生活中数学最优化问题的研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生活中数学最优化问题的研究
教学目标:
1)知识与技能:能够把理论与实践相结合,将现实生活中的实际问题抽象、归纳并转化成数学中的最优化问题来解决。
2)能力目标:
1、运用已掌握的数学知识及其他相关的知识,将实际问题转化为数学问题去解决;
2、培养学生发现问题、分析问题和解决题的能力;
3、培养学生探索数学问题的能力。
3)情感目标:
1、通过主动发现、自主探索的过程,让学生有发现、有收获,从而获得成功的经验,激发学生的求知欲;
2、培养学生的合作精神和创新精神。
参与者特征分析
高中生相对来说独立性较强,具有一定的独立处理事情的能力,但他们生活经验不够,看待问题欠准确,往往会以点概面,不过高中生很容易接受新生事物,只要进行适当的引导,相信能使活动顺利开展。教学过程:
1、深入生活,从生活中取得课题
生活中处处充满着数学,处处留心皆数学。我们早晨起床刷牙用的牙膏,细心的同学会发现,牙膏的包装有大有小,其价格也不相同,你想过大小包与其价格之间的关系吗?你吃东西时,想过营养成份的搭配吗?你在开灯关灯时,想过灯的位置与照明度问题吗?你在开、关窗户时,想过窗户的面积与采光量的问题吗?烈日下,你想过遮阳棚搭建方式与遮挡太阳光线有关吗?你在购买商品时,想过哪儿如何才能买到最便宜的吗?
生活中经常遇到求利润最大、用料最省、效率最高、费用最少、路线最短、容积最大等问题,这些问题通常称为优化问题。现如今最优化问题备受关注,已渗透到生产、管理、商业、
军事、决策等各领域。对于上述问题,有些你也许想过,有些你也许从未想过。这些问题都与数学最优化问题有关!这堂课让我们共同发现并研究这些数学最优化问题吧!
2、结合生活、联系社会实际选择课题
解决最优化问题是一个发现、探索的过程,也是我们亲身感受问题、寻找解题策略,实现再创造以及体验数学价值的过程。在这个过程中,肯定我们的见解不全相同,就让我们彼此关心、合作探讨、互相评价、取得共识、达到群体算法多样化,获得探索成功的快乐吧。使不同的人在数学活动中得到不同的收获,让我们每个人都能有所发展、有所创新,提高创造思维水平高,丰富实践经验,增强探索能力。下面我就列举几个生活中数学最优化问题的例子吧。
一、商品价格最优化问题
在生活中,有许多生活必需品需要我们购买,就如妈妈要购买一台电磁炉,但如何才能买到最实惠的呢?于是我们开始为妈妈出谋划策,前往各大超市调查这件商品的价格。我们将收集的信息列成下表:
各大超市电磁炉价目表:
从上表我们不难发现天天新最便宜,如果只从价格方面考虑我们不难得出结论,妈妈在天天新买最合算。
上述这个问题是一个很直接也很简单的数学最优化问题,我们收集信息——分析信息——得出结论,加以使用数学最为简单的加减运算,就为妈妈节省了一笔钱。
二、预算最优化问题
在研究过程中,我们不仅需要动脑,更需要调查行动。学习了长方体的表面积后,让我们来测算一下粉刷教室的费用。
我们首先动手测定教室的粉刷面积,了解市场上涂料价格如何,需要多少涂料,粉刷的工钱如何计付,明确了这些因素以后我们就能对粉刷教室的费用做个初步的结算。
三、分期付款最优化问题
现在让我们来完成一道较为复杂的数学最优化问题,它与时下流行的分期付款的计算有关,为了更加迎合消费者的需要,开发商往往会提出几种销售方案供顾客选择,如何选最优的销售方案,也是我们研究的关键所在。顾客购买一件售价为5000元的商品时,那在一年内将款全部付清的前提下,
商店又提出了下表所示的几种付款方案,以供顾客选择,何种方案最实惠。
注规定月利率为0.8%,每月利息按复利计算
方案一:设每期所付款额x元,那么到最后一次付款时付款合部本利和为
x×(1+1.0084+1.0088)元x×(1+)
另外,5000元商品在购买后12个月后的本利和为5000×1.00812元。得
x×(1+1.0084+1.0088)=5000×1.00812
解得x=1775.8元
方案2:
=5000×1.00812
x=880.8元
方案3:
=5000×1.00812
x=438.6元
不难得出第三种方案时间既宽松而且更实惠。
四、成本最低化问题
一项工程或一个公司,除了追求效率最大化以外,另一个方面就是尽可能地降低成本,这也是数学最优化问题在生活中的应用的一个体现。
如:一建筑工程队,需用3尺,4尺长的甲、乙两种短竹竿各100根,用10尺长的竹竿来截取,至少要用去原材料几根?怎样最合算?
针对上述问题,我们列出三种截法:
(1) 3尺两根和4尺一根,最省原材料,全部利用。
(2)3尺三根,余一尺。
(3)4尺两根,余两尺。
显然,为省材料,尽量使用方法(1),这样,50根原材料可截得100根,3尺的竹竿和50根4尺竹竿,还差50根4尺的竹竿最好选择方法(3),这样所需原材料最少,只需要25根即可,这样,至少需要用去原材料75根。
寻求优化是人类的一种本能,不仅是人类,整个大自然中都充斥着这一现象。像蜜蜂所造的蜂窝,更是省到家了,其结构的巧妙,能如此省材料更让人折服。在人们的日常生活中,优化的要求也比比皆是,消费时,如何花尽可能少的钱办尽可能多的事,出行时,如何走最短的路程到达目的地,等等。总而言之,在经济如此发展,竞争如此剧烈,资源日渐紧张的今天,人们做任何事,无不望求事半功倍之术,以求或提效、或增收、或节约等等。可见最优化在日常生活中远处不在,足以显示其重要性。
再如:
在我们的班级中有9位老师带领50位学生到桃源洞开展观光活动时,我们得一门票价格表:成人票12元/人,学生票6元/人,团体票(10人以上)每人9元,为求省钱,我们几位同
学进行了探讨,得出以下三种典
型方案:
(1)“普通”方案:
12×9+6×50=408(元)
(师买成人票,生买学生票)
(2)“奉献”方案:
9×(9+50)=531(元)或408+3×(50-9)=531(元)
(购买团体票)
(3)“创新”方案:
9×10+6×50=390(元)
(师与一生买团体票,其余买学生票)
显然,创新方案更为实惠。
由上可见,生活中的优化问题与数学知识有着千丝万缕的联系。面对富有挑战性、开放性的现实问题,我们能够综合运用所学的数学知识亲身探索实践、合作交流得到创造性解决的方案。当我们用最优化的方法来解决实际问题的时候,就能够从中体会到探索成功的喜悦,同时