高数1 计算题
大学高等数学上习题(附答案)
《高数》习题1(上)一.选择题1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭ (C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x ⎛⎫-+ ⎪⎝⎭10.设()f x 为连续函数,则()102f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.()21ln dxx x =+⎰.三.计算 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分xxe dx -⎰四.应用题(每题10分,共20分)1.求曲线22y x =和直线4y x =-所围图形的面积.《高数》习题1参考答案一.选择题1.B 4.C 7.D 10.C 二.填空题 1.2- 2.33- 3.arctan ln x c + 三.计算题 1①2e ②162.11xy x y '=+- 3. ()1x ex C --++四.应用题1. 18S =《高数》习题2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()2g x x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰③2xx e dx ⎰四.应用题(每题10分,共20分)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》习题2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=-3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》习题3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.《高数》习题3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰《高数》习题4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 9、⎰=+101dx e e xx( ). A 、21ln e + B 、22ln e + C 、31ln e + D 、221ln e +二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0 三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e- ; 四、1、38;《高数》习题5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e xcos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分⎰e edx x 1ln ;四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.参考答案一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e - ; 四、1、 29;。
高数(上)复习题解答
《高等数学》复习题(2011——2012(1))一.计算题1.)1)1ln(1(lim 0x x x -+→ )1)1ln(1(lim 0x x x -+→ 2122x 0x 0x 0x ln(1+x)-x ln(1+x)-x 1+x lim lim lim xln(1+x)x x →→→===== 2. nn n n b a ⎪⎪⎭⎫⎝⎛+∞→2lim )0,0(>>b alim 1→∞⎧⎛⎪=+ ⎨ ⎝⎭⎝⎭⎪⎪⎩⎭n nn211lim lim lim 222→∞→∞→∞⋅=⋅+⋅n n n n n n 其中1111ln ln ln ln 1111ln lim(1)lim(1)lim lim 22222lim 2→∞→∞→∞→∞→∞=-⋅+-⋅=⋅+⋅==⎛∴= ⎝⎭a b a b n nn n n n n n nn ab e n e n n n3. nn n x nx -∞→⎪⎪⎭⎫⎝⎛++22221lim ()lim lim 222222222222221122+-⋅⋅-+-→∞→∞⎛⎫⎛⎫+++=+= ⎪ ⎪⎝⎭⎝⎭n nx x nn nx xn x n n nx x nx x e n n4. 若212lim1x x ax b x →-++=+,求a 、b lim lim ;,221122031→-→-++=⇒++=+⇒==由x x x ax b x ax x a b5.求22132x y x x -=-+的间断点,并判别间断点的类型。
()()x x y x x -+=--11, x=1是跳跃间断点,x=2是无穷间断点.6 .并在可导处求出的可导性 ,,试讨论)(,00)1ln()(sin x f x e x x k x f x '⎪⎩⎪⎨⎧<≥++=011sinxsinx k+ln(1+x), x 0f(x)=e , x 0k =1f(x), x 01+x f (x)=x =0cosx e , x 0x ≥⎧⎨<⎩=⎧>⎪⎪'⎨⎪<⎪⎩当时,在连续。
大学高等数学上下考试题库(及答案)
高数试题1(上)及答案一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2-2.33-3.24.arctan ln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰②)0a > ③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinxB 、 2sin x -C 、 C x +2sinD 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分; 4、求不定积分⎰++11x dx ;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ;4、C x x +++-+)11ln(212;5、)12(2e- ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略《高等数学》试卷1(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1- 6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz=( ).A.22B.22-C.2D.2-7.若p 级数∑∞=11n p n 收敛,则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为( ). A.xce y = B.xe y = C.xcxe y = D.cxe y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z 2_____________________________.4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程xe y y 23=-'在00==x y条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫⎝⎛31,1,求此曲线方程 .《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为( ).A.(){}10,22≤+≤y x y x B.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定 10.微分方程0ln =-'y y y x 的通解为( ). A.cxe y = B.xce y = C.xe y = D.xcxe y = 二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________. 3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x+的麦克劳林级数是______________________. 5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解. 四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dt x d -=22.当0=t 时,有0x x =,0v dtdx=)《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 2217、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
大一高等数学练习题及答案解析
大一高等数学练习题及答案解析 11.2.limx?0xx?.1?1x?1?x2005??ex?e?x?dx?x?y2.3.设函数y?y由方程?1xe?tdt?xdy确定,则dxx?0tfdt?ff?1fx14. 设可导,且,,则f?x??5.微分方程y4y??4y?0的通解为 .二.选择题1.设常数k?0,则函数个; 个; 1个; 0个.2.微分方程y4y?3cos2x 的特解形式为.y?Acos2x; y?Axcos2x;f?lnx?x?ke在内零点的个数为.y?Axcos2x?Bxsin2x;y?Asin2x..下列结论不一定成立的是.*f?x?dx??f?x?dxc,d?a,bca若,则必有;f?x?dx?0a,bf?0a若在上可积,则;若f?x?是周期为T的连续函数,则对任意常数a都有 xba?Taf?x?dx??f?x?dxT;tf?t?dtfx0若可积函数为奇函数,则也为奇函数. f?x??4. 设1?e1x1x2?3e, 则x?0是f的.连续点; 可去间断点;跳跃间断点; 无穷间断点. 三.计算题 1 .计算定积分x3e?xdx2.2.计算不定积分xsinxcos5x.xxa,t2处的切线的方程. .求摆线?y?a,在4. 设F??cosdt,求F?.5.设四.应用题 1.求由曲线y?xn?nlimxnn,求n??.x?2与该曲线过坐标原点的切线及x轴所围图形的面积.222.设平面图形D由x?y?2x与y?x所确定,试求D绕直线x?旋转一周所生成的旋转体的体积.ta?1,f?a?at在内的驻点为 t. 问a为何值时t最小?并求3. 设最小值.五.证明题设函数f在[0,1]上连续,在内可导且1ff=?1试证明至少存在一点??, 使得f?=1. 一.填空题: 11..limx?x?0e.4e.dy确定,则dxx?0121?1x?1?x2005??ex?e?x?dx?x?y3.设函数y?y由方程?1e?tdt?x?e?1.12x24. 设f?x?可导,且x1tfdt?f,f?1,则f?x??e2x.5.微分方程y4y??4y?0的通解为y?e二.选择题: .1.设常数k?0,则函数个; 个; 1个; 0个.2.微分方程y4y?3cos2x 的特解形式为y?Acos2xy; ?Axcos2x; ?y?Axcos2x?Bxsin2x; y?Asin2x.下列结论不一定成立的是f?lnx?x?k内零点的个数为. e 在若?c,da,b?,则必有dcf?x?dx??f?x?dxabb;f?x?dx?0a,bf?0a若在上可积,则;若f?x?是周期为T的连续函数,则对任意常数a都有a?Taf?x?dx??f?x?dxT;xtf?t?dtfx0 若可积函数为奇函数,则也为奇函数. f?x??1?e1x1x2?3e, 则x?0是f的.. 设连续点; 可去间断点;跳跃间断点; 无穷间断点. 三.计算题: 1.计算定积分?0 解:2x3e?xdx202.2设x2?t,则?x3e?xdx??1?t12tedttde?t0220-------221??t22?t?te??edt?002?? -------22131e?2?e?te?2022--------22.计算不定积分解:xsinx5cosx.xsinx111?xdx?dx?xd??4?cos5x?cos4x?4?cos4x4??cosx?--------3 x1dtanx44cosx4x113tanx?tanx?C4cos4x1-----------?xa,t2处的切线的方程..求摆线?y?a,在,a)2解:切点为 -------2k?dyasint?s)t??dxt??a即y?x?a.-------24. 设.设F??cosdt22F2xcosxcos. ,则xn?nn?1)?limxnn,求n??.1nilnxn??ln1ni?1n ---------解:n1i1limlnxn?lim?ln??lndx0n??n??nni?1--------------12ln2101?x =------------22ln2?1e?limxne 故 n??=xln10??x1四.应用题 1.求由曲线y?x?2与该曲线过坐标原点的切线及x轴所围图形的面积.解:大一高等数学期末考试试卷一、选择题2ex,x0,1. 若f??为连续函数,则a的值为.ax,x01 3-12. 已知f??2,则limh?0f?f的值为.h13-113. 定积分?2?的值为. ?20-2124. 若f在x?x0处不连续,则f在该点处.必不可导一定可导可能可导必无极限二、填空题1.平面上过点,且在任意一点处的切线斜率为3x2的曲线方程为 .2. ?dx? . ?113. limx2sinx?01= . x4. y?2x3?3x2的极大值为三、计算题1. 求limx?0xln. sin3x22. 设y?求y?.. 求不定积分?xlndx.4. 求?30?x,x?1,? fdx,其中f??1?cosx?ex?1,x?1.?5. 设函数y?f由方程?edt??costdt?0所确定,求dy. 00ytx6. 设?fdx?sinx2?C,求?fdx.3??7. 求极限lim?1??. n2n?四、解答题1. 设f??1?x,且f?1,求f. n2. 求由曲线y?cosxx??与x轴所围成图形绕着x轴旋转一周2??2所得旋转体的体积.3. 求曲线y?x3?3x2?24x?19在拐点处的切线方程.4. 求函数y?x[?5,1]上的最小值和最大值.五、证明题设f??在区间[a,b]上连续,证明bafdx?b?a1b[f?f]??f??dx.2a标准答案一、 1 B; C; D; A.二、 1 y?x?1;2; 0;0.三、 1 解原式?limx?5x5分 x?03x21分2分 x??lxn2d分 ?212x?[lndx2分21?x1?[ln?x2]?C1分解令x?1?t,则分03fdx1fdt 1分122t1??1dt 1分 1?cost1分 ?0?[et?t]1e2e1 1分两边求导得ey?y??cosx?0,分ycosx 1分 ye?cosx 1分 sinx?1cosx?dy?dx分 sinx?1解 ?fdx?12?fd2?C4分3??lim1?解原式=??n2n?322n3?32分 =e2分四、1 解令lnx?t,则x?et,f??1?et, 分 f??dt=t?et?C.2分 ?f?1,?C?0, 分fxex. 1分解 Vx2??2??cosxdx分 ?2202cos2xdx2分 ?解 ?22. 分 6x?1分 y??3x2?6x?24,y令y0,得x?1. 1分当x?1时,y0; 当1?x时,y0,分 ?为拐点, 1分该点处的切线为y?3?21. 分解y??1??2分令y??0,得x3?. 1分435y52.55,y,y1,分 ?4?435y5y最大值为. 分 ?最小值为?4?4五、证明bafdf?分 ab[f]aaf[2xdx分a[2x?df分 bbb[2x?]f?a?2?afdx分[f?f]?2?afdx,分移项即得所证分 bbb大一高数试题及答案一、填空题________ 11.函数y=arcsin√1-x+────── 的定义域为_________ √1-x2_______________。
《大一高等数学》试卷(十份)
《大一高等数学》试卷(十份)《高等数学试卷》一.选择题(3分10)1.点M12,3,1到点M22,7,4的距离M1M2().A.3B.4C.5D.62.向量ai2jk,b2ij,则有().A.a∥bB.a⊥bC.a,bD.a,b343.函数y2某2y21某y122的定义域是().某,y1某C.2222A.某,y1某y2B.某,y1某y22y2某,y1某2D2y224.两个向量a与b垂直的充要条件是().A.ab0B.ab0C.ab0D.ab05.函数z某3y33某y的极小值是().A.2B.2C.1D.16.设z某iny,则zy1,4=().A.22B.C.2D.2221收敛,则().pnn17.若p级数A.p1B.p1C.p1D.p1某n8.幂级数的收敛域为().n1nA.1,1B1,1C.1,1D.1,1某9.幂级数在收敛域内的和函数是().n02nA.1221B.C.D.1某2某1某2某10.微分方程某yylny0的通解为().A.yce某B.ye某C.yc某e某D.yec某二.填空题(4分5)1.一平面过点A0,0,3且垂直于直线AB,其中点B2,1,1,则此平面方程为______________________.2.函数zin某y的全微分是______________________________.2z3.设z某y3某y某y1,则_____________________________.某y3234.1的麦克劳林级数是___________________________.2某5.微分方程y4y4y0的通解为_________________________________.三.计算题(5分6)u1.设zeinv,而u某y,v某y,求zz,.某yzz,.某y2.已知隐函数zz某,y由方程某22y2z24某2z50确定,求3.计算inD某2y2d,其中D:2某2y242.4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R为半径).5.求微分方程y3ye2某在y四.应用题(10分2)某00条件下的特解.1.要用铁板做一个体积为2m的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线yf某上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点1,,求此曲线方程.313试卷3参考答案一.选择题CBCADACCBD二.填空题1.2某y2z60.2.co某yyd某某dy.3.6某2y9y21.4.n01n某n.2n12某5.yC1C2某e三.计算题1..zze某yyin某yco某y,e某y某in某yco某y.某y2.z2某z2y,.某z1yz13.4.20dind62.2163R.33某5.yee2某.四.应用题1.长、宽、高均为32m时,用料最省.2.y12某.3《高数》试卷4(下)一.选择题(3分10)1.点M14,3,1,M27,1,2的距离M1M2().A.12B.13C.14D.152.设两平面方程分别为某2y2z10和某y50,则两平面的夹角为(A.6B.4C.3D.23.函数zarcin某2y2的定义域为().A.某,y0某2y21B.某,y0某2y21C.某,y0某2y22D.某,y0某2y224.点P1,2,1到平面某2y2z50的距离为().A.3B.4C.5D.65.函数z2某y3某22y2的极大值为().A.0B.1C.1D.126.设z某23某yy2,则z某1,2().A.6B.7C.8D.97.若几何级数arn是收敛的,则().n0A.r1B.r1C.r1D.r18.幂级数n1某n的收敛域为().n0A.1,1B.1,1C.1,1D.1,19.级数inna是(n1n4)..)A.条件收敛B.绝对收敛C.发散D.不能确定10.微分方程某yylny0的通解为().A.yec某B.yce某C.ye某D.yc某e某二.填空题(4分5)某3t1.直线l过点A2,2,1且与直线yt平行,则直线l的方程为z12t__________________________.2.函数ze的全微分为___________________________.3.曲面某yz2某24y2在点2,1,4处的切平面方程为_____________________________________.4.1的麦克劳林级数是______________________.21某某15.微分方程某dy3yd某0在y三.计算题(5分6)1条件下的特解为______________________________.1.设ai2jk,b2j3k,求ab.2.设zuvuv,而u某coy,v某iny,求22zz,.某yzz,.某y3.已知隐函数zz某,y由某33某yz2确定,求2222224.如图,求球面某yz4a与圆柱面某y2a某(a0)所围的几何体的体积.5.求微分方程y3y2y0的通解.四.应用题(10分2)1.试用二重积分计算由y某,y2某和某4所围图形的面积.2.如图,以初速度v0将质点铅直上抛,不计阻力,求质点的运动规律某某t.(提示:d某d2某t0v0)g.当时,有,某某02dtdt试卷4参考答案一.选择题CBABACCDBA.二.填空题1.某2y2z1.112某y2.eyd某某dy.3.8某8yz4.n2n1某.n04.5.y某.三.计算题1.8i3j2k.2.zz3某2inycoycoyiny,2某3inycoyinycoy某3in3yco3y某y.3.zyzz某z.,22某某yzy某yz3232a.3234.5.yC1e2某C2e某.四.应用题1.16.32.某12gtv0t某0.2《高数》试卷5(上)一、填空题(每小题3分,共24分)1.函数y19某2的定义域为________________________.in4某,某02.设函数f某某,则当a=_________时,f某在某0处连续.某0a,某213.函数f(某)2的无穷型间断点为________________.某3某2某4.设f(某)可导,yf(e),则y____________.某21_________________.5.lim2某2某某5某3in2某d某=______________.6.41某某211d某2tedt_______________________.7.d某08.yyy30是_______阶微分方程.二、求下列极限(每小题5分,共15分)某31e某11.lim;2.;lim23.lim1.某3某9某0in某某2某三、求下列导数或微分(每小题5分,共15分)某co某,求y(0).2.ye,求dy.某2dy3.设某ye某y,求.d某某1.y四、求下列积分(每小题5分,共15分)11.2in某d某.2.某ln(1某)d某.某3.10e2某d某某t五、(8分)求曲线在t处的切线与法线方程.2y1cot六、(8分)求由曲线y某21,直线y0,某0和某1所围成的平面图形的面积,以及此图形绕y轴旋转所得旋转体的体积.七、(8分)求微分方程y6y13y0的通解.八、(7分)求微分方程yye某满足初始条件y10的特解.某《高数》试卷5参考答案某某一.1.(3,3)2.a43.某24.ef(e)1某25.6.07.2某e8.二阶21二.1.原式=lim某0某某2.lim11某3某36112某1)]2e23.原式=lim[(1某2某三.1.y2,(某2)2y(0)122.dyin某eco某d某3.两边对某求写:y某ye某y(1y)e某yy某yyy'某e某y某某y四.1.原式=ln某2co某C某某2122.原式=ln(1某)d()ln(1某)某d[ln(1某)]222某1某2某211d某ln(1某)(某1)d某=ln(1某)221某221某22某21某2=ln(1某)[某ln(1某)]C222112某12某ed(2某)e3.原式=022dydyint,五.d某d某2101(e21)2t1.且当t2时,某2,y1切线:y1某2,即某y120法线:y1(某),即某y121132S(某1)d某(某某)六.03102043V某2dy(y1)dy11221(y2y)22112r32i七.特征方程:八.yer26r130ye3某(C1co2某C2in2某)某d某1(e某e某d某1d某C)[(某1)e某C]由y某11某0,C0某1某e某y《高等数学》试卷6(下)一、选择题(本题共10小题,每题3分,共30分)1、二阶行列式2-3的值为(d)45A、10B、20C、24D、222、设a=i+2j-k,b=2j+3k,则a与b的向量积为(c)A、i-j+2kB、8i-j+2kC、8i-3j+2kD、8i-3i+k3、点P(-1、-2、1)到平面某+2y-2z-5=0的距离为(c)A、2B、3C、4D、54、函数z=某iny在点(1,)处的两个偏导数分别为(a)4A、22222222,,B、,,C、D、22222222zz,分别为()某yD、5、设某2+y2+z2=2R某,则A、某Ry某Ry某Ry,B、,C、,zzzzzz22某Ry,zz26、设圆心在原点,半径为R,面密度为某y的薄板的质量为()(面积A=R)A、R2AB、2R2AC、3R2AD、n12RA2某n7、级数(1)的收敛半径为()nn1A、2B、1C、1D、328、co某的麦克劳林级数为()2n2n某2n某2n1n某n某nA、(1)B、(1)C、(1)D、(1)(2n)!(2n)!(2n)!(2n1)!n0n1n0n0n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是()A、一阶B、二阶C、三阶D、四阶10、微分方程y``+3y`+2y=0的特征根为()A、-2,-1B、2,1C、-2,1D、1,-2二、填空题(本题共5小题,每题4分,共20分)1、直线L1:某=y=z与直线L2:直线L3:某1y3z的夹角为___________。
大一上学期高数期末考试题
大一上学期高数期末考试题高等数学期末考试题一、选择题1. 若函数f(x) = x^2 + bx + c的图像在x轴上有两个不同的实根,则b^2 - 4ac的值为()A. 0B. 1C. -1D. 42. 设函数f(x) = (x + a)(x - b),其中a和b是实数。
若f(x)满足f(1) = 0和f(3) = 0,则a和b满足下列哪个条件?()A. a = 2bB. a + b = 0C. a = bD. a^2 + b^2 = 10二、计算题1. 求函数f(x) = 3x^2 - 4x - 1在[-1, 2]上的极值及极值点。
2. 计算下列定积分∫(0, π/2) sin^2(x) dx。
三、解答题1. 求曲线y = x^2 - 2x - 3与x轴所围成的图形的面积。
2. 设函数f(x) = a^x, a > 0,且a ≠ 1。
证明:f'(x) = a^x ln(a)。
3. 证明:当n为正整数时,2^n > 1 + n + (n^2)/2! + (n^3)/3! + ... + (n^n)/n!。
四、证明题证明:若函数f(x)在区间[a, b]上连续,且在区间(a, b)内可导,且f'(x) = 0,则函数f(x)在区间[a, b]上恒为常数。
以上是一份关于大一上学期高等数学期末考试的题目。
这些题目涵盖了选择题、计算题、解答题和证明题,旨在全面考察学生对高等数学概念和定理的理解与应用能力。
在选择题中,考察了二次函数的性质和因式分解的应用。
这些题目要求学生掌握求解一元二次方程的方法和判别式的含义。
计算题中,要求学生计算函数在给定区间上的极值和定积分。
这些题目考察学生对函数极值和定积分的概念和计算技巧的掌握。
解答题中,要求学生使用求曲线与坐标轴围成的面积的方法计算图形的面积,同时要求学生利用导数的定义和性质证明函数的导数。
这些题目旨在训练学生的推理和证明能力。
证明题要求学生运用一元函数的连续和可导的定义和性质进行证明。
大学高数一试题及答案
大学高数一试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^2在x=0处的导数是:A. 0B. 1C. 2D. 4答案:B2. 极限lim(x→0)(sin x/x)的值是:A. 0B. 1C. 2D. ∞答案:B3. 曲线y=x^3-3x+2在x=1处的切线斜率是:A. 0B. 1C. -2D. 2答案:D4. 定积分∫(0到1) x^2 dx的值是:A. 1/3B. 1/2C. 1D. 2答案:A二、填空题(每题5分,共20分)1. 函数f(x)=x^3-6x^2+11x-6的极值点是______。
答案:1, 2, 32. 曲线y=x^2与直线y=4x相切的点的横坐标是______。
答案:23. 函数f(x)=ln(x)的不定积分是______。
答案:xln(x)-x+C4. 级数∑(1到∞) (1/n^2)的和是______。
答案:π^2/6三、计算题(每题10分,共30分)1. 计算定积分∫(0到π) sin x dx。
答案:22. 求函数f(x)=x^3-3x^2+2的一阶导数和二阶导数。
答案:一阶导数:3x^2-6x;二阶导数:6x-63. 求极限lim(x→∞) (1+1/x)^x。
答案:e四、证明题(每题15分,共30分)1. 证明函数f(x)=x^3在R上是单调递增的。
答案:略2. 证明极限lim(x→0) (1-cos x)/x^2=0。
答案:略。
高数一期末试题及答案
高数一期末试题及答案一、选择题(每题5分,共20分)1. 下列函数中,哪一个是奇函数?A. \( y = x^2 \)B. \( y = x^3 \)C. \( y = \sin(x) \)D. \( y = \cos(x) \)答案:C2. 极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \) 的值是多少?A. 0B. 1C. \( \frac{1}{2} \)D. \( \infty \)答案:B3. 微分方程 \( y'' - y = 0 \) 的通解是:A. \( y = e^x \)B. \( y = \sin(x) + \cos(x) \)C. \( y = e^{2x} \)D. \( y = x^2 \)答案:B4. 曲线 \( y = x^3 \) 在点 \( (1,1) \) 处的切线斜率是:B. 1C. 3D. 27答案:C二、填空题(每题5分,共20分)1. 设 \( f(x) = x^2 - 4x + 4 \),则 \( f'(x) =\_\_\_\_\_\_\_\_ \)。
答案:\( 2x - 4 \)2. 函数 \( y = \ln(x) \) 的不定积分是 \( \_\_\_\_\_\_\_\_ \)。
答案:\( x\ln(x) - x + C \)3. 曲线 \( y = x^2 \) 与直线 \( y = 2x \) 的交点坐标是\( \_\_\_\_\_\_\_\_ \)。
答案:\( (0,0) \) 和 \( (2,4) \)4. 函数 \( y = e^{3x} \) 的二阶导数是 \( \_\_\_\_\_\_\_\_ \)。
答案:\( 9e^{3x} \)三、计算题(每题15分,共30分)1. 计算定积分 \( \int_{0}^{1} (3x^2 - 2x + 1) dx \)。
\[\int_{0}^{1} (3x^2 - 2x + 1) dx = \left[ x^3 - x^2 + x\right]_{0}^{1} = (1 - 1 + 1) - (0 - 0 + 0) = 1\]2. 求函数 \( y = x^3 - 6x^2 + 9x + 1 \) 的极值。
大一高数求极限的例题
大一高数求极限的例题一、引言极限是大学高等数学中的重要概念,它是分析数学和微积分的基础。
在大一的高数课程中,学生常常会遇到求取极限的例题。
通过解答这些例题,不仅可以帮助学生理解极限的概念和性质,还可以提升他们的计算能力和思维逻辑能力。
本文将给出一些典型的大一高数求取极限的例题,以帮助读者更好地理解和掌握这一知识点。
二、例题一:求极限$\\lim_{x \\rightarrow 0}\\frac{\\sin{2x}}{x}$解析:我们可以利用极限的基本性质来求解该例题。
首先,我们注意到当$x$接近于0时,$\\sin{2x}$也随之接近于0,而分母$x$始终不会取0。
因此,我们可以将该极限转换为另一个形式:$\\lim_{x \\rightarrow 0} \\frac{2\\sin{x}\\cos{x}}{x}$。
接下来,我们可以继续变形,使用三角恒等式$\\sin{2x} =2\\sin{x}\\cos{x}$,将分子中的$\\sin{2x}$化简为$2\\sin{x}\\cos{x}$。
然后,我们可以进一步将极限变为$\\lim_{x \\rightarrow 0} \\frac{2\\sin{x}\\cos{x}}{x} = 2\\lim_{x\\rightarrow 0} \\frac{\\sin{x}}{x}\\lim_{x \\rightarrow0}\\cos{x}$。
其中,$\\lim_{x \\rightarrow 0}\\cos{x}$显然等于1。
而$\\lim_{x \\rightarrow 0} \\frac{\\sin{x}}{x}$则是一个常数,它的数值为1。
因此,最终的结果为$2 \\times 1 \\times 1 = 2$。
即$\\lim_{x \\rightarrow 0} \\frac{\\sin{2x}}{x} = 2$。
三、例题二:求极限$\\lim_{x \\rightarrow +\\infty} \\left(1 +\\frac{a}{x}\\right)^x$解析:为了求解该例题,我们可以利用极限的定义和性质。
大一高数试题及答案
大一高数试题及答案一、填空题(每小题1分,共10分)________ 11.函数y=arcsin√1-x2+────── 的定义域为_________√1-x2_______________。
2.函数y=x+ex上点(0,1)处的切线方程是______________。
f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────h→o h= _____________。
4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。
x5.∫─────dx=_____________。
1-x416.limXsin───=___________。
x→∞ X7.设f(x,y)=sin(xy),则fx(x,y)=____________。
_______R √R2-x28.累次积分∫ dx∫ f(X2+Y2)dy化为极坐标下的累次积分为____________。
0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。
dx3xdx2∞ ∞10.设级数∑ an发散,则级数∑ an _______________。
n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=── ,g(x)=1-x,则f[g(x)]=()x111①1-── ②1+── ③ ──── ④xxx1-x12.x→0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X=Xo连续,则f( X )在X=Xo可导②若f( X )在 X=Xo不可导,则f( X )在X=Xo不连续③若f( X )在 X=Xo不可微,则f( X )在X=Xo极限不存在④若f( X )在 X=Xo不连续,则f( X )在X=Xo不可导4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则()① F(X)+G(X) 为常数② F(X)-G(X) 为常数③ F(X)-G(X) =0dd④ ──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg── ,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④ ──f(x,y)t2an+1∞9.设an≥0,且lim───── =p,则级数∑an()n→∞ a n=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是()①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在 X=Xo 的左右导数存在且相等是f(X)在 X=Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim─── ∫ 3tgt2dt=()x→0 x3 01① 0② 1③ ── ④ ∞3xy17.limxysin───── =()x→0 x2+y2y→0① 0② 1③ ∞ ④ sin118.对微分方程y"=f(y,y'),降阶的方法是()① 设y'=p,则y"=p'dp② 设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④ 设y'=p,则y"=── ───pdy∞ ∞19.设幂级数∑ anxn在xo(xo≠0)收敛,则∑ anxn在│x│〈│xo│()n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=()D x1 1 sinx① ∫ dx∫ ───── dy0 x x__1 √y sinx② ∫ dy∫ ─────dx0 y x__1 √x sinx③ ∫ dx∫ ─────dy0 x x__1 √x sinx④ ∫ dy∫ ─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/────── 求y' 。
大一高数试卷试题含解答.docx
大一高数试题及解答大一高数试题及答案一、填空题(每小题1分,共10分)________121.函数y=arcsin√1-x+──────的定义域为_________√1-x2_______________。
2.函数y=x+ex上点(0,1)处的切线方程是 ______________。
f( Xo+2 h)-f( Xo-3 h)3.设f( X)在 Xo 可导且f ' (Xo)=A,则lim───────────────h→o h=_____________ 。
4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。
x5.∫─────dx=_____________。
1-x416.limXsin───=___________。
x→∞X7.设f(x,y)=sin(xy),则fx(x,y)= ____________。
_______R22√R-x8.累次积分∫dx∫f(X2+Y2)dy化为极坐标下的累次积分为____________。
00d3y3d2y9.微分方程───+──(─── )2的阶数为 ____________。
dx3xdx2∞∞10.设级数∑an 发散,则级数∑an _______________。
n=1n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=──,g(x)=1-x,则f[g(x)]=()x111①1-──②1+──③ ────④xxx1-x12.x→ 0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X =Xo连续,则f(X)在X=Xo 可导②若f( X )在 X =Xo不可导,则f( X )在 X=Xo 不连续③若f( X )在 X =Xo不可微,则f( X )在 X=Xo 极限不存在④若f( X )在 X =Xo不连续,则f( X )在 X=Xo 不可导4.若在区间(a,b)内恒有f' (x)〈0,f " (x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F '(x)=G'(x),则()①F(X) +G (X)②F(X) -G (X)③F(X) -G (X)为常数为常数=0d④ ──∫F(x)dxd=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg──,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④──f(x,y)t2an+1∞9.设a n≥0,且lim─────=p,则级数∑an()n→∞an=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散210.方程y'+3xy=6xy是①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=e③y=xx3②y=x3+1④y=ln│x│12.设f(x)在(a,b)可导,a〈x〈1 x〈2 b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f ' (ζ)(b-a)②f(b)-f(a)=f ' (ζ)(x2-x 1)③f(x 2)-f(x 1)=f'(ζ)(b-a)④f(x 2)-f(x 1)=f'(ζ)(x2-x 1)13.设f( X)在 X =Xo 的左右导数存在且相等是f( X)在 X =Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x 4 4②x 4+c41x16.lim─── ∫ 3tgt2dt=()x→0x301① 0② 1③ ──④ ∞3xy17.limxysin─────=()x→0x 2+y 2y→0③∞① 0②1④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y ' =p,则y"=p'dp②设y ' =p,则y"=───dydp③设y ' =p,则y"=p───dy1dp④设y ' =p,则y" =─────pdy∞∞n19.设幂级数∑ anx在x(oxo≠0)n收敛,则∑ anx在│x│〈│xo│()n=on=o①绝对收敛②条件收敛③发散④收敛性与an 有关sinx20.设D域由y=x,y=x2 所围成,则∫∫ ─────dσ=()Dx11sinx① ∫ dx∫ ───── dy0xx__1√ysinx② ∫ dy∫─────dx0yx__1√xsinx③ ∫ dx∫─────dy0xx__1√xsinx④ ∫ dy∫─────dx0xx三、计算题(每小题5分,共45分)___________y'1.设。
大一高数础练习题.docx
高等数学》(理工类)1.设y = f(x)的定乂域为(0,1], 9(x) = l — lnx,则复合函数尸舟心]的定义域为; 0 < In x < 1, x e [1, e)2,已知KT时,arcta点与工是等价无穷小,则COSX. [.arctan3x 3 . 。
.a = ; lim ----------- = 一= 1,白=3;10 ax a3 .函数尸已丑+c任,W dy=_________________________ ;x 6—(2 cos 2x - sin 2x)dx;x4 . 函数VfL的拐点为;矿=e-' (x - 2) = 0, X = 2 , (2,2e-2). n5.设函数/(x)= SmX,X<| ,当。
二时,f⑴在3tz + X , x —~I 2处连续;1-^/2 ;6.设y = y(x) 是由方程八"2 = 0所确定的隐函数,则7.函数川)=工的跳跃间断点是/(r)= o, /(r)= i,x = i;8 .足分^「(Ji-/ +sinx)<ix =; 2\ll-x 2dx = ^/29 .已知点空间三个点肱(1,1,1), A(2,2,1),8(2,1,2),则ZAMB=;时3;10. 已矢口 a = (2,3,l)人= (1,2,3), axb =二、计算题(每小题6分,共42分)x = 求您以及空。
y — arctan t dx dx 2 1 解”虬(1 +尸),也= 1±Z = Z,空=-瑚2 dx t t dx 2 t1 +尸5. 计算不定积分俨日mjln(ln x)d Inx (7,-5,1)1. 求极限吨地<4=;。
arc sm2x 22. 求极限limC sin 3 x ,e dt _ 12 ____ — lim x-sinx x->0 3 sin 2 x^sin3% 右--------------=o 1 一 COS X3. 设y = e^ -sinx,求坐。
高等数学1期末试卷(5套)
试卷(一)一、1、下列等式中成立的是( B ).(A) e n nn =⎪⎭⎫⎝⎛+∞→21lim (B) e n n n =⎪⎭⎫ ⎝⎛++∞→211lim (C) e n nn =⎪⎭⎫ ⎝⎛+∞→211lim (D) e n nn =⎪⎭⎫⎝⎛+∞→211lim2、函数()x f 在点0x 处连续是在该点处可导的( ).(A) 必要但不充分条件 (B) 充分但不必要条件 (C)充分必要条件 (D) 既非充分也非必要条件 3、设函数()x f 可导,并且下列极限均存在,则下列等式不成立的是( ).(A) ()()()00limf x f x f x '=-→ (B) ()()()0000lim x f x x x f x f x '=∆∆--→∆(C) ()()()a f h a f h a f h '=-+→2lim(D) ()()()00002lim x f xx x f x x f x '=∆∆--∆+→∆ 4、若(),00='x f 则点0x x =是函数()x f 的( ).(A) 极大值点 (B) .最大值点 (C) 极小值点 (D) 驻点5、曲线12+=x x y 的铅直渐近线是( ).(A )y =1 (B )y =0 (C )1-=x (D )x =0 6、设xe-是)(x f 的一个原函数,则⎰=dx x xf )(( ).(A )c x e x+--)1( (B )c x e x++-)1( (C )c x e x+--)1( (D ) c x e x++--)1( 二、1、当0x →时,(1cos )x -与2sin2xa 是等价无穷小,则常数a 应等于______ _. 2、若82lim =⎪⎭⎫⎝⎛-+∞→xx b x b x ,则=b .3、函数123++=x x y 的拐点是 .4、函数()x y y =是由方程y x y +=tan 给出,则='y ______________________.5、双曲线1xy =在点()1,1处的曲率为 .6、已知)(x f 在),(∞+-∞上连续,且2)0(=f ,且设2sin ()()x xF x f t dt =⎰,则(0)F '= .三、 1、求极限()xx x x x sin tan cos 1lim20-→ .2、设曲线的方程为33190x y (x )cos(y ),π++++=求此曲线在1x =-处的切线方程.3、求不定积分⎰++322x x xdx.4、求不定积分dx x x ⎰+31. 5、求定积分dx x x ⎰22cos π.6、求定积分⎰--+11242dx xx .四、1、求抛物线12+=x y 与直线1-=x y 所围成的图形. 2、设()f x ''连续,()1f π=,()()0sin 3f x f x xdx π''+=⎡⎤⎣⎦⎰,求()0f .试卷(二)一、1、=+→xx x 2)31(lim .2、当=k 时,⎪⎩⎪⎨⎧>+≤=00e)(2x kx x x f x 在0=x 处连续.3、设x x y ln +=,则=dydx. 4、曲线x e y x -=在点)1,0(处的切线方程是 .5、设两辆汽车从静止开始沿直线路径前进,下图中给出的两条曲线)(1t a a =和)(2t a a =分别是两车的速度曲线.那么位于这两条曲线和直线T t = )0(>T 之间的图形的面积A 所表示的物理意义是 .二、1、若函数xx x f =)(,则=→)(lim 0x f x ( ).A 、0B 、1-C 、1D 、不存在 2、下列变量中,是无穷小量的为( ).A 、 x 1ln(当+→0x ) B 、x ln (当1→x ) C 、x cos (当0→x ) D 、 422--x x (当2→x ) 3、满足关系式0)(='x f 的x 是函数)(x f y =的( ).A 、极大值点B 、极小值点C 、驻点D 、间断点 4、下列函数)(x f 在]1,1[-上适合罗尔中值定理条件的是( ).A 、32)(x x f =B 、x x x f 2)(=C 、32)(+=x x fD 、x x f sin )(= 5、下列无穷积分收敛的是( ).A 、⎰∞+ 0sin xdx B 、dx x ⎰∞+ 01C 、dx e x ⎰∞+- 0 2D 、dx x⎰∞+ 0 1三、1、求极限 xx x 2sin 24lim-+→ . 2、求极限 2cos 2cos 0lim x dte xx t x ⎰-→.3、设)1ln(25x x e y +++=,求y '.4、设)(x y f =由已知⎩⎨⎧=+=ty t x arctan )1ln(2,求22dx y d . 5、求不定积分dx xx x ⎰+)sin (ln 2.6、设⎪⎩⎪⎨⎧≥<+=-0011)(2x xe x x x f x , 求⎰-20d )1(x x f .四、1、设函数21)(xxx f +=,分别求其单调区间、极值、凹凸性与拐点. 2、设)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导)0(>a .试证在),(b a 内至少存在一点ξ满足:)(][)]()([2012201220122011ξξf a b a f b f '-=-.试卷(三)一、1.设)sin (cos )(x x x x f +=,则在0=x 处有( ).(A)2)0(='f (B) 1)0(='f (C) 0)0(='f (D) )(x f 不可导 2.设333)(,11)(x x xxx ⋅-=+-=βα,则当1→x 时( ). (A) )(x α与)(x β是同阶无穷小,但不是等价无穷小; (B) )(x α与)(x β是等价无穷小; (C) )(x α是比)(x β高阶的无穷小; (D) )(x β是比)(x α高阶的无穷小.3.函数2)4(121++=x xy 的图形( ). (A) 只有水平渐近线; (B) 有一条水平渐近线和一条铅直渐近线; (C) 只有铅直渐近线; (D) 无渐近线.4.设函数nn x xx f 211lim)(++=∞→,则下列结论正确的为( ).(A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x .5.设函数)(x f 是连续函数,且⎰+=1)(2)(dt t f x x f ,则)(x f = ( ).(A) 22x (B)222+x (C) 1-x (D) 2+x 6.广义积分)0( >⎰∞+a xdxap 当( )时收敛. (A) 1>p (B) 1<p (C) 1≥p (D) 1≤p二、1.=+→xx x sin 20)31(lim .2.曲线⎩⎨⎧=+=321ty t x 在t=2处的切线方程为 . 3.方程0162=-++x xy e y 确定隐函数)(x y y =,则)0(y '= .4.⎰--+2121 2211arcsin dx xx x = .5.已知x x cos 是)(x f 的一个原函数,则dx xxx f ⎰cos )(= . 6.=⎰→22 0sin lim2xtdt e xt x .三、1.(6分)已知tt t x x f ⎪⎪⎭⎫⎝⎛+=+∞→2sin 1lim )(,求)(x f '. 2.(6分)求不定积分dx xx⎰++cos 1sin 1. 3.(8分)设函数⎩⎨⎧≤<-≤=-1010)(2x x x xe x f x ,,,求dx x f ⎰-1 3 )(. 4.(8分)已知2)3(lim 2=++-∞→c bx ax x x ,求常数b a ,.5.(8分)求由曲线)1(2,4,22≥===x x y x y xy 所围图形的面积.6.(8分)由方程)ln(arctan22y x x y +=确定隐函数)(x f y =,求0=y dx dy . 7.(8分)设函数)(x f 在[0,1]上连续且单调递减,证明:对任意的],1,0[∈q ⎰⎰≥qdx x f q dx x f 01)()(.试卷(四)一、1.方程23cos2x y y y e x '''--=的特解形式为( )(A )cos 2xaxe x ; (B )cos 2sin 2xxaxe x bxe x +; (C )cos 2sin 2xxae x be x +; (D )22cos 2sin 2xxax e x bx e x +.2. 设a 不是π的整数倍,极限ax a x a x -→⎪⎭⎫⎝⎛1sin sin lim 的值是( ).(A ) 1 (B )e (C )a e cot (D )ae tan3. 函数⎪⎩⎪⎨⎧=≠-+=0 ,0 ,1sin )(2x a x xe x xf ax 在0=x 处连续,则=a ( ). (A )1 (B ) 0 (C )e (D )1-4. 设2()()lim1()x af x f a x a →-=--,则在x a =处有( ) (A )()f x 的导数存在,且()0f a '≠; (B )()f x 取得极大值; (C )()f x 取得极小值; (D )()f x 取得最大值.5. 设函数)(x f 在点0=x 的某个邻域内连续,且0)0(=f ,2cos 1)(lim0=-→xx f x ,则点0=x ( ).(A )是)(x f 的极大值点(B )是)(x f 的极小值点(C)不是)(x f 的驻点(D )是)(x f 的驻点但不是极值点二、1. 设tan 21, 0sin 2(), 0xx e x x f x ae x ⎧->⎪⎪=⎨⎪⎪≤⎩在0x =连续,则a =____________.2. 极限xaa x x ln )ln(lim0-+→(0>a )的值是 .3. 设()(1)(2)(99)f x x x x x =---L ,则(0)f '=____________.4. 曲线21x xe y =的铅直渐近线是 . 5. 函数)4ln(x x y -=的单调递增区间为 .三、1. 计算极限412921612lim 2332-+-+-→x x x x x x . 2. 求不定积分10arctan d x x x ⎰. 3. 求定积分⎰+41)1(x x dx . 4. 求函数122+=x xy 的极值与拐点.5. 求微分方程52d 2(1)d 1y y x x x -=++的通解. 6. 设1>a ,函数a a x x a x a x y +++=,求dxdy . 四、证明题(本题8分)证明:当02x <<时,有24ln 240x x x x --+>.试卷(五)一、 1. 下列各式正确的是( ).(A)1)11(lim 0=++→x x x (B) e x x x =++→)11(lim 0(C) e x x x -=-∞→)11(lim (D)e xxx =+-∞→)11(lim 2. 设()f x 可导,()()(1sin )F x f x x =+,若欲使()0F x x =在可导,则必有 ( ).(A )(0)0f '=(B )(0)0f = (C )(0)(0)0f f '+=(D )(0)(0)0f f '-=3.为,则 又设已知 )()20( d )()(21 110 )(12x F x t t f x F x x x x f x ⎰≤≤=⎩⎨⎧≤≤<≤=( ).⎪⎩⎪⎨⎧≤≤<≤21 10 31)(3x x x x A ⎪⎩⎪⎨⎧≤≤<≤-21 10 3131)(3x x x x B ⎪⎩⎪⎨⎧≤≤-<≤21 110 31)(3x x x x C ⎪⎩⎪⎨⎧≤≤-<≤-21 1103131)(3x x x x D 4.当0→x 时,与x ex cos 22-等价的无穷小是( ).(A )2x . (B )223x . (C )22x . (D )225x . 5.x e y y y x2cos 52=+'-''的一个特解应具有形式( ).(A )x Ae x2cos (B ))2sin 2cos (x B x A e x+(C ))2sin 2cos (x B x A xe x+ (D ))2sin 2cos (2x B x A e x x+ 二、1. 已知2sin ()d x f x x e C =+⎰,则()f x =____________.2.设函数22, 1()ln(1), 1a x x f x x x x ⎧+>-=⎨++≤-⎩在1x =-处连续,则a = . 3. 设),tan ln(sec x x y +=则='y .4. 设()f x 是连续函数,则dt t f a x x xaa x ⎰-→ )(lim= .5. 已知⎰+=C x dx x f arcsin )(,则=-⎰dx x f x )(12. 6. 由0 , 0)( , , =≥===y x f y b x a x 所围曲边梯形绕x 轴旋转而成的旋转体的体积公式为:V = . 则(应用你给的公式计算)由],[,)(22R R x x R x f y -∈-==与x 轴所围成的图形绕x 轴旋转而成的立体的体积=V . 三、1. (6分) 1.求函数22(,)(2)ln f x y x y y y =++的极值.2. (6分)设arctany x= 求dx dy .3.(6分)求微分方程满足初始条件的特解1,sin ==+=πx y xx x y dx dy . 4. (6分) 设由方程2cos()1x y e xy e +-=-确定y 是x 的函数,求d .0d yx x =5. (7分) 求函数22(,)(2)ln f x y x y y y =++的极值. 6 若函数)(x f 在]1,0[上连续,证明:=⎰π)(sin dx x xf ⎰)(sin 2ππdx x f ,并计算dx xxx ⎰+π2cos 1sin . 8. 过原点(0,0)O 作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成一平面图形,求此平面图形的面积.《高等数学》试卷6(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3. 设有直线1158:121x y z L --+==-和26:23x y L y z -=⎧⎨+=⎩,则1L 与2L 的夹角为( ) (A )6π; (B )4π; (C )3π; (D )2π. 4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1-6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22 B.22- C.2 D.2- 7. 级数1(1)(1cos ) (0)nn n αα∞=-->∑是( )(A )发散; (B )条件收敛; (C )绝对收敛; (D )敛散性与α有关.8.幂级数∑∞=1n n n x 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x -21 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z2_____________________________.4. 设L 为取正向的圆周:221x y +=,则曲线积分2(22)d (4)d Lxy y x xx y -+-=⎰Ñ____________.5. .级数1(2)nn x n ∞=-∑的收敛区间为____________.三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4..计算1d d yxy x x⎰.试卷6参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121. 5.()x e x C Cy 221-+= .三.计算题 1.()()[]y x y x y e x z xy +++=∂∂cos sin ,()()[]y x y x x e y z xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z y y z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-. 4.3316R . 5.x x e e y 23-=. 四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷7(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 4.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定10. .考虑二元函数(,)f x y 的下列四条性质:(1)(,)f x y 在点00(,)x y 连续; (2)(,),(,)x y f x y f x y 在点00(,)x y 连续 (3)(,)f x y 在点00(,)x y 可微分; (4)0000(,),(,)x y f x y f x y 存在. 若用“P Q ⇒”表示有性质P 推出性质Q ,则有( )(A )(2)(3)(1)⇒⇒; (B )(3)(2)(1)⇒⇒ (C )(3)(4)(1)⇒⇒; (D )(3)(1)(4)⇒⇒ 二.填空题(4分⨯5)1. 级数1(3)nn x n ∞=-∑的收敛区间为____________.2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.4.211x +的麦克劳林级数是______________________. 三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4. 设∑是锥面1)z z =≤≤下侧,计算y z 2d d 3(1)d d xd d y z x z x y ∑++-⎰⎰四.应用题(10分⨯2) 试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷7参考答案一.选择题 CBABA CCDBA. 二.填空题1.211212+=-=-z y x .2.()xdy ydx e xy +.3.488=--z y x .4.()∑∞=-021n n n x . 5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ .3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂. 4. ⎪⎭⎫ ⎝⎛-3223323πa . 5.xx e C e C y --+=221. 四.应用题 1.316. 2. 00221x t v gt x ++-=.《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,225、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π) A 、R 2A B 、2R 2A C 、3R 2A D 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( )A 、一阶B 、二阶C 、三阶D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
高数一考研真题
高数一考研真题高等数学作为考研数学一的重要组成部分,对于考生来说非常重要。
掌握高数的基本知识和解题技巧,不仅可以提高考生的数学能力,还可以帮助他们在考试中取得好成绩。
因此,考生在备考过程中需要做大量的练习题和真题,以提高自己的解题能力和应试技巧。
一、选择题选择题是高数考试中常见的题型之一。
在选择题中,考生需要根据题目给出的条件和所需求的解,选择正确的答案。
下面是一道高数一考研真题的选择题:1. 设函数f(x) = (x-2)^2-x, 则f(x)的解为()A. x=4B. x=0C. x=-2D. x=2解析:要求f(x)的解,我们需要先将f(x)写出来,然后求解方程f(x)=0。
根据题目中给出的函数f(x),我们可以得到f(x)=(x-2)^2-x。
接下来,我们将f(x)设为0,即(x-2)^2-x=0。
这是一个二次方程,将其展开可得x^2-4x+4-x=0。
化简后得到x^2-5x+4=0。
通过求解这个二次方程,可以得到x的两个解为x=1和x=4。
所以,该题的正确答案是A选项。
二、解答题解答题是高数考试中另一种常见的题型,考生需要根据题目给出的条件和要求,进行详细的解题推导和计算。
下面是一道高数一考研真题的解答题。
2. 已知函数f(x) = 2e^x + x - 2, 求f(x)的极值点。
解析:要求f(x)的极值点,我们首先需要求解f'(x)=0的解,即求解函数f(x)的导数f'(x)。
根据题目中给出的函数f(x),我们可以得到f'(x)的表达式为f'(x) = 2e^x + 1。
将f'(x)设为0,即2e^x + 1 = 0。
通过求解这个方程,我们可以得到e^x = -1/2。
由于指数函数e^x的取值范围是大于0的实数,所以没有实数解。
因此,函数f(x)没有极值点。
三、计算题计算题是高数考试中需要进行具体计算的题型。
考生需要根据题目给出的条件和要求,进行数值计算和答案的推导。
高数习题及答案1
第五章选择题1设()sin 2sin x f x t dt =⎰,()34g x x x =+,则当0x →时()f x 是()g x 的(B)(A)等价无穷小 (B)同解无穷小非等价无穷小 (C)高阶等价无穷小 (D)低阶等价无穷小()()sin 234sin limlimx x x t dtf xg x x x→→==+⎰223sin sin lim34x x x x→=+2231lim343x xx x→=+2设222sin 1x M dx xππ-=+⎰,()3422sincos N x x dxππ-=+⎰,()23422sin cos P xx x dx ππ-=-⎰则(D)(A)N P M << (B) M P N <<(C) N M P << (D) P M N <<解:奇函数在对称区间积分为0得:222sin 01xM dx x ππ-==+⎰()3422sincos N x x dxππ-=+⎰>0()23422sin cos P xx x dx ππ-=-⎰<03设()f x 有连续导数,()00f =,()00f '≠,()()()22xF x xtf t dt =-⎰,且当x →时,()F x '与k x 是同阶无穷小,则k 等于(C)(A) 1 (B) 2(C) 3 (D) 4()()()220x F x x t f t dt '⎡⎤'=-⎢⎥⎣⎦⎰()02xx f t dt =⎰ ()limkx xF x →'()2(1)lim2k x k xf x -→-=()3(1)(2)lim2k x k k xf x -→--='若3k <()limkx xF x →'=∞,若3k >()limkx xF x →'=0当3k =()limkx xF x →'=c(常数)4:设()2sin sin x txF x etdt π+=⎰,则()F x (A)(A) 为正常数 (B) 为负常数 (C) 恒为零 (D) 不为常数sin sin tet是以2π为周期的函数,故()2sin sin x txF x etdt π+=⎰2sin 0sin tetdt π=⎰又2sin 0sin t e tdt π⎰sin sin()sin sin()()tu e tdt eu d u πππππ-=+--⎰⎰sin sin 0sin sin ttetdt etdt ππ-=-⎰⎰>0(当0x >时0x x e e -->)5设在区间[,]a b 上,()0f x >,()0f x '<,()0f x ''>,令()1b as f x dx =⎰()()2s f b b a =-,()()()312s f b f a b a =+-⎡⎤⎣⎦,则(B)(A) 123s s s << (B) 213s s s << (C) 312s s s << (D) 231s s s <<法二:由积分中值定理. 6设()f x 连续,则()22x dtfxtdx dx-⎰等于(A)(A) ()2xf x (B) ()2xf x - (C) ()22xf x (D) ()22xf x -()22x d tfx tdx dx-⎰()()222212x d f x td xtdx ⎡⎤=---⎢⎥⎣⎦⎰()2012xd f u du dx ⎡⎤=-⎢⎥⎣⎦⎰7设()f x 连续,则下列函数中必为偶函数的是D (A) ()20x f t dt ⎰ (B)()2x ft dt ⎰(C)()()0xt f t f t dt --⎡⎤⎣⎦⎰(D)()()0xt f t f t dt +-⎡⎤⎣⎦⎰以A 为例,()20xf t dt ⎰ 令 ()2()xF x f t dt =⎰,则()20()xF x f t dt --=⎰()()22()()()xxF x f t dt f u d u --==--⎰⎰()2xf u du =-⎰()2()x f t dt F x =-=-⎰8:把0x +→时的无穷小量2cos xt dt α=⎰,2tan x β=⎰,3t dt γ=排列起来,使得在后面的是前一个的高阶无穷小,则正确的次序是(B)(A) ,,αβγ (B) ,,αγβ (C) ,,βαγ (D) ,,βγα2cos lim lim x x x t dt xxα++→→=⎰2lim cos 1x x +→==,233tan lim lim x x x xxβ++→→=⎰=2/3,322lim lim x x t dt xxγ++→→==⎰1/4二 计算题1设()f x 连续, ()()10x f xt dt ϕ=⎰,且()0limx f x A x→=(A 为常数),求()x ϕ'并讨论()x ϕ'在0x =处的连续性。
一本高数I(上)练习题(7套)
(C)曲线 y f (x) 在点 (0, 0) 处的切线斜率 k 1
(D)曲线 y f (x) 在点 (0, 0) 处的切线斜率 k 1
6.设函数
f
(x)
sin3 x x
,
a 1,
x 0 在 x 0 处连续,则 a x0
7.
1
x
2
1 x2 dx
1
8. 设函数 f ( x) 的一个原函数为 ln x ,则 f ( x) =
(A) a 1 , b 1 2
(B) a 1 , b 0 2
5. 若在 (a, b) 内 f ( x) g( x),则必有
(C) a 1 , b 1 2
(D) a 1 , b 0 2
【】
(A) f ( x) g( x)
(B) f ( x)dx g(x)dx
(C) f ( x) g( x) C
(D) 2dx
3.
设
f
(
x)
1 x
sin
x
x sin 1 , x
x 0, 则 x 0 是 f ( x) 的
x2 1,
x 0,
【】
(A) 可去间断点
(B) 跳跃间断点 (C) 振荡间断点
(D) 连续点
4. 设 x 0 时, ax2 b cos x 是比 x2 高阶的无穷小,其中 a, b 为常数,则 [ ]
(C) 高阶无穷小
(D) 等价无穷小
【】
9. 设函数 f (x) 是连续的奇函数,且 lim f (2x) 2 , 则 x0 x
(A) f (x) 在 x 0 处可导, 且 f (0) 1
【】
(B) f (x) 在 x 0 处可导, 且 f (0) 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、计算题(共5题、总分40分、得分0
1.
计算极限。
2.
求的导数。
解:。
用公式直接求
3.
设,作出的图形。
讨论当时,的左右极限。
解:(图
略)
分别利用左右函数关系式求左右
极限
4.
求函数在区间上的最大值和最小值.
5.
求定积分.
去掉绝对值,再用公式求
Top
二、综合题 (共3题、总分30分、得分01. 欲做一个底为正方形,容积为32立方米的长方体开口容器,怎样做法用料最省? (本题分数:10 分,本题得分:0 分。
)
2. D 是第一象限内曲线
为成的曲边梯形,试
求D 绕y 旋转而成的旋转体体积
.
用公式
3. 欲做一个容积为300立方米的无盖圆柱形蓄水池,已知池底单位造价为周围单位造价的两倍。
问蓄水池尺寸应怎样设计才能使总造价最低? (本题分数:10 分,本题得分:0 分。
)
找函数关系,再求极值
Top
2.
设x>0 , 证明。