酯化酶常规测定

酯化酶常规测定
酯化酶常规测定

酯化酶常规测定

一、水分、酸度测定同大曲测定方法

二、大曲酯化力的测定

1 酯化液制备

吸取己酸-乙醇溶液100mL ,于250ml 蒸馏烧瓶中,加入相当于绝干样品5g (准确至0.001g )的大曲粉,在30℃~32℃恒温箱中酯化100h,取出后加水50mL,加热蒸馏,接收馏出液100ml ,作为酯化力含量的测定液。

2 己酸乙酯含量的测定

吸取50ml 馏出液,加入酚酞指示剂3滴,用0.1mol/L 氢氧化钠标准溶液中和至微红色出现,准确加入氢氧化钠标准溶液25mL ,沸水浴中回流30min (或室温暗处放置皂化24h ),冷却后用0.1mol/L 硫酸标准溶液滴定到微红色消失为终点。

3 结果计算

大曲酯化力的计算按式(7)计算:

1122()14450

100

c v c v X m -?=?…………………………………………………………………(7) 式中:

X ——酯化力,单位为(mg/g·100h );

c 1——NaOH 标准溶液的浓度(mol/L );

v 1——测定时加入NaOH 标准溶液的体积(mL );

c 2——H 2SO 4标准溶液的浓度(mol/L );

v 2——滴定消耗H2SO4标准溶液的体积(mL );

m ——绝干曲粉质量(g ),称量的曲粉重量扣除水分;

144——己酸乙酯的换算系数。

第六章 酶的非水相催化

第六章酶的非水相催化 教学目的:使学生了解并掌握酶非水相催化的概念及意义,掌握酶非水相催化技术。 教学重点、难点:酶非水相催化机理。 教学方法:讲授 教学手段:多媒体 第一节酶非水相催化研究概况 一、概念及分类 (一)、概念: 酶在非水介质中进行的催化作用。 1984年,美国A.M.Klibanov在《科学》上发表一篇关于酶在有机介质中催化条件和特点的综述,并成功酶促合成了酯、肽、手性醇等许多有机化合物。指出,酶可在非生物体系的疏水介质中催化天然或非天然的疏水性底物和产物的转化,对酶只能在水溶液中起作用的传统酶学思想提出了挑战。 (二)、分类 1、有机介质中的酶催化 指酶在含有一定量水的有机溶剂中进行的催化作用 适用范围:底物、产物两者或其中之一为疏水性物质的酶催化作用。主要研究对象 2、气相介质中的酶催化 指酶在气相介质中进行的酶催化反应。 适用范围:底物是气体或者能够转化为气体物质的酶催化反应。研究较少。 3、超临界流体介质中的酶催化 指酶在超临界流体中进行的催化反应。 …绿色化学? ——无毒、无害要求,代替有机溶剂 4、离子液介质中酶的催化 离子液:有机阳离子与有机(无机)阴离子构成的在室温条件下呈液态的低熔点盐类,挥发性低、稳定性好;酶反应具有良好的稳定性和区域选择性、立体选择性、键选择性等优点。 二、有机相酶反应的优点 ⒈有利于疏水性底物的反应。(主要提高脂溶性底物的溶解度,有利于高浓度底物连续 生物转化。) ⒉可提高酶的热稳定性,提高反应温度加速反应。 ⒊能催化在水中不能进行的反应(有许多难溶于水的非极性底物能够溶于有机溶剂中) ⒋可改变反应平衡移动方向(使许多热力学平衡从加水分解反应转为其逆反应,如酶 合成,酯交换等)主要朝着合成而不是水解的方向进行。 ⒌可控制底物专一性(不同底物反应所选最适溶剂不一定相同)。 ⒍可防止由水引起的副反应。 ⒎可扩大反应pH 值的适应性。 ⒏酶易于实现固定化。 ⒐酶和产物易于回收。(酶不溶于有机溶剂,有利于产物分离和酶的回收利用,且从低 沸点的溶剂中分离纯化产物比水中容易。) ⒑可避免微生物污染。 仿水溶剂体系 原理: 可用二甲基甲酰胺(DMF),乙二醇,丙三醇等极性添加剂部分或全部替代系统中的辅助溶剂水,从而影响酶的活性和立体选择性。 仿水溶剂体系 极性添加剂对体系的影响

胰蛋白酶活性测定

实验一胰蛋白酶活性测定 实验目的:掌握测定胰蛋白酶浓度、活性、比活的原理与方法。 实验原理:胰蛋白酶相对分子量23.7 KD,主要水解肽链中碱性氨基酸与其它氨基酸相连接的肽键,此外还能水解碱性氨基酸形成的酯键,如把人工合成的N-苯甲酰-L-精氨酸乙酯(N-benzuyl-L-argine ethyl ester, BAEE)水解为H-苯甲酰-L-精氨酸(BA)。 胰蛋白酶所催化的上述反应中,产物BA对253 nm 的光吸收远大于BAEE,因此可以在实验起始点把253 nm 的消光值调为零,然后记录反应体系对253 nm 的消光值的增量,并把这个增量作为测定胰蛋白酶的活性指标。 酶活单位定义:在底物BAEE浓度1m mol/L,光程1 cm,波长253nm,温度25 0C,测量体积3mL,.条件下吸光值每分钟递增0.001(A/min=0.001)为1个BAEE酶活单位。 胰蛋白酶制剂中蛋白质浓度含义: 胰蛋白酶含量一般E1%表达。这个值的含义是:浓度为1% 酶蛋白,在1cm光径下,对紫外280nm 的消光值。不同厂家、不同产品的E1%值有很大差别。E1% 值越高,表明酶制剂中酶蛋白含量越高。 由于酶制剂中蛋白质含量各不相同,所以用酶制剂配制E1%的蛋白质溶液时,按照厂家对产品的E1% 的测定值配制溶液。 在本实验中,胰蛋白酶酶蛋白样品采用SIGMA 公司生产的产品,生产公司对展品的描述是对280nm紫外吸收值15.3,配制胰蛋白酶标准溶液可根据厂家的这个说明。 器材以试剂:器材,电子天平,紫外分光光度计,微量加样器。试剂:标准胰蛋白酶,N-苯甲酰-L-精氨酸乙酯,HCI, Tris。 1.胰蛋白酶活性测定: 1)配制E1%的胰蛋白酶溶液

酶催化反应研究进展

1 绪论 酶作为生物催化剂,具有专一性、高效性、反应条件温和等优点,是一种具有特殊三维空间构象的蛋白质,它们在体内几乎参与了所有的转变过程, 催化生物分子的转化。同时, 它们也催化许多体内存在的物质发生变化, 使人体正常的新陈代谢得以运行。因此受到人们的普遍关注。近年来, 特别是随着生化技术的进展, 酶催化反应越来越多地被有机化学家作为一种手段应用于有机合成, 特别是催化不对称合成反应。光学活性化合物或天然产物的合成, 已应用于医药、农药、食品添加剂、香料、日用化学品等精细有机合成领域。酶催化不会污染环境, 经济可行, 符合绿色化学的方向, 具有广阔的前景。 2 酶催化与有机合成反应 对于酶催化反应在有机合成中的应用, 有机合成工作者做了大量工作。随着科技进步的日新月异, 酶催化反应越来越多地被有机化学家作为一种手段用于 有机合成特别是不对称合成反应, 进行光学活性化合物或天然产物的合成时, 能为天然或非天然产物的合成提供丰富的手性源, 其应用前景将是难以估量的。2.1 不同反应体系中的酶促反应 2.1.1 有机介质中的酶促反应 酶在有机介质中不但能保持其活性,还表现出一些特殊性质,并具有如下优越性:有利于疏水性底物的反应;产物和酶易于回收;可改变反应平衡移动的方向;可控制底物专一性;可防止由水引起的副反应;可扩大反应pH值的适应性;可提高酶稳定性;可避免微生物污染等。在保证必需含水量;选择合适的酶及酶形式;选择合适的溶剂;选择最佳pH值;选择合适的反应体系的条件下,则在有机介质中酶可显示很高的催化活性。目前在有机介质中已成功用酶进行了氧化、、脱氢、脱氨、还原、羟基化、甲基化、环氧化、酯化、酰胺化、磷酸化、开环反应、异构化、侧链切除、缩合及卤化等反应。 过去人们认为酶在有机介质不稳定,但研究发现大多数酶在低水有机介质中比在水介质中更稳定。一是表现在热稳定性提高。在有机介质中,在不同温度下保温脉酶,发现热处理导致酶活性增加,而且酶在温度远超过其在水溶液中最适

有机溶剂中酶催化活性研究进展

有机溶剂中酶催化活性研究进展 摘要:酶在有机溶剂中催化作用的研究日益受到重视,其应用范围也越来越广。本文就有机介质中酶催化的影响因素进行了探讨,并归纳出提高酶活性的一系列方法,最后简要介绍了有机溶剂中酶的应用。 关键词:有机溶剂;酶催化 一直以来,人们认为“生物催化必须在水溶液中进行”、“有机溶剂是酶的变性剂、失活剂”,而1984年,Klibanov[1]提出:“只要条件合适,酶在非生物体系的有机溶剂中同样具有催化功能”的理论使酶学概念发生了革命性的改变,并由此开创了非水相生物催化(非水酶学)的新时代。 1 有机溶剂中酶催化反应的优势 研究表明,有机溶剂中的酶和水溶液中的酶一样具有高度的底物选择性。此外,还有以下一些特点[2, 3]: (1)绝大多数有机化合物在非水系统内溶解度很高;(2)根据热力学原理,一些在水中不可能进行的反应,有可能在非水系统内进行;(3)有机溶剂可促使热力学平衡向合成方向(如酯合成、肽合成等)移动,如脂肪酶在水中催化脂肪水解,而在有机溶剂中则催化酯合成;(4)在有机溶剂中,所有有水参与的副反应(如酸酐水解)将受到抑制;(5)在有机溶剂中酶的热稳定性显著提高,可通过提高温度加速催化反应进行;(6)从非水系统内回收反应产物比水中容易;(7)在非水系统内酶很容易回收和反复使用,不需要进行固定化;(8)在有机溶剂中不易发生微生物污染;(9)更为重要的是,低水环境可用于稳定具有未知催化性质的构象异构体,以及在水中寿命极短的酶反应中间体。 目前,有机溶剂中酶催化的上述优势使得非水酶学研究成为生物化学、有机化学、生物工程等多种学科交叉的研究热点。迄今发现能在有机溶剂中发挥催化功能的酶有十几种,主要集中于脂肪酶研究,催化的反应类型包括氧化、还原、酯合成和酯交换、脱氧、酞胺化、甲基化、羟化、磷酸化、脱氨、异构化、环氧化、开环聚合、侧链切除、缩合及卤代等。 2 影响酶催化活性的因素 一直以来有机相酶催化的研究非常活跃,但到目前为止仍处于实验研究阶段,离工业化应用还有一定的距离,最大的原因就是酶在有机溶剂中活性较低。一般而言,有机溶剂中的酶活性要比水溶液中低2-6个数量级。因此,确定影响有机溶剂中酶活性的因素,设法提高有机溶剂中酶活性表达是当今酶学研究的重点。 2.1必需水 有机溶剂中酶的催化必需在其分子周围有一单层水分子直接或间接地通过氢键、疏水键、静电作用、范德华力等以维持酶的活性结构,这部分水叫必需水[3],所需水量因酶而异,表示方法也经历了多个阶段。非水酶学发展初期,普遍采用百分水含量来表示含水量,后来Halling[4]提出了热力学水活度a w这一表示方法,因为水解平衡时,各相的a w值相等;体系的改变伴随着水活度的变化,故通过a w值可以推断酶的活性。可通过液上气体与一干燥柱循环来调节反应介质液上水活度[5];还可采用水活盐对来控制水活度,这种被普遍采用并行之有效。一些对水比较敏感的有机相酶促反应(如:肽的合成),可用水模拟物代替水,目前常用的水模拟物有甲醇、二甲基甲酰胺、四氢呋喃等,它们对水敏性酶促反应意义特别大。 2.2 有机溶剂

酯化反应

酯化反应 是一类有机化学反应,是醇跟羧酸或含氧无机酸生成酯和水的反应。分为羧酸 跟醇反应和无机含氧酸跟醇反应何和无机强酸跟醇的反应两类。羧酸跟醇的酯 化反应是可逆的,并且一般反应极缓慢,故常用浓硫酸作催化剂。多元羧酸跟 醇反应,则可生成多种酯。无机强酸跟醇的反应,其速度一般较快。典型的酯 化反应有乙醇和醋酸的反应,生成具有芳香气味的乙酸乙酯,是制造染料和医 药的原料。酯化反应广泛的应用于有机合成等领域。 两种化合物形成酯(典型反应为酸与醇反应形成酯),这种反应叫酯化反应。 分两种情况:羧酸跟醇反应和无机含氧酸跟醇反应。羧酸跟醇的反应过程一般是:羧酸分子中的羟基与醇分子中羟基的氢原子结合成水,其余部分互相结合 成酯。这是曾用示踪原子证实过的。口诀:酸去羟基醇去羟基氢(酸脱氢氧醇脱氢)。 酯的读法:R酸R1酯("R"是指R酸中的"R";"R1"是指R1醇中的"R1") 羧酸跟醇的酯化反应是可逆的,并且一般反应极缓慢,故常用浓硫酸作催化剂。多元羧酸跟醇反应,则可生成多种酯。 乙酸和乙醇在浓硫酸加热的条件下反应生成乙酸乙酯和水 CH3COOH+C2H5OH<------>(可逆符号)CH3COOC2H5+H2O 乙二酸跟甲醇可生乙二酸氢甲酯或乙二酸二甲酯 HOOC—COOH+CH3OH<------>HOOC—COOCH3+H2O 无机强酸跟醇的反应,其速度一般较快,如浓硫酸跟乙醇在常温下即能反应生 成硫酸氢乙酯。 C2H5OH+HOSO2OH<------>C2H5OSO2OH+H2O 硫酸氢乙酯 C2H5OH+C2H5OSO2OH→(可逆符号)(C2H5O)2SO2+H2O 硫酸二乙酯 多元醇跟无机含氧强酸反应,也生成酯。 一般来说,除了酸和醇直接酯化外能发生酯化反应的物质还有以下三类: 酰卤和醇、酚、醇钠发生酯化反应; 酸酐和醇、酚、醇钠发生酯化反应; 烯酮和醇、酚、醇钠发生酯化反应;[1]若浓硫酸和乙醇发生反应怎么办? 酯如果在碱性条件下会水解成相应的醇和有机酸盐。如CH3CO- OCH2CH3+NaOH→CH3COONa+CH3CH2OH,酯在无机酸性条件下会水解成相应的酸和醇:CH3CO-OCH2CH3+H2O→(可逆符号)(条件是H+)CH3COOH+CH3CH2OH 反应特点 属于可逆反应,一般情况下反应进行不彻底,依照反应平衡原理,要提高酯的 产量,需要用从产物分离出一种成分或使反应物其中一种成分过量的方法使反 应正方向进行。酯化反应属于单行双向反应。 属于取代反应 反应机理

胰蛋白酶活性检测试剂盒说明书 紫外分光光度法

胰蛋白酶活性检测试剂盒说明书紫外分光光度法 注意:正式测定前务必取2-3个预期差异较大的样本做预测定 货号:BC2310 规格:50T/48S 产品内容: 提取液:液体50mL×1瓶,4℃保存。 试剂一:粉剂×1支,4℃避光保存。临用前加1mL蒸馏水充分溶解。 试剂二:液体50mL×1瓶,4℃保存。 产品说明: 胰蛋白酶选择性水解变性蛋白质中由赖氨酸或精氨酸的羧基所构成的肽链,是一种重要的消化酶。此外,胰蛋白酶还广泛应用于脓胸、血胸、外科炎症、溃疡、创伤性损伤等所产生的局部水肿、血肿及脓肿等的辅助治疗。 胰蛋白酶催化水解BAEE的酯键,生成BA,BA在253nm处有吸收峰,通过测定253nm吸光度增加速率,即可计算出胰蛋白酶的活性。 自备仪器和用品: 紫外分光光度计、台式离心机、水浴锅、可调式移液器、1mL石英比色皿、研钵、冰和蒸馏水。 操作步骤: 一、粗酶液提取: 称取约0.1g样品,加入1mL提取液进行冰浴匀浆,10000rpm4℃离心10min,取上清液,即粗酶液,置冰上待测。或者直接称取1mg酶粉,加1mL提取液,充分混匀后置冰上待测(为保证实验的准确性建议梯度稀释)。 二、测定: 1.分光光度计预热30min以上,调节波长到253nm,蒸馏水调零。 第1页共2页

2.工作液的配制:将试剂一与试剂二按2:97配置工作液,按需配制,并置于37℃水浴预热30min以上。 3.空白管:取1mL石英比色皿,加入990μL工作液,再加入10μL蒸馏水,混匀,迅速于253nm测定0s 和60s的吸光度,分别记为A1、A2,△A空白=A2-A1。 4.测定管:取1mL石英比色皿,加入990μL工作液,再加入10μL粗酶液,混匀,迅速于253nm测定0s 和60s的吸光度,分别记为A3、A4,△A测定=A4-A3。 三、胰蛋白酶活性计算: 1.按蛋白浓度计算: 活性单位(U)定义:在1mL体系下,37℃每毫克蛋白质每分钟催化253nm处吸光值增加0.001为一个单位。胰蛋白酶(U/mg prot)=(△A测定-△A空白)÷0.001÷(Cpr×V1)÷T =100000×(△A测定-△A空白)÷Cpr 2.按样本鲜重计算: 活性单位(U)定义:在1mL体系下,37℃每克组织每分钟催化253nm处吸光值增加0.001为一个单位。 胰蛋白酶(U/g鲜重)=(△A测定-△A空白)÷0.001÷(W×V1÷V2)÷T =100000×(△A测定-△A空白)÷W Cpr:粗酶液蛋白质浓度(需要另外测定),mg/mL;W:样本鲜重,g; V1:加入反应体系中粗酶液体积,10μL=0.01mL;V2:粗酶液总体积,1mL; T:反应时间,1min。 注意事项: 实验前用1~2个样做预实验,保证吸光值变化在0.01~0.15之间。 第2页共2页

胰蛋白酶(Trypsin)试剂盒说明书

货号: QS2303 规格:50管/48样胰蛋白酶(Trypsin)试剂盒说明书 紫外分光光度法 注意:正式测定之前选择2-3个预期差异大的样本做预测定。 测定意义: 胰蛋白酶选择性水解变性蛋白质中由赖氨酸或精氨酸的羧基所构成的肽链,是一种重要的消化酶。此外,胰蛋白酶还广泛应用于脓胸、血胸、外科炎症、溃疡、创伤性损伤等所产生的局部水肿、血肿及脓肿等的辅助治疗。 测定原理: 胰蛋白酶催化水解BAEE的酯键,生成BA,BA在253nm处有吸收峰,通过测定253nm 吸光度增加速率,即可计算出胰蛋白酶的活性。 自备实验用品及仪器: 紫外分光光度计、台式离心机、水浴锅、可调式移液器、1mL石英比色皿、研钵、冰和蒸馏水。 试剂组成和配制: 试剂一:液体50mL×1瓶,4℃保存。 试剂二:粉剂×1瓶,4℃避光保存。临用前加5mL蒸馏水充分溶解。 试剂三:液体50mL×1瓶,4℃保存。 粗酶液提取: 组织样品:按照组织质量(g):试剂一体积(mL)为1:5~10的比例(建议称取约0.1g组织,加入1mL试剂一)冰浴匀浆,8000g,4℃离心10min,取上清,即粗酶液。 测定操作: 1. 分光光度计预热30 min,调节波长到253 nm,蒸馏水调零。 2. 试剂二置于37℃水浴预热30min。 3. 空白管:取1mL石英比色皿,加入10μL蒸馏水,100μL试剂二,900μL试剂三,迅速混匀于253nm测定0s和60s的吸光度A1和A2,△A空白= A2-A1。 4. 测定管:取1mL石英比色皿,加入10μL粗酶液,100μL试剂二,900μL试剂三,迅速混匀于253nm测定0s和60s的吸光度A3和A4,△A测定= A4-A3。 胰蛋白酶活性计算公式: (1) 按照蛋白浓度计算 活性单位定义:37℃每毫克蛋白质每分钟催化253nm处吸光值增加1为1个酶活单位。 胰蛋白酶(U/mg prot)= (△A测定-△A空白) ×V反总÷(Cpr×V1)÷T =101×(△A测定-△A空白) ÷Cpr Cpr:粗酶液蛋白质浓度(mg/mL),需要另外测定;V1:加入反应体系中粗酶液体积(mL),10μL=0.01 mL;V反总:反应总体积,1.01mL;T:反应时间(min),1min。 (2)按照样本质量计算 活性单位定义:37℃每克组织每分钟催化253nm处吸光值增加1为1个酶活单位。 胰蛋白酶(U/g鲜重)= (△A测定-△A空白) ×V反总÷(W×V1÷V2)÷T 第1页,共2页

有关酶催化的原理简介

有关酶催化的原理简介 酶的化学本质是蛋白质。具有酶活性的蛋白质分为简单蛋白质类和结合蛋白质类。简单蛋白质类的酶是由氨基酸组成的,不含任何其他物质,如胃蛋白酶。结合蛋白质类的酶是由简单蛋白质与辅基组成的,如乳酸脱氢酶、转氨酶。组成酶的简单蛋白质部分叫做酶蛋白或主酶,辅基部分叫做辅酶。一般是主酶与辅酶相结合,成为全酶,才能起到酶的作用。 降低反应活化能在任何化学反应中,反应物分子必须超过一定的能阈,成为活化的状态,才能发生变化,形成产物。这种提高低能分子达到活化状态的能量,称为活化能。催化剂的作用,主要是降低反应所需的活化能,以致相同的能量能使更多的分子活化,从而加速反应的进行。酶能显著地降低活化能,故能表现为高度的催化效率。通过过氧化氢酶的例子,可以显著地看出,酶能降低反应活化能,使反应速度增高千百万倍以上。 酶的催化作用机理现在普遍被接受的是Koshland DE提出的诱导契合学说(解释酶的专一性)和共价催化与酸碱催化(解释酶的高效率)。诱导契合认为,酶和底物结合咋接触以前并不是完全契合的,只有在底物被与酶的结合中心结合后,酶分子构象产生了微妙的变化(多加了个基团进去分子力不平衡,构象肯定是要变的),从而使催化中心的位置改变到底物附近并刚好有效作用于底物,从而底物得到催化。有些酶通过共价催化来加速催化速率,在催化时,亲核催化剂或亲电子催化剂能分别放出电子或吸收电子并作用于底物的缺电子中心或负电中心,迅速形成不稳定的共价中间配合物,这个中间物很容易变成转变态,因此反应活化能大大降低,底物可以越过较低的能阈而形成产物。而酸碱催化是通过瞬时地向反应物提供质子或从反应物接受质子以稳定过渡态、加速反应的一种催化机制。 下面通过简述一篇关于生物酶催化合成生物柴油的文献来说明酶催化的过程和催化的特点。 这篇文献研究的背景是石化柴油的应用中所出现的一系列问题,针对这些问题采用动物或植物油脂与甲醇或乙醇进行反应合成脂肪酸单酯代替柴油,这种改性后的油脂(脂肪酸低碳醇酯)有着与柴油十分相似的理化性质,而且燃烧完全,无污染排放,称之为“生物柴油”。从生物柴油的制备原料来看,有着传统石化柴油不可比拟的优点,即原料可再生、产品本身环境友好、而且不用更换和经常清洗发动机等优点。目前生物柴油主要是用化学法生产,即动植物油脂与甲醇在高强度酸或碱催化剂下制备。化学法存在工艺复杂,醇消耗量大,产物不易回收,环境污染大等缺点。用脂肪酶代替酸碱催化剂催化合成生物柴油的报道已有很多,酶法合成生物柴油具有条件温和、醇用量小、产品易于收集、无污染物排放等优点,

胰蛋白酶活力测定

实验胰蛋白酶活力测定 一、原理 福林—酚试剂中的磷钨酸和磷钼酸,在碱性条件下极不稳定,易被酚类化合物还原为蓝色化合物(钨蓝和钼蓝)。 蛋白质中含具酚基的氨基酸(酪氨酸、色氨酸、苯丙氨酸),用胰蛋白酶水解蛋白底物,生成含酚基的氨基酸与福林—酚试剂反应,生成蓝色化合物,在一定的范围内,蓝色化合物颜色的深浅与酶活力的大小成正比。 二、实验仪器 试管 7220分光光度计 恒温水浴锅 三、实验试剂 福林试剂B:见福林(Folin)-酚试剂法测定蛋白质的浓度部分(冰箱中) 0.55mol/L碳酸钠溶液:58.3g无水碳酸钠溶于蒸馏水,稀释并定容至1000ml 10%三氯乙酸溶液 0. 2mol/L磷酸缓冲液(pH7.5): 0.5% 酪素溶液:称取0.5g酪素,以0.5mol/L氢氧化钠1ml湿润,再

加少量0. 2mol/L 磷酸缓冲液稀释。在水浴中煮沸溶解,冷却,稀释并容至100ml ,冷藏在(冰箱)里。 500ug/L 酪氨酸溶液 胰蛋白酶溶液(冰箱中) 四、实验步骤 标准曲线的制作:按下表加入试剂: 0.20.40.60.81.0蒸馏水 1.0 0.80.60.40.20500ug/L 酪氨酸溶液6 54321管号 各管中加0.5%酪素2ml ,于37℃水浴中反应15分钟,然后加入10%三氯乙酸3ml ,过滤除去沉淀,取清液1ml ,加入0.55mol/L 碳酸钠5ml ,再加入福林试剂1ml ,于37 ℃水浴中显色15分钟,测OD 680。 以光密度为纵坐标,酪氨酸的微克数为横坐标绘制标准曲线。 样品测定:取干燥的试管2支,按下表加入试剂

0 OD6801 1福林试剂B 5.0 5.0 0.55mol/L碳酸钠溶液 37水浴中显色15分钟1 1上清液 过滤3.0 3.0 10%三氯乙酸溶液1.0 0 2mg/ml胰酶溶液0 1.0 0. 2mol/L磷酸缓冲液 37水浴中酶解15分钟2.0 2.0 0.5%酪素溶液 备注2 1 管号 五、结果计算 酶活力:在37℃下每分钟水解酪素产生lug酪氨酸为一个活力单位。样品中含酶活力单位=A/15 ╳F A—样品测定光密度查曲线得相当酪氨酸ug数 F—酶液稀释倍数 原始数据:(注:7号为待测液) 液体编 号 0 1 2 3 4 5 7 分光光 度计值 0 0.057 0.172 0.201 0.255 0.373 0.919 分光光 度计值 0 0.057 0.173 0.194 0.263 0.386 0.928 分光光 度计值 0 0.068 0.174 0.194 0.271 0.391 0.934

酯化反应的机理

酯化反应的机理羧酸与醇生成酯的反应是在酸催化下进行的。在一般情况下羧酸与伯醇或仲醇的酯化反应羧酸发生酰氧键断裂其反应过程为在酯化反应中存在着一系列可逆的平衡反应步骤。步骤②是酯化反应的控制步骤而步骤④是酯水解的控制步骤。这一反应是SN反应经过加成消除过程。采用同位素标记醇的办法证实了酯化反应中所生成的水是来自于羧酸的羟基和醇的氢。但羧酸与叔醇的酯化则是醇发生了烷氧键断裂中间有碳正离子生成。在酯化反应中醇作为亲核试剂对羧基的羰基进行亲核攻击在质子酸存在时羰基碳更为缺电子而有利于醇与它发生亲核加成。如果没有酸的存在酸与醇的酯化反应很难进行。硫酸的作用酯化反应中浓硫酸的作用只要答催化作用就行或答催化和脱水也可加上吸水作用其实这是个非均相反应浓硫酸的吸水性对平衡的移动已没有多少作用。4、酯化和酯水解的反应机理返回1 酯化反应机理酯化反应是一个可逆反应其逆反应是酯的水解。酯化反应随着羧酸和醇的结构以及反应条件的不同可以按照不同的机理进行。酯化时羧酸和醇之间脱水可以有两种不同的方式I II Ⅰ是由羧酸中的羟基和醇中的氢结合成水分子剩余部分结合成酯。由于羧酸分子去掉羟基后剩余的是酰基故方式Ⅰ称为酰氧键断裂。Ⅱ是由羧酸中的氢和醇中的羟基结合成水剩余部分结合成酯。由于醇去掉羟基后剩下烷基故方式Ⅱ称为烷氧键断裂。当用含有标记氧原

子的醇R18OH在酸催化作用下与羧酸进行酯化反应时发现生成的水分子中不含18标记氧原子保留在酯中这说明酸催化酯化反应是按方式Ⅰ进行的。按这种方式进行的酸催化酯化反应其机理表示如下首先是H与羰基上的氧结合质子化增强了羰基碳的正电性有利于亲核试剂醇的进攻形成一个四面体中间体然后失去一分子水和H而生成酯。实验证明绝大部分羧酸与醇的酯化反应是按方式Ⅰ进行。对于同一种醇来说酯化反应速度与羧酸的结构有关。羧酸分子中α-碳上烃基越多酯化反应速度越慢。其一般的顺序为HCOOHRCH2COOHR2CHCOOHR3CCOOH这是由于烃基支链越多空间位阻作用越大醇分子接近越困难影响了酯化反应速度。同理醇的酯化反应速度是伯醇仲醇叔醇。2酯的酸性水解酯的酸性水解反应大部分情况下是酰氧键断裂的加成消除机理即是酸催化酯化反应的逆反应。酸催化时羰基氧原子先质子化使羰基碳的正电性增强从而提高了它接受亲核试剂进攻的能力水分子向羰基碳进攻通过加成-消除而形成羧酸和醇。羧酸和醇又可重新结合成酯所以酸催化下的酯水解不能进行到底。3酯的碱性水解用同位素标记方法证明酯的碱性水解过程大多数情况下也是以酰氧键断裂方式进行的。例如乙酸戊酯在含18O的水中进行碱催化水解结果发现18O是在乙酸盐中而不是在戊醇中。现在认为一般羧酸酯的碱催化下的水解是按加成-消除机理进行的。碱

胰蛋白酶活性测定教学资料

胰蛋白酶活性测定

实验一胰蛋白酶活性测定 实验目的:掌握测定胰蛋白酶浓度、活性、比活的原理与方法。 实验原理:胰蛋白酶相对分子量23.7 KD,主要水解肽链中碱性氨基酸与其它氨基酸相连接的肽键,此外还能水解碱性氨基酸形成的酯键,如把人工合成的N-苯甲酰-L-精氨酸乙酯(N-benzuyl-L-argine ethyl ester, BAEE)水解为H-苯甲酰-L-精氨酸(BA)。 胰蛋白酶所催化的上述反应中,产物BA对253 nm 的光吸收远大于BAEE,因此可以在实验起始点把253 nm 的消光值调为零,然后记录反应体系对253 nm 的消光值的增量,并把这个增量作为测定胰蛋白酶的活性指标。 酶活单位定义:在底物BAEE浓度1m mol/L,光程1 cm,波长253nm,温度25 0C,测量体积3mL,.条件下吸光值每分钟递增0.001( A/min=0.001)为1个BAEE 酶活单位。 胰蛋白酶制剂中蛋白质浓度含义: 胰蛋白酶含量一般E1%表达。这个值的含义是:浓度为1% 酶蛋白,在1cm光径下,对紫外280nm的消光值。不同厂家、不同产品的E1%值有很大差别。E1% 值越高,表明酶制剂中酶蛋白含量越高。

由于酶制剂中蛋白质含量各不相同,所以用酶制剂配制E1%的蛋白质溶液时,按照厂家对产品的E1% 的测定值配制溶液。 在本实验中,胰蛋白酶酶蛋白样品采用SIGMA 公司生产的产品,生产公司对展品 的描述是对280nm紫外吸收值15.3,配制胰蛋白酶标准溶液可根据厂家的这个说明。 器材以试剂:器材,电子天平,紫外分光光度计,微量加样器。试剂:标准胰蛋 白酶,N-苯甲酰-L-精氨酸乙酯,HCI, Tris。 1.胰蛋白酶活性测定: 1)配制E1%的胰蛋白酶溶液 每组取E1%=15.3的胰蛋白酶样品10mg 放到1ml去离子水中,充分溶解后,放入冰中保存。 2)按照表1 的要求配制试验体系所需其它各种溶液. 3)按照表1的顺序进行测定标准胰蛋白酶的活性。 表1 胰蛋白酶活性测定加样顺序 试剂步骤1:空白调零步骤2:样品测定 0.1 mol/L Tris-HCl 缓冲液,pH 8.0 , 1.5 mL 1.5 mL 2.0 m mol/L BAEE 1.5 mL 1.5 mL 250C预热5min 250C预热5min 胰蛋白酶:10mg/mL 0 μL 10 μL 蒸馏水10 μL 0 μL 充分摇匀充分摇匀 步骤1:?A253 nm/min 调0 ----------- 步骤2:?A253-nm/min -------------- 记录 在步骤2样品测定中,加入酶液后立即盖上盖迅速混匀计时,每半分钟读数一次,共读3~4min。测得的结果要使△A253nm/min控制在0.05~0.100之间为宜,若偏离此范围则要适当增减酶量(5μL -20μL之间,空白试验相应增减等体积水)后重新测定,一直到△A253nm/min值落在0.05~0.100之间为止。

胰蛋白酶

胰蛋白酶简介 一、介绍 胰蛋白酶(C6H15O12P3)为蛋白酶的一种。在脊椎动物中,作为消化酶而起作用。在胰脏是作为酶的前体胰蛋白酶原而被合成的。作为胰液的成分而分泌,受肠激酶,或胰蛋白酶的限制分解成为活化胰蛋白酶,是肽链内切酶,它能把多肽链中赖氨酸和精氨酸残基中的羧基侧切断。它不仅起消化酶的作用,而且还能限制分解糜蛋白酶原、羧肽酶原、磷脂酶原等其它酶的前体,起活化作用。是特异性最强的蛋白酶,在决定蛋白质的氨基酸排列中,它成为不可缺少的工具。 牛的胰蛋白酶氨基酸残基223个,分子量23800,活性部位的丝氨酸残基是不可缺少的丝氨酸蛋白酶。除存在于脊椎动物外,还存在于蚕、海盘车、蝲姑、放线菌等范围广泛的生物体中。另外与高等动物的血液凝固和炎症等有关的凝血酶、纤溶酶、舒血管素等蛋白酶在化学结构和特异性等方面与胰蛋白酶具有密切的关系,可以认为这些酶是从共同的祖先酶在进化过程中分化而来的。胰糜蛋白酶与弹性蛋白酶在结构和催化机制方面也具有密切关系,但其特异性则完全不同。 胰蛋白酶系自牛、羊或猪胰中提取的一种蛋白水解酶。中国药品标准规定按干燥品计算,每1mg 的效价不得少于2500单位。由牛、羊、猪胰脏提取而得的一种肽链内切酶,只断裂赖氨酸或精氨酸的羧基参与形成的肽键。白色或米黄色结晶性粉末。溶于水,不溶于乙醇、甘油、氯仿和乙醚。分子量24 000,pI 10.5,最适pH值7.8~8.5左右。pH>9.0不可逆失活。Ca2+对酶活性有稳定作用;重金属离子、有机磷化合物、DFP、天然胰蛋白酶抑制剂对其活性有强烈抑制。临床用于抗炎消肿,工业上用于皮革制造、生丝处理、食品加工等。 胰蛋白酶的分子量与其酶原接近(23300),其等电点约为pH10.8,最适pH7.6~8.0,在pH=3时最稳定,低于此pH时,胰蛋白酶易变性,在pH>5时易自溶。Ca2+离子对胰蛋白酶有稳定作用。重金属离子,有机磷化合物和反应物都能抑制胰蛋白酶的活性,胰脏、卵清和豆类植物的种子中都存在着蛋白酶抑制剂。最近发现在一些植物的块基(如土豆、白薯、芋头等)中也存在有胰蛋白酶抑制剂。胰蛋白酶能催化蛋白质的水解,对于由碱性氨基酸(精氨酸、赖氨酸)的羧基与其他氨基酸的氨基所形成的键具有高度的专一性。此外还能催化由碱性氨基酸和羧基形成的酰胺键或酯键,其高度专一性仍表现为对碱性氨基酸一端的选择。胰蛋白酶对这些键的敏感性次序为:酯键> 酰胺键> 肽键。因此可利用含有这些键的酰胺或酯类化合物作为底物来测定胰蛋白酶的活力。目前常用苯甲酰-L-精氨酸-对硝基苯胺(简称BAPA)和苯甲酰-L-精氨酸-β-萘酰胺(简称BANA)测定酰胺酶活力。用苯甲酰-L-精氨酸乙酯(简称BAEE)和对甲苯磺酰-L-精氨酸甲酯(简称TAME)测定酯酶活力。本实验以BAEE为底物,用紫外吸收法测定胰蛋白酶活力。酶活力单位的规定常因底物及测定方法而异。从动物胰脏中提取胰蛋白酶时,一般是用稀酸溶液将胰腺细胞中含有的酶原提取出来,然后再根据等电点沉淀的原理,调节pH以沉淀除去大量的酸性杂蛋白以及非蛋白杂质,再以硫酸铵分级盐析将胰蛋白酶原等(包括大量的酸性杂蛋白以及非蛋白杂质,再以硫酸铵分级盐析将胰蛋白酶原等(包括大量糜蛋白酶原和弹性蛋白酶原)沉淀析出。经溶解后,以极少量活性胰蛋白酶激活,使其酶原转变为有活

生物酶法制备生物柴油

生物酶法制备生物柴油 摘要:石油资源日益匮乏,生物柴油已经成为国际新能源研究的热点。生产方 法以及生产原料成为生物柴油发展的两大瓶颈。生物柴油主要是以动植物油为原料,通过酯交换反应而制备的长链脂肪酸酯类物质。目前生物柴油的生产工艺主要有化学法和生物酶法。化学法是当前的主流工艺,但存在能耗高、工艺复杂、醇消耗量大、环境污染等缺点。生物酶法具有对原料中脂肪酸和水含量要求低、工艺简单、反应条件温和、选择性高、醇用量小、副产物少、生成的甘油容易回收且无需进行废液处理等优点,因而被认为是取代化学法生产生物柴油的绿色工艺。生物酶法包括游离脂肪酶催化法、离子液体脂肪酶催化法、固定化脂肪酶催化法和细胞内脂肪酶催化法等。全细胞酶法弥补了脂肪酶的生产成本高、使用寿命短、易失活等不足,节省了设备和运行维护费用,成为了未来生物柴油制备的发展方向。收集餐饮废油和工业废油脂,发展高油作物和工程微藻,以此为原料生产生物柴油能够显著降低原料成本。改进传统生物柴油生产工艺,加快脂肪酶酯化工艺的研发,开发原料适应性广、酯化效率高、连续化、自动化程度高的环保经济新工艺,是目前生物柴油产业发展的核心。 关键词:生物柴油;生物酶法;全细胞酶法 1、生物柴油及其利用现状 生物柴油(Biodiesel)是指以植物、动物油脂等可再生生物资源生产的可用于压燃式发动机的清洁替代燃油。生物的柴油的制备过程是通过酯交换反应进行的,酯交换法是指通过酯基转移作用将高粘度的植物油或动物油脂转化成低粘度的脂肪酸酯,该过程需要一定的催化剂才能进行。生物柴油作为可再生清洁能源,具有优良的环保特性,无芳烃,含硫低,含氧高,可达11%,十六烷值高,燃烧性能好,润滑性好,闪点高,运输和使用安全等优点。因此,利用生物柴油作为新能源替代传统柴油,在环保和能源领域都有着非常深远的意义。 随着石油资源的日益匮乏,原油价格的不断攀升,生物柴油的优势尤为凸显,被国际可再生能源界誉为最具发展前景的替代油品,生物柴油的研究也已经成为国际新能源研究的热点。图1所示为2003年至2008年全球生物柴油生产能力及实际产量。 图 1 2003年至2008年全球生物柴油生产能力及实际产量

实验六酯化反应(乙酸乙酯)

实验六 酯化反应—乙酸乙酯的制备 一、酯化反应原理、方法、注意事项 1、原理 羧酸与醇在酸的催化下作用生成酯和水的反应叫做酯化反应。 CH 3COOH + CH 3CH 2OH CH 3COOCH 2CH 3 + H 2O 24 酯化为一可逆反应,升高温度与使用催化剂可加速反应达到动态平衡。当平衡达到后,酯的生成量就不再增多。为了提高产量,可以根据质量作用定律,增加反应物的浓度,或除去生成物以破坏平衡,使平衡向右进行。 本实验以浓硫酸作催化剂,加速达到平衡,使用过量醋酸,并用分水装置,不断移去反应过程中生成的乙酸乙酯和水,使反应完全 2、实验方法 用下列装置图进行实验 图14 乙酸乙酯合成实验装置 3、注意事项 (1)酸的用量为醇的用量的3% 时即能起催化作用。当硫酸用量较多时,由于它同时又能起脱水作用而增加酯的产率。但硫酸用量过多时,由于高温时氧化作用的结果对反应反而不利。 (2)用油浴加热时,油浴的温度约在135℃左右。如果不采用油浴,也可改用在电热套上接加热的方法,但反应液的温度必须控制在不超过120℃的范围,否则将增加副产物乙醚的量。

二、实验——乙酸乙酯的制备 (一)实验目的 了解从有机酸合成酯的一般原理及方法;熟练掌握蒸馏、分液漏斗的使用等操作。(二)实验原理 同上 (三)药品和仪器 1、仪器 125ml三颈烧瓶150℃温度计150ml分液漏斗直型冷凝管接收管50ml锥形瓶电热套。 2、药品 95%乙醇冰醋酸浓硫酸饱和碳酸钠溶液饱和食盐水饱和氯化钙溶液无水硫酸钠pH试纸 (四)实验步骤 按图14装置进行实验。在100毫升三颈瓶中放入10毫升乙醇,在用冷水冷却的同时,一边振摇一边分批加入10毫升浓硫酸,使混合均匀,加入几粒沸石,在烧瓶两侧的两口分别插入温度计和60毫升滴液漏斗(其中已经分别加入10毫升95 % 乙醇和10毫升醋酸并混合均匀),温度计的水银球必须浸入液面以下距离瓶底0.5~1厘米处,烧瓶的中间一口装一根与直型冷凝管相连接的蒸馏头,直型冷凝管通过一接引管与三角瓶相通。 将反应瓶在油浴上加热,当反应液温度升到110~120℃时,开始通过滴液漏斗滴加混合液,控制滴加速度与蒸出液体的速度尽可能等同,并始终维持反应液温度在110~120℃之间,滴加完毕后继续加热数分钟,直到反应液温度升高到130℃时不再有液体馏出为止。 在馏出液中慢慢加入饱和碳酸钠溶液,边加边摇,直至不再有二氧化碳气体产生,然后将混合液移入分液漏斗,分去下层水溶液,酯层用6毫升/次饱和食盐水洗涤2~3次,再用饱和氯化钙溶液20毫升分两次洗涤。最后分去下层液体,酯层自漏斗上口倒入一干燥的三角烧瓶中,用无水硫酸钠干燥。 将干燥后的酯层进行蒸馏,收集73~78℃的馏分,产率在60%左右。 纯乙酸乙酯为无色而有香味的液体,沸点为77.06℃,折光率为1.3723。 (五)注意事项 1、若滴加速度太快则乙醇和乙酸可能来不及完全反应就随着酯和水一起蒸出,从而影响酯的收率。 2、在馏出液中除了酯和水外,还含有未反应的少量乙醇和乙酸,也还有副产物乙醚。

蛋白质活性测定方法

核糖核酸酶(RNase)的活性测定 (1)溶液的配制: ①0.1 mol/L pH 5.0的乙酸缓冲溶液:称取5.78 g CH3COONa, 加入1.7 mL CH3COOH, 用蒸馏水稀释至500 mL。 ② 0.05 % RNase酵母溶液:称0.05 g RNase酵母,用0.1 mol/L pH 5.0的乙酸缓冲溶液溶解并稀释至100 mL。 测活方法: (2)用移液管移取已配制好的0.05 %的核糖核酸酵母溶液2.5 ml于比色皿中,加入一定量的样品RNase A溶液,迅速摇匀,以蒸馏水为参比,在300 nm波长下每隔30秒测一次吸光值,共读3分钟,得到一组对应于时间t(min)的At值。当样品管反应3小时后再测定300 nm处的吸光值A f, A f为最终的光吸收,分别求得一组对应于t的log(A t-A f), 以log(A t-A f)对时间t作图应得到线性关系,画出直线。求出直线斜率的数值S,将S带入标准曲线,求得活性回收率。将S带入下列公式中,可求出酶的活力。 单位/ mg = S × (-2.3) ×4 / (样品管中含酶的数量) 胰凝乳蛋白酶(α-Chy)活性测定 用胡梅尔(Hummel)法测定α-胰凝乳蛋白酶[2]: (1) 原理:α-胰凝乳蛋白酶优先催化水解结合有氨基酸(如酪氨酸、苯丙氨酸和色氨酸的L-异构体)的肽键。我们可以通过在256 nm处测定吸光度增大值的办法来测定反应的速度。苯甲酰-L-酪氨酸乙酯的水解反应引起吸光度的增大。(2) 定义:一个凝乳蛋白酶单位相当于在pH值为7.8,温度为25 ℃时,每分钟水解1 μmol苯甲酰-L-酪氨酸乙酯(BTEE)所需的酶量。 (3) 试剂配置方法: Tris缓冲液(pH: 7.8)取0.969 g三(羟甲基)氨基甲烷和1.47 mg二水氯化钙溶于 80 mL蒸馏水中,用1 N的盐酸将pH值调至7.8,并定容至100 mL。 ①盐酸(HCl): 0.001 moL/L ②酶溶液:先用盐酸溶解酶,使溶液浓度达到1 mg/mL,然后再用盐酸稀释,使最终浓度达到0.5~1.0 U/mL。 ③底物溶液:取33.5 mg苯甲酰-L-酪氨酸乙酯溶于50 %的甲醇(63 mL甲醇与50

浓香型大曲中酯化酶测定方法的研究

酿酒 HQUOR MAKING V01.30.No.2 Mar.,2OO3 文章编号:1002—8110(2003)02—0018一o4 浓香型大曲中酯化酶测定方法的研究 王耀,范文来,徐岩2,刁亚琴,陆红珍 (1.江苏洋河集团有限公司,江苏宿迁223725;2.江南大学生物i程学院,江苏无锡214036) 摘要:对浓香型大曲的酯化酶测定方法作了研究。建立有机相反应体系来代替传统方法的水相反应,与传 统测定方法(需反应100h)相比,它能简单、快捷检测大曲质量,适合工业化生产的要求。有机相中酯化反应 条件为:在30mL正庚烷有机反应介质中,35 的条件下,0.15M的底物酸,己酸与乙醇的浓度比为1:1.25,加 入15g(干曲)的大曲,仅用24h就能比较出大曲酯化力的高低。 关键词:浓香型,大曲,酯化酶,酯化,测定方法 中图分类号:TS262.31;TQ925 文献标识码:A‘ 0 前言 酯酶(Eaemse E.C.3.1.1.2)亦称羧基酯酶,是指可以水 解羧酯键的酶【lI4J。但该酶也能催化合成低级脂肪酸 酯Ll J。由于该酶既能催化酯的合成,也能催化酯的分解,因 此,白酒业习惯分别称为酯化酶和酯分解酶[5-7 J。酵母、霉 菌、细菌中均含有酯酶[ ,6.。目前已经发现,红曲霉、根霉中 许多菌株有较强的己酸乙酯合成能力【5' 。 酯酶不同于脂肪酶。脂肪酶(缉磁e,E.C.3,1.1,3)是一 类特殊的酯酶,全称Tr/acy/g/ycerd acy/hydro/aseo脂肪酶的正 式名称是甘油酯水解酶。它既能将脂肪水解为脂肪酸和甘 油,又能催化脂肪的合成【5.9J。按Novo Nordisk公司的定义, 脂肪酶是可以水解一类特殊的酯类——三羧酸甘油酯的酶, 而酯酶则是可以水解羧酯键的酶【111。 对大曲酯化力的研究开始于20世纪8o年代后期[12,13J, 但广泛和深入的阐述大曲对浓香型酒生香的作用却是在20 世纪90年代[ 一·M一刮。 传统的酯化力测定方法【6J,是利用皂化反应和反滴定法 来测定。此法测定时间长,操作复杂。本文研究了利用有机 相代替水相的酯化酶活力的测定。 0.1 传统酯化力的测定【6J 6 先用碱中和酯化液中的游离酸,再加入一定量的碱使酯 皂化,过量的碱用酸进行反滴定,用酚酞作为指示剂。其反 应式为: RC00H +NaOH— ÷ RC00Na+ROH

酯化反应

酯化反应[ ] 酯化反应一般是可逆反应。传统的酯化技术是用酸和醇在酸(常为浓硫酸)催化下加热回流反应。这个反应也称作Fischer酯化反应。浓硫酸的作用是催化剂和失水剂,它可以将羧酸的羰基质子化,增强羰基碳的亲电性,使反应速率加快;也可以除去反应的副产物水,提高酯的产率。 如果原料为低级的羧酸和醇,可溶于水,反应后可以向反应液加入水(必要时加入饱和碳酸钠溶液),并将反应液置于分液漏斗中作分液处理,收集难溶于水的上层酯层,从而纯化反应生成的酯。碳酸钠的作用是与羧酸反应生成羧酸盐,增大羧酸的溶解度,并减少酯的溶解度。如果产物酯的沸点较低,也可以在反应中不断将酯蒸出,使反应平衡右移,并冷凝收集挥发的酯。 一般情况下反应的机理是下图的机理,也就是“酸出羟基,醇出氢”生成水。

但也有少数酯化反应中,酸或醇的羟基质子化,水离去,生成酰基正离子或碳正离子中间体,该中间体再与醇或酸反应生成酯。这些反应不遵循“酸出羟基醇出氢”的规则。 其他方法[ ] ?羧酸经过酰氯再与醇反应生成酯。酰氯的反应性比羧酸更强,因此这种方法是制取酯的常用方法,产率一般比直接酯化要高。对于反应性较弱的酰卤和醇,可加入少量的碱,如氢氧化钠或吡啶。 H 3C-COCl + HO-CH 2 -CH 3 → H 3 C-COO-CH 2 -CH 3 + H-Cl ?羧酸经过酸酐再与醇反应生成酯。 ?羧酸经过羧酸盐再与卤代烃反应生成酯。反应机理是羧酸根负离子对卤代烃α-碳的亲核取代反应。 ?Steglich酯化反应:羧酸与醇在DCC和少量DMAP的存在下酯化。这种方法尤其适用于三级醇的酯化反应。DCC是反应中的失水剂,DMAP则是常用的酯化反应催化剂。反应机理如下:

相关文档
最新文档