三角函数基础测试题及答案
三角函数练习题含答案

三角函数练习题含答案一、填空题1.已知函数()f x 在R 上可导,对任意x 都有()()2sin f x f x x --=,当0x ≤时,()1f x '<-,若π2π()3cos 33f t f t t ⎛⎫⎛⎫≤-+- ⎪ ⎪⎝⎭⎝⎭,则实数t 的取值范围为_________2.平面向量i a 满足:1(0,1,2,3)i a i ==,且310i i a ==∑.则012013023a a a a a a a a a ++++++++的取值范围为________.3.如图所示,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥爬行一周后回到点P 处,若该小虫爬行的最短路程为43,则这个圆锥的体积为___________.4.设函数()sin f x x π=,()21g x x x =-+,有以下四个结论.①函数()()y f x g x =+是周期函数: ②函数()()y f x g x =-的图像是轴对称图形: ③函数()() y f x g x =⋅的图像关于坐标原点对称: ④函数()()f x yg x =存在最大值 其中,所有正确结论的序号是___________.5.已知函数23tan ,,,2332()63233,,33x x f x x ππππππ⎧⎛⎤⎛⎫∈-⋃ ⎪⎪⎥⎝⎦⎝⎭⎪=⎨⎛⎤⎪+∈ ⎥⎪⎝⎦⎩若()f x 在区间D 上的最大值存在,记该最大值为{}K D ,则满足等式{[0,)}3{[,2]}K a K a a =⋅的实数a 的取值集合是___________. 6.已知三棱锥S ABC -中,SA SB SC ==,ABC 是边长为4的正三角形,点E ,F 分别是SC ,BC 的中点,D 是AC 上的一点,且EF SD ⊥,若3FD =,则DE =___________. 7.已知正四棱柱1111ABCD A B C D -中,2AB =,13AA =若M 是侧面11BCC B 内的动点,且AM MC ⊥,则1A M 的最小值为__________.8.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且23,3a A π==.若mb nc +(0,0m n >>)有最大值,则nm的取值范围是__________. 9.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b =,2B C =,则a c+的取值范围为________.10.△ABC 内接于半径为2的圆,三个内角A ,B ,C 的平分线延长后分别交此圆于1A ,1B ,1C .则111coscos cos 222sin sin sin A B C AA BB CC A B C++++的值为_____________.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.在ABC 中,角,,A B C 所对应的边分别为,,a b c ,设ABC 的面积为S ,则24Sa bc+的最大值为( ) A 2 B 3C 3D 213.已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π; ③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,;④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( ) A .①④B .②③C .②④D .②③④14.已知函数()132,f x x x R =∈,若当02πθ≤≤时,(sin )(1)0f m f m θ+->恒成立,则实数m 的取值范围是( ) A .0,1 B .,0C .1,D .(),1-∞15.在三棱锥A BCD -中,2AB AD BC ===,CD =AC =3BD =,则三棱锥外接球的表面积为( ) A .927πB .9πC .1847πD .18π 16.若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为( )A .4B .8C .12D .1617.已知函数()sin sin()f x x x π=+,现给出如下结论:①()f x 是奇函数;②()f x 是周期函数;③()f x 在区间(0,)π上有三个零点;④()f x 的最大值为2.其中所有正确结论的编号为( ) A .①③B .②③C .②④D .①④18.已知ABC 的三边是连续的三个自然数,且最大角是最小角的2倍,则ABC 内切圆的半径r =( )A .1B C .32D .219.设点()11,P x y 在椭圆22182x y +=上,点()22,Q x y 在直线280x y +-=上,则2121x x y y -+-的最小值是( )A .1B C .1D .220.设函数242,0()sin ,60x x x f x x x ⎧-+≥=⎨-≤<⎩,对于非负实数t ,函数()y f x t =-有四个零点1x ,2x ,3x ,4x .若1234x x x x <<<,则1234x x x x ++的取值范围中的整数个数为( )A .0B .1C .2D .3三、解答题21.如图所示,我市某居民小区拟在边长为1百米的正方形地块ABCD 上划出一个三角形地块APQ 种植草坪,两个三角形地块PAB 与QAD 种植花卉,一个三角形地块CPQ 设计成水景喷泉,四周铺设小路供居民平时休闲散步,点P 在边BC 上,点Q 在边CD 上,记PAB α∠=.(1)当4PAQ π∠=时,求花卉种植面积S 关于α的函数表达式,并求S 的最小值;(2)考虑到小区道路的整体规划,要求PB DQ PQ +=,请探究PAQ ∠是否为定值,若是,求出此定值,若不是,请说明理由.22.已知函数2()23sin 2sin cos ()f x x x x a a R =-++∈,且(0)3f =. (1)求a 的值;(2)若()f x ω在[0,]π上有且只有一个零点,0>ω,求ω的取值范围.23.如图,长方形ABCD 中,2,3AB BC ==,点,,E F G 分别在线段,,AB BC DA (含端点)上,E 为AB 中点,⊥EF EG ,设AEG θ∠=.(1)求角θ的取值范围;(2)求出EFG ∆周长l 关于角θ的函数解析式()f θ,并求EFG ∆周长l 的取值范围.24.已知函数()()2sin 24sin 206x x x f πωωω⎛⎫=--+> ⎪⎝⎭,其图象与x 轴相邻的两个交点的距离为2π. (1)求函数()f x 的解析式;(2)若将()f x 的图象向左平移()0m m >个长度单位得到函数()g x 的图象恰好经过点,03π⎛-⎫ ⎪⎝⎭,求当m 取得最小值时,()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间.25.对于函数()f x ,若存在定义域中的实数a ,b 满足0b a >>且()()2()02a bf a f b f +==≠,则称函数()f x 为“M 类” 函数. (1)试判断()sin f x x =,x ∈R 是否是“M 类” 函数,并说明理由;(2)若函数()2|log 1|f x x =-,()0,x n ∈,*n N ∈为“M 类” 函数,求n 的最小值.26.已知向量a ,b 满足2sin ,6sin 4a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,cos ,2cos 4b x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,函数()()f x a b x R =⋅∈.(1)求()f x 的单调区间;(2)已知数列()2*11224n n a n f n N ππ⎛⎫=-∈ ⎪⎝⎭,求{}n a 的前2n 项和2n S . 27.已知(1,sin )a x =,(1,cos )b x =,(0,1)e =,且(cos sin )[1,2]x x -∈. (1)若()//a e b +,求sin cos x x 的值;(2)设()()f x a b me a b =⋅+⋅-,m R ∈,若()f x 的最大值为12-,求实数m 的值.28.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 222cos 20C C ++=. (1)求角C 的大小;(2)若2b a =,ABC ∆的面积为2sin sin 2A B ,求sin A 及c 的值. 29.设函数2()cos sin 2f x x a x a =-+++(a ∈R ). (1)求函数()f x 在R 上的最小值;(2)若不等式()0f x <在[0,]2π上恒成立,求a 的取值范围;(3)若方程()0f x =在(0,)π上有四个不相等的实数根,求a 的取值范围.30.函数f (x )=A sin (2ωx +φ)(A >0,ω>0,|φ|<2π)的部分图象如图所示 (1)求A ,ω,φ的值;(2)求图中a ,b 的值及函数f (x )的递增区间; (3)若α∈[0,π],且f (α)=2,求α的值.【参考答案】一、填空题1.π6∞⎛⎤- ⎥⎝⎦,2.23,4⎡⎤⎣⎦34.②④5.47,912ππ⎧⎫⎨⎬⎩⎭ 678.1,22⎛⎫ ⎪⎝⎭9.( 10.4 二、单选题 11.A 12.A 13.B 14.D 15.A 16.B 17.A 18.B 19.D 20.B 三、解答题21.(1)S =⎝⎭花卉种植面积0,4πα⎡⎤∈⎢⎥⎣⎦];最小值为)100001 (2)PAQ ∠是定值,且4PAQ π∠=.【解析】 【分析】(1)根据三角函数定义及4PAQ π∠=,表示出,PB DQ ,进而求得,ABP ADQ S S ∆∆.即可用α表示出S 花卉种植面积,(2)设PAB QAD CP x CQ y αβ∠=∠===,,,,利用正切的和角公式求得()tan αβ+,由PB DQ PQ +=求得,x y 的等量关系.进而求得()tan αβ+的值,即可求得PAQ ∠的值.【详解】(1)∵边长为1百米的正方形ABCD 中,PAB α∠=,4PAQ π∠=,∴100tan PB α=,100tan 100tan 244DQ πππαα⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭,∴ABP ADQ S S S ∆∆+=花卉种植面积 1122AB BP AD DQ =⋅+⋅ 11100100tan 100100tan 224παα⎛⎫=⨯⨯+⨯⨯- ⎪⎝⎭()5000cos sin cos ααα==+⎝⎭,其中0,4πα⎡⎤∈⎢⎥⎣⎦∴当sin 214πα⎛⎫+= ⎪⎝⎭时,即8πα=时,S)100001=.(2)设PAB QAD CP x CQ y αβ∠=∠===,,,, 则100100BP x DQ y =-=-,, 在ABP ∆中,100tan 100x α-=,在ADQ ∆中,100tan 100yβ-=, ∴()()()20000100tan tan tan 1tan tan 100x y x y xyαβαβαβ-+++==-⋅+-,∵PB DQ PQ +=,∴100100x y -+-=100200xyx y +=+, ∴()20000100100100002002tan 1100001001002200xy xyxy xy xy αβ⎛⎫-⨯+-⎪⎝⎭+===⎛⎫-⨯+- ⎪⎝⎭, ∴4παβ+=,∴PAQ ∠是定值,且4PAQ π∠=.【点睛】本题考查了三角函数定义,三角形面积求法,正弦函数的图像与性质应用,正切和角公式的应用,属于中档题. 22.(1)a =(2)15,36⎡⎫⎪⎢⎣⎭【解析】 【分析】(1)利用降次公式、辅助角公式化简()f x 表达式,利用(0)f =a 的值. (2)令()0f x ω=,结合x 的取值范围以及三角函数的零点列不等式,解不等式求得ω的取值范围. 【详解】(1)2()2sin cos f x x x x a =-++sin 2x x a =+2sin 23x a π⎛⎫=++- ⎪⎝⎭(0)f =(0)2sin3f a π∴=+=即a =(2)令()0f x ω=,则sin 203x πω⎛⎫+= ⎪⎝⎭,[0,]x π∈,2,2333πππωπω⎡⎤∴+∈+⎢⎥⎣⎦,()f x 在[0,]π上有且只有一个零点,223πππωπ∴+<,1536ω∴<, ω∴的取值范围为15,36⎡⎫⎪⎢⎣⎭. 【点睛】本小题主要考查三角恒等变换,考查三角函数零点问题,考查化归与转化的数学思想方法,属于基础题.23.(1)[,]63ππ(2)1sin cos ()sin cos f θθθθθ++=,[,]63ππθ∈,EFG ∆周长l 的取值范围为1)]【解析】(1)结合图像可得当点G 位于D 点时,角θ取最大值,点F 位于C 点时,BEF ∠取最大值,角θ取最小值,在直角三角形中求解即可. (2)在Rt ΔEAG 中,求出1cos EG θ=,在Rt ΔEBF 中,求得1sin EF θ=,在Rt ΔGEF 中,根据勾股定理得222FG EF EG =+,从而可得111()cos sin sin cos f θθθθθ=++,通分可得1sin cos ()sin cos f θθθθθ++=,令sin cos t θθ=+,借助三角函数的性质即可求解.【详解】(1)由题意知,当点G 位于D 点时,角θ取最大值,此时tan θ=02πθ<<,所以max 3πθ=当点F 位于C 点时,BEF ∠取最大值,角θ取最小值,此时=3BEF π∠,所以min 236πππθ=-=故所求θ的取值集合为[,]63ππ(2)在Rt ΔEAG 中,cos AE EG θ=,1AE =,所以1cos EG θ= 在Rt ΔEBF 中,cos cos()2BE BEF EF πθ∠=-=,1BE =,所以1sin EF θ= 在Rt ΔGEF 中,有勾股定理得222FG EF EG =+2222222211sin cos 1sin cos sin cos sin cos θθθθθθθθ+=+== 因为[,]63ππθ∈,所以sin 0,cos 0θθ,1sin cos FG θθ=所以111()cos sin sin cos f EG EF FG θθθθθ=++=++ 所以1sin cos ()sin cos f θθθθθ++=,[,]63ππθ∈令sin cos t θθ=+,则21sin cos 2t θθ-=所以22(1)211t l t t +==-- 因为[,]63ππθ∈,57[,]41212πππθ+∈,所以sin()4πθ+∈所以sin cos )4t πθθθ=+=+∈所以EFG ∆周长l 的取值范围为1)] 【点睛】本题考查了三角函数的在平面几何中的应用,主要考查了辅助角公式以及换元法求三角函数的值域,属于中档题.24.(1)()23f x x π⎛⎫=+ ⎪⎝⎭(2)单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦. 【解析】 【分析】(1)利用两角差的正弦公式,降幂公式以及辅助角公式化简函数解析式,根据其图象与x 轴相邻的两个交点的距离为2π,得出周期,利用周期公式得出1ω=,即可得出该函数的解析式;(2)根据平移变换得出()223m x x g π⎛⎫=++ ⎪⎝⎭,再由函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭,结合正弦函数的性质得出m 的最小值,进而得出()223g x x π⎛⎫=+⎪⎝⎭,利用整体法结合正弦函数的单调性得出该函数在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间.【详解】解:(1)()2sin 24sin 26x x x f πωω⎛⎫=--+ ⎪⎝⎭11cos22cos24222xx x ωωω-=--⨯+32cos22x x ωω=+23x πω⎛⎫=+ ⎪⎝⎭由已知函数()f x 的周期T π=,22ππω=,1ω=∴()23f x x π⎛⎫=+ ⎪⎝⎭.(2)将()f x 的图象向左平移()0m m >个长度单位得到()g x 的图象∴()223m x x g π⎛⎫=++ ⎪⎝⎭,∵函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭22033m ππ⎡⎤⎛⎫⨯-++= ⎪⎢⎥⎝⎭⎣⎦,即sin 203m π⎛⎫-= ⎪⎝⎭∴23m k ππ-=,k Z ∈∴26k m ππ=+,k Z ∈∵0m >,∴当0k =,m 取最小值,此时最小值为6π此时,()223g x x π⎛⎫=+⎪⎝⎭. 令7612x ππ-≤≤,则2112336x πππ≤+≤当22332x πππ≤+≤或32112236x πππ≤+≤,即当612x ππ-≤≤-或571212x ππ≤≤时,函数()g x 单调递增当232232x πππ≤+≤,即51212x ππ-≤≤时,函数()g x 单调递减.∴()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦.【点睛】本题主要考查了由正弦函数的性质确定解析式以及正弦型函数的单调性,属于中档题. 25.(1)不是.见解析(2)最小值为7. 【解析】(1)不是,假设()f x 为M 类函数,得到2b a k π=+或者2b a k ππ+=+,代入验证不成立.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,得到函数的单调区间,根据题意得到326480b b b ---=,得到()6,7b ∈,得到答案. 【详解】 (1)不是.假设()f x 为M 类函数,则存在0b a >>,使得sin sin a b =, 则2b a k π=+,k Z ∈或者2b a k ππ+=+,k Z ∈, 由sin 2sin2a ba +=, 当2b a k π=+,k Z ∈时,有()sin 2sin a a k π=+,k Z ∈, 所以sin 2sin a a =±,可得sin 0a =,不成立;当2b a k ππ+=+,k Z ∈时,有sin 2sin()2a k ππ=+,k Z ∈,所以sin 2a =±,不成立, 所以()f x 不为M 类函数.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,则()f x 在()0,2单调递减,在()2,+∞单调递增,又因为()f x 是M 类函数,所以存在02a b <<<,满足2221log log 12|log 1|2a ba b +-=-=-, 由等式可得:()2log 2ab =,则4ab =,所以()22142(4)0222a a b a a a-+-=+-=>, 则2log 102a b +->,所以得22log 12log 12a b b +⎛⎫-=- ⎪⎝⎭, 从而有222log 1log 2a b b +⎛⎫+= ⎪⎝⎭,则有()224a b b +=,即248b b b ⎛⎫+= ⎪⎝⎭, 所以43288160b b b -++=,则()()3226480b b b b ----=,由2b >,则326480b b b ---=,令()32648g x x x x =---,当26x <<时,()()26480g x x x x =---<,且()6320g =-<,()7130g =>,且()g x 连续不断,由零点存在性定理可得存在()6,7b ∈, 使得()0g b =,此时()0,2a ∈,因此n 的最小值为7. 【点睛】本题考查了函数的新定义问题,意在考查学生对于函数的理解能力和应用能力. 26.(1)单调增区间为7,1212k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈,单调减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2))22n n +【解析】 【分析】(1)由向量数量积的坐标运算可得()2sin 222sin 23f x a b x x x π⎛⎫=⋅=-=+⎪⎝⎭, 再利用三角函数单调区间的求法即可得解;(2)由题意可得()()22222221234212n S n n ⎤=-+-+⋅⋅⋅+--⎦,又()()2221241n n n --=-+,则)2442434n S n n =--⨯-⨯-⋅⋅⋅-+,再利用等差数列求和公式即可得解.【详解】解:(1)向量a ,b 满足2sin 4a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,cos 4b x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,函数()2sin 222sin 23f x a b x x x π⎛⎫=⋅=-=+⎪⎝⎭, 由2222232k x k πππππ-≤+≤+,可得71212k x k ππππ-≤≤-,k Z ∈, 解得()f x 的单调增区间为7,1212k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈; 单调减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈.(2)因为22112sin 2244n n a n f n n ππππ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭,所以()()22222221234212n S n n ⎤=-+-+⋅⋅⋅+--⎦, 又()()2221241n n n --=-+,)2442434n S n n --⨯-⨯-⋅⋅⋅-+,所以())2234122n n n S n n --+==+.【点睛】本题考查了三角函数单调区间的求法及数列中捆绑求和,属中档题. 27.(1)0 (2)32【解析】 【分析】(1)通过()//a e b +可以算出()(1,sin 1)//1,cos cos sin 1x x x x +⇒=+,移项、两边平方即可算出结果.(2)通过向量的运算,解出()()f x a b me a b =⋅+⋅-,再通过最大值根的分布,求出m 的值. 【详解】(1)通过()//a e b +可以算出()(1,sin 1)//1,cos cos sin 1x x x x +⇒=+, 即2cos sin 1(cos sin )112sin cos 1sin cos 0x x x x x x x x -=⇒-=⇒-=⇒= 故答案为0.(2)()1sin cos (sin cos )f x x x m x x =++-,设()cos sin x x t t ⎡-=∈⎣,22112sin cos sin cos 2t x x t x x --=⇒=,22113()()1222t g t f x mt t mt -==+-=--+,即213(),22g t t mt t ⎡=--+∈⎣的最大值为12-; ①当11m m -≤⇒≥-时,max 1313()(1)2222g x g m m ==--+=-⇒=(满足条件);②当11m m <-≤⇒<-时,222max 1311()()22222g x g m m m m =-=-++=-⇒=-(舍);③当m m -><max 131()22222g x g m ==-⨯-=-⇒=(舍)故答案为32m = 【点睛】当式子中同时出现sin cos ,sin cos ,sin cos x x x x x x +-时,常常可以利用换元法,把sin cos x x 用sin cos ,sin cos x x x x +-进行表示,但计算过程中也要注意自变量的取值范围;二次函数最值一定要注意对称轴是否在规定区间范围内,再讨论最后的结果.28.(1)34C π=(2)sin A =1c = 【解析】 【分析】(1)化简等式,即可求出角C .(2)利用角C 的余弦公式,求出c 与a 的关系式,再由正弦定理求出角A 的正弦值,再结合面积公式求出c 的值. 【详解】(1)∵cos 220C C ++=,∴22cos s 10C C +=+,即)210C +=,∴cos C = 又()0,C π∈,∴34C π=. (2)∵2222222cos 325c a b ab C a a a =+-=+=,∴c =,即sin C A =,∴sin A C = ∵1sin 2ABC S ab C ∆=,且in sin ABC S A B ∆=,∴1sin sin 2ab C A B =,∴sin sin sin abC A B=2sin sin c C C ⎛⎫= ⎪⎝⎭1c =. 【点睛】本题考查利用解三角形,属于基础题.29.(1)2min2,2;()1,22;422,2.a af x a a a a >⎧⎪⎪=-++-≤≤⎨⎪+<-⎪⎩(2)(,1)a ∈-∞-(3)12a -<<-【解析】 【分析】(1)通过换元法将函数变形为二次函数,同时利用分类讨论的方法求解最大值; (2)恒成立需要保证max ()0f x <即可,对二次函数进行分析,根据取到最大值时的情况得到a 的范围;(3)通过条件将问题转化为二次函数在给定区间上有两个零点求a 的范围,这里将所有满足条件的不等式列出来,求解出a 的范围. 【详解】解:(1)令sin x t =,[1,1]t ∈-,则2()()1f x g t t at a ==+++,对称轴为2a t =-. ①12a -<-,即2a >,min ()(1)2f x g =-=.②112a -≤-≤,即22a -≤≤,2min ()()124a a f x g a =-=-++.③12a->,即2a <-,min ()(1)22f x g a ==+.综上可知,2min2,2;()1,22;422,2.a af x a a a a >⎧⎪⎪=-++-≤≤⎨⎪+<-⎪⎩ (2)由题意可知,max ()0f x <,2()()1f xg t t at a ==+++,[0,1]t ∈的图象是开口向上的抛物线,最大值一定在端点处取得,所以有(0)10,(1)220,g a g a =+<⎧⎨=+<⎩故(,1)a ∈-∞-. (3)令sin x t =,(0,)x π∈.由题意可知,当01t <<时,sin x t =有两个不等实数解,所以原题可转化为2()10g t t at a =+++=在(0,1)内有两个不等实数根.所以有201,24(1)0,12(0)10,(1)220,a a a a g a g a ⎧<-<⎪⎪⎪∆=-+>⇒-<<-⎨⎪=+>⎪=+>⎪⎩【点睛】(1)三角函数中,形如2()sin sin f x a x b x c =++或者2()cos cos f x a x b x c =++都可以采用换元法求解函数最值;(2)讨论二次函数的零点的分布,最好可以采用数形结合的方法解决问题,这样很大程度上减少了遗漏条件的可能. 30.(1)π2,1,6A ωϕ===;(2)7π,112a b =-=,递增区间为()πππ,π36k k k Z ⎡⎤-+∈⎢⎥⎣⎦;(3)π24或7π24. 【解析】 【分析】(1)利用函数图像可直接得出周期T 和A ,再利用=2Tπω,求出ω,然后利用待定系数法直接得出ϕ的值.(2)通过第一问求得的值可得到()f x 的函数解析式,令()=0f x ,再根据a 的位置确定出a 的值;令0x =得到的函数值即为b 的值;利用正弦函数单调增区间即可求出函数的单调增区间.(3)令()f α=0απ,即可求得α的取值.【详解】解:(1)由图象知A =2,34T =512π-(-3π)=912π, 得T =π, 即22πω=2,得ω=1,又f (-3π)=2sin[2×(-3π)+φ]=-2, 得sin (-23π+φ)=-1,即-23π+φ=-2π+2k π, 即ω=6π+2k π,k ∈Z , ∵|φ|<2π,∴当k =0时,φ=6π,即A =2,ω=1,φ=6π;(2)a =-3π-4T =-3π-4π=-712π,b =f (0)=2sin 6π=2×12=1,∵f (x )=2sin (2x +6π),∴由2k π-2π≤2x +6π≤2k π+2π,k ∈Z ,得k π-3π≤x ≤k π+6π,k ∈Z ,即函数f (x )的递增区间为[k π-3π,k π+6π],k ∈Z ;(3)∵f (α)=2sin (2α+6π)即sin (2α+6π) ∵α∈[0,π],∴2α+6π∈[6π,136π], ∴2α+6π=4π或34π,∴α=24π或α=724π.【点睛】关于三角函数图像需记住: 两对称轴之间的距离为半个周期; 相邻对称轴心之间的距离为半个周期;相邻对称轴和对称中心之间的距离为14个周期.关于正弦函数单调区间要掌握:当2,222x k k ππωϕππ⎡⎤+∈-+⎢⎥⎣⎦时,函数单调递增;当32+,222x k k ππωϕππ⎡⎤+∈+⎢⎥⎣⎦时,函数单调递减.。
三角函数及解三角形测试题(含答案)

三角函数及解三角形测试题(含答案)三角函数及解三角形1.在锐角三角形ABC中,角A的对边为a,角B的对边为b,角C的对边为c。
根据正弦定理,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形外接圆的半径。
根据余弦定理,$c^2=a^2+b^2-2ab\cos C$。
根据正切的定义,$\tan A=\frac{a}{b}$。
根据余切的定义,$\cotA=\frac{b}{a}$。
根据正割的定义,$\sec A=\frac{c}{a}$。
根据余割的定义,$\csc A=\frac{c}{b}$。
2.选择题:1.设$\alpha$是锐角,$\tan(\frac{\pi}{4}+\alpha)=3+\sqrt{22}$,则$\cos\alpha=\frac{2\sqrt{22}}{36}$。
2.一艘船向XXX,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时5海里。
4.已知函数$f(x)=3\sin\omega x+\cos\omega x$,$y=f(x)$的图象与直线$y=2$的两个相邻交点的距离等于$\pi$,则$f(x)$的单调递增区间是$(\frac{k\pi}{2}-\frac{\pi}{12},\frac{k\pi}{2}+\frac{5\pi}{12})$,其中$k\in Z$。
5.圆的半径为4,$a,b,c$为该圆的内接三角形的三边,若$abc=162$,则三角形的面积为$22$。
6.已知$\cos\alpha=-\frac{4}{\pi}$,且$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,则$\tan(\alpha+\frac{\pi}{4})=-\frac{7}{7}$。
三角函数练习题附答案

三角函数练习题附答案一、填空题1.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足22b a ac -=,则11tan tan A B-的取值范围为___________. 2.设函数()sin f x x π=,()21g x x x =-+,有以下四个结论.①函数()()y f x g x =+是周期函数: ②函数()()y f x g x =-的图像是轴对称图形: ③函数()() y f x g x =⋅的图像关于坐标原点对称: ④函数()()f x yg x =存在最大值 其中,所有正确结论的序号是___________.3.法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC 中,角60A =,以,,AB BC AC 为边向外作三个等边三角形,其外接圆圆心依次为123,,O O O ,若三角形123O O O ABC 的周长最小值为___________4.已知四棱锥P ABCD -的顶点均在球O 的球面上,底面ABCD 是正方形,AB =120APB ∠=︒,当AD AP ⊥时,球O 的表面积为______.5.在ABC 中,设a ,b ,c 分别为角A ,B ,C 对应的边,记ABC 的面积为S ,且sin 2sin 4sin b B c C a A +=,则2Sa 的最大值为________.6.已知函数()()sin 0f x x x ωωω=>,若函数()f x 的图象在区间[]0,2π上的最高点和最低点共有6个,下列说法正确的是___________. ①()f x 在[]0,2π上有且仅有5个零点; ②()f x 在[]0,2π上有且仅有3个极大值点; ③ω的取值范围是3137,1212⎡⎫⎪⎢⎣⎭;④()f x 在06,π⎡⎤⎢⎥⎣⎦上为单递增函数.7.已知函数()2sin 16f x x πω⎛⎫=-- ⎪⎝⎭,其中0>ω,若()f x 在区间(4π,23π)上恰有2个零点,则ω的取值范围是____________.8.已知函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 的图象关于直线3x π=对称,且在3,164ππ⎛⎫⎪⎝⎭上单调,则ω的最大值是______.9.如图,在边长为2的正方形ABCD 中,M ,N 分别为边BC ,CD 上的动点,以MN 为边作等边PMN ,使得点A ,P 位于直线MN 的两侧,则PN PB ⋅的最小值为______.10.已知函数()cos()(0,0,0)f x A x A ωϕωϕπ=->><<的部分图像如图所示,设函数()266g x f x f x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()g x 的值域为___________.二、单选题11.已知函数()()2212sin 2,2212,x a x af x x a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥=⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[)0,∞+内恰有5个零点,则a 的取值范围是( ) A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .75,2,342⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭12.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1213.已知函数()|sin |(0)f x x ωω=>在区间,53ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数ω的取值范围为( ) A .5,32⎡⎤⎢⎥⎣⎦B .30,2⎛⎤ ⎥⎝⎦C .8,33⎡⎤⎢⎥⎣⎦D .50,4⎛⎤ ⎥⎝⎦14.在三棱锥P ABC -中,顶点P 在底面的射影为ABC 的垂心O (O 在ABC 内部),且PO 中点为M ,过AM 作平行于BC 的截面α,过BM 作平行于AC 的截面β,记α,β与底面ABC 所成的锐二面角分别为1θ,2θ,若PAM PBM θ∠=∠=,则下列说法错误的是( )A .若12θθ=,则AC BC =B .若12θθ≠,则121tan tan 2θθ⋅= C .θ可能值为6πD .当θ取值最大时,12θθ=15.《九章算术》卷五“商功”:今有刍甍,下广3丈,袤4丈;上袤2丈,无广;高1丈.其描述的是下图的一个五面体,底面ABCD 是矩形,4AB =,3BC =,2EF =,//EF 底面ABCD 且EF 到底面ABCD 的距离为1.若DE AE BF CF ===,则该刍甍中点F 到平面EBC 的距离为( )A .15B .35C 10D 2516.已知函数()()()sin 010f x x ωϕω=+<<,若存在实数1x 、2x ,使得()()122f x f x -=,且12x x π-=,则ω的最大值为( ) A .9B .8C .7D .517.在棱长为2的正方体1111ABCD A B C D -中,N 为BC 的中点.当点M 在平面11DCC D 内运动时,有//MN 平面1A BD ,则线段MN 的最小值为( ) A .1B 6C 2D 318.已知函数()2sin 1,022sin 1,02x x f x x x ππ⎧-≥⎪⎪=⎨⎪--<⎪⎩,()11x g x x -=+,则关于x 的方程()()f x g x =在区间[]8,6-上的所有实根之和为( ) A .10-B .8-C .6-D .4-19.已知函数2log ,0,(),0,x x f x x x >⎧=⎨-≤⎩函数()g x 满足以下三点条件:①定义域为R ;②对任意x ∈R ,有()()2g x g x π+=;③当[0,]x π∈时,()sin g x x =.则函数()()y f x g x =-在区间[4,4]ππ-上零点的个数为( ) A .6B .7C .8D .920.已知函数()()sin 302f x x πϕϕ⎛⎫=-<≤ ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π上单调递增,现有如下三个结论:①ϕ的最小值为3π; ②当ϕ取得最大值时,将函数()f x 的图像向左平移18π个单位后,再把曲线上各点的横坐标伸长到原来的2倍,得到函数()g x 的图像,则132g π⎛⎫= ⎪⎝⎭;③函数()f x 在[]0,2π上有6个零点. 则上述结论正确的个数为( ) A .0B .1C .2D .3三、解答题21.已知函数2211()cos sin cos sin 22f x x x x x =+-.(1)求()f x 的单调递增区间;(2)求()f x 在区间,82ππ⎡⎤-⎢⎥⎣⎦的最大值和最小值.22.已知函数()()()()2cos +2cos 02f x x x x πϕϕϕϕ⎛⎫=+++<< ⎪⎝⎭.(1)求()f x 的最小正周期;(2)若13f π⎛⎫= ⎪⎝⎭,求当()2f x =时自变量x 的取值集合.23.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的最大值是2,函数()f x 的图象的一条对称轴是3x π=,且与该对称轴相邻的一个对称中心是7,012π⎛⎫⎪⎝⎭. (1)求()f x 的解析式;(2)已知DBC △是锐角三角形,向量,,,2124233B B m f f n f f B ππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,且3,sin 5m n C ⊥=,求cos D . 24.已知函数22cos 3sin 2f x xx a 的最小值为0.(1)求a 的值及函数()y f x =图象的对称中心;(2)若关于x 的方程()0f x m -=在区间70,6π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根1x ,2x ,3x ,求m的取值范围及()123tan 2x x x ++的值. 25.已知函数()sin 2coscos 2sin33f x x x ππ=+.(1)若对任意,63x ππ⎡⎤∈⎢⎥⎣⎦,都有4f x m π⎛⎫- ⎪⎝⎭成立,求实数m 的取值范围;(2)设函数()1226g x f x π⎛⎫=- ⎪⎝⎭()g x 在区间[],3ππ-内的所有零点之和.26.如图,半圆的直径2AB =,O 为圆心,C ,D 为半圆上的点.(Ⅰ)请你为C 点确定位置,使ABC ∆的周长最大,并说明理由; (Ⅱ)已知AD DC =,设ABD θ∠=,当θ为何值时, (ⅰ)四边形ABCD 的周长最大,最大值是多少 (ⅱ)四边形ABCD 的面积最大,最大值是多少?27.已知函数()sin cos cos 63f x x x x a ππ⎛⎫⎛⎫=-+-++ ⎪ ⎪⎝⎭⎝⎭的最大值为1.(1)求常数a 的值;(2)求函数()f x 的单调递增区间; (3)求使()0f x <成立的实数x 的取值集合. 28.已知函数()2cos (sin cos )f x x x x =+,x ∈R . (1)求函数()f x 的最小正周期;(2)求函数()f x 在区间ππ,44⎡⎤-⎢⎥⎣⎦上的最小值和最大值,并求出取得最值时的x 的值.29.为丰富市民的文化生活,市政府计划在一块半径为200m ,圆心角为0120的扇形地上建造市民广场,规划设计如图:内接梯形ABCD 区域为运动休闲区,其中A ,B 分别在半径OP ,OQ 上,C ,D 在圆弧PQ 上,CD //AB ;上,CD //AB ;OAB ∆区域为文化展区,AB 长为3域,且CD 长不得超过200m.(1)试确定A ,B 的位置,使OAB ∆的周长最大?(2)当OAB ∆的周长最长时,设2DOC θ∠=,试将运动休闲区ABCD 的面积S 表示为θ的函数,并求出S 的最大值.30.已知函数()()()2331?0f x cos x sin x cos x ωωωω=>,()12 1()3f x f x ==-,,且12min 2x x π-=.(1)求()f x 的单调递减区间; (2)若()237,,,sin 33235,25f ππβπαβαβ⎛⎫⎛⎫∈-=+=- ⎪ ⎪⎝⎭⎝⎭,求2f α⎛⎫⎪⎝⎭的值.【参考答案】一、填空题1.⎛ ⎝⎭2.②④ 3.64.28π56.②③7.742ω<<或91322ω<≤.8.139.14- 10.9[,4]4-二、单选题 11.D 12.A 13.A 14.C 15.C 16.A 17.B 18.B 19.A 20.C 三、解答题21.(1)3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈;(2)()max f x =,()min 12f x =- 【解析】【分析】(1)直接利用三角函数的恒等变换,把三角函数变形成正弦型函数.进一步求出函数的单调区间.(2)直接利用三角函数的定义域求出函数的最值. 【详解】 解:(1)2211()cos sin cos sin 22f x x x x x =+-11()cos 2sin 222f x x x ∴=+()24f x x π⎛⎫∴=+ ⎪⎝⎭ 令222242k x k πππππ-+≤+≤+,()k Z ∈解得388k x k ππππ-+≤≤+,()k Z ∈ 即函数的单调递增区间为3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈(2)由(1)知n ()224f x x π⎛⎫=+ ⎪⎝⎭ ,82x ππ⎡⎤∈-⎢⎥⎣⎦ 520,44x ππ⎡⎤∴+∈⎢⎥⎣⎦所以当242x ππ+=,即8x π=时,()max f x =当5244x ππ+=,即2x π=时,()min 12f x =- 【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的单调性的应用,利用函数的定义域求三角函数的值域.属于基础型.22.(1)π;(2)12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭【解析】 【分析】(1)由辅助角公式可得()f x 2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,再求周期即可;(2)由13f π⎛⎫= ⎪⎝⎭求出12πϕ=,再解方程2sin 2123x π⎛⎫++= ⎪⎝⎭即可.【详解】解:(1)()()()()2cos 2cos f x x x x ϕϕϕ=++++()()2cos21x x ϕϕ=++++2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,则()f x 的最小正周期为2T ππω==.(2)因为13f π⎛⎫= ⎪⎝⎭,所以2sin 221136ππϕ⎛⎫⨯+++= ⎪⎝⎭,即()526k k Z πϕπ+=∈, 解得()5212k k Z ππϕ=-∈. 因为02πϕ<<,所以12πϕ=.因为()2f x =,所以2sin 2123x π⎛⎫++= ⎪⎝⎭,即1sin 232x π⎛⎫+= ⎪⎝⎭,则2236x k πππ+=+或()52236x k k Z πππ+=+∈, 解得12x k ππ=-+或()4x k k Z ππ=+∈.故当()2f x =时,自变量x 的取值集合为12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭.【点睛】本题考查了三角恒等变换,重点考查了解三角方程,属中档题.23.(1)()2sin 26f x x π⎛⎫=- ⎪⎝⎭;(2【解析】(1)根据函数的最值、周期、对称轴待定系数即可求解;(2)由(1)所求,可化简向量坐标,根据向量垂直得到角B ,再利用()cos cosD A B =-+求解. 【详解】(1)设()f x 的最小正周期为T , 依题意得71234T ππ-=,∴T π=,∴22πωπ==. ∵()f x 图象的一条对称轴是3x π=,∴2,32k k Z ππϕπ+=+∈, ∴,6k k Z πϕπ=-+∈.∵||2ϕπ<,∴6πϕ=-. 又∵()f x 的最大值是2,∴2A =,从而()2sin 26f x x π⎛⎫=- ⎪⎝⎭.(2)∵()(),2sin ,3,2cos ,2cos 2m n m B n B B ⊥==,∴4sin cos 22sin 22m n B B B B B ⋅=⋅+=+4sin 203B π⎛⎫=+= ⎪⎝⎭∴2,3B k k Z ππ+=∈,∴:,62kB k Z ππ=-+∈, 又∵B 是锐角,∴3B π=.∵3sin 5C =,∴4cos 5C =,∴cos cos()(cos cos sin sin )D B C B C B C =-+=--=.即cosD =. 【点睛】本题考查三角函数解析式的求解,涉及向量垂直的转换,余弦函数的和角公式.属综合基础题.24.(1)1,,2212k ππ⎛⎫- ⎪⎝⎭,k Z ∈;(2)[)3,4, 【解析】(1)由题得()2sin 216f x x a π⎛⎫=+++ ⎪⎝⎭,求出a 的值即得函数()y f x =图象的对称中心;(2)作出函数()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象,求出123523x x x π++=即得解.【详解】(1)()cos 2212sin 216x x a x a f x π⎛⎫=++=+++ ⎪⎝⎭,由已知可得()2110a ⨯-++=,∴1a =,()2sin 226f x x π⎛⎫=++ ⎪⎝⎭,令26x k ππ+=可得()y f x =图象的对称中心为,2212k ππ⎛⎫-⎪⎝⎭,k Z ∈. (2)()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象如图所示,由图可得[)3,4m ∈,所以123x x π+=,2343x x π+=,所以123523x x x π++=,所以()1235tan 2tan3x x x π++==【点睛】本题主要考查三角恒等变换和三角函数的图象和性质,考查三角函数图象的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力. 25.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)2π【解析】(1)首先根据两角和的正弦公式得到()sin 23f x x π⎛⎫=+ ⎪⎝⎭,从而得到4f x π⎛⎫- ⎪⎝⎭的解析式,根据正弦函数的性质求出其值域,从而得到参数的取值范围; (2)首先求出()g x 的解析式,根据正弦函数的对称性即可解答. 【详解】解:(1)因为()sin 2coscos 2sin33f x x x ππ=+()sin 23f x x π⎛⎫∴=+ ⎪⎝⎭, 所以sin 2sin 24436f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.又,63x ππ⎡⎤∈⎢⎥⎣⎦,所以2,662x πππ⎡⎤-∈⎢⎥⎣⎦, 故1sin 2,162x π⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,即min 142f x π⎛⎫-= ⎪⎝⎭,12m, 所以实数m 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.(2)由(1)得()1313322sin 22sin 26263g x f x x x πππ⎡⎤⎛⎫⎛⎫=-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦令()0g x =,得3sin x =3sin x =[],3ππ-上有4个零点 这4个零点从小到大不妨设为1x ,2x ,3x ,4x ,则由对称性得1222x x π+=-,34322x x π+=, 从而所有零点和为12342x x x x π+++=. 【点睛】本题考查两角和的正弦公式的应用,三角函数的性质的应用,属于基础题.26.(Ⅰ)点C 是半圆的中点,理由见解析; (Ⅱ)(ⅰ)6πθ=时,最大值5(ⅱ)6πθ=时,最大面积是334【解析】(Ⅰ)设BC a =,AC b =,AB c =,法一:依题意有222+=a b c ,再利用基本不等式求得2a b c +,从而得出结论;法二:由点C 在半圆上,AB 是直径,利用三角函数求出cos a c α=⋅,sin b c α=⋅,再利用三角函数的性质求出结论;(Ⅱ)(ⅰ)利用三角函数值表示四边形ABCD 的周长p ,再求p 的最大值;(ⅱ)利用三角函数值表示出四边形ABCD 的面积s ,再结合基本不等式求s 的最大值. 【详解】(Ⅰ)点C 在半圆中点位置时,ABC ∆周长最大.理由如下: 法一:因为点C 在半圆上,且AB 是圆的直径, 所以2ACB π∠=,即ABC ∆是直角三角形,设BC a =,AC b =,AB c =,显然a ,b ,c 均为正数,则222+=a b c , 因为222a b ab +≥,当且仅当a b =时等号成立,所以()()2222222a b a b ab a b +≥++=+,所以()2222a b a b c +≤+=, 所以ABC ∆的周长为()21222a b c c ++≤+=+,当且仅当a b =时等号成立,即ABC ∆为等腰直角三角形时,周长取得最大值,此时点C 是半圆的中点. 法二:因为点C 在半圆上,且AB 是圆的直径, 所以2ACB π∠=,即ABC ∆是直角三角形,设BC a =,AC b =,AB c =,02ABC παα⎛⎫∠=<< ⎪⎝⎭,则cos a c α=⋅,sin b c α=⋅,a b c ++cos sin c c c αα=⋅+⋅+()2cos sin 2αα=++22sin 24πα⎛⎫=++ ⎪⎝⎭,因为02πα<<,所以3444πππα<+<, 所以当42ππα+=,即4πα=时, ABC ∆周长取得最大值222+,此时点C 是半圆的中点.(Ⅱ)(ⅰ)因为AD DC =,所以ABD DBC θ∠=∠=, 所以sin AD DC AB θ==⋅,cos2CB AB θ=⋅, 设四边形ABCD 的周长为p , 则p AD DC CB AB =+++2sin cos22AB AB θθ=++()2214sin 212sin 254sin 2θθθ⎛⎫=+-+=-- ⎪⎝⎭,显然0,4πθ⎛⎫∈ ⎪⎝⎭,所以当6πθ=时,p 取得最大值5;(ⅱ)过O 作OE BC ⊥于E ,设四边形ABCD 的面积为s ,四边形AOCD 的面积为1s ,BOC ∆的面积为2s ,则 121122s s s AC OD BC OE =+=⋅+⋅ 11sin 21cos 2sin 222AB AB θθθ=⋅+⋅ sin 2cos2sin 2θθθ=+⋅()sin 21cos2θθ=+, 所以()222sin 21cos2s θθ=+()()221cos 21cos 2θθ=-+()()31cos21cos2θθ=-+()()331cos 21cos 23θθ=-+()()()2231cos 21cos 211cos 232θθθ-++⎡⎤≤+⎢⎥⎣⎦()()()231cos 21cos 211cos 232θθθ-++⎡⎤=+⎢⎥⎣⎦()()()2231cos 21cos 21cos 21232θθθ⨯-++⎡⎤++⎢⎥≤⎢⎥⎢⎥⎢⎥⎣⎦()()()431cos 21cos 221cos 2134θθθ-++++⎡⎤=⎢⎥⎣⎦ 413273216⎛⎫==⎪⎝⎭; 当且仅当()31cos21cos2θθ-=+,即1cos 22θ=时,等号成立, 显然04πθ⎛⎫∈ ⎪⎝⎭,,所以202πθ⎛⎫∈ ⎪⎝⎭,,所以此时6πθ=,所以当6πθ=时,s =,即四边形ABCD 【点睛】本题考查解三角形的应用问题,考查三角函数与基本不等式的应用,需要学生具备一定的计算分析能力,属于中档题.27.(1)1a =-(2)22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(3)422|,3k x k k Z x πππ-+<<∈⎧⎫⎨⎬⎩⎭【解析】(1)化简()f x ,求最大值,即可求解;(2)应用整体思想,结合正弦函数的递增区间,即可得出结论; (3)运用正弦函数图像,即可求解. 【详解】 解:()sin cos cos sincoscos sinsin cos 6633f x x x x x x a ππππ=-++++11cos cos cos 22x x x x x a =-+++cos x x a =++12cos 2x x a ⎫=++⎪⎪⎝⎭2sin 6x a π⎛⎫=++ ⎪⎝⎭. (1)函数()f x 的最大值为21a +=,所以1a =-. (2)由22,262k x k k Z πππππ-+≤+≤+∈,解得222,33k x k k Z ππππ-+≤≤+∈, 所以()f x 的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. (3)由(1)知()2sin 16f x x π⎛⎫=+- ⎪⎝⎭.因为()0f x <,即2sin 106x π⎛⎫+-< ⎪⎝⎭.所以1sin 62x π⎛⎫+< ⎪⎝⎭,所以722,666k x k k Z πππππ-+<+<+∈. 所以422,3k x k k Z πππ-+<<∈, 所以使()0f x <成立的x 的取值集合为422|,3k x k k Z x πππ-+<<∈⎧⎫⎨⎬⎩⎭. 【点睛】本题考查三角函数恒等变换,化简解析式,考查三角函数的性质以及三角不等式,属于中档题.28.(1)π;(2)()()min max ππ,0,,148x f x x f x =-===.【解析】(1) 函数()f x 解析式去括号后利用二倍角的正弦、余弦公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,找出w 的值,代入周期公式即可求出最小正周期;(2)根据x 的范围求出这个角的范围,利用正弦函数的值域即可确定出()f x 的值域,进而求出()f x 的最小值与最大值.. 【详解】(1)()()π2cos sin cos sin2cos21214f x x x x x x x ⎛⎫=+=++=++ ⎪⎝⎭,因此,函数()f x 的最小正周期πT =. (2) 因为ππ44x -≤≤ 所以ππ3π2444x -≤+≤,sin 24x π⎡⎤⎛⎫∴+∈⎢⎥ ⎪⎝⎭⎣⎦,即()1f x ⎡⎤∈⎣⎦, 所以当244x ππ+=-,即4x π=-时,()min 0f x =,当242x ππ+=,即8x π=时,()max 1f x =.所以4x π=-时,()min 0f x =,8x π=时,()max 1f x .【点睛】此题考查了两角和与差的正弦函数公式,二倍角的正弦、余弦函数公式,正弦函数的定义域与值域,熟练掌握公式是解本题的关键,是中档题.29.(1)OA 、OB 都为50m ;(2)8sin 64sin cos S θθθθ=-+;0,6πθ⎛⎤∈ ⎥⎝⎦;最大值为2625(8m +. 【解析】 【分析】对于(1),设OA m =,OB n =,m ,n (0,200)∈,在△OAB 中,利用余弦定理可得22222cos3AB OA OB OA OB π=+-⋅⋅,整理得222m n mn =++,结合基本不等式即可得出结论;对于(2),当△AOB 的周长最大时,梯形ACBD 为等腰梯形,过O 作OF ⊥CD 交CD 于F ,交AB 于E ,则E 、F 分别为AB ,CD 的中点,利用已知可表示出相关线段;然后利用梯形的面积公式可知,625(83cos 8sin 64sin cos 3)S θθθθ=-+- ,0,6πθ⎛⎤∈ ⎥⎝⎦,令()83cos 8sin 64sin cos 3f θθθθθ=-+-,0,6πθ⎛⎤∈ ⎥⎝⎦,,结合导数,确定函数的单调性,即可求出S 的最大值. 【详解】解:(1)设OA m =,OB n =,m ,n (0,200)∈,在OAB ∆中,22222cos3AB OA OB OA OB π=+-⋅⋅, 即222(503)m n mn =++.所以22222()3(503)()()()44m n m n mn m n m n +=+-+-=+.所以m n 100+,当且仅当m n 50==时,m n +取得最大值, 此时OAB ∆周长取得最大值.答:当OA 、OB 都为50m 时,OAB ∆的周长最大. (2)当AOB ∆的周长最大时,梯形ABCD 为等腰梯形.如上图所示,过O 作OF CD ⊥交CD 于F ,交AB 于E ,则E 、F 分别为AB 、CD 的中点, 所以DOE θ∠=.由CD 200,得0,6πθ⎛⎤∈ ⎥⎝⎦.在ODF ∆中,DF 200sin θ=,OF 200cos θ=. 又在AOE ∆中,OE OAcos253π==,故EF 200cos 25θ=-.所以1(503400sin )(200cos 25)2S θθ=-625(38sin )(8cos 1)θθ=-625(838sin 64sin cos 3)θθθθ=-+,0,6πθ⎛⎤∈ ⎥⎝⎦.令()838sin 64sin cos 3f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,()838cos 64cos 216sin 64cos 26f πθθθθθθ'⎛⎫=--+=-++ ⎪⎝⎭,0,6πθ⎛⎫∈ ⎪⎝⎭.又16sin 6y πθ⎛⎫=-+ ⎪⎝⎭及cos 2y θ=在0,6πθ⎛⎤∈ ⎥⎝⎦上均为单调递减函数,故()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.因1()164062f π⎫'=-⨯>⎪⎪⎝⎭,故()0f θ'>在0,6πθ⎛⎤∈ ⎥⎝⎦上恒成立, 于是,()f θ在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递增函数.所以当6πθ=时,()f θ有最大值,此时S 有最大值为625(8+.答:当6πθ=时,梯形ABCD 面积有最大值,且最大值为2625(8m +.【点睛】本题主要考查了余弦定理、基本不等式以及导数的应用,在(2)中得到()8sin 64sin cos f θθθθθ=-+()16sin 64cos 26f πθθθ'⎛⎫=-++ ⎪⎝⎭,结合函数在公共区间上,减函数+减函数等于减函数,从而确定()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.属于难题.30.(1) 单调递减区间为7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2) 15. 【解析】 【分析】(1)根据题意求出函数()f x 的解析式,然后可求出它的单调递减区间.(2)结合条件求出()424sin ,cos 3525πβαβ⎛⎫-=+=- ⎪⎝⎭,然后由()2sin 12sin 1233f αππααββ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦可得结果.【详解】(1)()2()1f x cos x sin x x ωωω=221sin xcos x x ωωω=+221)1sin x cos x ωω=--221sin x x ωω=-2(2)13sin x πω=+-. ∵1(2)13sin x πω-≤+≤,∴32(2)113sin x πω-≤+-≤,∴()f x 的最大值为1,最小值为3-. 又()()121,3f x f x ==-,且12min 2x x π-=,∴函数()f x 的最小正周期为22ππ⨯=,∴1ω=,∴()2(2)13f x sin x π=+-.由3222,232k x k k Z πππππ+≤+≤+∈, 得7,1212k x k k Z ππππ+≤≤+∈, ∴()f x 的单调递减区间为7[,],1212k k k Z ππππ++∈. (2)由(1)得3212335f sin βππβ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭,∴4sin 35πβ⎛⎫-= ⎪⎝⎭.∵2,33ππβ⎛⎫∈ ⎪⎝⎭, ∴0,33ππβ⎛⎫-∈ ⎪⎝⎭,∴3cos 35πβ⎛⎫- ⎪⎝⎭.∵()7sin 25αβ+=-且2,,33ππαβ⎛⎫∈ ⎪⎝⎭, ∴24,33ππαβ⎛⎫+∈ ⎪⎝⎭,∴()24cos 25αβ+==-. ∴()2sin 12sin 1233f αππααββ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦()()2sin cos cos sin 133ππαββαββ⎡⎤⎛⎫⎛⎫=+--+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦7324421255255⎡⎤⎛⎫=⨯-⨯--⨯- ⎪⎢⎥⎝⎭⎣⎦15=. 【点睛】(1)解答有关三角函数性质的有关问题时,首项把函数解析式化为(x)Asin(x )f ωϕ=+的形式,然后再结合正弦函数的相关性质求解,解题时注意系数,A ω对结果的影响.(2)对于三角变换中的“给值求值”问题,在求解过程中注意角的变换,通过角的“拆”、“拼”等手段转化为能应用条件中所给角的形式,然后再利用整体思想求解.。
三角函数练习题及答案

三角函数练习题及答案一、填空题1.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,4ACB AB π∠=则四面体ABCD 体积的最大值为___________.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,1a =,34A π=,若b c λ+有最大值,则实数λ的取值范围是_____.3.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .D 、E 是线段AB 上满足条件1()2CD CB CE =+,1()2CE CA CD =+的点,若2CD CE c λ⋅=,则当角C 为钝角时,λ的取值范围是______________4.通信卫星与经济、军事等密切关联,它在地球静止轨道上运行,地球静止轨道位于地球赤道所在平面,轨道高度为km h (轨道高度是指卫星到地球表面的距离).将地球看作是一个球(球心为O ,半径为km r ),地球上一点A 的纬度是指OA 与赤道平面所成角的度数,点A 处的水平面是指过点A 且与OA 垂直的平面,在点A 处放置一个仰角为θ的地面接收天线(仰角是天线对准卫星时,天线与水平面的夹角),若点A 的纬度为北纬30,则tan θ________.5.在ABC 中,sin 2sin B C =,2BC =.则CA CB ⋅的取值范围为___________.(结果用区间表示)6.已知函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 的图象关于直线3x π=对称,且在3,164ππ⎛⎫⎪⎝⎭上单调,则ω的最大值是______.7.关于函数())cos sin f x x x x =+①其表达式可写成()cos 26f x x π⎛⎫=+ ⎪⎝⎭;②直线12x π=-是曲线()y f x =的一条对称轴;③()f x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增;④存在0,2πα⎛⎫∈ ⎪⎝⎭使()()3f x f x αα+=+恒成立.其中正确的是______(填写正确的番号).8.如图,在边长为2的正方形ABCD 中,M ,N 分别为边BC ,CD 上的动点,以MN 为边作等边PMN ,使得点A ,P 位于直线MN 的两侧,则PN PB ⋅的最小值为______.9.已知直线y m =与函数3()sin (0)42f x x πωω⎛⎫=++> ⎪⎝⎭的图象相交,若自左至右的三个相.邻交点...A ,B ,C 满足2AB BC =,则实数m =______. 10.已知1OB →=,,A C 是以O 为圆心,220BA BC →→⋅=,设平面向量OA →与OB →的夹角为θ(π04θ≤≤),则平面向量OA →在BC →方向上的投影的取值范围是_____.二、单选题11.已知函数()|sin |(0)f x x ωω=>在区间,53ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数ω的取值范围为( ) A .5,32⎡⎤⎢⎥⎣⎦B .30,2⎛⎤ ⎥⎝⎦C .8,33⎡⎤⎢⎥⎣⎦D .50,4⎛⎤ ⎥⎝⎦12.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( ) A .33⎝ B .332⎛ ⎝C .33⎡⎤⎢⎥⎣ D .332⎡⎢⎣13.已知O 是三角形ABC 的外心,若()22AC ABAB AO AC AO m AO AB AC⋅+⋅=,且sin sin 3B C +=,则实数m 的最大值为( )A .3B .35C .75D .3214.已知函数()()sin f x x ωφ=+π0,02ωφ⎛⎫><< ⎪⎝⎭在π5π,88⎛⎫ ⎪⎝⎭上单调,且π3π088f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,则π2f ⎛⎫⎪⎝⎭的值为( ) A 22B .1C .1-D .22-15.已知F 是椭圆2221(1)x y a a+=>的左焦点,A 是该椭圆的右顶点,过点F 的直线l (不与x 轴重合)与该椭圆相交于点M ,N .记MAN α∠=,设该椭圆的离心率为e ,下列结论正确的是( ) A .当01e <<时,2πα<B .当202e <<时,2πα>C .当1222e <<时,23πα>D .当212e <<时,34πα> 16.如图,长方形ABCD 中,152AB =,1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14B .23C 151-D 51-17.在ABC 中,若22sin cos 1A B +=,则8cos AB BCBC A AC+的取值范围为( )A .)43,8⎡⎣B .)43,7⎡⎣C .()7,8D .(0,4318.设函数242,0()sin ,60x x x f x x x ⎧-+≥=⎨-≤<⎩,对于非负实数t ,函数()y f x t =-有四个零点1x ,2x ,3x ,4x .若1234x x x x <<<,则1234x x x x ++的取值范围中的整数个数为( )A .0B .1C .2D .319.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点1F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若2ABF 是钝角三角形,则该双曲线离心率的取值范围是( ) A .(21,)+∞B .(12,)+∞C .(1,12)D .(31,)+∞20.在锐角ABC 中,若cos cos sin sin 3sin A C B C a c A+=3cos 2C C +=,则a b +的取值范围是( ) A .(6,23⎤⎦B .(0,43C .(23,43D .(6,43三、解答题21.若函数()y f x =的图像上存在两个不同的点关于y 轴对称,则称函数()y f x =图像上存在一对“偶点”.(1)写出函数()sin f x x =图像上一对“偶点”的坐标;(不需写出过程) (2)证明:函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”;(3)若函数()2()x h x e mx m =--∈R 图像上有且只有一对“偶点”,求m 的取值范围.22.已知函数()()()()2cos +2cos 02f x x x x πϕϕϕϕ⎛⎫=+++<< ⎪⎝⎭.(1)求()f x 的最小正周期;(2)若13f π⎛⎫= ⎪⎝⎭,求当()2f x =时自变量x 的取值集合.23.已知函数2()2sin cos ()f x x x x a a R =-++∈,且(0)f = (1)求a 的值;(2)若()f x ω在[0,]π上有且只有一个零点,0>ω,求ω的取值范围.24.已知(3cos ,sin ),(sin ,0),0a x x b x ωωωω==>,设()(),f x a b b k k R =+⋅+∈. (1)若()f x 图象中相邻两条对称轴间的距离不小于2π,求ω的取值范围; (2)若()f x 的最小正周期为π,且当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最大值是12,求()f x 的解析式,并说明如何由sin y x =的图象变换得到()y f x =的图象.25.已知函数()2sin 2cos 3f x x a x =+-.(1)当1a =时,求该函数的最大值;(2)是否存在实数a ,使得该函数在闭区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为1?若存在,求出对应a的值;若不存在,试说明理由. 26.已知函数()sin 2coscos 2sin33f x x x ππ=+.(1)若对任意,63x ππ⎡⎤∈⎢⎥⎣⎦,都有4f x m π⎛⎫- ⎪⎝⎭成立,求实数m 的取值范围;(2)设函数()1226g x f x π⎛⎫=- ⎪⎝⎭()g x 在区间[],3ππ-内的所有零点之和.27.已知函数 2()sin 2cos 1f x x m x =--- [0,]2x π∈()1若()f x 的最小值为 - 3,求m 的值;()2当2m =时,若对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立,求实数a 的取值范围.28.已知函数())2sin cos 0f x x x x ωωωω=+>的最小正周期为π.将函数()y f x =的图象上各点的横坐标变为原来的4倍,纵坐标变为原来的2倍,得到函数()y g x =的图象.(1)求ω的值及函数()g x 的解析式; (2)求()g x 的单调递增区间及对称中心29.已知函数()()sin ,f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象如图所示:(1)求函数()f x 的解析式及其对称轴的方程;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程()23f x a =-有两个不等的实根12,x x ,求实数a 的取值范围,并求此时12x x +的值.30.已知函数()()()24sin sin cos sin cos sin 142x f x x x x x x π⎛⎫=+++-- ⎪⎝⎭.(1)求函数()f x 的最小正周期; (2)若函数()()()12122g x f x af x af x a π⎡⎤⎛⎫=+---- ⎪⎢⎥⎝⎭⎣⎦在,42ππ⎡⎤-⎢⎥⎣⎦的最大值为2,求实数a 的值.【参考答案】一、填空题1.3(21)22.22⎝ 3.12(,)369- 4.2rr h-+ 5.8,83⎛⎫ ⎪⎝⎭6.137.②③8.14-9.1或2##2或110.⎡⎢⎣⎦二、单选题 11.A 12.A 13.D 14.D 15.A 16.A 17.A 18.B 19.B 20.D 三、解答题21.(1)()(),0,0ππ-(2)见解析(3)()1,+∞ 【解析】(1)根据题意即正弦函数的性质即可直接求解;(2)要证:函数数()2x h x e mx =--图象上有且只有一对“偶点”,只需证:())()()y Q x g x g x ==--=在(0,2)上有且只有一个零点,结合导数及函数的性质即可证明;(3)由题意,问题可转化为函数()()y h x h x =--只有一个零点,结合函数的性质及导数可求. 【详解】(1)函数()sin f x x =图像上一对“偶点”的坐标为()(),0,0ππ-, (2)设()()()()()ln 2ln 22Q x g x g x x x x =--=+--+-, 因为()y Q x =的定义域为()2,2-,且()()Q x Q x -=-, 所以函数()y Q x =为奇函数,要证:函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”, 只需证:()y Q x =在()0,2上有且只有一个零点, 令()()222204x Q x x -'==-,得x =所以,函数()Q x 在(上为单调减函数,在)2上为单调增函数,(ln 30Q=+-<,4441122ln 40Q e e e ⎛⎫⎛⎫-=-+> ⎪ ⎪⎝⎭⎝⎭,所以函数()Q x 在41e ⎫-⎪⎭上有且只有一个零点,所以函数()ln(2)2g x x x =+-+图像上有且只有一对“偶点”,(3)设()()()2x xF x h x h x e e mx -=--=--,()00F =,因为()y F x =的定义域为R ,且()()F x F x -=-, 所以函数()y F x =为奇函数,因为函数()2()x h x e mx m =--∈R 图像上有且只有一对“偶点”, 所以函数()y F x =在()0,∞+有且只有一个零点, ()12x xF x e m e '=+-,()0,x ∈+∞, ①当1m 时,因为()220F x m '>-≥,所以函数()y F x =在()0,∞+上为单调增函数,所以()()00F x F >=, 所以函数()F x 在()0,∞+无零点,②当1m 时,由()212120x x xx xe me F x e m e e -+'=+-==,得:(0ln x m =,所以函数()y F x =在()00,x 上单调减函数,在()0,x +∞上单调增函数, 所以()()000F x F <=, 设()ln H x x x =-,()1xH x x-'=, 所以函数()H x 在()0,1上单调增函数,在()1,+∞上单调减函数, 所以()()110H x H ≤=-<,所以ln x x <,所以(ln ln 22m m m +<<,设()()211x m x e x x =-->,设()()2xM x m x e x '==-, 因为()220xM x e e '=->->,所以函数()M x 在()1,+∞单调增函数,所以()()120M x M e >=->,所以函数()m x 在()1,+∞单调增函数, 所以()()120m x m e >=->,所以当1x >时,21x e x >+, ()22222124140m m m F m e m e m e=-->-->, 因为函数()y F x =在()0,x +∞上单调增函数,所以函数()F x 在()0,2x m 上有且仅有一个1x ,使得()10F x =, 综上:m 的取值范围为()1,+∞. 【点睛】本题中综合考查了函数的性质及导数的综合应用,体现了分类讨论思想的应用,试题具有一定的综合性.22.(1)π;(2)12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭【解析】 【分析】(1)由辅助角公式可得()f x 2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,再求周期即可;(2)由13f π⎛⎫= ⎪⎝⎭求出12πϕ=,再解方程2sin 2123x π⎛⎫++= ⎪⎝⎭即可.【详解】解:(1)()()()()2cos 2cos f x x x x ϕϕϕ=++++()()2cos21x x ϕϕ=++++2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,则()f x 的最小正周期为2T ππω==.(2)因为13f π⎛⎫= ⎪⎝⎭,所以2sin 221136ππϕ⎛⎫⨯+++= ⎪⎝⎭,即()526k k Z πϕπ+=∈, 解得()5212k k Z ππϕ=-∈. 因为02πϕ<<,所以12πϕ=.因为()2f x =,所以2sin 2123x π⎛⎫++= ⎪⎝⎭,即1sin 232x π⎛⎫+= ⎪⎝⎭,则2236x k πππ+=+或()52236x k k Z πππ+=+∈, 解得12x k ππ=-+或()4x k k Z ππ=+∈.故当()2f x =时,自变量x 的取值集合为12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭.【点睛】本题考查了三角恒等变换,重点考查了解三角方程,属中档题.23.(1)a =(2)15,36⎡⎫⎪⎢⎣⎭【解析】 【分析】(1)利用降次公式、辅助角公式化简()f x 表达式,利用(0)f =a 的值.(2)令()0f x ω=,结合x 的取值范围以及三角函数的零点列不等式,解不等式求得ω的取值范围. 【详解】(1)2()2sin cos f x x x x a =-++sin 2x x a =+2sin 23x a π⎛⎫=++- ⎪⎝⎭(0)f =(0)2sin3f a π∴=+=即a =(2)令()0f x ω=,则sin 203x πω⎛⎫+= ⎪⎝⎭,[0,]x π∈,2,2333πππωπω⎡⎤∴+∈+⎢⎥⎣⎦,()f x 在[0,]π上有且只有一个零点,223πππωπ∴+<,1536ω∴<, ω∴的取值范围为15,36⎡⎫⎪⎢⎣⎭. 【点睛】本小题主要考查三角恒等变换,考查三角函数零点问题,考查化归与转化的数学思想方法,属于基础题.24.(1)01ω<≤;(2)()sin 26f x x π⎛⎫=- ⎪⎝⎭;平移变换过程见解析.【解析】 【分析】(1)根据平面向量的坐标运算,表示出()f x 的解析式,结合辅助角公式化简三角函数式.结合相邻两条对称轴间的距离不小于2π及周期公式,即可求得ω的取值范围; (2)根据最小正周期,求得ω的值.代入解析式,结合正弦函数的图象、性质与()f x 的最大值是12,即可求得()f x 的解析式.再根据三角函数图象平移变换,即可描述变换过程.【详解】∵(3cos ,sin ),(sin ,0)a x x b x ωωω== ∴(3cos sin ,sin )a b x x x ωωω+=+∴2()()3sin cos sin f x a b b k x x x k ωωω=+⋅+=++1cos21122cos2222x x k x x k ωωωω-=++=-++ 1sin 262x k πω⎛⎫=-++ ⎪⎝⎭(1)由题意可知222T ππω=≥, ∴1ω≤ 又0>ω, ∴01ω<≤ (2)∵T πω=, ∴1ω=∴1()sin 262f x x k π⎛⎫=-++ ⎪⎝⎭∵,66x ππ⎡⎤∈-⎢⎥⎣⎦,∴2,626x πππ⎡⎤-∈-⎢⎥⎣⎦∴当266x ππ-=即6x π=时max 11()sin 16622f x f k k ππ⎛⎫==++=+= ⎪⎝⎭∴12k =-∴()sin 26f x x π⎛⎫=- ⎪⎝⎭将sin y x =图象上所有点向右平移6π个单位,得到sin 6y x π⎛⎫=- ⎪⎝⎭的图象;再将得到的图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象(或将sin y x =图象上所有点的横坐标变为原来的12倍,纵坐标不变,得到sin 2y x =的图象;再将得到的图象上所有点向右平移12π个单位,得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象) 【点睛】本题考查了正弦函数图像与性质的综合应用,根据最值求三角函数解析式,三角函数图象平移变换过程,属于中档题.25.(1)1-;(2)存在,且2a =. 【解析】 【分析】(1)将1a =代入函数()y f x =的解析式,得出()()2cos 11f x x =---,由1cos 1x -≤≤结合二次函数的基本性质可得出该函数的最大值;(2)换元[]cos 0,1t x =∈,将问题转化为二次函数()222t at g t -+-=在区间[]0,1上的最大值为1,然后分0a ≤、01a <<和1a ≥三种情况讨论,利用二次函数的基本性质求出函数()222t at g t -+-=在区间[]0,1上最大值,进而求得实数a 的值.【详解】(1)当1a =时,()()22sin 2cos 3cos 11f x x x x =+-=---,1cos 1x -≤≤,当cos 1x =时,该函数取得最大值,即()max 1f x =-;(2)()22sin 2cos 3cos 2cos 2x a x x a x f x =+-=-+-,当0,2x π⎡⎤∈⎢⎥⎣⎦时,设[]cos 0,1t x =∈,设()222t at g t -+-=,[]0,1t ∈,二次函数()y g t =的图象开口向下,对称轴为直线t a =.当0a ≤时,函数()y g t =在[]0,1上单调递减,所以0=t 时,()()max 021g t g ==-≠,0a ∴≤不符合题意;当1a ≥时,函数()y g t =在[]0,1上单调递增,所以1t =时,()()max 1231g t g a ==-=,2a ∴=满足1a ≥;当01a <<时,函数()y g t =在[]0,a 上单调递增,在(],1a 上单调递减, ∴当t a =时,()()2max 21g t g a a ==-=,a ∴=01a <<.综上,存在2a =符合题意. 【点睛】本题考查二次型余弦函数的最值,将问题转化为二次函数的最值来求解是解题的关键,第二问要对二次函数图象的对称轴与区间的位置关系进行分类讨论,结合二次函数的单调性求解,考查分类讨论思想的应用,属于中等题. 26.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)2π【解析】(1)首先根据两角和的正弦公式得到()sin 23f x x π⎛⎫=+ ⎪⎝⎭,从而得到4f x π⎛⎫- ⎪⎝⎭的解析式,根据正弦函数的性质求出其值域,从而得到参数的取值范围; (2)首先求出()g x 的解析式,根据正弦函数的对称性即可解答. 【详解】解:(1)因为()sin 2coscos 2sin33f x x x ππ=+()sin 23f x x π⎛⎫∴=+ ⎪⎝⎭, 所以sin 2sin 24436f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.又,63x ππ⎡⎤∈⎢⎥⎣⎦,所以2,662x πππ⎡⎤-∈⎢⎥⎣⎦, 故1sin 2,162x π⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,即min 142f x π⎛⎫-= ⎪⎝⎭,12m, 所以实数m 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.(2)由(1)得()1122sin 22sin 26263g x f x x x πππ⎡⎤⎛⎫⎛⎫=-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦令()0g x =,得sin x =sin x =[],3ππ-上有4个零点 这4个零点从小到大不妨设为1x ,2x ,3x ,4x ,则由对称性得1222x x π+=-,34322x x π+=, 从而所有零点和为12342x x x x π+++=. 【点睛】本题考查两角和的正弦公式的应用,三角函数的性质的应用,属于基础题. 27.(1)1m =;(2)13[,)8a ∈+∞【解析】 【分析】(1)将函数化为2()cos 2cos 2f x x m x =--,设cos [0,1]t x =∈,将函数转化为二次函数,利用二次函数在给定的闭区间上的最值问题的解法求解.(2) 对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立, 等价于12max1()()24f x f x a -≤-,然后求出函数()f x 的最值即可解决.【详解】(1)2()cos 2cos 2f x x m x =--,[0,]2x π∈令 cos [0,1]t x =∈, 设222()22()2g t t mt t m m =--=---, ①0m <,则min g(0)2()3g t ==-≠-,②01m ≤≤,则2min )3(2t m g =--=-,∴1m =± ∴1m =③1m ,则min g(1)21()3g m t ==--=-,∴1m =.(舍) 综上所述:1m =.(2)对任意12,[0,]2x x π∈都有()()12124f x f x a -≤-恒成立,等价于12max1()()24f x f x a -≤-,2m =,∴2g()(2)6t t =--,[0,1]t ∈max ()g(0)2f x ==-,min ()g(1)5f x ==-12max ()(25)()3f x f x =---=- ∴ 1234a -≥,∴ 138a ≥, 综上所述:13[,)8a ∈+∞.本题考查三角函数中的二次“型”的最值问题,和双参恒成立问题,属于中档题.28.(1)1ω=,()2sin()23x g x π=+;(2)单调递增区间为54,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,对称中心为2(2,0)()3k k ππ-∈Z . 【解析】 【分析】(1)整理()f x 可得:()sin(2)3f x x πω=+,利用其最小正周期为π即可求得:1ω=,即可求得:()sin(2)3f x x π=+,再利用函数图象平移规律可得:()2sin()23x g x π=+,问题得解. (2)令222232x k k πππππ-≤+≤+,k Z ∈,解不等式即可求得()g x 的单调递增区间;令23x k ππ+=,k Z ∈,解方程即可求得()g x 的对称中心的横坐标,问题得解. 【详解】解:(1)1()2sin 2sin(2)23f x x x x πωωω=+=+, 由22ππω=,得1ω=. 所以()sin(2)3f x x π=+.于是()y g x =图象对应的解析式为()2sin()23x g x π=+.(2)由222232x k k πππππ-≤+≤+,k Z ∈得 54433k x k ππππ-≤≤+,k Z ∈ 所以函数()g x 的单调递增区间为54,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 由23x k ππ+=,解得22()3x k k ππ=-∈Z . 所以()g x 的对称中心为2(2,0)()3k k ππ-∈Z . 【点睛】本题主要考查了二倍角公式、两角和的正弦公式应用及三角函数性质,考查方程思想及转化能力、计算能力,属于中档题.29.(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,()62k x k Z ππ=+∈;(2)522a ≤<,3π.【解析】(1)根据图像得A=2,利用412562T πππω=-=,求ω值,再利用6x π=时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得72,666x πππ⎡⎤+∈⎢⎥⎣⎦,方程f (x )=2a ﹣3有两个不等实根转为f (x )的图象与直线y =2a ﹣3有两个不同的交点,从而可求得a 的取值范围,利用图像的性质可得12x x +的值. 【详解】(1)由图知,2,A =4156242=T ππππω=-=,解得ω=2,f(x)=2sin(2x+φ), 当6x π=时,函数取得最大值,可得2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,即sin 13πϕ⎛⎫+= ⎪⎝⎭,2,32k k Z ππϕπ+=+∈,解得2,6k k Z πϕπ=+∈ ,又(0,)2πϕ∈所以6π=ϕ, 故()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,令262x k πππ+=+则()62k x k Z ππ=+∈, 所以()f x 的对称轴方程为()62k x k Z ππ=+∈; (2)70,2,2666x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦,所以方程()23f x a =-有两个不等实根时,()y f x =的图象与直线23y a =-有两个不同的交点,可得1232,a ≤-<522a ∴≤<, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()12f x f x =,有122266x x πππ+++=,故123x x π+=.【点睛】本题考查由y =A sin (ωx +φ)的部分图象确定函数解析式,考查函数y =A sin (ωx +φ)的图象及性质的综合应用,属于中档题. 30.(1) 2T π=;(2)2a =-或6a = 【解析】 【分析】(1)根据二倍角公式进行整理化简可得()2sin f x x =,从而可得最小正周期;(2)将()g x通过换元的方式变为21112y t at a =-+--,1t ≤;讨论对称轴的具体位置,分别求解最大值,从而建立方程求得a 的值. 【详解】(1)()2221cos sin cos sin 12f x x x x x π⎡⎤⎛⎫=-++-- ⎪⎢⎥⎝⎭⎣⎦()222sin sin 12sin 12sin x x x x =++--= ∴最小正周期2T π=(2)()1sin2sin cos 12g x a x a x x a =+---令sin cos x x t -=,则()22sin 21sin cos 1x x x t =--=-22221111122242a a y t at a t at a t a ⎛⎫∴=-+--=-+-=--+- ⎪⎝⎭sin cos 4t x x x π⎛⎫=-=- ⎪⎝⎭由42x ππ-≤≤得244x πππ-≤-≤1t ≤①当2a<a <-当t =max 122y a ⎫=--⎪⎭由1222a ⎫--=⎪⎭,解得()817a ==->-)②当12a≤,即2a -≤时 当2a t =时,2max 142a y a =- 由21242a a -=得2280a a --=,解得2a =-或4a =(舍去) ③当12a>,即2a >时 当1t =时,max 12a y =-,由122a-=,解得6a = 综上,2a =-或6a = 【点睛】本题考查正弦型函数最小正周期的求解、利用二次函数性质求解与三角函数有关的值域问题,解题关键是通过换元的方式将所求函数转化为二次函数的形式,再利用对称轴的位置进行讨论;易错点是忽略了换元后自变量的取值范围.。
三角函数习题及答案

2 fcot 2 (B) tan 2 p cot 2 (C) sin 2 f cos 2 (D) sin 2 p cos 4.若 sin θ + cos θ = - ,则θ只可能是( )6.已知 α 是第二象限角且 s in α =41. sin (π - 2)- cos - 2 ⎪ 化简结果是()2.若 sin α + cos α = ,且 0 p α p π ,则 tan α 的值为(3. 已知 sin α cos α = ,且 p α p ,则 cos α - sin α 的值为()第四章 三角函数§4-1 任意角的三角函数一、选择题:1.使得函数 y = lg(sin θ cos θ ) 有意义的角在()(A)第一,四象限 (B)第一,三象限 (C)第一、二象限 (D)第二、四象限 2.角 α、β 的终边关于 У 轴对称,(κ∈Ζ)。
则(A)α+β=2κπ (B)α-β=2κπ (C)α+β=2κπ-π (D)α-β=2κπ-π3.设θ为第三象限的角,则必有()(A) tanθθ θ θ θ θ θ θ 24 3(A)第一象限角 (B)第二象限角 (C )第三象限角 (D)第四象限角 5.若 tan θ sin θ p 0 且 0 p sin θ + cos θ p 1 ,则θ的终边在( ) (A)第一象限 (B )第二象限(C )第三象限(D )第四象限二、填空题:α则 2α 是第▁▁▁▁象限角,是第▁▁▁象限角。
527.已知锐角 α 终边上一点 A 的坐标为(2sina3,-2cos3),则 α 角弧度数为▁▁▁▁。
8.设 y = sin x +1,( x ≠ k π , k ∈ Z ) 则 Y 的取值范围是▁▁▁▁▁▁▁。
sin x9.已知 cosx-sinx<-1,则 x 是第▁▁▁象限角。
三、解答题:10.已知角 α 的终边在直线 y = 3x 上,求 sin α 及 cot α 的值。
初中数学三角函数基础练习含答案

三角函数基础练习一.选择题(共40小题)1.如图,△ABC中,∠C=90o,tan A=2,则cos A的值为()A.B.C.D.2.在Rt△ABC中,∠C=90°,sin A=,则sin B的值为()A.B.C.D.3.如图,已知点C从点B出发,沿射线BD方向运动,运动到点D后停止,则在这个过程中,从A观测点C的俯角将()A.增大B.减小C.先增大后减小D.先减小后增大4.在Rt△ABC中,若∠ACB=90°,tan A=,则sin B=()A.B.C.D.5.一艘轮船在A处测得灯塔S在船的南偏东60°方向,轮船继续向正东航行30海里后到达B处,这时测得灯塔S在船的南偏西75°方向,则灯塔S离观测点A、B的距离分别是()A.(15﹣15)海里、15海里B.(15﹣15)海里、5海里C.(15﹣15)海里、15海里D.(15﹣15)海里、15海里6.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan A=()A.B.C.D.7.在Rt△ABC中,∠C=90°,∠B=α,若BC=m,则AC的长为()A.B.m•cosαC.m•sinαD.m•tanα8.如图,在Rt△ABC中,∠C=90°,BC=4,AC=2,则tan A等于()A.B.2C.D.9.如图,测得一商场自动扶梯的长为l,自动扶梯与地面所成的角为θ,则该自动扶梯到达的高度h为()A.l•sinθB.C.l•cosθD.10.如图,在Rt△ABC中,直角边BC的长为m,∠A=40°,则斜边AB的长是()A.m sin40°B.m cos40°C.D.11.如图,在△ABC中,∠ACB=90°,AB=5,AC=3,则tan∠B的值为()A.B.C.D.12.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是()A.B.C.D.13.如图,在Rt△ABC中,∠CAB=90°,AD⊥BC于点D,BD=2,tan∠C=,则线段AC的长为()A.10B.8C.D.14.如图,梯子AC的长为2.8米,则梯子顶端离地面的高度AD是()A.米B.米C.sinα米D.cosα米15.计算2sin30°﹣2cos60°+tan45°的结果是()A.2B.C.D.116.在Rt△ABC中,∠C=90°,BC=1,AB=4,则sin B的值是()A.B.C.D.17.在△ABC中,∠ACB=90°,AC=1,BC=2,则cos B的值为()A.B.C.D.18.若锐角A满足cos A=,则∠A的度数是()A.30°B.45°C.60°D.75°19.如图,某建筑物的顶部有一块标识牌CD,小明在斜坡上B处测得标识牌顶部C的仰角为45°,沿斜坡走下来在地面A处测得标识牌底部D的仰角为60°,已知斜坡AB的坡角为30°,AB=AE=10米.则标识牌CD的高度是()米.A.15﹣5B.20﹣10C.10﹣5D.5﹣520.在直角三角形中sin A的值为,则cos A的值等于()A.B.C.D.21.在Rt△ABC中,∠C=90°,AB=4,BC=3,则sin∠B的值为()A.B.C.D.22.已知在Rt△ABC中,∠C=90°,sin A=,则∠A的正切值为()A.B.C.D.23.在Rt△ABC中,∠C=90°,sin A=,BC=6,则AB长是()A.4B.6C.8D.1024.已知∠A与∠B互余,若tan∠A=,则cos∠B的值为()A.B.C.D.25.如图,A,B,C是3×1的正方形网格中的三个格点,则tan B的值为()A.B.C.D.26.Rt△ABC中,∠C=90°,AC=,AB=4,则cos B的值是()A.B.C.D.27.如图,在Rt△ABC中,∠C=90°,AB=13,BC=12,AC=5,则下列三角函数表示正确的是()A.sin A=B.cos A=C.tan A=D.tan B=28.如图,△ABC中,∠B=90°,BC=2AB,则sin C=()A.B.C.D.29.已知在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值为()A.B.C.D.30.锐角α满足,且,则α的取值范围为()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°31.如图,在△ABC中,AC=1,BC=2,AB=,则sin B的值是()A.B.C.2D.32.已知cosα=,且α是锐角,则α=()A.75°B.60°C.45°D.30°33.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=34.某人沿着斜坡前进,当他前进50米时上升的高度为25米,则斜坡的坡度是i=()A.B.1:3C.D.1:235.如图,有一斜坡AB的长AB=10米,坡角∠B=36°,则斜坡AB的铅垂高度AC为()A.10sin36°B.10cos36°C.10tan36°D.36.某水库大坝的横断面是梯形,坝内一斜坡的坡度i=1:,则这个斜坡坡角为()A.30°B.45°C.60°D.90°37.如图,在Rt△ABC中,∠C=90°,AC=2,BC=3,则tan A=()A.B.C.D.38.在Rt△ABC中,AB=4,AC=2,∠C=90°,则∠A的度数为()A.30°B.40°C.45°D.60°39.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则cos∠BAC的值为()A.B.C.D.40.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠B的正切值为()A.3B.C.D.三角函数基础练习参考答案与试题解析一.选择题(共40小题)1.解:∵△ABC中,∠C=90o,∴tan A==2,∴设CB=2k,AC=k,∴AB==k,∴cos A===,故选:B.2.解:∵Rt△ABC中,∠C=90°,sin A=,∴cos A===,∠A+∠B=90°,∴sin B=cos A=.故选:A.3.解:点C从点B出发,沿射线BD方向运动,运动到点D后停止,则在这个过程中,从A观测点C的俯角将增大,故选:A.4.解:如图,∵在Rt△ABC中,∠C=90°,tan A=,∴设AC=2k,BC=k,则AB==k,∴sin B===.故选:D.5.解:过S作SC⊥AB于C,在AB上截取CD=AC,∴AS=DS,∴∠CDS=∠CAS=30°,∵∠ABS=15°,∴∠DSB=15°,∴SD=BD,设CS=x,在Rt△ASC中,∵∠CAS=30°,∴AC=x,AS=DS=BD=2x,∵AB=30海里,∴x+x+2x=30,解得:x=,∴AS=(15﹣15)(海里);∴BS==15(海里),∴灯塔S离观测点A、B的距离分别是(15﹣15)海里、15海里,故选:D.6.解:由图可知:BC=4,AB=3,∠ABC=90°,在Rt△ABC中,tan A==.故选:A.7.解:在Rt△ABC中,∠C=90°,tan B=,∴AC=BC•tan B=m•tanα,故选:D.8.解:在Rt△ABC中,∠C=90°,∴tan A=═2,故选:B.9.解:∵sinθ=,∴h=l•sinθ,故选:A.10.解:∵sin A=,∴AB=,故选:C.11.解:由勾股定理得,BC==4,∴tan∠B==,故选:D.12.解:∵∠C=90°,AB=5,BC=3,∴AC==4,∴cos A==,故选:A.13.解:∵∠CAB=90°,AD⊥BC于点D,∴∠B+∠C=90°,∠B+∠BAD=90°,∴∠BAD=∠C.在Rt△ABD中,∠ADB=90°,BD=2,∵tan∠BAD==,∴AD=2BD=4,∴AB==2.在Rt△ABC中,∠CAB=90°,AB=2,∵tan∠C==,∴AC=2AB=4.故选:D.14.解:在Rt△ACD中,∠ADC=90°,AB=2.8m,∠ACD=α,∴AD=AC•sin∠ACD=2.8sinα=sinα米,故选:C.15.解:2sin30°﹣2cos60°+tan45°=2×﹣2×+1=1﹣1+1=1.故选:D.16.解:由勾股定理得,AC===则sin B==,故选:C.17.解:由勾股定理得,AB===,则cos B===,故选:B.18.解:∵cos A=,∴∠A=30°.故选:A.19.解:过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,如图所示.在Rt△ABM中,AB=10米,∠BAM=30°,∴AM=AB•cos∠BAM=5米,BM=AB•sin∠BAM=5米.在Rt△ADE中,AE=10米,∠DAE=60°,∴DE=AE•tan∠DAE=10米.在Rt△BCN中,BN=AE+AM=(10+5)米,∠CBN=45°,∴CN=BN•tan∠CBN=(10+5)米,∴CD=CN+EN﹣DE=10+5+5﹣10=(15﹣5)米.故选:A.20.解:∵在直角三角形中sin A的值为,∴∠A=30°.∴cos A=cos30°=.故选:C.21.解:如图:∵∠C=90°,AB=4,BC=3,∴AC==,∴sin∠B=,故选:A.22.解:∵在Rt△ABC中,∠C=90°,sin A==,∴设BC=3x,AB=5x,由勾股定理得:AC==4x,∴tan A===,即∠A的正切值为,故选:D.23.解:∵∠C=90°,sin A==,BC=6,∴AB=BC=×6=10;故选:D.24.解:∵∠A与∠B互余,∴∠A、∠B可看作Rt△ABC的两锐角,∵tan∠A==,∴设BC=4x,AC=3x,∴AB=5x,∴cos∠B===.故选:B.25.解:如图所示,在Rt△ABD中,tan B==.故选:A.26.解:∵∠C=90°,AC=,AB=4,∴BC===1,∴cos B==,故选:D.27.解:A、sin A==,故原题说法正确;B、cos A==,故原题说法错误;C、tan A==,故原题说法错误;D、tan B==,故原题说法错误;故选:A.28.解:∵BC=2AB,∴设AB=a,BC=2a,∴AC==a,∴sin C===,故选:D.29.解:∵∠C=90°,AB=5,AC=4,∴BC==3,∴cos B==.故选:B.30.解:∵,且,∴45°<α<60°.故选:B.31.解:∵在△ABC中,∠ACB=90°,AC=1,BC=2,AB=,∴sin B=.故选:B.32.解:∵cosα=,且α是锐角,∴α=30°.故选:D.33.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.34.解:由题意得:某人在斜坡上走了50米,上升的高度为25米,则某人走的水平距离s==25,∴坡度i=25:25=1:.故选:A.35.解:由题意可得:sin B=,即sin36°=,故AC=10sin36°.故选:A.36.解:∵某水库大坝的横断面是梯形,坝内一斜坡的坡度i=1:,∴设这个斜坡的坡角为α,故tanα==,故α=30°.故选:A.37.解:在Rt△ABC中,∠C=90°,tan A==,故选:B.38.解:在Rt△ABC中,AB=4,AC=2,∴cos A===,则∠A=45°.故选:C.39.解:过点C作CD⊥AB于点D,∵AD=3,CD=4,∴由勾股定理可知:AC=5,∴cos∠BAC==,故选:C.40.解:在Rt△ABC中,tan B==,故选:B.。
三角函数10道大题(带答案)

三角函数10道大题(带答案)三角函数1.已知函数$f(x)=4\cos x\sin(x+\frac{\pi}{6})+\sin(2x-\frac{\pi}{4})+2\cos2x-1,x\in R$。
Ⅰ)求$f(x)$的最小正周期;Ⅱ)求$f(x)$在区间$[-\frac{\pi}{4},\frac{\pi}{4}]$上的最大值和最小值。
2.已知函数$f(x)=\tan(2x+\frac{\pi}{4}),x\in R$。
Ⅰ)求$f(x)$的定义域与最小正周期;II)设$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,若$f(\alpha+\frac{\pi}{4})=2\cos2\alpha$,求$\alpha$的大小。
3.已知函数$f(x)=\frac{(sinx-cosx)\sin2x}{\sin x}$。
1)求$f(x)$的定义域及最小正周期;2)求$f(x)$的单调递减区间。
4.设函数$f(x)=\frac{2\pi\cos(2x+\frac{\pi}{4})+\sin2x}{24}$。
Ⅰ)求函数$f(x)$的最小正周期;II)设函数$g(x)$对任意$x\in R$,有$g(x+\pi)=g(x)$,且当$x\in[0,\frac{\pi}{2}]$时,$2\pi g(x)=1-f(x)$,求函数$g(x)$在$[-\pi,0]$上的解析式。
5.函数$f(x)=A\sin(\omega x-\frac{\pi}{6})+1(A>0,\omega>\frac{\pi}{6})$的最大值为3,其图像相邻两条对称轴之间的距离为$\frac{\pi}{2}$。
1)求函数$f(x)$的解析式;2)设$\alpha\in(0,\frac{\pi}{2})$,则$f(\alpha)=2$,求$\alpha$的值。
6.设$f(x)=4\cos(\omega x-\frac{\pi}{6})\sin\omegax+\cos2\omega x$,其中$\omega>0$。
三角函数测试题及答案

三角函数测试题及答案一、选择题1. 已知角A的正弦值为\( \sin A = \frac{1}{2} \),则角A的余弦值\( \cos A \)是:A. \( \frac{1}{2} \)B. \( \frac{\sqrt{3}}{2} \)C. \( -\frac{1}{2} \)D. \( -\frac{\sqrt{3}}{2} \)2. 函数\( y = \sin x + \cos x \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \pi/2 \)D. \( 4\pi \)3. 已知\( \cos x = \frac{1}{3} \),且\( x \)在第一象限,求\( \sin x \)的值:A. \( \frac{2\sqrt{2}}{3} \)B. \( \frac{2\sqrt{5}}{3} \)C. \( \frac{4\sqrt{2}}{9} \)D. \( \frac{4\sqrt{5}}{9} \)二、填空题4. 根据正弦定理,如果三角形ABC的边a和角A相对,且\( a = 5 \),\( \sin A = \frac{3}{5} \),则边b的长度为______(假设\( \sin B = \frac{4}{5} \))。
5. 已知\( \tan x = -1 \),求\( \sin 2x \)的值。
三、解答题6. 求以下列三角方程的解:\( \sin^2 x + \cos^2 x = 1 \)7. 证明:\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \)。
四、应用题8. 在直角三角形ABC中,角C为直角,已知AB = 10,AC = 6,求BC 的长度。
答案:一、选择题1. C2. B3. B二、填空题4. 45. 1 或 -1三、解答题6. 该方程对所有\( x \)都成立,因为它是三角恒等式。
(完整版)三角函数基础练习题答案

三角函数基础练习题1.如果,那么与终边相同的角可以表示为21α=-αA . B .{}36021,k k ββ=⋅+∈Z {}36021,k k ββ=⋅-∈Z C .D .{}18021,k k ββ=⋅+∈Z {}18021,k k ββ=⋅-∈Z 参考答案:B考查内容:任意角的概念,集合语言(列举法或描述法)认知层次:b 难易程度:易2.一个角的度数是,化为弧度数是405A .B .C .D .π3683π47π613π49解:由,得,所以180π=1180π=94054051804ππ=⨯=参考答案:D考查内容:弧度制的概念,弧度与角度的互化认知层次:b 难易程度:易3.下列各数中,与cos1030°相等的是A .cos50°B .-cos50°C .sin50°D .- sin50°解:,1030336050=⨯- cos1030cos(336050)cos(50)cos50=⨯-=-=参考答案:A考查内容:任意角的概念,的正弦、余弦、正切的诱导公式(借助单位圆)πα±认知层次:c 难易程度:易4.已知x ∈[0,2π],如果y = cos x 是增函数,且y = sin x 是减函数,那么A .B .02x π≤≤xππ≤≤2C .D .32x ππ≤≤23x ππ≤≤2解:画出与的图象sin y x =cos y x =参考答案:C考查内容:的图象,的图象,正弦函数在区间上的性质,余弦sin y x =cos y x =[0,2π]函数在区间上的性质[0,2π]认知层次:b难易程度:易5.cos1,cos2,cos3的大小关系是( ).A .cos1>cos2>cos3B .cos1>cos3>cos2C .cos3>cos2>cos1D .cos2>cos1>cos3解:,而在上递减,01232ππ<<<<<cos y x =[0,]π参考答案:A考查内容:弧度制的概念,的图象,余弦函数在区间上的性质cos y x =[0,2π]认知层次:b 难易程度:易6.下列函数中,最小正周期为的是().πA . B .cos 4y x =sin 2y x =C . D . sin2xy =cos4xy =解:与的周期为sin y x ω=cos y x ω=2T πω=参考答案:B考查内容:三角函数的周期性认知层次:a 难易程度:易7.,,的大小关系是( ).)( 40tan -38tan56tan A . B .>-)( 40tan > 38tan56tan >38tan >-)(40tan56tan C . D .>56tan >38tan )(40tan ->56tan >-)(40tan38tan 解:在上递增,而tan y x =(,22ππ-9040<38<56<90-<-参考答案:C考查内容:的图象,正切函数在区间上的性质tan y x =ππ,22⎛⎫-⎪⎝⎭认知层次:b 难易程度:易8.如果,,那么等于( ).135sin =α),2(ππα∈tan αrA .B .C .D .125-125512-512解:由,得,135sin =α),2(ππα∈12cos 13α==-sin 5tan cos 12ααα==-参考答案:A考查内容:同角三角函数的基本关系式:,同角三角函数的基本关系式:22sin cos 1x x +=sin tan cos xx x=认知层次:b 难易程度:中9.函数图象的一条对称轴方程是)62sin(5π+=x y A . B . C . D .12x π=-0x =6x π=3x π=解:函数图象的对称轴方程是,即(),)62sin(5π+=x y 262x k πππ+=+26k x ππ=+Z k ∈令得0k =6x π=参考答案:C考查内容:正弦函数在区间上的性质[0,2π]认知层次:b 难易程度:易10.函数y = sin 的图象是中心对称图形,它的一个对称中心是34x π⎛⎫-⎪⎝⎭A .B ., 012π⎛⎫-⎪⎝⎭7, 012π⎛⎫- ⎪⎝⎭C .D . 7, 012π⎛⎫⎪⎝⎭11, 012π⎛⎫⎪⎝⎭解:设得函数图象的对称中心是(),34x k ππ-=sin(3)4y x π=-(,0)312k ππ+Z k ∈ 令得,2k =-7, 012π⎛⎫- ⎪⎝⎭参考答案:B考查内容:正弦函数在区间上的性质[0,2π]难易程度:中11.要得到函数y = sin 的图象,只要将函数y = sin2x 的图象( ).23x π⎛⎫+⎪⎝⎭A .向左平移个单位 B .向右平移个单位3π3πC .向左平移个单位 D .向右平移个单位6π6π解:,sin 2sin 236y x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭6x x π→+参考答案:C考查内容:参数,,对函数图象变化的影响A ωϕsin()y A x ωϕ=+认知层次:a 难易程度:易12.已知tan ( 0 << 2),那么角等于( ).ααπαA .B .或C .或D .6π6π76π3π43π3π解:,,令或可得tan α=6k παπ⇒=+Z k ∈0k =1k =参考答案:B考查内容:任意角的正切的定义(借助单位圆)认知层次:b 难易程度:易13.已知圆的半径为100cm ,是圆周上的两点,且弧的长为112cm ,那么O ,A B AB 的度数约是( ).(精确到1)AOB ∠︒A . B .C .D .646886110解:11211218064100100απ==⨯≈参考答案:A考查内容:弧度与角度的互化认知层次:b14.如图,一个半径为10米的水轮按逆时针方向每分钟转4圈.记水轮上的点P 到水面的距离为米(P 在水面下则为负数)d d ,如果(米)与时间(秒)之间满足关系式:d t ,且当P 点()sin 0,0,22d A t k A ππωϕωϕ⎛⎫=++>>-<< ⎪⎝⎭从水面上浮现时开始计算时间,那么以下结论中错误的是A .B .C .D .10=A 152πω=6πϕ=5=k 解:周期(秒),角速度,振幅,上移60154T ==215πω=10A =5k =参考答案:C考查内容:用三角函数解决一些简单实际问题,函数的实际意义,三角sin()y A x ωϕ=+函数是描绘周期变化现象的重要函数模型认知层次:b 难易程度:难15.sin(-)的值等于__________.196π解:,19534666πππππ-=--=-+1951sin(sin(4)662πππ-=-+=参考答案:12考查内容:的正弦、余弦、正切的诱导公式πα±认知层次:c 难易程度:易16.如果< θ < π,且cos θ = -,那么sin 等于__________.2π353πθ⎛⎫+ ⎪⎝⎭不做考查内容:同角三角函数的基本关系式:,两角和的正弦公式22sin cos 1x x +=认知层次:c 难易程度:中17.已知角的终边过点,那么的值为__________.α(4, 3)P -2sin cos αα+10m d5mP解: , 5r OP ===3422sin cos 2()555αα+=⨯-+=-参考答案:52-考查内容:任意角的正弦的定义(借助单位圆),任意角的余弦的定义(借助单位圆)认知层次:b 难易程度:中18.的值等于__________.75tan 175tan 1-+不做参考答案:3-考查内容:两角和的正切公式认知层次:c 难易程度:易19.函数y = sin(x +)在[-2π,2π]内的单调递增区间是__________.124π解:令,解得,令得1222242k x+k πππππ-≤≤+34422k x k ππππ-≤≤+0k =参考答案:[-,]32π2π考查内容:正弦函数在区间上的性质,不等关系,子集[0,2π]认知层次:b 难易程度:中20.已知sin +cos =,那么sin 的值是__________.αα532α参考答案:-1625考查内容:同角三角函数的基本关系式:22sin cos 1x x +=认知层次:b 难易程度:易21.函数y = sin x cos x 的最小正周期是__________.参考答案:2π考查内容:两角和的正弦公式,三角函数的周期性认知层次:c 难易程度:易22.已知,,那么tan2x 等于__________.(, 0)2x π∈-4cos 5x =参考答案:247-考查内容:同角三角函数的基本关系式:,二倍角的正切公式22sin cos 1x x +=认知层次:c 难易程度:易23.已知 ,.π02α<<4sin 5α=(1)求的值;tan α(2)求的值.(不做)πcos 2sin 2αα⎛⎫++⎪⎝⎭参考答案:(1)因为,, 故,所以.π02α<<4sin 5α=3cos 5α=34tan =α(2).πcos 2sin 2αα⎛⎫+-=⎪⎝⎭212sin cos αα-+=3231255-+=825考查内容:同角三角函数的基本关系式:,同角三角函数的基本关系式:22sin cos 1x x +=,的正弦的诱导公式,二倍角的余弦公式sin tan cos x x x =π2α+认知层次:c难易程度:中24.某港口海水的深度(米)是时间(时)()的函数,记为:.y t 024t ≤≤)(t f y =已知某日海水深度的数据如下:(时)t 03691215182124(米)y 10.013.09.97.010.013.010.17.010.0经长期观察,的曲线可近似地看成函数的图象.)(t f y =sin y A t b ω=+(1)试根据以上数据,求出函数的振幅、最小正周期和表达式;()sin y f t A t b ω==+(2)一般情况下,船舶航行时,船底离海底的距离为米或米以上时认为是安全的55(船舶停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面的距离)为米,5.6如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需时间)?参考答案:(1)依题意,最小正周期为:,振幅:,,12=T 3A =10=b .2ππ6T ω==所以.π()3sin 106y f t t ⎛⎫==⋅+⎪⎝⎭(2)该船安全进出港,需满足:.即:.6.55y ≥+π3sin 1011.56t ⎛⎫⋅+≥⎪⎝⎭所以.π1sin 62t ⎛⎫⋅≥⎪⎝⎭所以.ππ5π2π2π()666k t k k +≤⋅≤+∈Z 所以.121125()k t k k +≤≤+∈Z 又 ,024t ≤≤所以或.15t ≤≤1317t ≤≤所以,该船至多能在港内停留:(小时).16117=-考查内容:三角函数是描绘周期变化现象的重要函数模型,正弦函数在区间上的性[0,2π]质,用三角函数解决一些简单实际问题认知层次:b 难易程度:难。
三角函数测试题(带答案)

一、选择题1 .若点(a,9)在函数3xy =的图象上,则tan=6a π的值为 ( )A .0B .33C .1D .32 .若角α的终边经过点M (5,2--),则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角3 .若角α的终边经过点()3,4λλ-,且0λ≠,则sin cos sin cos αααα+-等于( )A .17-B .17 C .-7D .74 .已知α是第四象限角,5tan()12πα-=,则sin α=( ).15 B .15-C .513D .513-5 .623sin π等于( )A .23-B .21-C .21 D .23 6 .记k =︒-)80cos(,那么=︒100tan( )A .kk 21-B .-kk 21- C .21kk - D .-21kk -7 .已知),0(,137cos sin πααα∈=+,则αtan 等于 ( )A .512B .512-C .125D .125-8 .已知α是第四象限角,5tan()12πα-=,则sin α=( )A .15B .15-C .513D .513-9 .已知1sin 2x >,且[]0,2x π∈,则x 的取值范围是( )A .5,66ππ⎡⎤⎢⎥⎣⎦ B .5,66ππ⎛⎫⎪⎝⎭C .2,33ππ⎡⎤⎢⎥⎣⎦ C .2,33ππ⎛⎫⎪⎝⎭10.已知函数)0)(6sin(2)(>+=ωπωx x f 的最小正周期为π4,则该函数的图象 ( )A .关于点⎪⎭⎫⎝⎛0,3π对称 B .关于点⎪⎭⎫⎝⎛0,35π对称 C .关于直线3π=x 对称D .关于直线35π=x 对称 11.函数()sin()4f x x π=-的一个单调增区间为( )A .37(,)44ππB .3(,)44ππ-C .(,)22ππ- D .3(,)44ππ-12.函数x cos 4x sin 3y 2--=的最小值为( )A .-2B .-1C .-6D .-3二、填空题13.已知扇形的周长为8cm ,则该扇形面积的最大值为________cm 2。
三角函数基础测试题及答案

三角函数单元测试题一、选择题:(12ⅹ5分=60分)1.若点P 在角α的终边的反向延长线上,且1=OP ,则点P 的坐标为( )A )sin ,cos (αα-B )sin ,(cos ααC )sin ,(cos αα-D );sin ,cos (αα--2.已知角α的终边经过点P (-3,-4),则)2cos(απ+的值为( )A.54-B.53C.54D.53-3.已知α、β是第二象限的角,且βαcos cos >,则 ( )A.βα<;B.βαsin sin >;C.βαtan tan >;D.以上都不对 4.函数)62sin(5π+=x y 图象的一条对称轴方程是( ))(A ;12π-=x )(B ;0=x )(C ;6π=x )(D ;3π=x 5.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( )A.4=AB.1ω=C.6πϕ=D.4=B6.已知函数()2sin()f x x ωϕ=+对任意x 都有()(),66f x f x ππ+=-则()6f π等于( )A. 2或0B. 2-或2C. 0D. 2-或07.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( ) A. 1D.2- 8.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是( )A .35(,)(,)244ππππ B.5(,)(,)424ππππC.353(,)(,)2442ππππD.33(,)(,)244ππππ9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数为( )A .1个B .2个C .3个D .4个10.已知1A ,2A ,…n A 为凸多边形的内角,且0sin lg .....sin lg sin lg 21=+++n A A A ,则这个多边形是( )A .正六边形B .梯形C .矩形D .含锐角菱形 11.同时具有性质“(1)最小正周期是π;(2)图像关于直线3π=x 对称;(3)在]3,6[ππ-上是增函数”的一个函数是( ) A .)62sin(π+=x y B . )32cos(π+=x y C . )62sin(π-=x y D . )62cos(π-=x y12.已知函数f (x )=f (π-x ),且当)2,2(ππ-∈x 时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则( )A.a<b<cB.b<c<aC.c<b<aD.c<a<b二、填空题(4x4分=16分)13.函数y =的定义域是14. 函数]0,[)(62sin(2ππ-∈+=x x y 的单调递减区间是 15.已知函数)(x f y =的图象上的每一点的纵坐标扩大到原来的4倍,横坐标扩大到原来的2倍,然后把所得的图象沿x 轴向左平移2π,这样得到的曲线和x y sin 2=的图象相同,则已知函数)(x f y =的解析式为_______________________________.16.关于函数()(),32sin 4R x x x f ∈⎪⎭⎫ ⎝⎛+=π有下列命题: ① 由()()021==x f x f 可得21x x -必是π的整数倍; ② ()x f y =的表达式可改写为()⎪⎭⎫ ⎝⎛-=62cos 4πx x f ;③ ()x f y =的图象关于点⎪⎭⎫ ⎝⎛-0,6π 对称; ④ ()x f y =的图象关于直线6π-=x 对称.以上命题成立的序号是__________________.三.解答题:(5ⅹ12分+14分=74分)17.(本题共12分)化简:)29sin()sin()3sin()cos()211cos()2cos()cos()2sin(απαπαπαπαπαπαπαπ+-----++-18.(本题共12分)已知αsin 、αcos 是方程06242=++m x x 的两实根,求:(1) m 的值; (2)αα33cos sin +的值.19.(本题共12分)已知函数12sin()63y x π=-,(1)求它的单调区间;(2)当x 为何值时,使1>y ?20.(本题共12分)函数)2,0,0(),sin()(πθθ<>>+=w A wx A x f 的图象如右,求出它的解析式,并说出它的周期、振幅、初相。
三角函数试题及答案

三角函数试题及答案本文将针对三角函数进行试题及答案的探讨,通过一系列问题来帮助读者深入理解与掌握三角函数的相关知识。
以下是一些试题及相应的答案。
I. 选择题1. 以下哪个是三角函数的定义?A. sin(x) = a/c, cos(x) = b/cB. sin(x) = b/c, cos(x) = a/cC. sin(x) = a/b, cos(x) = c/bD. sin(x) = c/a, cos(x) = b/a答案:B2. sin(π/2) 的值是多少?A. 0B. 1C. -1D. 无定义答案:B3. 以下哪个等式成立?A. sin(x) = cos(x)B. sin(x) = tan(x)C. cos(x) = tan(x)D. sin^2(x) + cos^2(x) = 1答案:DII. 填空题1. sin(0) =答案:02. cos(π/3) =答案:1/23. tan(π/4) =答案:1III. 解答题1. 求解方程 sin(x) = 1/2 的所有解。
解答:根据三角函数的定义,当 sin(x) = 1/2 时,可以得到x = π/6 + 2kπ 或x = 5π/6 + 2kπ,其中 k 是整数。
2. 求解方程 tan(x) + 1 = 0 的所有解。
解答:将 tan(x) + 1 = 0 移项得 tan(x) = -1。
在单位圆上,我们知道tan(x) 的值等于对应点的 y 坐标除以 x 坐标。
因此,我们可以找到tan(x) = -1 对应的两个点,它们是 (-√2/2, -1/2) 和(√2/2, 1/2)。
根据三角函数的性质,我们可以得到 x = -3π/4 + kπ 或x = π/4 + kπ,其中 k 是整数。
通过以上试题和答案,相信读者能够更好地理解和掌握三角函数的相关知识。
不断练习三角函数的运用和求解,将有助于读者在数学学习中取得更好的成绩。
希望本文能为读者提供帮助。
三角函数测试题及答案

三角函数测试题及答案试题一:一、选择题1. 下列各三角函数式中,值为正数的是 ( )A. B. C. D.2. 若=,且为锐角,则的值等于 ( )A. B. C. D.3. 若=,,则的值为 ( )A. 1B. 2C.D.4. 已知,则 ( )A. B.C. D.5. a=,则成立的是 ( )A. ab>c C. a6. 函数的定义域是( )A. B.C. D.7. 下面三条结论:①存在实数,使成立;②存在实数,使成立;③若cosacosb=0,则其中正确结论的个数为( )A. 0B. 1C. 2D. 38. 函数的值域是 ( )A. [-2,2]B. [-1,2]C. [-1,1]D. [,2]9. 函数y=-x·cosx的部分图象是( )10. 函数f(x)=cos2x+sin(+x)是( )A. 非奇非偶函数B. 仅有最小值的奇函数C. 仅有最大值的偶函数D. 既有最大值又有最小值的偶函数二、填空题1、函数的最小值等于并使函数y 取最小值的x的集合为2、若函数的图象关于直线对称,则函数的值域为3、已知函数三、解答题1、已知,求的值2、在DABC中,已知三边满足,试判定三角形的形状。
试题二:1、若sinα=-5/13,且α为第四象限角,tanα=?(文.6)A.12/5B.-12/5C.5/12D.-5/12解析:主要考察基础知识。
α是第四象限角,所以cosα为正,tanα为负。
cos2α=1-sin2α,且cosα是正数,所以cosα=12/13,t anα=sinα/cosα=-5/12,选D。
2、已知函数f(x)=10√3sin(x/2)*cos(x/2)+10cos2(x/2)1)求f(x)的最小正周期2)将f(x)的函数图像向右平移π/6个单位长度,再向下平移a个单位长度后得到g(x)的函数图像,且函数g(x)的`最大值为2.i)求g(x)的解析式ii)证明存在无穷多互不相同个正整数x0,使得g(x0)>0.解析:1)函数的化简,可以看到两个式子都跟两倍角公式有关系,可以考虑先都变成两倍角。
三角函数题目及答案

5 -3-7.(2008 年惠州调研)已知 θ∈⎛⎝,π⎫⎭,sin θ=3,则 tan θ=________.8.函数 y = sin x + cos x -|tan x|的值域是________.三角函数 11.在下列各组角中,终边不相同的一组是()A .60°与-300°B .230°与 950°C .1050°与-300°D .-1000°与 80°2.给出下列命题,其中正确的是()(1)弧度角与实数之间建立了一一对应的关系 (2)终边相同的角必相等 (3)锐角必是第一象限角(4)小于 90°的角是锐角 (5)第二象限的角必大于第一象限角 A .(1)B .(1)(2)(5)C .(3)(4)(5)D .(1)(3)3.一个半径为 R 的扇形,它的周长为 4R ,则这个扇形所含弓形的面积为( )1 1 1A.2(2-sin 1cos 1)R 2B.2sin 1cos 1R 2C.2R 2D .(1-sin 1cos 1)R 224.α 是第二象限角,P(x , 5)为其终边上一点且 cos α= 4 x ,则 x 的值为()A. 3B .± 3C .- 3D .- 2二、填空题6.填写下表:角 α 的度数 -570° 375°角 α 的弧度数4π 135π12角 α 所在的象限π 252|sin x| cos x tan x9.已知一扇形的面积 S 为定值,求当扇形的圆心角为多大时,它的周长最小?最小值是多少?10.已知点 P(3r ,-4r)(r ≠0)在角 α 的终边上,求 sin α、cos α、tan α 的值.A.⎝2,1⎭B.⎝0,2⎭C.⎝-1,-2⎭D.⎝-2,0⎭2.α 是第四象限角,tan α=- ,则 sin α=()5 B .-1 5 C.513D .- 5A.1 3.已知 f(x)=2cos x ,则 f(0)+f(1)+f(2)+…+f(2008)=()1-m 2B .-sin 160°- 1-sin 220°=________.7 . 已 知 sin(540° + α) = - , 则 cos(α - 270°) = __________ ; 若 α 为 第 二 象 限 角 , 则8.已知 tan αsin α-3cos α 9.化简:sin (n π+α)cos (n π-α)同角三角函数的基本关系及诱导公式一、选择题1.sin 2009°的值属于区间( )⎛1 ⎫ ⎛ 1⎫ ⎛ 1⎫ ⎛ 1 ⎫51213 π6A .0B .2C .2+ 3D .3+ 34.如果 sin θ=m,180°<θ<270°,那么 tan θ=()A. m -3m m 1-m 21-m 2 C .± 1-m 2 D .-m二、填空题6.化简: 1+2sin 20°cos 160°45[sin (180°-α)+cos (α-360°)]2tan (180°+α) =________________.tan α-1=-1,则 sin α+cos α =__________;sin 2α+sin αcos α+2=__________. 三、解答题cos[(n +1)π-α] (n ∈Z).1.⎝cos 12-sin 12⎭⎝cos 12+sin 12⎭=( A .-B .-C. D. 2.已知 sin(α-β)cos α-cos(α-β)sin α= ,那么 cos 2β 的值为( ) A. B. C .-D .- 3.(2009 年上海预考)已知 0<α<π,sin α+cos α= ,则 cos 2α 的值为( )A. B .- C .±D .- 4.(2008 年湖南卷)函数 f(x)=sin 2x + 3sin xcos x 在区间⎣4,2⎦上的最大值是()A .1 B. C. D .1+ 3⎫ ⎛ ⎛ 6.(2009 年淄博模拟)已知 α,β∈⎝ 4 ,π⎭,sin(α+β)=- ,sin ⎝β-4⎭= ,则 cos ⎝α+4⎭=________.7.已知 α,β 均为锐角,且 sin α-sin β=- ,cos α-cos β= ,则 cos(α-β)=______. 9.已知 cos (α+β)= ,cos (α-β)=- ,且 π<α+β<2π, <α-β<π,分别求 cos 2α 和 cos 2β 的值.(1)求 f(x)的最大值及最小正周期;(2)若锐角 α 满足 f(α)=3-2 3,求 tan α 的值. 两角和与差、二倍角公式及简单的三角恒等变换一、选择题⎛ π π ⎫⎛ π π ⎫)3 11 32 2 2 2 357 18 7 18 25 25 25 25 12 7 7 734 4 4 4⎡π π⎤1+ 3 32 2 cos α 2sin α5.若 α 为第三象限角,则 + 的值为( )1-sin 2α 1-cos 2αA .3B .-3C .1D .-1 二、填空题⎛3π 3 π⎫ 12 π⎫ 5 131 12 38.(2009 年青岛模拟)2002 年在北京召开的国际数学家大会,会标是我国以古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如右图).如果小正方形的面积为 1,大正方形的面积为 25,直角三角形中较小 的锐角为 θ,那么 cos 2θ 的值等于________.三、解答题4 4 3 π5 5 2 210.(2009 年培正中学月考)设 f(x)=6cos 2x - 3sin 2x.45A .最小正周期为 π 的奇函数B .最小正周期为 的奇函数C .最小正周期为 π 的偶函数D .最小正周期为 的偶函数 A.⎣-π,- 6 ⎦ B.⎣- 6 ,-6⎦ C.⎣-3,0⎦D.⎣-6,0⎦3.当 x ∈⎣-2,2⎦时,函数 f(x)=sin x + 3cos x 的值域是( A .[-1, 1] B.⎣-2,1⎦ 6 3 m +1 5.(2009 年全国卷Ⅰ)如果函数y =3cos(2x +φ)的图象关于点⎝ 3 ,0⎭中心对称,那么|φ|的最小值为( 6 4 3 2⎧ ⎪ ②终边在 y 轴上的角的集合是⎨α⎪α= 2 ,k ∈Z ⎬.④把函数 y =3sin ⎝2x +3⎭的图象向右平移 得到 y =3sin 2x 的图象.⑤函数 y =sin ⎝x -2⎭在[0,π]上是减函数.8.函数 y =sin ⎝-2x +3⎭的递减区间是________;函数 y =lg cos x 的递减区间是________.⎡ 10.是否存在实数 a ,使得函数 y =sin 2x +a ·cos x + a - 在闭区间⎣0,2⎦上的最大值是 1?若存在,求三角函数的性质一、选择题1.(2008 年广东卷)已知函数 f(x)=(1+cos 2x)sin 2x ,x ∈R ,则 f(x)是()π2π22.函数 f(x)=sin x - 3cos x(x ∈[-π,0])的单调递增区间是( )⎡ 5π⎤ ⎡ 5π π⎤ ⎡ π ⎤ ⎡ π ⎤ ⎡ π π⎤ )⎡ 1 ⎤C .[-2, 2]D .[-1, 2]π π m -14.已知- ≤x < ,cos x = ,则 m 的取值范围是( )A .m <-1B .3<m ≤7+4 3C .m >3D .3<m <7+4 3或 m <-1⎛4π ⎫ )ππππ A. B. C. D.二、填空题6.(2008 年广东卷)已知函数 f(x)=(sin x -cos x)sin x ,x ∈R ,则 f(x)的最小正周期是________. 7.下面有 5 个命题:①函数 y =sin 4x -cos 4x 的最小正周期是 π.k π ⎫ ⎩ ⎭③在同一坐标系中,函数 y =sin x 的图象和函数 y =x 的图象有 3 个公共点.⎛ π⎫π 6⎛ π⎫其中,真命题的编号是______.(写出所有真命题的编号)⎛ π⎫三、解答题9.求函数 y =sin 4x +2 3sin xcos x -cos 4x 的最小正周期和最小值;并写出该函数在[0,π]上的单调递增区间.5 3 π⎤ 8 2出对应的 a 值;若不存在,试说明理由.1.(2010 年全国卷Ⅰ)为得到函数 y =cos ⎝x +3⎭的图象,只需将函数 y =sin x 的图象(A .向左平移 个长度单位B .向右平移 个长度单位C .向左平移 个长度单位D .向右平移 个长度单位A .ω= ,φ=B .ω= ,φ=C .ω= ,φ=D .ω= ,φ= 3.函数 y =sin ⎝2x -3⎭在区间⎣-2,π⎦的简图是(4.若函数 f(x)=2sin(ωx +φ),x ∈R ⎝其中ω>0,|φ|<2⎭的最小正周期是 π,且 f(0)= 3,则(A .ω= ,φ=B .ω= ,φ=C .ω=2,φ=D .ω=2,φ= ⎛ ⎫5.如右图所示是函数 y =2sin(ωx +φ)⎝|φ|≤2ω>0⎭的一段图象,则 ω、 A .ω= ,φ=B .ω= ,φ=-C .ω=2,φ=D .ω=2,φ=- 6.将函数 y =f(x )·sin x(x ∈R)的图象向右平移 个单位后,再作关于 x 轴的对称变换,得到函数 y =1三角函数的图象及其变换一、选择题⎛ π⎫ππ6 65π5π6 62.(2009 年厦门模拟)函数 y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图象如右图所示,则()π ππ π 2 4 3 6π ππ 5π4 4 4 4)⎛ π⎫ ⎡ π ⎤)⎛ π⎫ )1 π1 πππ2 6 23 6 3πφ 的值是()10 π10 π11 6 11 6ππ6 6二、填空题π47.函数 f(x)=3sin ⎝2x -3⎭的图象为 C ,如下结论中正确的是________(写出所有正确结论的编号).①图象 C 关于直线 x = π 对称;②图象 C 关于点⎝ 3 ,0⎭对称;③函数 f(x)在区间⎝-12,12⎭内是增函数;④由 y =3sin 2x 的图象向右平移 个单位长度可以得到图象 C.⎡ 知函数 y =sin nx 在 0,⎣n ⎦上的面积为 (n ∈N *),则 y =sin 3x 在⎣0, 3 ⎦上的面积为________.9.(2010 年广东卷)已知函数 f(x)=Asin(x +φ)(A>0,0<φ<π)(x ∈R)的最大值是 1,其图象经过点 M ⎝3,2⎭. ⎛ (2)已知 α、β∈⎝0,2⎭,且 f(α)= ,f(β)= ,求 f(α-β)的值.f(x)图象的两相邻对称轴间的距离为 .(1)求 f ⎝8⎭的值; (2)将函数 y =f (x )的图象向右平移 个单位后,再将得到的图象上各点的横坐标伸长到原来的 4 倍,-2sin 2x 的图象,则 f(x)可以是__________.⎛ π⎫1112⎛2π ⎫⎛ π 5π⎫π38.设函数 f(x)的图象与直线 x =a ,x =b 及 x 轴所围成图形的面积称为函数 f(x)在[a ,b ]上的面积,已⎡π⎤ 2 2π⎤ n三、解答题⎛π 1⎫ (1)求 f(x)的解析式;π⎫ 3 12 5 1310.(2010 年山东卷)已知函数 f(x)= 3sin(ωx +φ)-cos(ωx +φ),(0<φ<π,ω>0)为偶函数,且函数 y =π2⎛π⎫π6纵坐标不变,得到函数 y =g (x )的图象,求 g (x )的解析式及其单调递减区间.4 4 4 3 A. 分钟 B. 分钟 C .21.5 分钟 D .2.15 分钟 9.(2009 年银川模拟 如右图所示,在△) ABC 中,AC =2,BC =1,cos C = .) 则 θ c 10.(2008 年全国卷Ⅱ 在△) ABC 中,cos B =- ,cos C = . =正、余弦定理及应用一、选择题1.(2009 年德州模拟△) ABC 的内角 A 、B 、C 的对边分别为 a 、b 、c ,若 a 、b 、c 成等比数列,且 c=2a ,则 cos B =( ) 1 3 2 2 A. B. C. D.2.用长度分别为 2、3、4、5、6(单位:cm)的 5 根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为( )A .8 5 cm 2B .6 10 cm 2C .3 55 cm 2D .20 cm 2 3.(2009年成都模拟设 a 、b 、c 分别是△ABC 的三个内角A 、B 、C 所对的边, a 2=b (b +c )是 A =2B 的( ) A .充要条件 B .充分而不必要条件 C .必要而充分条件 D .既不充分又不必要条件 4.如右图所示,在山脚 A 处测得该山峰仰角为 ,对着山峰在平坦地面上前进600 m 后测得仰角为原来的 2 倍,继续在平坦地面上前进 200 3 m 后,测得山峰的 仰角为原来的 4 倍,则该山峰的高度为( )A .200 mB .300 mC .400 mD .100 3 m5.甲船在岛 B 的正南方 A 处,AB =10 千米,甲船以每小时 4 千米的速度向正北航行,同时乙船自 B出发以每小时 6 千米的速度向北偏东 60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间是( )150 15 7 7 二、填空题6.(2008 年山东卷)已知 a 、b 、c 分别为△ABC 的三个内角 A 、B 、C 的对边,向量 m =( 3,-1),n=(cos A ,sin A).若 m ⊥n ,且 acos B +b cos A =csin C ,则角 B =________.7△.在 ABC 中,已知角 A 、B 、C 成等差数列,边 a 、b 、 成等比数列,且边 b =4,则 △S ABC =________. 8.如右图所示,为测量河对岸 A 、B 两点的距离,在河的这边取 C 、D 两点观察.测得 CD = 3 km ,∠ADB =45°,∠ADC =30°,∠ACB =75°,∠DCB =45°, (A 、B 、C 、D 在同一平面内),则 A 、B 两点间的距离为________.三、解答题34(1)求 AB 的值; (2)求 sin (2A +C )的值.5 413 5 (1)求 sin A 的值;33(2)设△ABC 的面积 △S ABC 2 ,求 BC 的长.4.解析:∵cos α= == 2x ,∴x =0(舍去)或 x = 3(舍去)或 x =- 3.答案:Cx 2+5 5.C6.略 7.-3则 S =1lr ,∴r =2S ,∴C =l +2r =l +4S ≥4 S ,l ,∴l <2 πS.此时,α=l =l × l =(2 S ) =2(rad).(1) 当 r >0 时,则|OP|=5r ,sin α=- , cos α= , tan α=- . (2) 当 r <0 时,则|OP|=-5r ,sin α= , cos α=- , tan α=- . =- 5 .2.解析:α 是第四象限角,tan α=- ,则 sin α=-1+cot 2α3.C 4.B 5.D 6.-1 7.-4 9.解析:①当 n =2k(k ∈Z)时,原式=sin αcos α=-sin α;②当 n =2k -1(k ∈Z)时,原式=(-sin α)(-cos α)10.解析:由 sin 3π+θ =lg 1 ,有-sin θ=lg10-1=-1,sin θ=1.3⎝ 2 ⎭ ⎝ 2 ⎭1.C2.D3.Dxrx 角的概念和任意角的三角函数参考答案448.{1,-3}9.解析:设扇形的圆心角为 α,半径为 r ,弧长为 l ,周长为 C ,2 l l又∵0<l <2πr =4πS当且仅当 l =4S,即 l =2 S <2 πS 时等号成立.l∴当 l =2 S 时,周长有最小值 4 S ,2r 2S 2S10.解析:因为 x =3r ,y =-4r ,所以|OP|= x 2+y 2=5|r|.4 3 45 5 34 3 45 5 3同角三角函数的基本关系及诱导公式参考答案1.D5112133 5 135 -100 8.-3 5-cos αcos α =sin α.()3 3310cos (π+θ)cos (θ-2π)cos θ[cos (π-θ)-1]+sin ⎛θ-3π⎫cos (θ-π)-sin ⎛3π+θ⎫答案:D-cos θ+() ( )+ = = 2=2×9=18. + = cos α +2sin α=-1-2=-3. 答案:B1-cos 2α 6.- 7.1,∴ 两条直角边的长分别为 3,4,直角三角形中较小的锐角为 θ,cos θ= ,cos 2θ=2cos 2θ-1=.答案:9.解析:∵ <α+β<2π, <α-β<π,() ( )3 1-cos 2 α+β =- , ()() 3sin α-β=1-cos 2α-β = ,() ()() ()=4×⎛- ⎫-⎛- ⎫×3=- 7 ;() ()() ()=4×⎛- ⎫+⎛- ⎫×3=-1. 10.解析:(1)f(x)=6 - 3sin 2x =3cos 2x - 3sin 2x +3=2 3⎛ 3cos 2x -1sin 2x ⎫+3=2 3cos ⎛2x + ⎫+3.2== cos θcos θ -cos θ-1 cos θ -cos θ +cos θ11 2 cos θ+1 1-cos θ 1-cos 2θ sin 2θ两角和与差、二倍角公式及简单的三角恒等变换参考答案1.D 2.A 3.B 4.C5.解析:∵α 为第三象限角,∴sin α<0,cos α<0,则cos α1-sin 2α2sin α |cos α| |sin α|56 5965 728.解析:图中小正方形的面积为 1,大正方形的面积为 25,∴ 每一个直角三角形的面积是 6,设直⎧⎪a 2+b 2=25角三角形的两条直角边长分别为 a ,b ,则⎨ ⎪⎩2ab =6457725 253π π2 2∴sin α+β=-55所以 cos 2α=cos[(α+β)+(α-β)]=cos α+β cos α-β -sin α+β sin α-β4 35 ⎝ 5⎭ ⎝ 5⎭ 5 25cos 2β=cos[(α+β)-(α-β)]=cosα+β cos α-β +sin α+β sin α-β4 35 ⎝ 5⎭ ⎝ 5⎭ 51+cos 2x2⎝ 2 ⎭π⎝ 6⎭(2)由 f(α)=3-2 3,得 2 3cos ⎝2α+6⎭+3=3-2 3, 故 cos ⎛2α+ ⎫=-1.又由 0<α< 得 <2α+ <π+ ,故 2α+ =π,解得 α= 5 π. 从而 tan α=tan = 3.1. D 解析:f(x)=(1+cos 2x)sin 2x =2cos 2xsin 2x = sin 22x =1-cos 4x 2.:D解析:f(x)=2sin ⎝x -3⎭,因 x - ∈ ⎣-3 π, -3⎦故 x - ∈ ⎡-1 ⎣ 2π, -3⎦,则 x ∈ ⎣-6π,0⎦. 5.答案:A解析:∵函数 y =3cos(2x +φ)的图象关于点⎝ 3 ,0⎭中心对称.∴2· 4π 3 +φ=k π+ ∴φ=k π- 由此易得|φ| π6.π解析:f(x)=sin 2x -sin xcos x =1-cos 2x 1 2 - sin2x ,此时可得函数的最小正周期 T = =π.5 ⎤ π⎫⎡ ⎡=2sin ⎛2x - ⎫,单调递增区间是⎡0, ⎤,⎡ ,π⎤. 10.解析:y =1-cos 2x +acos x + a - =-⎛cos x - ⎫2+a +5a -1.故 f(x)的最大值为 2 3+3;最小正周期 T =2π=π.2⎛ π⎫π⎝ 6⎭π π π π2 6 6 6 π 4 π6 125 3三角函数的性质参考答案12 4 .⎛ π⎫ π ⎡ 4 π⎤3π π⎤ ⎡ 1 ⎤ 33.D 4.B ⎛4π ⎫π 13π2 6 (k ∈Z),min =6.故选 A.2π 2 27.答案:①④解析:①y =sin 4x -cos 4x =sin 2x -cos 2x =-cos 2x ,正确;②错误;③y =sin x ,y =x 在第一象限无交点,错误;④正确;⑤错误.π 8.⎣k π-12,k π+12π⎦(k ∈Z) ⎣2k π,2k π+2⎭(k ∈Z)9.解析:y =sin 4x +2 3sin xcos x -cos 4x=(sin 2x +cos 2x)(sin 2x -cos 2x)+ 3sin 2x= 3sin 2x -cos 2xπ⎝ 6⎭故该函数的最小正周期是 π;最小值是-2;π 5π⎣ 3⎦ ⎣ 6 ⎦5 38 2a 2 ⎝ 2⎭ 4 8 2当 0≤x ≤ 时,0≤cos x ≤1.若a >1 时,即 a >2,则当 cos x =1 时, y max =a + a - =1⇒a = <2(舍去),8若 0≤a ≤1,即 0≤a ≤2,则当 cos x =a 时, y max = + a - =1⇒a = 或 a =-4<0(舍去).4若a<0,即 a <0,则当 cos x =0 时,y max = a - =1⇒a = >0(舍去).81.C 解析:∵y =cos ⎝x +3⎭=sin ⎝2+x +3⎭=sin ⎝x + 6 ⎭,∴可由 y =sin x 向左平移 得到.2.C3.A 解析:f (π)=sin ⎝2π-3⎭=- f ⎝6⎭=sin ⎝2×6-3⎭=0,排除 C.也可由五点法作图验证..∵|φ|< ,∴φ= .故选4.D 解析:由 T = ω =π,∴ω=2.由 f(0)= 3⇒2sin φ= 3,∴sin φ= 7.①②③解析:函数 f(x)=3sin ⎝2x-3⎭的图象为 C ,①图象 C 关于直线 2x - =k π+ 对称,当 k =1 时,图象 C 关于 x = π 对称,①正确;②图象 C 关于点⎝ 2 +6,0⎭对称,当 k =1 时,恰好关于点⎝ 3 ,0⎭对称,②正确;③x ∈⎝-12,12⎭时,2x - ∈⎝-2,2⎭,∴ 函数 f(x)在区间⎝-12,12⎭内是增函数,③正确;④由 y =3sin 2x 的图象向右平移 个单位长度可以得 y =3sin ⎝2x - 3 ⎭,得不到图象 C.④不正确.9.解析:(1)依题意有 A =1,则 f(x)=sin(x +φ),将点 M ⎝3,2⎭代入得 sin ⎝3+φ⎭= ,而 0<φ<π,⎛ ∴ +φ= π,∴φ= ,故 f(x)=sin ⎝x +2⎭=cos x ;⎛ (2)依题意有 cos α= ,cos β= ,而 α、β∈⎝0,2⎭,∴sin α= 3 1-( )2= ,sin β=1-(12)2= 5 , π225 3 20 2 132 2 a 2 5 13 8 2 225 1 12 2 5综合上述知,存在 a =3符合题设.2三角函数的图象及其变换参考答案⎛ π⎫ ⎛π π⎫ ⎛ 5π⎫ 5π 6⎛ π⎫ 3,排除 B 、D , 2⎛π⎫ ⎛ π π⎫2π 3 π π 2 2 3D.5.C 6.f(x)=2cos x ⎛ π⎫π π 113 2 12⎛k π π ⎫ ⎛2π ⎫⎛ π 5π⎫ π ⎛ π π⎫ ⎛ π 5π⎫3π ⎛ 2π⎫3所以应填①②③.8. 4 3⎛π 1⎫ ⎛π ⎫ 1 2π 5 π π⎫ 3 6 23 12 π⎫ 5 134 5 513 13f(α-β)=cos(α-β)=cos αcos β+sin αsin β= × + × = .10.解析:(1)f(x)= 3sin(ωx +φ)-cos(ωx +φ)=2⎣ 2 =2sin ⎝ωx +φ-6⎭.因此 sin ⎛-ωx +φ- ⎫=sin ⎛ωx +φ- ⎫.即-sin ωx cos ⎛φ- ⎫+cos ωx sin ⎛φ- ⎫=sin ωx cos ⎛φ- ⎫+cos ωx sin ⎛φ- ⎫,整理得sin ωx cos ⎛φ- ⎫=0. 因为 ω>0,且 x ∈R ,所以 cos ⎛φ- ⎫=0.又因为 0<φ<π,故 φ- = .所以 f(x)=2sin ⎛ωx + ⎫=2cos ωx .由题意得 =2· ,所以 ω=2.故 f(x)=2cos 2x.因此 f ⎛ ⎫=2cos = 2.(2)将 f(x)的图象向右平移 个单位后,得到 f ⎝x -6⎭的图象,再将所得图象横坐标伸长到原来的 4 倍,f ⎝4-6⎭的图象. 所以g (x)=f ⎛ - ⎫=2cos ⎡2⎛ - ⎫⎤ =2cos ⎛ - ⎫.当 2k π≤x - ≤2k π+π(k ∈Z),即 4k π+ ≤x ≤4k π+ (k ∈Z)时,g (x)单调递减,因此 g (x)的单调递减区间为⎡4k π+ ,4k π+ ⎤(k ∈Z).a 2+c 2-b 2 a 2+4a 2-2a 2 3cos B = = = . ()6⎭π ⎝8⎭ 3 12 4 5 565 13 5 13 65⎡ 3 1 ⎤ sin (ωx +φ)-2cos (ωx +φ)⎦ ⎛ π⎫因为 f(x)为偶函数,所以对 x ∈R ,f(-x)=f(x)恒成立,π π⎝ ⎝ 6⎭π π π π π ⎝ 6⎭ ⎝ 6⎭ ⎝ 6⎭ ⎝ 6⎭ ⎝ 6⎭π ⎝ 6⎭π π6 2π⎝ 2⎭2π ππω 24π ⎛ π⎫ 6纵坐标不变,得到⎛x π⎫x π x π ⎝4 6⎭ ⎣ ⎝4 6⎭⎦x π⎝2 3⎭π2 32π 8π 3 3 2π 8π ⎣ 3 3 ⎦正、余弦定理及应用参考答案1.B解析:△ABC 中,a 、b 、c 成等比数列,且 c =2a ,则 b = 2a ,2ac 4a 242.B解析:用 2、5 连接,3、4 连接各为一边,第三边长为 6 组成三角形,此三角形面积最大,面积为 6 10 cm 2.3.A 解析:设 a 、b 、c 分别是△ABC 的三个内角 A 、B 、C 所对的边,若 a 2=b b +c ,则 sin 2A =sin B(sin B +sin C),1-cos 2A 1-cos 2B 则 = +sin Bsin C ,2 2∴ (cos 2B -cos 2A)=sin Bsin C , ()()4.B解析:由条件可得 cos(π-4θ)==-1, ∴sin 4θ= 3,∴山峰的高度为 200 3× 3=300(m).6. 解析:m ⊥n ⇒ 3cos A -sin A =0⇒A = ,由正弦定理得,sin Acos B +sin Bcos A =sin Csin C ,⇒C = .∴B = .7.4 3解析:由 A 、B 、C 成等差数列,得 2B =A +C ,又 A +B +C =π,得 B = ,×60 分钟=(2)由 cos C = ,且 0<C <π,得 sin C =1-cos 2C = 7.由正弦定理, AB = BC , 12sin(B +A)sin(A -B)=sin Bsin C ,又 sin(A +B)=sin C ,∴ sin(A -B)=sin B ,∴A -B =B ,A =2B ,△若ABC 中,A =2B ,由上可知,每一步都可以逆推回去,得到 a 2=b b +c ,所以 a 2=b b +c 是 A =2B 的充要条件.(200 3)2×2-6002 2×(200 3)2 22 25.A解析:t 小时后,甲乙两船的距离为s 2=(6t)2+(10-4t)2-2×6t ×(10-4t)cos 120°=28t 2-20t +100.∴当 t = 20 = 5 小时= 5 150分钟时,甲乙两船的距离最近. 2×28 1414 7ππ63sin Acos B +sin Bcos A =sin(A +B)=sin C =sin 2Cπ π2 6π3由 a 、b 、c 成等比数列,得 b 2=ac ,1∴ac =16,∴S △ABC =2acsin B =4 3.8. 5解析:∵∠ACD =∠ACB +∠BCD =120°,∠CDA =30°,∴∠DAC =30°⇒AC =DC = 3.△在 BCD 中,∠DBC =180°-75°-45°=60°,∴BC =DC·sin 75°= 6+ 2,sin 60° 2△在 ABC 中,AB 2=AC 2+BC 2-2AC · B C ·cos 75°=5⇒AB = 5 km.9.解析:(1)由余弦定理,得 AB 2=AC 2+BC 2-2AC · BC ·cos C=4+1-2×2×1×3=2.4那么,AB = 2.3 44 sin C sin A解得sin A=BCsin C=14.所以,cos A=且cos2A=1-2sin2A=9,故sin2A+C=sin2Acos C+cos2Asin C=37. 10.解析:(1)由cos B=-,得sin B=,由cos C=4,得sin C=3.所以sin A=sin(B+C)=sin Bcos C+cos Bsin C=33.(2)由△SABC=得×AB×AC×sin A=,sin C =.52AB88.由倍角公式sin2A=2sin A·cos A=57,1616()851213135565 33133222由(1)知sin A=33,故AB×AC=65,65又AC=AB×sin B=20AB,故20AB2=65,AB=13.sin C13132所以BC=AB×sin A112。
(完整版)三角函数定义练习含答案

课时作业3 三角函数的定义时间:45分钟 满分:100分一、选择题(每小题6分,共计36分)1.下列命题中正确的是( )A .若cos θ<0,则θ是第二或第三象限角B .若α>β,则cos α<cos βC .若sin α=sin β,则α与β是终边相同的角D .若α是第三象限角,则sin αcos α>0且cos αtan α<0解析:α是第三象限角,sin α<0,cos α<0,tan α>0,则sin αcos α>0且cos αtan α<0.答案:D2.若sin θ·cos θ<0,则θ在( )A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限解析:因为sin θcos θ<0,所以sin θ,cos θ异号.当sin θ>0,cos θ<0时,θ在第二象限;当sin θ<0,cos θ>0时,θ在第四象限.答案:D3.若角α的终边经过点P (35,-45),则sin αtan α的值是( )A.1615 B .-1615C.1516 D .-1516解析:∵r =(35)2+(-45)2=1,∴点P 在单位圆上.∴sin α=-45,tan α=-4535=-43.∴sin αtan α=(-45)·(-43)=1615.答案:A4.若角α终边上一点的坐标为(1,-1),则角α为( )A .2k π+π4,k ∈Z B .2k π-π4,k ∈ZC .k π+π4,k ∈Z D .k π-π4,k ∈Z解析:∵角α过点(1,-1),∴α=2k π-π4,k ∈Z .故选B.答案:B5.已知角α的终边在射线y =-3x (x ≥0)上,则sin αcos α等于() A .-310 B .-1010 C.310 D.1010解析:在α终边上取一点P (1,-3),此时x =1,y =-3. ∴r =1+(-3)2=10. ∴sin α=y r =-310,cos α=x r =110 .∴sin αcos α=-310×110=-310.答案:A6.函数y =sin x +lgcos x tan x的定义域为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π≤x <2k π+π2,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 2k π<x <2k π+π2,k ∈Z C.{}x | 2k π<x <2k π+π,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π-π2<x <2k π+π2,k ∈Z 解析:要使函数有意义,则有⎩⎪⎨⎪⎧ sin x ≥0 ①cos x >0 ②tan x ≠0 ③由①知:x 的终边在x 轴上、y 轴非负半轴上或第一、二象限内.由②知:x 的终边在第一、四象限或x 轴的正半轴.由③知x 的终边不能在坐标轴上.综上所述,x 的终边在第一象限,即函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π<x <2k π+π2,k ∈Z . 答案:B二、填空题(每小题8分,共计24分)7.用不等号(>,<)填空: (1)sin 4π5·cos 5π4·tan 5π3________0;(2)tan100°sin200°·cos300°________0.解析:(1)∵45π在第二象限,5π4在第三象限,5π3在第四象限,∴sin 4π5>0,cos 5π4<0,tan 5π3<0,∴sin 4π5·cos 5π4·tan 5π3>0.(2)∵100°在第二象限,200°在第三象限,300°在第四象限, ∴tan100°<0,sin200°<0,cos300°>0,∴tan100°sin200°·cos300°>0. 答案:(1)> (2)>8.函数f (x )=cos x 的定义域为__________________.解析:若使f (x )有意义,须满足cos x ≥0,即2k π-π2≤x ≤2k π+π2,k ∈Z ,∴f (x )的定义域为{x |2k π-π2≤x ≤2k π+π2,k ∈Z }.答案:{x |2k π-π2≤x ≤2k π+π2,k ∈Z }9.下列说法正确的有________.(1)正角的正弦值是正的,负角的正弦值是负的,零角的正弦值是零(2)若三角形的两内角α,β满足sin α·cos β<0,则此三角形必为钝角三角形(3)对任意的角α,都有|sin α+cos α|=|sin α|+|cos α|(4)若cos α与tan α同号,则α是第二象限的角解析:对于(1)正角和负角的正弦值都可正、可负,故(1)错.对于(2)∵sin α·cos β<0,又α,β∈(0,π),∴必有sin α>0,cos β<0,即β∈(π2,π),∴三角形必为钝角三角形,故(2)对.对于(3)当sin α,cos α异号时,等式不成立.故(3)错.对于(4)若cos α,tan α同号,α可以是第一象限角,故(4)错.因此填(2).答案:(2)三、解答题(共计40分,其中10题10分,11、12题各15分)10.已知角α的终边上一点P 与点A (-3,2)关于y 轴对称,角β的终边上一点Q 与点A 关于原点对称,求sin α+sin β的值.解:由题意,P (3,2),Q (3,-2),从而sin α=232+22=21313, sin β=-232+(-2)2=-21313,所以sin α+sin β=0.11.求下列函数的定义域.(1)y =cos x +lg(2+x -x 2);(2)y =tan x +cot x .解:(1)依题意有⎩⎨⎧ cos x ≥0,2+x -x 2>0,所以⎩⎪⎨⎪⎧ -π2+2k π≤x ≤π2+2k π(k ∈Z ),-1<x <2.取k =0解不等式组得-1<x ≤π2,故原函数的定义域为⎝ ⎛⎦⎥⎤-1,π2. (2)因为tan x 的定义域为{x |x ∈R ,且x ≠k π+π2,k ∈Z },cot x 的定义域为{x |x ∈R ,且x ≠k π,k ∈Z },所以函数y =tan x +cot x 的定义域为{x |x ∈R ,且x ≠k π+π2,k ∈Z }∪{x |x ∈R ,且x ≠k π,k ∈Z }={x |x ∈R ,且x ≠k π2,k ∈Z }.12.已知角α的终边落在直线y =2x 上,求sin α,cos α,tan α的值.解:当角α的终边在第一象限时,在角α的终边上取点P (1,2),设点P 到原点的距离为r .则r =|OP |=12+22=5,所以sin α=25=255,cos α=15=55, tan α=21=2;当角α的终边在第三象限时,在角α的终边上取点Q (-1,-2).则r =|OQ |=(-1)2+(-2)2=5,所以sin α=-25=-255,cos α=-15=-55,tan α=-2-1=2. 综上所得,当α是第一象限角时,sin α=255,cos α=55,tan α=2; 当α是第三象限角时,sin α=-255,cos α=-55,tan α=2.。
(完整版)三角函数练习题(含答案)

三角函数练习题及答案(一)选择题1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=45,则AC=( ) A 、3 B 、4 C 、5 D 、6 3、若∠A 是锐角,且sinA=13,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=13,则A A AA tan 2sin 4tan sin 3+-=( ) A 、47B 、 13C 、 12D 、0 5、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:√2C 、1:1:√3D 、1:1:√226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB= 23B .cosB= 23C .tanB= 23D .tanB=32 8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( ) A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m (C )150m (D )3100m11、如图1,在高楼前D点测得楼顶的仰角为300,向高楼前进60米到C点,又测得仰角为450,则该高楼的高度大约为()A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距().(A)30海里(B)40海里(C)50海里(D)60海里(二)填空题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____.2.在△ABC中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC中,AB=2,AC=2,∠B=30°,则∠BAC的度数是______.4.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为________. (不取近似值. 以下数据供解题使用:sin15°=,cos15°=62+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A点,沿着西南方向,行了个42单位,到达B 点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=090,BC=13,AB=12,那么tan B=___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(保留两个有效数字,2≈1.41,3≈1.73)三、简答题:1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
完整版)高中三角函数测试题及答案

完整版)高中三角函数测试题及答案高一数学必修4第一章三角函数单元测试班级:__________ 姓名:__________ 座号:__________评分:__________一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
(48分)1、已知$A=\{\text{第一象限角}\}$,$B=\{\text{锐角}\}$,$C=\{\text{小于90°的角}\}$,那么$A$、$B$、$C$ 关系是()A.$B=A\cap C$B.$B\cup C=C$C.$A\cap D$D.$A=B=C$2、将分针拨慢5分钟,则分钟转过的弧度数是A。
$\frac{\pi}{3}\sin\alpha-\frac{2}{3}\cos\alpha$ B。
$-\frac{\pi}{3}$C。
$\frac{\pi}{6}$D。
$-\frac{\pi}{6}$3、已知 $\tan\alpha=-5$,那么 $\tan\alpha$ 的值为A。
2B。
$\frac{1}{6164}$C。
$-\frac{1}{6164}$D。
$-\frac{2}{3}$4、已知角 $\alpha$ 的余弦线是单位长度的有向线段,那么角 $\alpha$ 的终边()A。
在 $x$ 轴上B。
在直线 $y=x$ 上C。
在 $y$ 轴上D。
在直线 $y=x$ 或 $y=-x$ 上5、若 $f(\cos x)=\cos 2x$,则 $f(\sin 15^\circ)$ 等于()A。
$-\frac{2}{3}$B。
$\frac{3}{2}$C。
$\frac{1}{2}$D。
$-\frac{1}{2}$6、要得到 $y=3\sin(2x+\frac{\pi}{4})$ 的图象只需将$y=3\sin 2x$ 的图象A。
向左平移 $\frac{\pi}{4}$ 个单位B。
向右平移 $\frac{\pi}{4}$ 个单位C。
三角函数50题精选题附答案

1. 已知方程(a 为大于1的常数)的两根为,,且、,则的值是_________________.解析:属于易错题,由于限定了角的范围,所以最终答案只有一个,1>a ∴a 4tan tan -=+βα0<,o a >+=⋅13tan tan βα∴βαtan ,tan 是方程01342=+++a ax x 的两个负根 又⎪⎭⎫ ⎝⎛-∈2,2,ππβα ⎪⎭⎫⎝⎛-∈∴0,2,πβα 即⎪⎭⎫ ⎝⎛-∈+0,22πβα由tan ()βα+=βαβαtan tan 1tan tan ⋅-+=()1314+--a a =34可得.22tan -=+βα2.函数f(x)=的值域为______________。
解析:易错题,错因:令x x t cos sin +=后忽视1-≠t ,从而121)(-≠-=t t g ,得到错解:⎥⎦⎤⎢⎣⎡---2122,2122 正解:⎥⎦⎤ ⎝⎛--⋃⎪⎪⎭⎫⎢⎣⎡---2122,11,2122 3.在△ABC 中,2sinA+cosB=2,sinB+2cosA=,则∠C 的大小应为( )A .B .C .或D .或解析:遇到这类型题,首先排除两个答案,因为给定条件就是让我们去排除4.已知tana tanb 是方程x 2+3x+4=0的两根,若a ,b ∈(-),则a+b=( )A .B .或-C .-或D .-解析:tana .tanb=4;tana +tanb=-3,所以tana tanb 均为负,即a ,b 都属于四象限 5.在中,,则的大小为( )A. B. C.D.解析:由3s i n 463c o s 41A B A B +=+=⎧⎨⎩c o s s i n 平方相加得115sin()sin 2266A B C C ππ+=∴=∴=或若C =56π, 则A B +=π6113cos 4sin 0cos 3A B A -=>∴<又1312<5366A C C πππ∴>∴≠∴= ∴选A ,实际上首先排除两个答案的6.函数为增函数的区间是……………… ( ) A.B.C.D.解析:注意x 前面系数为负7.已知且,这下列各式中成立的是( ) A.B.C.D.解析:解法1sin β>-cos α=sin (3π/2-α),因为β、(3π/2-α)都在二象限,sinx 二象限为减函数,所以β<(3π/2-α)解法2:首先排除AC(为什么),由特殊值法排除B8.△ABC中,已知cosA=,sinB=,则cosC的值为()A、 B、 C、或 D、9.设cos1000=k,则tan800是()A、 B、 C、 D、10.函数的单调减区间是()A、()B、C、 D、11.在△ABC中,则∠C的大小为()A、30°B、150°C、30°或150°D、60°或150°12.若,且,则_______________.13、设ω>0,函数f(x)=2sinωx在上为增函数,那么ω的取值范围是_____14已知奇函数单调减函数,又α,β为锐角三角形内角,则()A、f(cosα)> f(cosβ)B、f(sinα)> f(sinβ)C、f(sinα)<f(cosβ)D、f(sinα)> f(cosβ)15.函数的值域是.16.若,α是第二象限角,则=__________17.已知定义在区间[-p,]上的函数y=f(x)的图象关于直线x= -对称,当xÎ[-,]时,函数f(x)=Asin(wx+j)(A>0, w>0,-<j<),其图象如图所示。
三角函数练习题(含答案)

点后观察到原点 O 在它的南偏东 60°的方向上,则原来 A 的坐标为 ___________结果保留根号). 7.求值:sin260°+cos260°=___________. 8.在直角三角形 ABC 中,∠A= 900 ,BC=13,AB=12,那么
tan B ___________.
9.根据图中所给的数据,求得避雷针 CD 的长约为_______m(结果精 确的到 0.01m).(可用计算器求,也可用下列参考数据 求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈ 0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°
地,此时王英同学离 A 地 ( )
(A) 50 3 m (B)100 m (C)150m (D)100 3 m
11、如图 1,在高楼前 D 点测得楼顶的仰角为 300,向高楼前进 60 米到 C 点,又测得仰角
为 450,则该高楼的高度大约为(
)
A.82 米 B.163 米
C.52 米 D.70 米
≈0.8391)
10.如图,自动扶梯 AB 段的长度为 20 米,倾斜 角 A 为α,高度 BC 为___________米(结果用含 α的三角比表示).
11.如图 2 所示,太阳光线与地面成 60°角,一 棵倾斜的大树与地面成 30°角,这时测得大树在 地面上的影子约为 10 米,则大树的高约为________米.(保
6 2
据供解题使用:sin15°=,cos15°= 4 )
5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的 走向是北偏东 48°.甲、乙两地间同时开工,若干天后,公路准确接 通,则乙地所修公路的走向是南偏西___________度.
三角函数基础练习含答案

三角函数基础练习含答案一、选择题。
1.下列各式中,不正确的是 ( )(A) cos(-。
-“)=-000。
(B) sin(a-2x)=-sinα(C)un(5)-20)--un2。
(D) sint k /+0)=(-1/3n= (k=2)3.y=sin(2x3+3π2)x∈R是 ( )(A)奇函数 (B)供函数 (CA104-1)x,2k=1k=Z为增函数 (D)减函数4. 函数y=3sin(2x−π3)()(A)向左平移π/3 (取向右平移车/₃(C)向左平移π6(D)向右平移π/65.在△ABC中,cosAcosB>sinAsaB,则△ABC为 ( )(A)设备三角形(B)直角三角形 (C)钝角三角形 (D)无法判定6. a为第三象限角.cosα√1+tan2α+√sec2α−1化简的结果为( )(A)3 (B)-3 (C) (D)-17.已知cos2θ=√23,则sin⁴⁺⁻²⁻cos⁴⁰的值为 ( )(A)1318(B)1118cC)79(D)-18. 已知: bcosθ=18π4<θ<π2.则cook 。
——sin中的值为 ( )(A)−√32(B)34(C)√32(D)±349.△ABC中,∠C=90°,则函数y=ain³A+2xinB的值的情况 ( )(A)有最大值,无最小值 (B)无最大值,有最小值(C)有最大值且有最小值 (D)无最大值且无最小值10.关于函数f(x)=4sin(2x+π3),(x∈R)有下列命题(1) y=f(x)是以2x为最小正周期的周围函数(2)y=f(x)可改写为y=4cos(2x−π6)(3)y= foot的图象关于(−π6,0)对称 (4) y= f(x)的图象关于直线x=−π6对称其中真金额的个数序号为( )(A) (D(D) (B) (2)(4) (C) (2)(3) (D) (3)11.8 b=c=√62+con16++con16+,b=√62则a. b. c大小关系( )(A)a<b<< (B)b<a<c Ck<k<x ①a<c<b12.否sinx<12,则x的取值范围为 ( )(A)(22° , 24 x+π6)∪(2k=+5π6,2k=+π)(B)(2kx+π6,2kx+5π6)(C )(2kx +5π6,2kx +π6)(D)( kx −7π6,2kπ+π6)以上KEZ二、 填空题:13. 一个扇形的面积是 1cm ³, 它的圆长为4cm ,则其中心角弧度数为 . 14.已知 sinα+cosβ=13,sinβ−cosα=12,则 sin(a-FF= .15.求值: tan20∘+tan20∘+√3tan20∘=¯,16. 函数 y =2sin (2x −π3))的递增区间为 .三、 解答题: 17.水值:1sin10∘−√3cos10∘18. 已知 cos (α+β)=45,cos (α+β)=−45,α+β∈{7π4,2x},。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数单元测试题
一、选择题:(12ⅹ5分=60分)
1、若点在角得终边得反向延长线上,且,则点得坐标为()
2、已知角得终边经过点(-3,-4),则得值为( )
A、 B、 C、D、
3、已知、就就是第二象限得角,且,则( )
A、; B、; C、; D、以上都不对
4、函数图象得一条对称轴方程就就是( )
5、已知函数得一部分图象如右图所示,
如果,则()
A、 B、C、D、
6、已知函数对任意都有则等于( )
A、或B、或 C、 D、或
7、设就就是定义域为,最小正周期为得函数,若
则等于( )
A、 B、 C、 D、ﻩ
8、若点在第一象限,则在内得取值范围就就是( )
A、B、
C、D、
9、在函数、、、中,最小正周期为得函数得个数为()
A、个
B、个
C、个
D、个
10、已知, ,…为凸多边形得内角,且,则这个多边形就就是( )
A、正六边形
B、梯形C、矩形 D、含锐角菱形11、同时具有性质“(1)最小正周期就就是;(2)图像关于直线对称;(3)在上就就是增函数”得一个函数就就是( )
A、 B、
C、 D、
12、已知函数f (x)=f( x),且当时,f(x)=x+sinx,设a =f(1),b =f(2),c=f(3),则( )
A、a<b<c
B、b<c<a
C、c<b<a
D、c<a<b
二、填空题(4x4分=16分)
13、函数得定义域就就是
14、函数得单调递减区间就就是
15、已知函数得图象上得每一点得纵坐标扩大到原来得倍,横坐标扩大到原来得倍,然后把所得得图象沿轴向左平移,这样得到得曲线与得图象相同,则已知函数得解析式为____
___________________________、
16、关于函数有下列命题:
①由可得必就就是π得整数倍;
②得表达式可改写为;
③得图象关于点对称;
④得图象关于直线对称、以上命题成立得序号就就是__________________、
三、解答题:(5ⅹ12分+14分=74分)
17、(本题共12分)化简:
18、(本题共12分)已知、就就是方程得两实根,求:
(1)m得值; (2)得值、
19、(本题共12分)已知函数,(1)求它得单调区间;(2)当为何值时,使?
20、(本题共12分)函数得
图象如右,求出它得解析式,并说出它得周期、振幅、初相。
21、(本题共12分)已知函数y=Asin(ωx+φ)+b(A>0,|φ|<π,b为常数)得一段图象(如图)所示、
①求函数得解析式;
②求这个函数得单调区间、
22、(本题共14分)已知函数得图象在轴上得截距为,它在轴右侧得第一个最大值点与最小值点分别为与、(1)试求得解析式;(2)将图象上所有点得横坐标缩短到原来得(纵坐标不变),然后再将新得图象向轴正方向平移个单位,然后再将新得图象向y轴正方向平移1个单位,得到函数得图象、写出函数得解析式并在给出得方格纸上用五点作图法作出在长度为一个周期得闭区间上得图象、
答案:1--5DCDCC 6--10BBBCD11--12AD 13、14、15、16、②③17、18、(1) (2) 19、(1)(2)20、21、(1)(2)22、(1)(2)。