高中物理选修3-2交流电的产生及变化规律知识点

合集下载

高中物理选修3-2交流电

高中物理选修3-2交流电

类型四:对正弦式交变电流的产生原理的理解,以及其四 值运算、闭合电路欧姆定律的应用
• 例4.小型手摇发电机线圈共N匝,每匝可简化为矩形线圈abcd,磁极间的磁 场视为匀强磁场,方向垂直于线圈中心轴OO′,线圈绕OO′匀速转动,如图所 示。矩形线圈ab边和cd边产生的感应电动势的最大值都为e0,不计线圈电阻, 则发电机输出电压( D )
• A.峰值是e0
• B.峰值是2e0
2
• C.有效值是 2 Ne0
• D.有效值是 2Ne0
• 2.矩形线圈绕垂直于匀强磁场的对称轴做匀速转动,经过中性面时,以下说 法正确的是( ABC)
• A.线圈平面与磁感线方向垂直
• B.线圈中感应电流的方向将发生改变
• C.通过线圈平面的磁通量最大
• D.通过线圈的感应电流最大
• (4)有效值、平均值、最大值(峰值)和瞬时值 • ①使用交变电流的设备铭牌上标明的额定电压、额定电流是指有效值,交流电表测量的也是有效 • 值.提到交变电流的相关量,凡没有特别说明的,都是指有效值. • ②在研究电容器是否被击穿时,要用最大值(峰值),因电容器标明的电压是它在工作时能够承 • 受的最大值. • ③在研究交变电流的功率和产生的热量时,用有效值. • ④在求解某一时刻的受力情况时,用瞬时值. • ⑤在求交变电流流过导体的过程中通过导体截面积的电荷量时,
• 用平均值 q It
类型一:交变电流的产生及其变化规律
• 例1:一矩形线圈在匀强磁场中以角速度4πrad/s匀速转动,产生的交变电 动势的图象如图所示.则( D )
• A.交变电流的频率是4πHz • B.当t=0时,线圈平面与磁感线平行 • C.当t=0.5s时,e有最大值 • D.交变电流的周期是0.5s

2019-2020年高三物理3-2选修教材(必考内容)新课标人教版

2019-2020年高三物理3-2选修教材(必考内容)新课标人教版

2019-2020年高三物理3-2选修教材(必考内容)新课标人教版教学目标:1.知道交变电流产生的原理,正弦式电流的图象和三角函数表达2.理解最大值与有效值,周期与频率3.知道电阻、电感和电容对交变电流的作用,感抗和容抗本讲重点:交变电流的描述、有效值本讲难点:交流电路的分析与计算考点点拨:1.交变电流的瞬时值2.交变电流的最大值3.交变电流的平均值4.交变电流的有效值一、考点扫描(一)知识整合1.正弦交流电的产生及其变化规律(1)大小和方向都随时间做变化的电流叫交变电流,按规律变化的电流叫正弦交流电。

(2)交变电流的产生:矩形线圈在磁场中绕,以某一角速度转动,线圈中将产生正弦式交流电。

(3)在线圈平面与磁场垂直时,线圈中没有感应电流,这样的位置叫。

在此位置时,磁通量,磁通量的变化率,线圈中感应电动电动势,线圈每次经过此位置时,电流方向就改变一次,一周内电流方向改变次,50HZ的交流电,在1秒内电流改变次方向。

(4)若从中性面开始计时,交流电的瞬时表达式为:i=,u=,e=,试写出推导过程。

2.表征交变电流的物理量(1)交变电流的最大值(也叫峰值),E m= 。

(2)交变电流的有效值是根据电流的规定的,使交变电流和直流电通过同一电阻,若在相等时间内产生的热量相等,我们就把这一直流电的数值叫做这一交变电流的有效值。

交流用电设备上所标的额定电压和额定电流指的就是有效值,交流电压表和交流电流表的示数是有效值,在无特别说明时,交流电的数值都是指有效值。

(3)交变电流的有效值I、U、E与最大值I m、U m、E m之间的关系为。

(4)周期:交变电流完成一次,叫周期。

表示符号是,单位是。

(5)频率:,叫频率。

表示符号是_____,单位是________。

周期与频率的关系式为__________。

(二)重难点阐释1.正弦交流电的产生当闭合矩形线圈在匀强磁场中,绕垂直于磁感线的轴匀速转动时,闭合线圈中就有交流电产生.如图所示.设矩形线圈abcd以角速度ω绕oo' 轴、从线圈平面跟磁感线垂直的位置开始做逆时针方向转动.此时,线圈都不切割磁感线,线圈中感应电动势等于零.经过时间t线圈转过ωt角,这时ab 边的线速度v方向跟磁感线方向夹角等于ωt,设ab边的长度为l,bd边的长度为l',线圈中感应电动势为当线圈平面转到跟磁感线平行的位置时,线圈转过时间,ωt=,ab边和cd边都垂直切割磁感线,sinωt=1,线圈中感应电动势最大,用E m来表示,E m=BSω.则e=E m sinωt。

(完整版)高二物理选修3.2_第五章交变电流知识点总结,推荐文档

(完整版)高二物理选修3.2_第五章交变电流知识点总结,推荐文档

第五章交变电流5.1交变电流一、直流电(DC) 电流方向不随时间而改变交变电流(AC) 大小和方向都随时间做周期性变化的电流交流发电机模型的原理简图二、交变电流的产生中性面线圈平面与磁感线垂直的位置叫做中性面(1)线圈经过中性面时,穿过线圈的磁通量最大,但磁通量的变化率为零,线圈中的电动势为零(2)线圈经过中性面时,电流将改变方向,线圈转动一周,两次经过中性面,电流方向改变两次三、交变电流的变化规律以线圈经过中性面开始计时,在时刻t 线圈中的感应电动势(ab 和cd 边切割磁感线)e 为电动势在时刻t 的瞬时值,Em 为电动势的最大值(峰值).四、交流电的图像五、交变电流的种类课堂练习5.2《描述交变电流的物理量》复习回顾(一)交变电流:大小和方向随时间做周期性变化的电流;简称交流。

其中按正弦规律变化的交流电叫正弦交流电。

(二)正弦交流电的产生及变化规律1、产生:线圈在匀强磁场中绕垂直于磁场方向的轴匀速转动时,产生正弦交流电。

2、中性面:跟磁场方向垂直的平面叫做中性面。

这一位置穿过线圈的磁通量最大,磁通量变化率为零,线圈中无感应电动势。

3、规律:瞬时值表达式:从中性面开始计时一、周期和频率物理意义:表示交流电变化的快慢1、周期:交变电流完成一次周期性变化所需的时间。

2、频率:交变电流一秒内完成周期性变化的次数。

角频率:线圈在磁场中转动的角速度二、峰值和有效值3.有效值定义:E、U、I根据电流的热效应来规定,让交流与直流分别通过相同的电阻,如果在交流的一个周期内它们产生的热量相等,就把这个直流的数值叫做这个交流的有效值。

4. 正弦交流电的有效值与最大值的关系:说明:A 、以上关系式只适用于正弦或余弦交流电;B 、交流用电器的额定电压和额定电流指的是有效值;C 、交流电流表和交流电压表的读数是有效值D 、对于交流电若没有特殊说明的均指有效值注意:峰值(最大值)、有效值、 平均值在应用上的区别。

1、在求交流电的功、功率或电热时必须用交流电的有效值。

物理选修-3-2知识点总结(全)带对应例题

物理选修-3-2知识点总结(全)带对应例题

选修3-2知识点56.电磁感应现象Ⅰ只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。

这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。

57.感应电流的产生条件Ⅱ1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化∆φ可由面积的变化∆S 引起;可由磁感应强度B 的变化∆B 引起;可由B 与S 的夹角θ的变化∆θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。

2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。

3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。

58.法拉第电磁感应定律 楞次定律Ⅱ①电磁感应规律:感应电动势的大小由法拉第电磁感应定律确定。

ε=BLv ——当长L 的导线,以速度v ,在匀强磁场B 中,垂直切割磁感线,其两端间感应电动势的大小为ε。

如图所示。

设产生的感应电流强度为I ,MN 间电动势为ε,则MN 受向左的安培力F BIL =,要保持MN 以v 匀速向右运动,所施外力F F BIL '==,当行进位移为S 时,外力功W BI L S BILv t ==···。

t 为所用时间。

而在t 时间内,电流做功W I t '=··ε,据能量转化关系,W W '=,则I t BILv t ···ε=。

∴ε=BIv ,M 点电势高,N 点电势低。

此公式使用条件是B I v 、、方向相互垂直,如不垂直,则向垂直方向作投影。

εφ=n t·∆∆, 公式 εφ=n t ∆∆/。

物理选修32知识点总结

物理选修32知识点总结

物理选修32知识点总结1. 电磁感应1.1 定义电磁感应是指磁场与导体相互作用,产生感应电动势的现象。

1.2 法拉第电磁感应定律法拉第电磁感应定律表明,当导体中的磁通量发生变化时,导体中就会产生感应电动势。

电动势的大小正比于磁场变化的速率。

1.3 磁感应强度磁感应强度(B)是磁场中磁感线的密集程度,用以描述磁场的强弱,单位为特斯拉(T)。

1.4 感应电动势的计算公式感应电动势(E)的计算公式为 E = -dΦ/dt,其中Φ表示磁通量的变化率。

2. 交流电2.1 定义交流电是指电流方向和大小随时间而变化的电流。

其特点是周期性变化,正负半个周期电流的大小和方向相反。

2.2 交流电的频率交流电的频率(f)指单位时间内交流电的周期数,单位为赫兹(Hz)。

2.3 交流电的有效值交流电的有效值(Irms)是指使得交流电的功率在与之等效的直流电路中相同时的电流值。

对于正弦交流电,其有效值等于最大值的1/√2。

2.4 交流电的表示方式交流电可以用正弦函数表示,通常表示为I = Imax * sin(2πft + φ),其中Imax 表示最大值,f表示频率,φ表示相位差。

3. 音叉共振3.1 定义音叉共振是指当音叉在某一特定频率下运行时,能够发出明显、持久的声音。

3.2 共振频率的计算音叉的共振频率(f)可以通过振动周期(T)的倒数来计算,即 f = 1/T。

3.3 共振现象的原理共振现象的原理是当外界作用力的频率与物体固有频率接近时,物体的振动幅度会急剧增大,产生共振现象。

3.4 实际应用音叉共振在实际中有广泛的应用,例如用于调校乐器的音高、医学诊断、物体检验等。

4. 光的折射4.1 折射的定义折射是指光线从一种介质传播到另一种介质时方向的改变。

4.2 折射定律折射定律描述了光线在两种不同介质之间的折射现象。

根据折射定律,入射角、折射角和两种介质的折射率之间满足一个简单的关系。

4.3 折射率的定义折射率(n)是一个描述介质对光的折射程度的物理量。

高中物理知识点总结 10.3交流电的产生与描述课件 选修32

高中物理知识点总结 10.3交流电的产生与描述课件 选修32
(5)正弦交变电流的图象(如图所示)
二、描述交变电流的物理量 1.周期和频率 (1)周期:交变电流完成一次________变化所需的时间. (2)频率:交变电流在1 s内完成________变化的次数. (3)二者关系:T=________. 2.峰值和有效值 (1)峰值:交变电流的电压和电流所能达到的________数值. (2)有效值:跟交变电流________等效的直流电压和电流值. (3)二者关系:对于正弦交流电有Im=________,Um=________.
3.交变电流瞬时值表达式的书写基本思路 (1)确定交变电流的峰值,根据已知图象或由公式Em=nBSω求出相应峰值. (2)明确线圈的初始位置,找出对应的函数关系式. 如:①线圈从中性面开始转动,则i­t图象为正弦函数图象,函数式为i=Imsin ωt. ②线圈从垂直中性面开始转动,则i­t图象为余弦函数图象,函数式为i=Imcos ωt.由感应电动势的最大值公式Em=nBSω得,Em仅由n、B、S、ω四个物理量所决定,与轴的具体位置和线圈的形状都无关.
电阻
感抗
容抗
产生的原因
定向移动的电荷与不动的离子间的碰撞
电感线圈的自感阻碍电流变化
极板上所带电荷对定向移动电荷的阻碍
阻碍的特点
对直流、交流均有阻碍作用
通直流、阻交流,通低频、阻高频
续表
2.对交变电流有效值的理解 交变电流的有效值是根据电流的热效应(电流通过电阻生热)进行定义的,所以进行有效值计算时,要紧扣电流通过电阻生热(或热功率)进行计算.注意“三同”:即“相同电阻”,“相同时间”内产生“相同热量”.计算时“相同时间”要取周期的整数倍,一般取一个周期. 注意:在交流电路中,电压表、电流表等电工仪表的示数均为交变电流的有效值.在没有具体说明的情况下,所给出的交变电流的电压、电流指的是有效值.

(完整版)高二物理--选修3-2知识点复习

(完整版)高二物理--选修3-2知识点复习

2018年高二物理 选修3-2知识点复习知识点一:电磁感应现象Ⅰ 只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。

这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。

知识点二:感应电流的产生条件Ⅱ1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化∆φ可由面积的变化∆S 引起;可由磁感应强度B 的变化∆B 引起;可由B 与S 的夹角θ的变化∆θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。

2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。

3、产生感应电动势、感应电流的条件:导体在磁场里做切割磁感线运动时,导体内就产生感应电动势;穿过线圈的磁量发生变化时,线圈里就产生感应电动势。

如果导体是闭合电路的一部分,或者线圈是闭合的,就产生感应电流。

从本质上讲,上述两种说法是一致的,所以产生感应电流的条件可归结为:穿过闭合电路的磁通量发生变化。

三、法拉第电磁感应定律 楞次定律Ⅱ ①电磁感应规律:感应电动势的大小由法拉第电磁感应定律确定。

ε=BLv ——当长L 的导线,以速度v ,在匀强磁场B 中,垂直切割磁感线,其两端间感应电动势的大小为ε。

如图所示。

设产生的感应电流强度为I ,MN 间电动势为ε,则MN 受向左的安培力F BIL =,要保持MN 以v 匀速向右运动,所施外力F F BIL '==,当行进位移为S 时,外力功W BI L S BILv t ==···。

t 为所用时间。

而在t 时间内,电流做功W I t '=··ε,据能量转化关系,W W '=,则I t BILv t ···ε=。

物理选修32知识点总结

物理选修32知识点总结

物理选修32知识点总结物理选修3-2知识点总结一、电磁感应与发电机1. 法拉第电磁感应定律- 感应电动势的大小与磁通量的变化率成正比。

- 感应电流的方向由楞次定律决定。

2. 楞次定律- 感应电流的方向总是试图抵消引起它的磁通量的变化。

3. 电磁感应的三种情况- 导体切割磁感线产生感应电动势。

- 磁场变化引起磁通量变化,产生感应电动势。

- 磁场变化引起导体内部磁畴重新排列,产生感应电动势。

4. 发电机原理- 利用导体切割磁感线产生感应电动势,将机械能转化为电能。

二、交变电流1. 交流电的基本概念- 交流电是指电流的大小和方向随时间周期性变化的电流。

2. 正弦交流电- 交流电的一种基本形式,其大小和方向按照正弦规律变化。

3. 交流电的三要素- 频率:交流电周期性变化的速率。

- 峰值:交流电在一周期内出现的最大值。

- 相位:交流电在时间上的位移。

4. 交流电的表示方法- 解析式表示法:使用正弦函数表示交流电的变化。

- 向量图表示法:在复平面上表示交流电的相位关系。

5. 交流电的功率- 有功功率:交流电做功的速率。

- 无功功率:与磁场和电场建立和消散有关。

- 视在功率:有功功率和无功功率的矢量和。

三、电磁振荡与无线通信1. 电磁振荡- LC振荡电路中电场能和磁场能相互转换,产生振荡。

2. 振荡电路的基本参数- 振荡频率:电路自然振荡的频率。

- 品质因数Q:衡量振荡电路性能的参数。

3. 无线电通信基础- 无线电通信利用电磁波传播信息。

- 调制:将信息信号加到载波上的过程。

- 解调:从调制信号中恢复信息信号的过程。

四、电磁波1. 电磁波的产生- 变化的电场产生磁场,变化的磁场产生电场,形成电磁波。

2. 电磁波的性质- 传播速度:在真空中为光速。

- 波长、频率和波速的关系:波长乘以频率等于波速。

3. 电磁谱- 电磁波按照波长或频率的不同分为不同的类型,如无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。

高中物理选修3-2 交变电流

高中物理选修3-2 交变电流

• 四种方法中第一种方法操作性强, 也是教材中推出的产生交变电流 的原理方法。 • 在第一种方法中,中性面是指 • 设n匝线圈从中性面以角速度ω开 始绕垂直于匀强磁场B的轴匀速 转动,令ab=dc=L1,ad=bc=L2 , 则转动过程中感应电动势的最大 值为Em= ,经时间t,此时线 圈平面与中性面有一夹角,感应 电动势瞬时值e= 。
物理第一次网课
本次网课的主要内容 知识点一、正弦交流电的产生 知识点二、交流电的有效值
• 正弦交流电的产生主要有以下四种方式: • 方法一:矩形线框在匀强磁场中绕垂直于磁场 的轴匀速转动. (E=BLVsinθ) • 方法二:磁场按正弦规律变化 • 方法三:导体棒的有效长度按正正弦规律变化 • 方法四:导体棒的速度按正弦规律变化 • 四种方法中第一种方法操作性强,也是教材中 推出的产生交变电流的原理方法。
• 2、如图(甲)所示,单匝矩形线圈的一半 放在具有理想边界的匀强磁场中,线圈轴 线OO’与磁场边界重合。线圈按图示方向匀 速转动。若从图示位置开始计时,并规定 电流方向沿a→b→c→d→a为正方向,则线 圈内感应电流随时间变化的图像是下图 (乙)中的哪一个( A ) •
• 3、如图,磁感应强度为B的匀强磁场中,有一 匝数为N的矩形线圈,其面积为S,电阻为r, 线圈两端外接一电阻为R的用电器和一个理想 交流电压表.若线圈绕对称轴OO′以角速度ω 匀速转动,则当线圈从图示位置转过90°的过 程中,下列说法正确的是( A ) • A、通过电阻R的电量为 NBS R+r • B、从图示位置开始转动90°磁通量的变化量 等于NBS NBS R • C、交流电压表示数为 R r • D.电阻R产生的热量为 RN B S
V
• 例1、一矩形线圈,面积为S,匝数为N,在磁感应强度为 B的匀强磁场中绕着中心对称轴做匀速转动,角速度为 ω, 磁场方向与转轴垂直,当线圈转到中性面开始计时。 • (1)试证明:线圈中感应电动势的最大值Em=NBSω,并写 出线圈中感应电动势随时间变化的表达式。 • (2)若线圈中的电阻为R,则线圈中电流的最大值为多少? 请写出线圈中的电流瞬时表达式。 • (3)在线圈转过90°的过程中,线圈中感应电动势的平 均值多大? • •

物理选修3-2知识点归纳

物理选修3-2知识点归纳

物理选修3-2知识点归纳一、电磁感应与发电机1. 电磁感应现象- 法拉第电磁感应定律:变化的磁场会在导体中产生电动势。

- 楞次定律:感应电流的方向总是试图抵消引起它的磁场变化。

- 感应电动势的大小与磁通量变化率成正比。

2. 电磁感应的应用- 发电机原理:利用导体在磁场中运动产生感应电动势来发电。

- 交流发电机与直流发电机的区别:交流发电机产生的是交流电,直流发电机通过换向器输出直流电。

3. 电磁感应的计算- 磁通量的计算:Φ = B·A·cosθ,其中B是磁场强度,A是面积,θ是磁场与面积法线之间的夹角。

- 感应电动势的计算:ε = -dΦ/dt,其中ε是感应电动势,dΦ/dt是磁通量的变化率。

二、交变电流1. 交流电的基本概念- 交流电:电流的方向和大小随时间周期性变化的电流。

- 正弦交流电:电流随时间的变化符合正弦规律。

2. 交流电的基本参数- 最大值(峰值):电流或电压在一个周期内的最大值。

- 有效值(RMS):交流电的热效应等效的直流电值。

- 周期和频率:周期是交流电完成一个循环的时间,频率是周期的倒数。

- 相位:描述交流电波形上某点位置的度量。

3. 交流电的计算- 交流电功率的计算:P = Vrms·Irms,其中P是功率,Vrms是电压有效值,Irms是电流有效值。

- 功率因数:表示电路中实际功率与视在功率的比值。

三、电磁波1. 电磁波的产生- 麦克斯韦方程组:描述电磁场的基本规律。

- 电磁波的产生:变化的电场产生磁场,变化的磁场产生电场,相互垂直并向外传播。

2. 电磁波的性质- 电磁波的传播:不需要介质,可以在真空中传播。

- 电磁波的速度:在真空中的速度等于光速,约为3×10^8 m/s。

- 电磁波的能量:电磁波携带能量,与频率成正比。

3. 电磁波的应用- 无线电通信:利用电磁波传输信息。

- 微波炉:利用微波加热食物。

- 医疗成像:如X射线、MRI等。

人教版高中物理选修3-2交变电流的产生和变化规律(共17张PPT)

人教版高中物理选修3-2交变电流的产生和变化规律(共17张PPT)
人教版高中物理选修3-2 5.1交变电流的产生和变化规律(共17张PPT)
人教版高中物理选修3-2 5.1交变电流的产生和变化规律(共17张PPT)
b
c
c
d
a
d
k
L
A
B
b
K L
A
a
B
c
b
b
a
dk
a
A
L
B
c
K L
A d
B
b
c
a
d
k
L
A
B





中性面: B⊥S, Φ最大, E=0 , I=0 电流方向发生改变, 线圈转一圈电流方向改变两次
(3)电路上的电压
u U m sin t
电流 i I m sin t
通过R时:
u iR,U m Im R.
人教版高中物理选修3-2 5.1交变电流的产生和变化规律(共17张PPT)
人教版高中物理选修3-2 5.1交变电流的产生和变化规律(共17张PPT)
四、正弦交变电流的图象
b
c
c
d
a
d
k
人教版高中物理选修3-2 5.1交变电流的产生和变化规律(共17张PPT)
(丙)
没有边切割磁感应线
特点: 中性面(B⊥S), Φ最大, E=0 , I=0
人教版高中物理选修3-2 5.1交变电流的产生和变化规律(共17张PPT)
人教版高中物理选修3-2 5.1交变电流的产生和变化规律(共17张PPT)
人教版高中物理选修3-2 5.1交变电流的产生和变化规律(共17张PPT)
人教版高中物理选修3-2 5.1交变电流的产生和变化规律(共17张PPT)

高中物理选修3-2知识点详细汇总

高中物理选修3-2知识点详细汇总

高中物理选修3-2知识点详细汇总电磁感应现象愣次定律一、电磁感应1.电磁感应现象只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。

产生的电流叫做感应电流.2.产生感应电流的条件:闭合回路中磁通量发生变化3. 磁通量变化的常见情况 (Φ改变的方式):①线圈所围面积发生变化,闭合电路中的部分导线做切割磁感线运动导致Φ变化;其实质也是B不变而S增大或减小②线圈在磁场中转动导致Φ变化。

线圈面积与磁感应强度二者之间夹角发生变化。

如匀强磁场中转动的矩形线圈就是典型。

③磁感应强度随时间(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化(Φ改变的结果):磁通量改变的最直接的结果是产生感应电动势,若线圈或线框是闭合的.则在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件:成闭合回路,四指指向高电势.⑤“因电而动”用左手定则.“因动而电”用右手定则.⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。

导体切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的一个特例.用右手定则能判定的,一定也能用楞次定律判定,只是对导体在磁场中切割磁感线而产生感应电流方向的判定用右手定则更为简便.2.楞次定律(1)楞次定律(判断感应电流方向):感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化.(感应电流的) 磁场 (总是) 阻碍 (引起感应电流的磁通量的)变化原因产生结果;结果阻碍原因。

(定语) 主语 (状语) 谓语 (补语) 宾语(2)对“阻碍”的理解注意“阻碍”不是阻止,这里是阻而未止。

阻碍磁通量变化指:磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用);磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”.(3)楞次定律另一种表达:感应电流的效果总是要阻碍..(.或反抗...).产生感应电流的原因. (F安方向就起到阻碍的效果作用)即由电磁感应现象而引起的一些受力、相对运动、磁场变化等都有阻碍原磁通量变化的趋势。

(完整版)高中物理选修3-2知识点清单(非常详细)

(完整版)高中物理选修3-2知识点清单(非常详细)

(完整版)高中物理必修3-2知识点清单(非常详细)第一章 电磁感应第二章 楞次定律和自感现象一、磁通量1.定义:在磁感应强度为B 的匀强磁场中,与磁场方向垂直的面积S 和B 的乘积. 2.公式:Φ=B ·S .3.单位:1 Wb =1_T ·m 2.4.标矢性:磁通量是标量,但有正、负. 二、电磁感应 1.电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有电流产生,这种现象称为电磁感应现象. 2.产生感应电流的条件(1)电路闭合;(2)磁通量变化. 3.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能.特别提醒:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势产生.三、感应电流方向的判断 1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化. (2)适用情况:所有的电磁感应现象. 2.右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体切割磁感线产生感应电流.3.楞次定律推论的应用楞次定律中“阻碍”的含义可以理解为感应电流的效果总是阻碍产生感应电流的原因,推论如下:(1)阻碍原磁通量的变化——“增反减同”; (2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”; (4)阻碍原电流的变化(自感现象)——“增反减同”四、法拉第电磁感应定律 1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I =ER +r.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E =n ΔΦΔt,n 为线圈匝数.3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Blv .(2)若B ⊥l ,l ⊥v ,v 与B 夹角为θ,则E =Blv sin_θ. 五、自感与涡流 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E =L ΔIΔt.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关. 2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生像水的旋涡状的感应电流. (1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流,使导体受到安培力作用,安培力使导体运动起来.交流感应电动机就是利用电磁驱动的原理工作的.考点一 公式E =n ΔΦ/Δt 的应用 1.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B 引起时,则E =n S ΔB Δt ;当ΔΦ仅由S 引起时,则E =n B ΔSΔt.2.磁通量的变化率ΔΦΔt是Φ-t 图象上某点切线的斜率.3.应用电磁感应定律应注意的三个问题(1)公式E =n ΔΦΔt求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔBΔt求感应电动势时,S 为线圈在磁场范围内的有效面积.(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关.推导如下:q =I Δt =n ΔΦΔtR Δt =n ΔΦR.考点二 公式E =Blv 的应用 1.使用条件本公式是在一定条件下得出的,除了磁场是匀强磁场外,还需B 、l 、v 三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进行计算,公式可为E =Blv sin θ,θ为B 与v 方向间的夹角.2.使用范围导体平动切割磁感线时,若v 为平均速度,则E 为平均感应电动势,即E =Bl v .若v 为瞬时速度,则E 为相应的瞬时感应电动势.3.有效性公式中的l 为有效切割长度,即导体与v 垂直的方向上的投影长度.例如,求下图中MN 两点间的电动势时,有效长度分别为甲图:l=cd sin β.乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,l=2R;沿v2方向运动时,l=0;沿v3方向运动时,l=R.4.相对性E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.考点三自感现象的分析1.自感现象“阻碍”作用的理解(1)流过线圈的电流增加时,线圈中产生的自感电动势与电流方向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减小时,线圈中产生的自感电动势与电流方向相同,阻碍电流的减小,使其缓慢地减小.2.自感现象的四个特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.3.自感现象中的能量转化通电自感中,电能转化为磁场能;断电自感中,磁场能转化为电能.4.分析自感现象的两点注意(1)通过自感线圈中的电流不能发生突变,即通电过程,线圈中电流逐渐变大,断电过程,线圈中电流逐渐变小,方向不变.此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断,在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.六、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻.2.电源电动势和路端电压 (1)电动势:E =Blv 或E =n ΔΦΔt . (2)路端电压:U =IR =ER +r·R .二、电磁感应中的图象问题 1.图象类型(1)随时间t 变化的图象如B -t 图象、Φ-t 图象、E -t 图象和i -t 图象. (2)随位移x 变化的图象如E -x 图象和i -x 图象. 2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量. (3)利用给出的图象判断或画出新的图象.考点一 电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.3.解决电磁感应中电路问题的一般思路:(1)确定等效电源,利用E =n ΔΦΔt或E =Blv sin θ求感应电动势的大小,利用右手定则或楞次定律判断电流方向.(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图.(3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 4.(1)对等效于电源的导体或线圈,两端的电压一般不等于感应电动势,只有在其电阻不计时才相等.(2)沿等效电源中感应电流的方向,电势逐渐升高. 考点二 电磁感应中的图象问题 1.题型特点一般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量; (3)根据图象定量计算. 2.解题关键弄清初始条件,正负方向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.3.解决图象问题的一般步骤 (1)明确图象的种类,即是B -t 图象还是Φ-t 图象,或者是E -t 图象、I -t 图象等; (2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式; (5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等; (6)画出图象或判断图象.4.解决图象类选择题的最简方法——分类排除法.首先对题中给出的四个图象根据大小或方向变化特点分类,然后定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是用物理量的方向,排除错误选项,此法最简捷、最有效.第三章 交变电流 传感器一、交变电流的产生和变化规律 1.交变电流大小和方向随时间做周期性变化的电流. 2.正弦交流电(1)产生:在匀强磁场里,线圈绕垂直于磁场方向的轴匀速转动. (2)中性面①定义:与磁场方向垂直的平面.②特点:线圈位于中性面时,穿过线圈的磁通量最大,磁通量的变化率为零,感应电动势为零.线圈每经过中性面一次,电流的方向就改变一次.(3)图象:用以描述交变电流随时间变化的规律,如果线圈从中性面位置开始计时,其图象为正弦曲线.二、描述交变电流的物理量1.交变电流的周期和频率的关系:T =1f.2.峰值和有效值(1)峰值:交变电流的峰值是它能达到的最大值.(2)有效值:让交流与恒定电流分别通过大小相同的电阻,如果在交流的一个周期内它们产生的热量相等,则这个恒定电流I 、恒定电压U 就是这个交变电流的有效值.(3)正弦式交变电流的有效值与峰值之间的关系IU E 3.平均值:E =n ΔΦΔt=BL v .考点一 交变电流的变化规律1.正弦式交变电流的变化规律(线圈在中性面位置开始计时)图象2.(1)线圈平面与中性面重合时,S ⊥B ,Φ最大,ΔΦΔt=0,e =0,i =0,电流方向将发生改变.(2)线圈平面与中性面垂直时,S ∥B ,Φ=0,ΔΦΔt最大,e 最大,i 最大,电流方向不改变.3.解决交变电流图象问题的三点注意(1)只有当线圈从中性面位置开始计时,电流的瞬时值表达式才是正弦形式,其变化规律与线圈的形状及转动轴处于线圈平面内的位置无关.(2)注意峰值公式E m =nBS ω中的S 为有效面积. (3)在解决有关交变电流的图象问题时,应先把交变电流的图象与线圈的转动位置对应起来,再根据特殊位置求特征解.考点二 交流电有效值的求解 1.正弦式交流电有效值的求解 利用I =I m2,U =U m 2,E =E m2计算.2.非正弦式交流电有效值的求解交变电流的有效值是根据电流的热效应(电流通过电阻生热)进行定义的,所以进行有效值计算时,要紧扣电流通过电阻生热(或热功率)进行计算.注意“三同”:即“相同电阻”,“相同时间”内产生“相同热量”.计算时“相同时间”要取周期的整数倍,一般取一个周期.考点三 交变电流的“四值”的比较1.书写交变电流瞬时值表达式的基本思路(1)求出角速度ω,ω=2πT=2πf .(2)确定正弦交变电流的峰值,根据已知图象读出或由公式E m =nBS ω求出相应峰值. (3)明确线圈的初始位置,找出对应的函数关系式. ①线圈从中性面位置开始转动,则i -t 图象为正弦函数图象,函数式为i =I m sin ωt . ②线圈从垂直中性面位置开始转动,则i -t 图象为余弦函数图象,函数式为i =I m cos ωt三、变压器原理1.工作原理:电磁感应的互感现象. 2.理想变压器的基本关系式 (1)功率关系:P 入=P 出.(2)电压关系:U 1U 2=n 1n 2,若n 1>n 2,为降压变压器;若n 1<n 2,为升压变压器.(3)电流关系:只有一个副线圈时,I 1I 2=n 2n 1; 有多个副线圈时,U 1I 1=U 2I 2+U 3I 3+…+U n I n .四、远距离输电1.输电线路(如图所示)2.输送电流(1)I =P U. (2)I =U -U ′R.3.电压损失 (1)ΔU =U -U ′. (2)ΔU =IR . 4.功率损失 (1)ΔP =P -P ′.(2)ΔP =I 2R =⎝ ⎛⎭⎪⎫P U 2R =ΔU 2R .考点一 理想变压器原、副线圈关系的应用 1.基本关系(1)P 入=P 出,(有多个副线圈时,P 1=P 2+P 3+……)(2)U 1U 2=n 1n 2,有多个副线圈时,仍然成立.(3)I 1I 2=n 2n 1,电流与匝数成反比(只适合一个副线圈) n 1I 1=n 2I 2+n 3I 3+……(多个副线圈)(4)原、副线圈的每一匝的磁通量都相同,磁通量变化率也相同,频率也就相同. 2.制约关系(1)电压:副线圈电压U 2由原线圈电压U 1和匝数比决定. (2)功率:原线圈的输入功率P 1由副线圈的输出功率P 2决定. (3)电流:原线圈电流I 1由副线圈电流I 2和匝数比决定. 3.关于理想变压器的四点说明: (1)变压器不能改变直流电压.(2)变压器只能改变交变电流的电压和电流,不能改变交变电流的频率. (3)理想变压器本身不消耗能量.(4)理想变压器基本关系中的U 1、U 2、I 1、I 2均为有效值. 考点二 理想变压器的动态分析 1.匝数比不变的情况(如图所示)(1)U 1不变,根据U 1U 2=n 1n 2可以得出不论负载电阻R 如何变化,U 2不变.(2)当负载电阻发生变化时,I 2变化,根据I 1I 2=n 2n 1可以判断I 1的变化情况.(3)I 2变化引起P 2变化,根据P 1=P 2,可以判断P 1的变化. 2.负载电阻不变的情况(如图所示)(1)U 1不变,n 1n 2发生变化,U 2变化. (2)R 不变,U 2变化,I 2发生变化.(3)根据P 2=U 22R和P 1=P 2,可以判断P 2变化时,P 1发生变化,U 1不变时,I 1发生变化.3.变压器动态分析的思路流程考点三 关于远距离输电问题的分析 1.远距离输电的处理思路对高压输电问题,应按“发电机→升压变压器→远距离输电线→降压变压器→用电器”这样的顺序,或从“用电器”倒推到“发电机”一步一步进行分析.2.远距离高压输电的几个基本关系(以下图为例):(1)功率关系:P 1=P 2,P 3=P 4,P 2=P 损+P 3.(2)电压、电流关系:U 1U 2=n 1n 2=I 2I 1,U 3U 4=n 3n 4=I 4I 3U 2=ΔU +U 3,I 2=I 3=I 线.(3)输电电流:I 线=P 2U 2=P 3U 3=U 2-U 3R 线.(4)输电线上损耗的电功率:P 损=I 线ΔU =I 2线R 线=⎝ ⎛⎭⎪⎫P 2U 22R 线.3.解决远距离输电问题应注意下列几点(1)画出输电电路图.(2)注意升压变压器副线圈中的电流与降压变压器原线圈中的电流相等. (3)输电线长度等于距离的2倍.(4)计算线路功率损失一般用P 损=I 2R 线.。

高中物理选修3-2交流电的产生及变化规律知识点

高中物理选修3-2交流电的产生及变化规律知识点

高中物理选修3-2知识点交流电的产生及变化规律一.交流电大小和方向都随时间作周期性变化的电流,叫做交变电流。

其中按正弦规律变化的交变电流叫正弦式电流,正弦式电流产生于在匀强电场中,绕垂直于磁场方向的轴匀速转动的线圈里,线圈每转动一周,感应电流的方向改变两次。

二.正弦交流电的变化规律 线框在匀强磁场中匀速转动.1.当从图12—2即中性面...位置开始在匀强磁场中匀速转动时,线圈中产生的感应电动势随时间而变的函数是正弦函数:即e=εm sin ωt , i =I m sin ωt (ωt 是从该位置经t 时间线框转过的角度;ωt 也是线速度V 与磁感应强度B 的夹角;ωt 是线框面与中性面的夹角)2.当从图12—1位置开始计时: 则:e=εm cos ωt , i =I m cos ωt .3.对于单匝矩形线圈来说E m =2Blv =BS ω;对于n 匝面积为S 的线圈来说E m =nBS ω,对于总电阻为R 的闭合电路来说R E I m m = 三.几个物理量 1.中性面:如图12—2所示的位置为中性面,对它进行以下说明:(1) 此位置过线框的磁通量最多.(2) 此位置磁通量的变化率为零.所以 e=εm sin ωt=0, i =I m sin ωt=0(3) 此位置是电流方向发生变化的位置,具体对应图12-3中的t 2,t 4时刻,因而交流电完成一次全变化中线框两次过中性面,电流的方向改变两次,频率为50Hz 的交流电每秒方向改变100次.2.交流电的最大值: εm =B ωS 当为N 匝时εm =NB ωS(1)ω是匀速转动的角速度,其单位一定为弧度/秒,nad/s(2)最大值对应的位置与中性面垂直,即线框面与磁感应强度B 在同一直线上.(3)最大值对应图12-3中的t 1、t 2时刻,每周中出现两次.3.瞬时值e=εm sin ωt , i =I m sin ωt 代入时间即可求出. 不过写瞬时值时,不要忘记写单位,如εm =2202V,ω=100π,则e=2202sin100πtV,不可忘记写伏,电流同样如此.4.有效值:为了度量交流电做功情况人们引入有效值,它是根据电流的热效应而定的.就是分别用交流电,直流电通过相同阻值的电阻,在相同时间内产生的热量相同,则直流电的值为交流电的有效值.(1)有效值跟最大值的关系εm =2U 有效,I m =2I 有效 (2)伏特表与安培表读数为有效值.(3)用电器铭牌上标明的电压、电流值是指有效值.5.周期与频率:交流电完成一次全变化的时间为周期;每秒钟完成全变化的次数叫交流电的频率.单位1/秒为赫兹(Hz ).四、最大值、平均值和有效值的应用1、正弦交变电流的电动势、电压和电流都有最大值、有效值、瞬时值和平均值的区别。

教科版高中物理必修3-2知识讲解 交变电流的产生和变化规律

教科版高中物理必修3-2知识讲解 交变电流的产生和变化规律

交变电流的产生和变化规律: :【学习目标】1.理解正弦交流电的产生过程及产生条件,能够利用电磁感应定律推导计算正弦交流电的瞬时值表达式sin m e E t ω=、sin m u U t ω=、sin m i I t ω=。

2.从正弦交流电产生过程、变化图象及解析式sin m e E t ω=三个方面的结合上去理解它的变化规律。

3.理解描述交流电的物理量:最大值、有效值、周期、频率等的意义及相应计算,尤其是有效值的意义和相关计算。

4.能够熟练地写出正弦交流电的瞬时值表达式以及从它的变化图象上读出有用信息。

5.了解电感电容对交流电的影响以及交流电、直流电作用于电感电容的不同之处;了解电感和电容在交流电路中的应用。

6.能将电磁感应的相关知识迁移到本部分内容中解决问题;能理解物理学等效思想的意义。

【要点梳理】要点一、直流电和交流电1.直流电电流的方向不随时间变化的电流或电压叫做直流电。

直流电可以分为:脉动直流电和恒定电流两种形式。

脉动直流电:电流或电压的大小随时间发生变化,但方向不发生变化,如图甲、乙所示。

恒定电流(或恒定电压):电流或电压的大小和方向都不随时间发生变化,如图丙、丁。

2.交电流1.定义:大小和方向都随时间做周期性变化的电流叫交变电流。

要点诠释:(1)方向不变的电流叫做直流,大小和方向都不变的电流叫恒定电流。

(2)大小不变、方向改变的电流也是交变电流。

2.产生:在匀强磁场中,绕垂直于磁场方向的轴匀速转动的线圈里产生的是正弦式交变电流。

要点诠释:(1)矩形线框在匀强磁场中匀速转动,仅是产生交变电流的一种方式,但不是唯一方式。

(2)交变电流的典型特征是电流方向变化,其大小可能不变,如图所示的交变电流称为矩形交变电流,在方向变化时其大小可能不变。

3.中性面:线圈平面垂直于磁感线时,各边都不切割磁感线,线圈中的感应电流为零,这一位置叫中性面。

特点:(1)线圈位于中性面时,穿过线圈的磁通量最大,磁通量的变化率为零,感应电动势为零,感应电流为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理选修3-2知识点
交流电的产生及变化规律
一.交流电
大小和方向都随时间作周期性变化的电流,叫做交变电流。

其中按正弦规律变化的交变电流叫正弦式电流,正弦式电流产生于在匀强电场中,绕垂直于磁场方向的轴匀速转动的线圈里,线圈每转动一周,感应电流的方向改变两次。

二.正弦交流电的变化规律 线框在匀强磁场中匀速转动.
1.当从图12—2即中性面...
位置开始在匀强磁场中匀速转动时,线圈中产生的感应电动势随时间而变的函数是正弦函数:
即e=εm sin ωt , i =I m sin ωt (ωt 是从该位置经t 时间线框转过的角度;ωt 也是线速度V 与磁感应强度B 的夹角;ωt 是线框面与中性面的夹角)
2.当从图12—1位置开始计时: 则:e=εm cos ωt , i =I m cos ωt .
3.对于单匝矩形线圈来说E m =2Blv =BS ω;对于n 匝面积为S 的线圈来说E m =nBS ω,对于总电阻为R 的闭合电路来说R E I m m = 三.几个物理量 1.中性面:如图12—2所示的位置为中性面,对它进行以下说
明:
(1) 此位置过线框的磁通量最多.
(2) 此位置磁通量的变化率为零.所以 e=εm sin ωt=0, i =I m sin ωt=0
(3) 此位置是电流方向发生变化的位置,具体对应图12-3中的t 2,t 4时刻,因
而交流电完成一次全变化中线框两次过中性面,电流的方向改变两次,频率
为50Hz 的交流电每秒方向改变100次.
2.交流电的最大值: εm =B ωS 当为N 匝时εm =NB ωS
(1)ω是匀速转动的角速度,其单位一定为弧度/秒,nad/s
(2)最大值对应的位置与中性面垂直,即线框面与磁感应强度B 在同一直线上.
(3)最大值对应图12-3中的t 1、t 2时刻,每周中出现两次.
3.瞬时值e=εm sin ωt , i =I m sin ωt 代入时间即可求出. 不过写瞬时值时,不要忘记写单位,如εm =2202V,ω=100π,则e=2202sin100πtV,不可忘记写伏,电流同样如此.
4.有效值:为了度量交流电做功情况人们引入有效值,它是根据电流的热效应而定的.就是分别用交流电,直流电通过相同阻值的电阻,在相同时间内产生的热量相同,则直流电的值为交流电的有效值.
(1)有效值跟最大值的关系εm =2U 有效,I m =2I 有效 (2)伏特表与安培表读数为有效值.(3)用电器铭牌上标明的电压、电流值是指有效值.
5.周期与频率:交流电完成一次全变化的时间为周期;每秒钟完成全变化的次数叫交流电的频率.单位1/秒为赫兹(Hz ).
四、最大值、平均值和有效值的应用
1、正弦交变电流的电动势、电压和电流都有最大值、有效值、瞬时值和平均值的区别。

以电动势为例:最大值用E m 表示,有效值用E 表示,瞬时值用e 表示,平均值用E 表示。

它们的关系为E =E m /2,e =E m sin ωt 。

平均值不常用,必要时要用法拉第电磁感应定律直接求:t n E ∆∆Φ=。

切记12
2E
E E +≠。

特别要注意:有效值和平均值是不同的两个物理量
................,有效值是对能的平均结果,平均值是对时间的平均值。

在一个周期内的前半个周期内感应电动势的平均值为最大值的2/π倍,而一个周期内的平均感应电动势为零。

2、我们求交流电做功时用有效值,求通过某一电阻电量时一定要用电流的平均值交流电,在不同时间内平均感应电动势,平均电流不同.考虑电容器的耐压值时则要用最大值。

3、交变电流的有效值是根据电流的热效应规定的
....................:让交流和直流通过相同阻值的电阻,如果它们在相同的时间内产生的热量相等,就把这一直流的数值叫做这一交流的有效值。

⑴只有正弦交变电流
......的有效值才一定是最大值的2/2倍。

⑵通常所说的交变电流的电流、电压;交流电表的读数;交流电器的额定电压、额定电流;保险丝的熔断电流等都指有效值。

(3)生活中用的市电电压为
....),频率为
.....310V
...Z.,所以其电
.....
.....50H ..........220V
....,其最大值为
......220
...2V=311V
......(有时写为
压即时值的表达式为
..........t.V.。

.........u.=311sin314
2、理想变压器的基本关系
理想变压器:磁通量全部集中在铁芯中(没有漏磁)变压器本身不损耗能量。

对于理想变压器,物理量之间的依存关系:
(1)理想变压器的输入功率等于输出功率,且输入功率受输出功率控制。

(2)当原、副线圈、一定时,输出电压由决定,与负载无关。

且有。

(3)当原、副线圈、一定时,输入电流由输出电流决定,且有关系,而与所接负载的大小有关。

(4)当有若干个副线圈时,其总的约束关系为
各线圈的电压关系与初级线圈电压的关系跟线圈匝数关系不变。

各线圈中电流的关系为
(5)变压器的负载越大,是指并接在副线圈上用电器越多,即负载电阻越小。

3、远距离输电应注意的问题
(1)远距离输电要解决的关键问题是减少输电线上的电能损耗,根据,具体方法有:其一是减少输电线的电阻,用电阻率小的材料或加大导线的横截面积。

实际分析表明其作用十分有限。

其二是提高输电电压,减小输电电流,这是一种有效的方法。

(2)要能画出远距离输电电路,能帮助自己进行分析问题,电路如图。

(3)善于以变压器为界划分好各个回路,对各个回路独立运用欧姆定律、焦耳定律和电功、电功率进行分析计算。

(4)抓住各回路之间的物理量的联系,如变压器两侧的功率关系,电流、电压与匝数的关系;导线
上的电能损耗,导线上的电压损失为。

(P为输送的总功率)于远距离输电电路来说,属于非纯电阻电路(有电感),电功和电热是不相等的,计算时要引起注意;此外,输电电线有两条,计算时要计算两条电线的电阻为整个输电线的总电阻。

4、三相交流电
(1)三相交流电的产生:三相交流电是由三个互成1200角的线圈,同时绕垂直磁场中轴共同转动,
线圈中产生三个交变电动势,输出的电流是三相电流;这三个电动势大小相相等,周期相同,依次相差
个周期达到最大值。

(2)三相交流电的连接方法:发电机三个线圈可发采用Y接法,也可以采用Δ接法,具体接法要根据电路要求;同样用电负载的接法也有用Y接法和Δ接法,具体根据用电器的接法要求而定。

但要注意Y 接法和Δ接法不是以往的串、并联。

(3)相电压、线电压均为交流电的有效值,目前我国民用电采用三相四线制供电,可提供有效值为220V(一相与地间之间的电压),380V(两根相线之间的电压)两种电压。

他们的最大值分别是V,V。

但要注意:与的关系是不同的。

相关文档
最新文档