Λ 1 333 410. 设 A 为 3 阶方阵 A 的特征值为 1 0 3则A 是()A. 正定B.半正定C.负定D. 半负定参考答案 : 1. C 2. C3. C4. B5. C6. D7. C8.A 9.A 10.B1. 设 A B 都是 n 阶方阵A. 若|A| 0 则A Ok 是一个数 B. |kA|则下列(|k| |A |)是正确的。
线性代数复习材料
第一章 行列式本章重点掌握:计算行列式常用方法:利用性质把行列式化为上三角形行列式,从而算得行列式的值。
会用按行(列)展开方法计算行列式,一些常用行列式的值。
重点和难点:行列式的计算,要注重学会利用行列式性质及等基本来简化的。
1. 行列式的性质(1) 行列式D 与它的转置行列式T D 相等。
(2) 互换行列式的两行(列),行列式变号。
(3) 行列式的某一行(列)中所有元素都乘以同一数k ,等于用数k 乘此行列式;或者行列式的某一行(列)的各元素有公因子k ,则k 可提到行列式记号之外。
(4) 行列式中如果有两行(列)元素完全相同或成比例,则此行列式为零。
(5) 若行列式的某一列(行)中各元素均为两项之和,则此行列式等于两个行列式之和。
例如:1、设1311111223212122,a a a a a b a a a a ==,则111213212223a a a a a a ++的值为 【ab - 】2、设1112111231322122,a a a a a b a a a a ==,则11122131223222a a a a a a =++ 【 2a b + 】 (6) 把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)的对应元素上去,行列式的值不变。
2. 行列式的按行(列)展开(1) 把n 阶行列式中(,)i j 元ij a 所在的第i 行和第j 列划去后所成的1n -阶行列式称为(,)i j 元ij a 的余子式,记作ij M ;记(1)i jij ij A M +=-,则称ij A 为(,)i j 元ij a 的代数余子式。
(2) n 阶行列式等于它的任一行(列)的各元素与对应于它们的代数余子式的乘积的和。
即可以按第i 行展开:1122(1,2,,)i i i i in in D a A a A a A i n =+++=; 或可以按第j 列展开:1122(1,2,,)j j j j nj nj D a A a A a A j n =+++=.(3) 行列式中任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。
《线性代数(理)》综合复习资料.doc
《线性代数(理)》综合复习资料填空题a x 1入 C]2冏 b 、 c x +勺1、已知行列式 a 2 b 2 c 2=4,则 2a 2 b 2 c 2 + b 2a 3b 3c 32a 3 伙 c 3 + h 3(1 1、2、2阶方阵力=的逆矩阵为A"二 ______________匕3丿4、行列式D =<0>々)、0 ,&2 = 20 ,则Q =1 9<o >1用线性表示的表达式 5=2,/表示B 的转置,贝卜Q 2 6、已知4= 0 3 J °0、2 ,齐次方程组Ar = 0有非零解,贝畀=a tb 、c }4舛 2$ - q C]7、若 a 2 b 2 c 2—1 ,则 4a 22b 2 一 c 2 c 2a3 ”3 C34曲 2b 3 — c 3 C3兀-10 x 行列式0 0a b0 -1 Xc的第4行第3列元素C 的代数余子式-1439、若徐冬是线性方程组Ax = b的两个解,则A(5+$2)= ______________alb\q2a {2b { 2q 10、设 a 2 b 2C2=a ,则 2a 22b 2 2c 2a3 /?32禺 2优 2C 3二.选择题<1 1 1 )/ 、 (1 >1、要使非齐次方程组 0 11 兀2 — 1 有无穷多个解,必须<0 0<7-2, /丿3一3丿A. a = 2, b = 3B. a = 2, b 主3C. a H 2, b = 3D. d H 2,b 壬 32、假设人B 皆为〃阶可逆方阵,则卜•列式子不成立的是 ______ A. (AB )'1=8 ^~]B. (仙尸=川矿】 c. \AB \ = \A \\B D. \AB\^O3、设4阶方阵A 的秩为3,则下列说法正确的是 _________ A. A 的所有3阶子式都为零 B. A 的所有3阶子式都不为零 c. |A |HO% 11、设 a 2a. b 、 b 22a1 1 1<1 0 -n / 、12、齐次方程组0 1i 兀2<o 0 o 丿0 的通解(即所有解)可表示*b2$a3为 _________________D・|A|= O,但至少有一个3阶子式不为零4、设A为“阶可逆方阵,则A的秩厂必定满足_________ ;A.r = nB.r = n-lC.r <nD.r <n-\5、设为农阶方阵,则下列等式成立的是______________ ;A.AB — BAB.\A + B\=\A\+\B\C.若AB = 0则A = 0或B = 0D.若\AB\ = 0则|A| = 0或0| = 06、设3维向量ma j9a2,a3线性相关,则下列说法不正确的是______________A.其中的任意两个向量都线性相关B.对于任意一个3维向量0,向量组0,少,42,^3必线性相关C.6^,03小必有一个向量可以用其余两个线性表示D.存在不全为零的你込,心,使得k{a{ + k2a2 + k3a3 = 07、设A,B为同阶方阵,则必有_______ :A.\A + B\=\A\+\BB.AB = BAC.\AB\=\A\\BD.(A + B)-1 = A_1+5_,8、若A为”阶方阵,且同乂0,贝ij非齐次方程组Ax = b的解的情况为—A.无解B.不能断定冇解C.有唯一解D.有无穷多个解r l 1 1 r9、矩阵 2 2 2 2 的秩为<3 3 3 3/A. 1B. 2C. 3D. 41()、设A为加x n阶矩阵,则线性方程组Ax = b有解的充分必要条件为 _______ ;A.7?(A) = mB./?(A) = nC.R(A,b) = mD.R(A,b) = R(A)这里R(A), R(A,b)分别表示矩阵A,增广矩阵(A,b)的秩11、___________________________________________________________ 设4是斤阶可逆矩阵,4*是伴随矩阵,则下列等式成立的是_____________________ ;A.\A\ = A*B.|矿c. |A|H=A*D. WW12、设A是斤阶方阵,则它的〃个列向量匕,也,・・・,色线性无关的充分必要条件为_______ :A.列向量组中任何一个向量都不能由其余的兀一1个向量线性表示B.a v a2,...,a n均不为零向量C.列向量组中任何两个向量的对应分量不成比例D.|A| = 0三、计算题2 4 11 4 3-11 1、计算行列式D =0 02 40 013<1 1 P3、已知A = 1 2 1<1 1 3丿<-4 -1() ()、了-2、 2>已知A =1 30 '*51 --1'§2 - 1<36 1;k _3><0>(1)求码,街2<r©了3、已知向最组© =-i ,也=30 ,&4 =-i/丿<0>(1)求向量组的秩;(2)给出分别与爲,§2对应的特征值人,人;求矩阵X ,使得4(E + X ) = E ;4、3 3 3 02 2 0 2 5、计算行列式D = 10 110 111‘1 -1 7、已知4= 2 -1<-3 4‘1〕〔1)8、已知向量组Q]= 1 ,也=-1 心=3 ,夠=-1 ,(1)求向量组的秩;(2)求向量组的一个授大无关组; -1 -1 -1 -11 -1 -1 1-1)-3 ,求-1 -1< 1 -1 —1 16、已知A = 求屮;2 10 00 2 10 9、计算行列式0=“0 0 2 1 10 0/1<1 2、'a b'10、己知矩阵A =与3 =可交换,即AB = BA,求a, b ;L 1 -1; 3 2;\1 -n11、已知A = 0 1 1,且满足 A~ + AX — E = 0 ,<0 ()—i丿(1)求A -1;(2) 求矩阵X ;<1 -1 1 -1、12、已知矩阵人= 1 2 3 1<3 3 7 1 )7(1)求A 的秩;(2) 求A 的列向最组的一个最人无关组;1 0 0— 0 2 013、已知£)=0 0 3 1 2 3求其第4行元素的代数余了式Z 和,即求A 41 + A 42 + A43 + A44 ;<01 0、14、已知人= -11 ,求从屮+2A :<0 -1 0><0 1 2、15、已知A = 1 1 4 , 求4二<2 -1°丿‘1 -13 1 -32 16、已知矩阵人=-1 0 -1 4-2、 -61()21 5 -1《线性代数(理)》综合复习资料参考答案填空题1、8(3 —1)2、1-2 14、-245、486、——37、88、X29、2b10> Sa11、-2a212、Jt(l,-l,l)r选择题题目 1 ? 3 4 5 6 答案 A B D A D A 题目7 8 9 1() 11 12 答案 C C A D B A 三、计算题2 44 3 1、计算行列式D =0 00 01-12111431 12 4 4 13 -解:D =0 0 20 0 1 1 2 41 0 -54 ~ 0 03 0 01-3211-5-3 -12 4 =-201 3一0、解:(1)対=23丿'-2、<-4 -10 ()、<5> 了-2、2、己知人= 1 3 0 -1 '§2 - 1<3 6 1丿<_3> <0>(1)求码,街2(2)给出分别与§2对应的特征值人,人;(1 1 3、已知A= 1 2J 1 1)1 ,求矩阵X ,使得A(E + X) = E;3;/解:X =A~[-E⑵码=—2鼻% 1(A£) =(11所以 X =A^]-E5 2 -1 ~2 '3 2 :-1-1-1 7~2 0 1 2)_n ~2_丄~2>< 1、 (0)r 、已知向量组© =-1= 3 s =,&4 =-i/丿<0>0 ~2a0 31、<1 0 3 1 ) 解:3 0 -1 T0 3 3 0<42 14 0丿<0 2 2 一4丿‘1 0 3 1、 t 01 1 0 ()00 —2,\7所以,(1)向量纟R 的秩为3(2) a ly a 2,a 4 (或)为其一个最大无关组 3 3 3 02 2 0 2 5、计算行列式D = 10 11 0 111解:对行列式进行初等变换,然后展开化为3阶行列式所以,A 10=(A 2)5=210E(1 -1 -1]7 > 已知A= 2 —1 -3曰44丿3 3 2 2 D = 1 00 11 0110 2 -2 00 3 0 -30 1 113 0 1 12 =-3 1 -2 0 0 -3 =-181 16、 -1 -1-1 -1 -1-1 1 -1 -1 1< 1 -1—1 1已知A =求屮;<1-1 解:A 2=-1 1 _1-1<-1-1-1 _1)-1 -1 -1 -1 1 1 -1 -1-1-1 1丿 —-1-1 -1 1 -1—1、-1 -10、 0 =4E求川;< 1 -1 -1 1 0 0><1 -1 -1 1 0 ()) 解:(A,E) =2 -1 -3 0 1 00 1 -1 -2 1 0<-344 0 0 1丿<0 113 00 1i_ 丄2 2 j_ 1 ~2 Lp 0所以丄11 2(5 _1丁<1><08、已知向量组e = 1 ,&2 =-1 S =3 ,也= -1 ,丄<1;.-1 \ 7(1)求向量组的秩;(2)求向量组的一个最大无关组,并将其余向量用这个最大无关组线性表示;仃 1 1 1、< 1 0 2 0>继续初等行变换得1-13-1—>0 1-1()J 1 1 T 丿J) 00 1丿由此,= 2a x - a 22 01 2 0 1 0 09、计算行列式D =•0 0 A 1<1 1 1 1、q1 1 1 ) 解: 1 -13 -10 -2 2 -2J 11 -1<0 0 0 -2/所以,向量组的秩为3a^a 2.a 4为其一个最大无关组2、 11 0 0 2解:利用性质进行行变换后再展开,化为3阶行列式(a + 6 b + 4、解:AB =— 3 b _ 2丿(a + b 2a-b\ BA =54比较,得a-3 = 5./?-2 = 4,所以Q=&b = 611、已知A -1]1 , FL满足+ AX — E = O , (1)求A 1;-I求矩解:(1) (A,E) =<1 0 <0 -1-1—2、所以,A-1r l<0‘0T丿-2-roo>2 10 A D =0 01 0 0 0 01 0 _ 0A 1 - 00 A 110 -才2 1 00 2 10 0 210 -才2 1 0 =A4-1 0 2 1(\ 1()、已知矩阵4 =11 b\可交换,即AB = BA f求Q, b 2丿p -1 1 -1] 12、已知矩阵A = 12 3 1、3 3 7 1 丿<1 一1 1 -1、<1 -1 1 -1]解:A:二 1 2 3 1 T 0 3 2 23 7 1 <0 64 4丿7 \7<1 —--1 1 -1、T 0 3 2 2<o 0 0 0丿(1)求A的秩; (2)求A的列向量组的一个授大无关组;所以,A的秩为2A的任意两列都是列向量组的一个最大无关组10 0-10 2 0 013、已知/)=0 0 3 -112 3 4求其第4行元素的代数余子式之和, 即求A4I + A42 + A43 + A44;1 0 02 解:A41 + A42 + A43 + = 0 -1 0 0 3 -1 1 11 11 0 按第2行展开= 20 31 1 -1 -1 1<0 1 014、已知A = -1 0 1<0 -1 0 求A?, A’ +24 ;=14了0 1 0、厂0 1 0、<-l 0 解:A2 =-1 0 1 -1 0 1 =0 -2 0 <o -1 0> -1 0丿<1 0 -b15、已知A -1 (3 (1)求A 的秩;(2)求A 的列向量组的一个最大无关组; <1 -1 3 -2、 <1 -1 3 -2、1 -32 -6 0 -2 -1 -4解:A = 1 5 -I 10 0 6 -4 12<3 1 4 2丿<0 4 -5 8丿 ’ 0 1 ()、(-1 0 1 、 ‘0-2 0、 川= -1 0 10-2 0 = 2 0-2<0 -1 」 o i 丿<0 2 0 , -2A 所以 A 3+2A = O O'所以,A"1 12><1—2、 已知矩阵4=10 解:(A,E)=-1-1-1-1-212>‘1-1 3 0-2 -1 T 00 1 、0 0 0 所以,(1) A 的秩为3 (2)第1,2,3列(或第1,3,4列)为列向量组的一个最大无关组 -2、 -4 0。
线性代数考试复习提纲、知识点、例题PDF.pdf
(1) 扩充法
(2) 子式法
1
2
...
m
mn
(1,2
,...,m
) n m
最高阶非 0 子式的阶数就是矩阵的秩,也就是这个向量组
的秩,并且这个子式的行(列)对应的原向量组的向量就
是这个向量组的一个极大无关组。
(3)初等变换法 同法二构成矩阵,对矩阵进行初等变换。
例 9、设向量组
(1) 1,...,t 线性无关, (2) AX = 0 的每一个解都可以由1,...,t 线性表示。 则1,...,t 叫做 AX = 0 的基础解系。 定理 1、设 Amn ,齐次线性方程组 AX = 0 ,若 r(A) = r n ,则该方程组
的基础解系一定存在,且每一个基础解系中所含解向量的个
2x − y + z = 0
例
7、已知线性方程组
−2x1x−1 +2
x2 x2
+ +
x3 x3
= =
−2
,问当
为何值时,它有唯一
x1 + x2 − 2x3 = 2
解,无解,无穷多解,并在有无穷多解时求解。
五、向量组的线性相关性
1,2,...,s 线性相关 1,2,...,s (s 2) 中至少存在一个向量能由其余 向量线性表示。
=s2,...,n 线性相关
1,2 , ...,n
= 0或 2
...
=0。
n
1
n 个 n 维向量1,2,...,n 线性无关
1,2 , ...,n
0或 2
...
0。
n
例 8、已知向量组1 = (t,2,1) ,2 = (2,t,0) ,3 = (1,−1,1) ,
线性代数总复习带例题
(2) 若矩阵A有一个r阶子式不为零,则R(A)≥r (3) 若矩阵A有一个r+1阶子式不为零,则R(A)≤r
• 3规定掌零握矩阵线的性秩方为程零组。的判定方法
• 对n阶方阵 A (aij ) , 若 aij 0,则R(A)=n,称A为满秩矩阵; 若 aij 0,则R(A)<n,称A为降秩矩阵。
把方程组1化成
容易求解的同
会用高斯消元法解线它简性元称方都最为简程零形组的。梯矩阵,称为最简梯矩阵,
解方程组,
即得到能直接
求出解或者能
够直接判2断其 掌握矩阵的秩的概念并求矩阵的秩
无解的同解方
程组
矩阵的初等变换
3 掌握线性方程组的判定方法
ri rj ci c j ,kri kci
L
a0 xn a1xn1 L an
本课程的内容
1
行列式
2
线性方程组
3
矩阵
4
向量空间
5
相似矩阵
6
二次型
线性方程组
本章的知识点 1.满足下列两个条件的矩阵称梯矩阵。 (1)若有零行则零行位于非零行下方;
(2)每个首非零元前面零的个数逐行增
基本思想是通
加。
过消元变形,
2.首非零元为1,且首非零元所在列的其
2 掌握行列式按行(列)展开定理
n阶行列式任一行(列)的各元素与另一行(列)的对 应元素的代数余子式乘积之和等于零,即
ai1 Aj1 ai2 Aj2 L ain Ajn 0, i j;
a1i A1 j a2i A2 j L ani Anj 0,
14-15(2)线性代数总复习(内容提要、试题及讲解)
设A为n阶方阵,如果 AT A, 则称A为反对称 矩阵.
幂等矩阵
设A为n阶方阵,如果 A2 A, 则称A为幂等矩阵.
首页
上页
返回
下页
结束
对合矩阵
设A为n阶方阵,如果 A2 E , 则称A为对合矩阵.
正交矩阵
设A为n阶方阵,如果 AT A A AT E , 则称A为 正交矩阵.
首页
上页
返回
下页
结束
2 逆序数
在一个排列 i1i2 it i s in 中,若数 it i s , 则称这两个数组成一个逆序.
一个排列中所有逆序的总数称为此排列的逆 序数.
逆序数为奇数的排列称为奇排列,逆序数为 偶数的排列称为偶排列.
首页
上页
返回
下页
结束
3 计算排列逆序数的方法
(5) ( A )
T 1
(6) ( A )
1
1 (A ) A. | A|
1
上页 返回 下页 结束
首页
(3)分块对角阵的性质 设 Ai(i1,…,s)都是方阵, A diag( A1,, As ).
(1) | A | | A1 | | As |;
(2) An diag( A1 , As );
p1 p2 pn
( p1 p2 pn )
a p11a p2 2 a pn n
1
首页
( p1 p2 pn ) ( q1q 2qn )
返回
a p1q1 a p2q2 a pn qn
结束
上页
下页
(2)行列式的性质
性质1 行列式与它的转置行列式相等. 性质2 行列式中某一行的所有元素的公因子可以提到行列 式记号的外面. 性质3 若行列式某一行的元素都是两数之和, 则该行拆开, 原行列式可以表为相应的两个行列式之和. 性质4 对换两行, 行列式值反号. 性质5 若有两行元素对应成比例, 则行列式值为零. 性质6 把行列式某一行的各元素乘以同一数加到另一行对 应的元素上去, 行列式的值不变. • 设 A, B 为 n 阶矩阵, 则有 | AB | | A | | B | .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数复习重点
(一)行列式
行列式的定义,运用行列式的性质计算行列式,行列式按照某一行(或列)展开.
(二)矩阵及其运算
矩阵的定义及矩阵的运算,矩阵可逆的判定及求逆矩阵的伴随矩阵法.
(三)矩阵的初等变换及线性方程组
利用初等变换求矩阵的逆、矩阵的秩、解线性方程组,用矩阵秩的理论研究线性方程组的解.
(四)向量组的线性相关性
向量(或向量组)能有向量组线性表示的概念及判定,线性相关与线性无关的概念及判定,最大无关组与秩的概念,基础解系及线性方程组的通解的求法.
(五)二次型
矩阵的特征值和特征向量的概念及性质,,二次型的概念及其矩阵表示,配方法化二次型为标准形的方法.
(1)写出四阶行列式11121314
21222324
31323334
41424344
a a a a a a a a a a a a a a a a 中含有1234a a 的项. (2)计算行列式1
11111a a a
(3)计算行列式6
14230
215
1
032121----(4)设4
41117653
3224321=D ,ij A 表示A 的代数余子式,求4142A A +和4443A A +
(5)计算2123101
040011
10120011-⎛⎫
⎛⎫ ⎪ ⎪
⎪ ⎪ ⎪- ⎪- ⎪⎝⎭
⎝⎭
(6)已知113-2
01210-1
3
-2111A B ⎛⎫
⎛⎫ ⎪==
⎪ ⎪⎝⎭ ⎪
⎝⎭
,, 验证()T T T
AB B A =. (7)已知⎪⎪⎪
⎭
⎫ ⎝⎛----=110021211A ,求,3,3A A 并找出A 3与A 的等式关
系.
(8)已知AB B A =+,其中⎪⎪⎪⎭
⎫
⎝⎛-=200012031B 求A
(9)已知4阶行列式6||=A ,求1*
11|()|,||6
6
T A A -的值.
(11)判断矩阵⎪⎪⎪
⎭⎫ ⎝⎛---=111103231A 是否可逆,若可逆求出其逆矩阵.
(12)求矩阵⎪⎪⎪⎪
⎪⎭
⎫
⎝
⎛--=33
2102112111112
10111A 的秩,并求其一个最高阶非零子式.
(13)求可逆矩阵P , 使得112121111030P ⎛⎫ ⎪- ⎪ ⎪-⎝⎭
为行最简形矩阵. (14)判断线性方程组123412341234124235223431321x x x x x x x x x x x x x x x -++=⎧⎪+-+=⎪⎨
+--=-⎪⎪+-
=-⎩是否有解,若有
解求其通解, 并求其对应的齐次线性方程组的基础解系.
(15)判断线性方程组12345123451
234512233
2222
+-+-=⎧⎪
--++=⎨⎪--++=⎩x x x x x x x x x x x x x x x 是否有解,
若有解求其通解, 并求其对应的齐次线性方程组的基础解系. (16)叙述向量组的最大无关组的定义,并求向量组
1234(2,1,31),(3,1,2,0),(1,3,4,2),(4,3,1,1)=-=-=-=-T T T T a a a a
的秩,并求出其一个最大无关组,将不属于最大无关组的向量用最大无关组线性表示.
(17)判断向量组A :1232131,1,2213⎛⎫⎛⎫⎛⎫
⎪ ⎪ ⎪
==-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
a a a 和向量组
B :12111,011⎛⎫⎛⎫ ⎪ ⎪
== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
b b 是否等价.
(18)叙述向量组线性相关和线性无关的定义,并判断向量组
123(1,2,3),(1,1,2),(1,2,5)T T T a a a =-=-=--的线性相关性.
(19)求矩阵212533102A -⎛⎫
⎪=- ⎪ ⎪-⎝⎭
的特征值及对应的特征向量.
(20)将二次型222
123232334x x x x x +++化成标准形.。