直流电机调速(速度环)

合集下载

实验十 直流电机调速实验

实验十  直流电机调速实验

实验十直流电机调速实验一、实验目的:了解直流电机调速的原理与方法。

二、实验原理:(一)直流电机调速的方法有:1.调节电枢供电电压U改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。

对于要求在一定范围内无级平滑调速的系统来说,这种方法最好。

变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。

2.改变电动机主磁通改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。

变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。

3.电枢回路串电阻调速电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。

但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。

(二)ETD 790 791系列装置是三相全数字式直流调速器,其工作电压最高可达500 Vac,工作电流可达4000A,频率范围为45-62赫兹,可用来控制电机的转速和转矩。

通过采用不同的外形尺寸,装置的电流最大可达到9000A。

调速器可分为两种类型:不可逆(791)和可逆(790)。

不可逆调速器仅用来控制一个方向的转速和转矩,而可逆调速器则可用来控制两个方向的速度和转矩。

当使用可逆调速器时,通过使用全控的反并联的可控硅模块,使电机电枢实现了真正四象限控制。

在制动期间,电机的能量可迅速反馈回电网。

调速器内部标配一个可调的励磁模块,用来调整电机励磁电流或者弱磁控制。

通过ETD 10.07.0 调控板上的一个32位的微处理器实现对调速器进行控制。

调控板同时可用于不可逆和可逆调速器。

微处理器的功能包括:主调节功能、与外部设备的接口功能、诊断功能。

这些功能可概括为:各种输入/输出信号,可进行自由组态;PID(三项控制器)速度环调节器;电流预控控制器,自动计算电机电阻,电感;辅助PID功能块,可自由配置;2层保护(报警与警告);控制面板可以自由配置参数,监视变量;通过RS232、RS422和RS485串行口实现的外部通信功能;内嵌CAN现场总线,且可通过不同的模块选择不同的现场总线。

直流电机为什么要使用电流环与速度环结合闭环

直流电机为什么要使用电流环与速度环结合闭环

直流电机为什么要使⽤电流环与速度环结合闭环疑问:我⾮常迷糊的就是电流环的作⽤.个⼈认为:直流电机的转速和电区的电压有关系,扭矩和电流有关系.在闭环PWM调速的情况,假设在稳定转速下(稳态),如果负载变化(变⼤),那么转速就会变化(下降),紧接着速度反馈就会检测到转速的变化(下降),所以就会通过PID算法,增⼤PWM的占空⽐(进⼊动态过程),即增加电枢电压,其实就是增加了绕组的电流(扭矩),经过动态调节过程回到新的稳态.所以看不出电流环的作⽤,对于电流环和速度环关系这个问题我⼀直都没有搞懂,看了很多⼤佬的帖⼦我总结⼀下,希望对看到帖⼦的⼩伙伴有帮助!!!⾸先回答⼀下疑问;电机端⼝电压等于电机反电势和线路电阻压降之和。

电机的转速和反电势成⽐例。

速度单环是可以控制电机的,只是反应速度⽐较慢。

注:不是电压环!电压不能精确稳速!电机是在内/外扭矩平衡是保持稳定转速。

当扭矩⼀旦不平衡;就会引起速度变化。

当速度降低或升⾼时;电流会跟这波动;⽽使速度在⼀定变化。

在⼀定电压下;电机速度与电流曲线就是该电机的V-I特性。

电机及其带的负载是有惯性的!⽆论多⼤的电流;都⽆法瞬间将偏离正常速度的电机拉到额定转速上来。

校正扭矩越⼤;电机的加速度也越⼤;在达到额定转速的瞬间越难收住,这就会出现过冲;甚⾄引起系统振荡。

加电流环后;能改善扭矩的反应速度,使系统快/稳的⼯作。

采⽤的控制系统是经典的转速外环,电流内环的直流电机双闭环控制系统。

转速外环的PI调节器的输出量是电枢电流的给定量,电枢的电流量会通过电流内环的PI调节器跟踪电流的给定量。

⽽⼀般电枢电流的给定量是速度外环PI调节器的限幅值,这个量的确定⼀般取决于电机从0到给定转速加速时电机的最⼤电磁转矩(可以这么理解,电机从0到给定转速的加速度由电磁转矩决定,⽽电磁转矩正⽐于电枢电流)。

因此你把速度环PI调节器的限幅值设置得⼤⼀些,那么电枢电流的给定值就⼤,电机加速时电磁转矩就⼤,它的加速度就⼤。

直流电机开环调速系统工作原理

直流电机开环调速系统工作原理

直流电机开环调速系统工作原理1. 什么是直流电机?直流电机,顾名思义,就是那种靠直流电供电的电机。

就像我们日常生活中常见的玩具车、电风扇一样,这些电机在我们生活中可谓是随处可见。

它们能把电能转化为机械能,帮我们完成各种各样的工作。

而开环调速系统,听上去很高大上,但其实就是一种简单的控制方式。

它不像闭环控制那样复杂,所以咱们今天就来聊聊这个“简单明了”的开环调速系统到底是怎么工作的。

2. 开环调速系统的基本原理2.1 电机与电源的关系直流电机的运行离不开电源。

就像人需要吃饭才能有力气一样,电机也需要电源才能转动。

开环调速系统主要是通过调节电机供电电压来实现转速的变化。

简单来说,就是你把电压调高,电机转得快;调低,转得慢。

这个过程就像是给一辆车加油,油加得多,车跑得快,油加得少,车就慢吞吞的。

2.2 转速的变化转速变化的原理其实很简单。

当你给电机输入不同的电压时,电流也会随之改变。

电流越大,产生的磁场越强,电机转动得也就越快。

就像小朋友们在游乐场上玩秋千,推得越用力,秋千摆得越高,乐趣也就越多。

而电机转速的变化也能影响到它的输出功率,就像我们跑步的速度不同,消耗的体力也不一样。

3. 开环调速系统的优势与局限3.1 优势开环调速系统的最大好处就是简单易用,成本低。

对于一些不需要精确控制转速的场合,比如说风扇、玩具车,开环系统就像一位好管家,负责把电源和电机的关系打理得妥妥当当,省去不少麻烦。

而且,系统的设计也比较简单,不需要太多复杂的传感器和控制器,这样可以大大降低维护成本,简直就是一劳永逸。

3.2 局限不过,开环调速系统也有它的不足之处。

最大的局限在于它缺乏反馈机制。

想象一下,如果你的车子没有速度表,你怎么知道自己开得快还是慢?开环系统在负载变化时,无法实时调整电机的转速,可能导致转速不稳定,尤其是在负载变化较大的情况下,电机可能会出现过载或运行不平稳的情况。

这就像一场马拉松,选手们虽然都拼劲十足,但如果没有教练的实时指导,很可能会出现偏离轨道的情况。

双闭环直流调速系统ACR设计

双闭环直流调速系统ACR设计

双闭环直流调速系统ACR设计双闭环直流调速系统(ACR)是一种使用两个反馈环来控制直流电机转速的系统。

其中一个环,被称为速度环(内环),用来控制电机的速度;另一个环,被称为电流环(外环),用来控制电机的电流。

ACR系统能够提供更精确的转速控制,同时能够保护电机免受过流和过载的损坏。

ACR系统的设计首先需要确定控制器的参数。

其中,内环控制器的参数包括比例增益(Kp)和积分时间(Ti);外环控制器的参数包括比例增益(Kp)和积分时间(Ti)。

这些参数需要根据实际系统的需求来选择,可以通过试验和调整来获得最佳参数。

在内环控制器中,比例增益决定了速度误差与输出调节器输入信号之间的比例关系,即输出调节器的输出值与速度误差的乘积。

积分时间决定了对速度误差的积分时间长度,即速度误差累计值。

在外环控制器中,比例增益决定了电流误差与输出调节器输入信号之间的比例关系,即输出调节器的输出值与电流误差的乘积。

积分时间决定了对电流误差的积分时间长度,即电流误差累计值。

ACR系统的设计还需要确定速度传感器和电流传感器的类型和位置。

速度传感器用于测量电机的转速,可以选择编码器、霍尔传感器等;电流传感器用于测量电机的电流,可以选择霍尔传感器、感应电流传感器等。

这些传感器需要合理安装在电机上,以确保准确测量电机的转速和电流。

在系统工作时,ACR系统通过测量电机的转速和电流,并与设定值进行比较,计算得到速度误差和电流误差。

然后,内环控制器根据速度误差来产生控制信号,控制电机的速度接近设定值;外环控制器根据电流误差来产生控制信号,控制电机的电流接近设定值。

这些控制信号通过功率放大器输出到电机,实现对电机速度和电流的控制。

ACR系统的设计需要考虑诸多因素,如电机的负载特性、速度和电流的响应时间、系统的稳定性等。

通过合理选择控制器的参数和传感器的类型和位置,采取适当的控制策略,可以实现高精度、高效率的直流电机调速系统。

基于MATLAB的直流电机双闭环调速系统的设计与仿真

基于MATLAB的直流电机双闭环调速系统的设计与仿真

基于MATLAB的直流电机双闭环调速系统的设计与仿真直流电机双闭环调速系统是一种常见的控制系统,常用于工业生产中对电机速度的精确控制。

本文将基于MATLAB软件进行直流电机双闭环调速系统的设计与仿真,包括系统设计、参数设置、控制策略选择、系统仿真以及性能分析等方面。

文章将以1200字以上的篇幅进行详细阐述。

一、系统设计直流电机双闭环调速系统由速度环和电流环构成。

速度环控制系统的输入为速度设定值和电机实际速度,输出为电机期望电压;电流环控制系统的输入为速度环输出的电压和电机实际电流,输出为电机实际电压。

通过控制电机的期望电压和实际电压,达到对电机速度的调控。

二、参数设置在进行系统仿真之前,需要确定系统中各个参数的值。

包括电机的额定转矩、额定电压、电感、电阻等参数,以及控制环节的比例增益、积分增益、微分增益等参数。

这些参数的选择会影响系统的稳定性和动态性能,需要根据实际情况进行调整。

三、控制策略选择常见的控制策略包括PID控制、PI控制、PD控制等。

在直流电机双闭环调速系统中,可以选择PID控制策略。

PID控制器由比例环节、积分环节和微分环节组成,可以提高系统的稳定性和响应速度。

四、系统仿真在MATLAB中进行直流电机双闭环调速系统的仿真,可以使用Simulink模块进行搭建。

根据系统设计和参数设置,搭建速度环和电流环的控制器,连接电机实际速度和电机实际电流的反馈信号,输入速度设定值和电机期望电流,输出电机期望电压。

通过仿真可以得到系统的动态响应曲线,评估系统的性能。

五、性能分析在仿真结果中,可以分析系统的静态误差、超调量、调整时间等指标,评估系统的控制性能。

通过参数调整和控制策略更改等方式,可以优化系统的控制性能,使系统达到更好的调速效果。

总结:本文基于MATLAB软件对直流电机双闭环调速系统进行了设计与仿真。

通过系统设计、参数设置、控制策略选择、系统仿真以及性能分析等步骤,可以得到直流电机双闭环调速系统的动态响应曲线,并通过参数调整和控制策略更改等方式,优化系统的控制性能。

直流电机PWM调速基本原理

直流电机PWM调速基本原理

直流电机PWM调速基本原理
PWM方式是在大功率开关晶体管的基极上,加上脉冲宽度可调的方波电压,控制开关管的导通时间t,改变占空比,达到控制目的。

图3.3是直流PWM系统原理框图。

这是一个双闭环系统,有电流环和速度环。

在此系统中有两个调节器,分别调节转速和电流,二者之间实行串级连接,即以转速调节器的输出作为电流调节器的输入,再用电流调节器的输出作为PWM的控制电压。

核心部分是脉冲功率放大器和脉宽调制器。

控制部分采用AT89S52(脉宽调制芯片AT89S52具有欠压锁定、故障关闭和软起动等功能,因而在中小功率电源和电机调速等方面应用较广泛。

AT89S52是电压型控制芯片,利用电压反馈的方法控制PWM信号的占空比,整个电路成为双极点系统的控制问题,简化了补偿网络的设计。

)集成控制器产生两路互补的PWM脉冲波形,通过调节这两路波形的宽度来控制H 电路中的GTR通断时间,便能够实现对电机速度的控制。

为了获得良好的动、静态品质,调节器采用PI调节器并对系统进行了校正。

检测部分中,采用了霍尔片式电流检测装置对电流环进行检测,转速还则是采用了测速电机进行检测,能达到比较理想的检测效果。

图3.3 直流电动机PWM系统原理图。

直流电机晶闸管调速系统

直流电机晶闸管调速系统

包括控制回路:速度环、电流环、触发脉冲发生器等。

. 主回路:可控硅整流放大器等。

. 速度环:速度调节(PI),作用:好的静态、动态特性。

. 电流环:电流调节(P或PI)。

作用:加快响应、启动、低频稳定等。

. 触发脉冲发生器:产生移相脉冲,使可控硅触发角前移或后移。

. 可控硅整流放大器:整流、放大、驱动,使电机转动。

2)主回路工作原理组成:由大功率晶闸管构成的三相全控桥式(三相全波)反并接可逆电路,分成二大部分(Ⅰ和Ⅱ),每部分内按三相桥式连接,二组反并接,分别实现正转和反转。

原理:三相整流器,由二个半波整流电路组成。

每部分内又分成共阴极组(1、3、5)和共阳极组(2、4、6)。

为构成回路,这二组中必须各有一个可控硅同时导通。

1、3、5在正半周导通,2、4、6在负半周导通。

每组内(即二相间)触发脉冲相位相差120o,每相内二个触发脉冲相差180°。

按管号排列,触发脉冲的顺序:1-2-3-4-5-6,相邻之间相位差60°。

为保证合闸后两个串联可控硅能同时导通,或已截止的相再次导通,采用双脉冲控制。

既每个触发脉冲在导通60o后,在补发一个辅助脉冲;也可以采用宽脉冲控制,宽度大于60o,小于120°。

只要改变可控硅触发角(即改变导通角),就能改变可控硅的整流输出电压,从而改变直流伺服电机的转速。

触发脉冲提前来,增大整流输出电压;触发脉冲延后来,减小整流输出电压。

3)控制回路分析.[总结]速度控制的原理:①调速:当给定的指令信号增大时,则有较大的偏差信号加到调节器的输入端,产生前移的触发脉冲,可控硅整流器输出直流电压提高,电机转速上升。

此时测速反馈信号也增大,与大的速度给定相匹配达到新的平衡,电机以较高的转速运行。

②干扰:假如系统受到外界干扰,如负载增加,电机转速下降,速度反馈电压降低,则速度调节器的输入偏差信号增大,其输出信号也增大,经电流调节器使触发脉冲前移,晶闸管整流器输出电压升高,使电机转速恢复到干扰前的数值。

直流电机闭环调速的原理

直流电机闭环调速的原理

直流电机闭环调速的原理
直流电机闭环调速的原理:
1. 采用速度反馈来调节电机速度。

2. 设置一个给定速度值,和电机实际速度信号比较,得到速度偏差。

3. 速度偏差经过PID 控制器运算,输出调节相电压的控制量。

4. 相电压的大小决定电机端电动势和电流,进而调节电机速度。

5. 当速度偏差为零时,表示电机达到给定速度,完成闭环控制。

6. 采用磁powder制动或增益调节来改变速度稳定性。

7. 闭环控制使电机调速更准确,不受负载影响。

8. 典型的闭环控制方式有增量式PID 控制和位置式PID 控制。

9. 还可以采用模糊控制、神经网络控制等方式进行闭环调速。

10. 优化控制参数,设计控制器,可以实现高精度的闭环转速控制。

综上,闭环调速利用反馈实现给定速度的准确跟踪,是直流电机调速的有效方法。

无刷直流电机调速原理

无刷直流电机调速原理

无刷直流电机调速原理
无刷直流电机调速原理是通过不断改变电机的供电电压或电流来实现转速的调节。

为了方便理解,下面将分为几个步骤来介绍无刷直流电机调速原理。

1. 简介:无刷直流电机由转子和定子组成,通过电枢和永磁体的相互作用产生力矩,从而驱动电机转动。

调速原理是基于PWM(脉冲宽度调制)技术,通过改变电机的供电电压和电流来实现转速的调节。

2. 电机控制:无刷直流电机的控制主要包括位置传感器、电机驱动器和控制器三部分。

位置传感器用于检测转子位置信息,电机驱动器负责控制电流和电压的输出,控制器则根据传感器信号和控制算法确定输出的电流和电压。

3. 脉冲宽度调制:脉冲宽度调制是一种调整输出电压和电流的方法,通过不断调整PWM信号的占空比来改变电机的供电电压和电流。

占空比越大,输出电压和电流越高,电机转速也会相应增加。

4. 控制算法:控制器根据位置传感器的反馈信号,利用控制算法来调整PWM信号的占空比,从而控制电机的转速。

常用的控制算法包括电流环控制和速度环控制,电流环控制主要用于电流反馈控制,速度环控制则主要用于转速的闭环控制。

5. 转速调节:根据系统需求,控制器会调整PWM信号的占空比来改变电机的供电电压和电流,从而改变电机的转速。

当需
要提高转速时,控制器会增大占空比,增加供电电压和电流;当需要降低转速时,控制器会减小占空比,降低供电电压和电流。

综上所述,无刷直流电机调速原理是通过不断改变电机的供电电压和电流来实现转速的调节,利用PWM技术和控制算法来实现电机的精确控制。

直流电机双闭环调速控制系统分析

直流电机双闭环调速控制系统分析

直流电机双闭环调速控制系统分析摘要:直流电机双闭环调速控制系统用于工业生产中能够为其提供良好的调速支持,具有适应性强、经济性好、抗干扰能力较强等优势。

在工业生产中想要更好的发挥直流电机双闭环调速控制系统的作用,需要对其控制系统的工作原理与结构特点进行研究,应该注重分析系统在设计和应用中的注意事项,在应用过程中不断完善直流电机双闭环调速控制系统,进行细节控制,从而提升工业生产效率。

关键词:直流电机;双闭环调速;控制系统直流电机双闭环调速控制系统是一种结合了电子技术、直流调速、数字控制理论等技术于一体的调速控制系统,将其应用于工业生产中可以为生产活动提供可靠、稳定的电力传动支持,提高生产效率。

钢铁企业在生产过程中,合理的运用直流电机双闭环调速控制系统,能够为生产创造更加稳定、高效的条件,能够提供更加精准的调速,从而保证生产质量。

为了能够更好的应用直流电机双闭环调速控制系统,需要对其硬件要求、软件系统、转速调节原理、转换原理等各项内容进行研究,在了解转速调节程序的相关内容,以便在后续生产活动中更好的发挥其控制作用。

一、直流电机双闭环调速控制系统1、系统概述直流电机可以将电能转化为机械能,驱使机械设备完成生产工作,对于工业生产来说具有重要的意义。

由于工业生产环节和生产目标不同,直流电机的负载也各不相同,因此需要针对不同的负载需求在一定范围内进行电动机转速调节,保证其满足生产需求,直流电机双闭环调速控制系统就是其调速的系统[1]。

直流电机双闭环调速控制系统是应用最为广泛的速度调节控制系统之一,直流电机双闭环调速系统能够实现转速和电流两种负反馈,通过两个调节器的加入,可以分别对电流和转速进行调节,形成转速、电流双闭环调速系统。

2、工作原理直流电机双闭环调速控制系统中,直流电机的能量转换是将电能转化为机械能,而直流调速系统的工作原理是通过电流与转速调节器,由电流控制器负责给转速调节器输出电压,让电枢电流由电流环调节转速偏差,实现调速控制。

无刷直流电机(BLDC)双闭环调速解析

无刷直流电机(BLDC)双闭环调速解析
无刷直流电机(BLDC)双闭环调速系统
在无刷直流电机双闭环调速系统中,双闭环分别是指速度闭环和电流闭环。对于 PWM 的无刷直流电机控制来说,无论是转速的变化还是由于负载的弯化引起的电枢电流的变化, 可控量输出最终只有一个,那就是都必须通过改变 PWM 的占空比才能实现,因此其速度环和 电流环必然为一个串级的系统,其中将速度环做为外环,电流环做为内环。调节过程如下所 述:由给定速度减去反馈速度得到一个转速误差,此转速误差经过 PID 调节器,输出一个值 给电流环做给定电流,再由给定电流减去反馈电流得到一个电流误差,此电流误差经过 PID 调节器,输出一个值就是占空比。
在绝大部分的控制系统中,采样周期等同于控制周期,一般不做区分,即在同一个周期 内采样一次反馈值进行一次 PID 运算之后调整一次被控量。从理论上来讲采样周期和控制周 期尽量的缩短一些,这样可以及时的调整输出。实际上要看被控对象的反应速度,和滞后时 间,因为不同的被控对象千差万别。
采样周期(即反馈值多长时间进行一次采样或捕捉): 选取采样周期时,有下面几个因素可供参考: 1、采样周期应远小于对象的扰动周期。 2、采样周期应比对象的时间常数小得多,否则所采样得到的值无法反映瞬间变化的过程值。 3、考虑执行机构的响应速度。如果采用的执行器的响应速度较慢,那么盲目的要求过短的 采样周期将失去意义。 4、对象所要求的调节品质。在计算机速度允许的情况下,采样周期短,调节品质好。 5、性能价格比。从控制性能来考虑,希望采样周期短。但计算机运算速度,以及 A/D 和 D/A 的转换速度要相应地提高,会导致计算机的费用增加。 6、计算机所承担的工作量。如果控制的回路较多,计算量又特别大,则采样要加长;反之, 可以将采样周期缩短。
在双闭环调速系统中,输入参数有三个,分别为给定速度和反馈速度以及反馈电流,其 中给定速度由用户指定,一般指定为旋转速度(RPM 转/分钟)或直线速度(m/s 米/秒)。而反 馈速度和反馈电流则需要由传感器来获取,下面来讲一下在无刷直流电机控制系统中,反馈 速度和反馈电流的获取。

双闭环直流调速系统原理介绍

双闭环直流调速系统原理介绍

双闭环直流调速系统原理介绍双闭环直流调速系统由两个环路组成,速度环和电流环。

速度环控制电机的速度,使其始终保持在设定值附近,而电流环控制电机的电流,保证电机的负载特性和响应速度。

速度环和电流环是相互独立的控制过程,通过串联连接实现整体调速控制。

速度环负责对电机转速进行调节,基本原理是将实际转速与设定转速进行比较,然后根据差值计算出调节量,最后通过调节电机的输入电压实现转速调节。

速度环的核心是比例-积分(PI)控制器,通过设定合适的比例系数和积分时间,可以实现对转速的精确调节。

速度环还可以加入速度前馈器,将速度设定值的变化率作为额外输入信号,进一步提高系统的响应速度和稳定性。

电流环负责对电机的电流进行调节,保证电机的负载特性和响应速度。

电流环的基本原理是将实际电流与设定电流进行比较,然后根据差值计算出调节量,最后通过调节电机的输入电压或电流实现电流调节。

电流环的核心也是比例-积分(PI)控制器,通过设定合适的比例系数和积分时间,可以实现对电流的精确调节。

电流环还可以加入电流前馈器,将电流设定值的变化率作为额外输入信号,进一步提高系统的响应速度和稳定性。

双闭环直流调速系统中,速度环和电流环之间通过串联连接的方式进行控制。

速度环输出电压指令作为电流环的输入电流设定值,电流环通过调节电机的输入电流实现电流调节。

而电流环输出电压指令作为速度环的输入电压设定值,速度环通过调节电机的输入电压实现转速调节。

通过这种双重反馈的控制方式,可以实现对电机转速和电流的精确控制。

1.精确控制:通过精确的调节速度环和电流环的参数,可以实现对电机转速和电流的精确控制,满足不同工况下的要求。

2.快速响应:双闭环结构可以利用速度环和电流环的双重反馈信息,在系统受到外部扰动时,能够快速调节输出,保持稳定的运行状态。

3.负载适应性:通过电流环的控制,可以根据电机所承受的外部负载变化,自动调整输出电压或电流,保持电机的运行稳定性和性能。

直流速度环调速系统设计

直流速度环调速系统设计

直流速度环调速系统设计引言直流速度环调速系统是一种常用的控制系统,用于控制直流电机的转速。

本文将详细探讨直流速度环调速系统的设计原理和实现方法,包括系统的组成、传感器选择、控制算法等方面,并给出具体的设计步骤和注意事项。

系统组成直流速度环调速系统由以下几个主要组成部分组成: 1. 电机:直流电机是系统的执行器,通过控制电机的转速来实现调速。

2. 传感器:用于检测电机的实际转速和目标转速。

3. 控制器:根据转速差和控制算法计算出合适的控制信号,控制电机的转速。

4. 电源:为电机和控制器提供稳定的电源。

传感器选择选择合适的传感器对于直流速度环调速系统的性能至关重要。

常用的传感器包括:1. 光电编码器:通过采集光电编码器输出的脉冲信号来测量电机的转速。

光电编码器具有高分辨率和较快的响应速度,适用于高精度的调速系统。

2. 磁编码器:通过采集磁编码器输出的信号来测量电机的转速。

磁编码器具有较高的耐磨性和较宽的工作温度范围,适用于工业环境中的调速系统。

3. 转速传感器:通过测量电机轴上的负载或振动来估算电机的转速。

转速传感器简单且成本较低,适用于一些简单的调速系统。

控制算法直流速度环调速系统常用的控制算法有比例控制、比例积分控制和模糊控制等。

这里我们以比例积分控制(PI控制)为例进行介绍。

PI控制的控制器输出由比例项和积分项组成。

比例项与实际转速误差成正比,用于快速响应系统的变化。

积分项与转速误差的积分成正比,用于消除系统的稳态误差。

控制器输出的计算公式为:u(t) = Kp * e(t) + Ki * ∫e(t) dt其中,u(t)为控制器的输出,Kp为比例增益,Ki为积分增益,e(t)为实际转速与目标转速之间的误差。

设计步骤设计直流速度环调速系统的步骤如下: 1. 确定系统的性能要求,包括转速范围、精度要求等。

2. 选择合适的传感器,并根据系统要求确定传感器的分辨率和采样频率。

3. 根据传感器的输出信号和目标转速计算出实际转速与目标转速之间的误差。

直流电机双闭环调速--自动控制原理与系统

直流电机双闭环调速--自动控制原理与系统

直流电机双闭环调速--⾃动控制原理与系统⼀、单闭环调速系统存在的问题①⽤⼀个调节器综合多种信号,各参数间相互影响,②环内的任何扰动,只有等到转速出现偏差才能进⾏调节,因⽽转速动态降落⼤。

③电流截⽌负反馈环节限制起动电流,不能充分利⽤电动机的过载能⼒获得最快的动态响应,起动时间较长。

电流截⽌负反馈单闭环直流调速系统最佳理想起动过程最佳理想起动过程:在电机最⼤电流(转矩)受限制条件下,希望充分利⽤电机的允许过载能⼒,最好是在过渡过程中始终保持电流(转矩)为允许的最⼤值。

缺点:改进思路:为了获得近似理想的过渡过程,并克服⼏个信号综合在⼀个调节器输⼊端的缺点,最好的办法就是将主要的被调量转速与辅助被调量电流分来加以控制,⽤两个调节器分别调节转速和电流,构成转速、电流双闭环调速系统。

⼆、转速、电流双闭环调速系统的组成双闭环调速系统其原理图双闭环直流调速系统双闭环直流调速系统静态结构图静态结构图系统特点(1)两个调节器,⼀环嵌套⼀环;速度环是外环,电流环是内环。

(2)两个PI调节器均设置有限幅;⼀旦PI调节器限幅(即饱和),其输出量为恒值,输⼊量的变化不再影响输出,除⾮有反极性的输⼊信号使调节器退出饱和;即饱和的调节器暂时隔断了输⼊和输出间的关系,相当于使该调节器处于断开。

⽽输出未达限幅时,调节器才起调节作⽤,使输⼊偏差电压在调节过程中趋于零,⽽在稳态时为零。

(3)电流检测采⽤三相交流电流互感器;(4)电流、转速均实现⽆静差。

由于转速与电流调节器采⽤PI调节器,所以系统处于稳态时,转速和电流均为⽆静差。

转速调节器ASR输⼊⽆偏差,实现转速⽆静差。

三、双闭环调速系统的静特性双闭环系统的静特性如图所⽰特点:1)n0-A 的特点①ASR不饱和。

②ACR不饱和。

或n0为理想空载转速。

此时转速n与负载电流⽆关,完全由给定电压所决定。

电流给定有如下关系??因ASR不饱和,,故。

n0A这段静特性从⼀直延伸到。

2)A—B段①ASR饱和。

双闭环直流调速系统特性与原理

双闭环直流调速系统特性与原理

双闭环直流调速系统特性与原理双闭环直流调速系统是一种常见的电机调速系统,通过两个闭环控制来实现对电机转速的精确控制。

在双闭环直流调速系统中,第一个闭环控制回路称为速度环,用来控制电机转速;第二个闭环控制回路称为电流环,用来控制电机电流。

下面将详细介绍双闭环直流调速系统的特性与原理。

1.转速稳定性好:由于双闭环控制系统可以将负载变化的影响控制在较小的范围内,所以电机的转速可以保持在给定值附近稳定运行。

2.转速快速响应:双闭环控制系统可以通过调节速度环和电流环的参数来实现转速的快速响应,使得电机在变化负载下能够迅速调整转速。

3.调节范围广:双闭环直流调速系统可以通过改变速度环和电流环的控制策略来调节电机的转速范围。

可以实现低转速和高转速的调节。

4.可靠性高:双闭环直流调速系统采用两个闭环控制回路,其中速度环和电流环可以相互独立地控制电机的转速和电流,从而提高系统的可靠性。

速度环:速度环的目标是实现对电机转速的精确控制。

速度环根据给定的转速信号与实际转速信号之间的误差,通过PID控制器计算出控制电压,然后将控制电压输出给电流环。

电流环:电流环的目标是控制电机的电流,保持电机的转速稳定。

电流环通过反馈电流信号与速度环输出的控制电压之间的误差,通过PID控制器计算出电压调节量,然后将调节量输出给电机驱动器。

1.给定一个转速信号,如旋钮或数字输入。

2.速度环将给定转速信号与实际转速信号之间的误差传递给PID控制器。

3.PID控制器计算出控制电压,并将其传递给电流环。

4.电流环将反馈电流信号与PID控制器输出的控制电压之间的误差传递给PID控制器。

5.PID控制器计算出电压调节量,并将其传递给电机驱动器。

6.电机驱动器根据PID控制器输出的电压调节量,控制电机的电流,从而控制电机的转速。

总之,双闭环直流调速系统通过速度环和电流环两个闭环控制回路的相互作用,可以实现对电机转速的精确控制。

通过调节速度环和电流环的参数,可以调节电机的转速范围和响应速度,从而满足不同应用场景的需求。

双闭环直流调速系统介绍

双闭环直流调速系统介绍

双闭环直流调速系统介绍
系统由两个主要的闭环控制回路组成:速度环和电流环。

速度环是系统的外环控制回路,其作用是根据用户对电机转速的需求进行反馈控制。

速度传感器测量电机的转速,并将测量值与设定值进行比较,产生差值作为输入信号。

这个差值通过控制器(通常为PID控制器)进行处理,并输出一个调节信号。

调节信号通过控制执行器(如PWM控制器)调节电机的输入电压或电流,从而控制电机的转速。

速度环的目标是使电机的转速稳定在用户设定的值附近。

电流环是系统的内环控制回路,其作用是根据速度环的输出信号来补偿负载扰动和电机参数变化所引起的转矩变化。

电流环的输入信号为速度环的输出调节信号,通过控制器处理后,输出一个电流指令。

这个电流指令通过控制执行器调节电机的输入电压或电流,从而控制电机的转矩。

电流环的目标是使电机的转矩稳定在速度环要求的范围内。

1.高精度:通过使用两个闭环控制回路,系统能够实现高精度的电机转速调节,并具备对负载扰动和电机参数变化的补偿能力。

2.快速响应:系统使用PID控制器作为控制算法,能够快速响应用户对电机转速的需求。

3.稳定性好:速度环和电流环形成了互补的控制关系,能够保持电机转速和转矩的稳定性。

4.可靠性高:双闭环直流调速系统结构简单,组件少,可靠性较高。

综上所述,双闭环直流调速系统通过使用速度环和电流环两个闭环控制回路,实现对电机转速的高精度控制和负载扰动补偿。

该系统具备精度
高、响应快、稳定性好、可靠性高等优点,广泛应用于各种需要精确电机调速的领域。

实验八直流电机开环控制实验-电位器调节直流电机速度

实验八直流电机开环控制实验-电位器调节直流电机速度

实验八直流电机开环控制实验提高部分:1、在分析掌握基于SST89E554RC微控制器实现直流电机控制电路原理基础上,实现电机速度可调;本程序利用ADC0808采样来改变PWM波,从而实现电机的无极调速。

【电路原理图protues】【C代码】//////////////////adc-motor.c///////////////////////#include <reg51.h>#define T_value (unsigned char)0xff // T 周期值#define TL0_value (unsigned char)0xe7 // 定时器T0 计数值(低)sbit pwm = P3^3;sbit oe=P3^2;sbit start=P3^0;sbit eoc=P3^1;unsigned char T_Count,T1_value=0x77,Tx;////////////////////Delay()/////////////////////////////void Delay(){unsigned char i;for(i=0; i<200; i++);}///////////////time中断,重新赋初值并减T_Count//////////// void int_tim0() interrupt 1{if(T1_value==0x00) pwm=0;else if(T1_value==0xff) pwm=1;else{T_Count--;if(T_Count == 0) //跳变{pwm = ~pwm;Tx = T_value - Tx;T_Count = Tx;}}}////终于到ADC这郁闷孩子的时候////////////////////////////// void ad_pwm(){ unsigned char getdata;oe = 0;start = 0;start = 1;start = 0;while (eoc == 0);oe = 1;getdata = P0;oe = 0;P1=getdata;if(getdata!=T1_value){T1_value=getdata;Tx=T_Count=T1_value;pwm=1;}// if(T1_value==0x00) pwm=0;// else if(T1_value==0xff) pwm=1;}////////主函数main.c//////////////////////////////////////// void main(){T_Count = T1_value; Tx = T1_value; TMOD = 0x02;TH0 = TL0_value;TL0 = TL0_value; TCON = 0x10;IE=0x82;pwm = 1;while(1){ ad_pwm();Delay();}}。

直流电机如何调速以及直流电机调速方法

直流电机如何调速以及直流电机调速方法

直流电机调速,往往说的是他励有刷直流电机调速,根据直流电机的转速方程,转速n=(电枢电压U-电压电流Ia*内阻Ra)÷(常数Ce*气隙磁通Φ),因为电枢的内阻Ra非常小,所以电压电流Ia*内阻Ra≈0,这样转速n=(电枢电压U)÷(常数Ce*气隙磁通Φ),只要在气隙磁通Φ恒定下调整电枢电压U,就可以调整直流电机的转速n;或者在电枢电压U恒定下调整气隙磁通Φ,同样可以调整电机的转速n,前者叫恒转矩调速,后者称之为恒功率调速。

1直流电机恒转矩调速方式恒转矩模式下,要先保持气隙磁通Φ恒定,直流电机的定子和转子磁场是正交状态的,互相没有影响。

要保持Φ恒定,只要保证励磁线圈的电流稳定在一个值就可以了。

理论上给一个恒流源来控制励磁线圈的电流是比较完美的,但是因为电流源不好找,而一般给励磁线圈施加一个稳定的电压值,也可以近似让励磁电流稳定,进而让气隙磁通Φ恒定。

如果是永磁直流电机,用永磁铁来替代了励磁线圈,磁通是永久恒定的,所以不用操这个心了。

简单的调整电压,并不能满足负载波动比较厉害的场合,所以引进了串级调速系统,通过检测电机的电流和转速,分别弄出电流环内环和速度环外环了,使用PID算法,有效的满足了负载波动状况下的调速,让直流电机的调速工作特性非常“硬”,也就是最大转矩不会受到转速的波动而变化,实现了真正的恒扭矩输出。

这种调速方式,一直是交流调速系统的模仿对方,比如变频器矢量控制,就是模仿这种方式而实现的。

如果只用电流环内环,还可以直接控制电机输出一定的扭矩,满足不同的拉伸和卷曲等控制要求。

电枢电压控制,在晶闸管和IGBT这些没有被发明前,控制起来也不是容易的事情了,毕竟功率比较大,早期是通过一台发电机直流发电来控制的,通过调整发电机的磁通就可以控制发电机的输出电压,进而调整了电枢电压大小的。

在晶闸管可控硅被发明出来以后,通过给可控硅施加交流输入电压,利用移相触发技术控制可控硅的导通角,就可以把交流电整流成一定脉动的直流电,因为直流电机是大感性负载,脉动直流电会被大电感缓冲稳定下来。

双闭环直流调速系统介绍

双闭环直流调速系统介绍
影响
09
显示与操作界面: 用于显示系统状 态和进行参数设

10
通信接口:用于 与其他设备进行 通信和信息交换
双闭环调速系统的工作原理
双闭环调速系 统由两个闭环 组成:速度闭 环和电流闭环
速度闭环控制 电机的转速, 使其达到设定 值
电流闭环控制 电机的电流, 使其保持在安 全范围内
两个闭环相互 协调,共同实 现对电机的精 确控制和保护

2
交流电机调速:通过双闭环调 速系统实现交流电机的精确调

3
4
电力电子变换器:双闭环调速 系统在电力电子变换器中的应用,
如整流器、逆变器等
电力系统稳定控制:双闭环调速 系统在电力系统稳定控制中的应 用,如电压稳定、频率稳定等
双闭环调速系统在节能环保中的应用
节能:双闭环调速系统可以精确控制电机的转 制。
双闭环调速系统的参数整定:根据系统特性和实际需求,对 速度环和电流环的参数进行整定,以实现最佳的调速性能。
3
双闭环直流调速 系统的应用
双闭环调速系统在工业控制中的应用
01 电机控制:用于控制电 机的转速、 位 置 和 扭 矩 等 参数, 实 现 精 确 控 制
双闭环直流调速系统介 绍
演讲人
目录
01. 2. 3.
双闭环直流调速系统的基本 概念 双闭环直流调速系统的设计 双闭环直流调速系统的应用
04. 双闭环直流调速系统的发展 趋势
1
双闭环直流调速 系统的基本概念
双闭环调速系统的组成
01
速度环:用于控 制电机转速,实
现速度调节
02
电流环:用于控 制电机电流,实
04
节能环保:采 用节能技术和 环保材料,降 低系统的能耗 和污染排放

无刷直流电机开环、速度换、电流环

无刷直流电机开环、速度换、电流环

无刷电机驱动器设计中开环、速度环、电流环1、开环控制开环控制,驱动器通过PWM调制MOS管斩波频率的占空比来调节电机功率输出,空载情况下占空比100%时输出转速达到最高。

2、速度环驱动器以转速为调整目标,电机的输出转矩为了保持速度而调整。

为什么需要速度环?因为现实中电机的负载是变动的,用固定占空比控制会导致电机速度随着负载的变化而变化。

在要求电机转速保持恒定的环境,要求驱动器能随着负载变换自动调节占空比输出。

无刷电机内部的霍尔传感器作为速度反馈精度还凑合,这点比其它电机有先天的优势。

对速度反馈量做PID算法占空比可以实现速度闭环。

一个例子就是,用开环控制在低速模式会因为转矩太小导致电机无法带动负载,如果使用了速度环电机可以自动增大转矩比来保持带负载低速转动。

3、电流环(转矩环)电流闭环模式下驱动器以转矩为调整目标,目标就是使得电机能以最大转矩转动。

为什么在速度环的条件下增加电流环?还是回到上面的例子,如果低速环境下,速度环可以提高电机的低速转矩,但是为了防止驱动器输出负载超过电机本身的承受能力,电机以最大的允许电流输出转矩。

从这一点出发电流环作用,主要是2个,一是启动过程的加速,二是对电机最大工作电流的保护。

4、速度、电流双闭环控制。

双闭环控制的提出主要是针对电机启动过程,陈伯时<<电力拖动>>中指出,电机双闭环理想情况下是启动时是电流环,稳定时只有速度环。

但双闭环设计很难只有一个环,所以两个环在不同阶段作用的大小不同的,启动时电流环起决定作用,速度稳定时速度环起主要作用。

双闭环的PID编写。

应该先完成速度环程序,后写电流环程序。

双闭环编写主要两个方面:速度环的输出和电流环的标定,PID参数调节。

在转速和电流大小的电流情况下,需要的PID值是不一样的,因此对PID做分段设计可以提高电机的通用性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测量电机转速方法主要采用测速发电机和光电编码器两种形式。

直流测速发电机由永久磁铁与感应线圈组成,用电枢获取速度信号。

它具有灵敏度高、结构简单等特点,常用于高精度低速伺服系统,也可与永磁式直流电动机组成低速脉宽调速系统。

直流测速发电机的输出信号是与输入轴的转速成正比的直流电压信号(模拟信号),信号幅度大,信号调理电路简单。

由于输出电压信号有波纹,一般需要配置滤波电路。

光电编码器(增量式)主要由旋转孔盘和光电器件组成。

它具有体积小、使用方便、测量精度高等特点,常与直流电机配合使用构成脉宽调速系统。

增量式光电编码器输出的是与转角成比例的增量脉冲信号,可以通过脉冲计数获得角位置信号,也可以定时取样脉冲数的增量实现角速度测量。

因此,可以同时测量转角和转速(数字信号)。

使用光电编码器来测量电机的转速,可以利用定时器/计数器配合光电编码器的输出脉冲信号来测量电机的转速。

具体的测速方法有M法、T法和M/T法3种。

1.M法在一定的时间Tc测区旋转编码器的脉冲个数M1,用以计算这段时间的平均转速,称作M法测速。

M法又称之为测频法
2.T法测速是在编码器两个相邻输出脉冲的间隔时间,用一个计数器对一直的频率为fo的高频始终脉冲进行计数,并由此计算转速。

3.M/T法是把M法和T法结合起来,既检测Tc 时间旋转编码器输出的脉冲个数M1,又检测同一时间间隔的高频时钟脉冲的个数M2,用来计算转速。

光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲
或数字量的传感器。

这是目前应用最多的传感器,光电编码器的工作原理如图所示,在圆盘上有规则地刻有透光和不透光的线条,在圆盘两侧,安放发光元件和光敏元件。

当圆盘旋转时,光敏元件接收的光通量随透光线条同步变化,光敏元件输出波形经过整形后变为脉冲,码盘上有之相标志,每转一圈输出一个脉冲。

此外,为判断旋转方向,码盘还可提供相位相差90°的两路脉冲信号,如图所示。

根据检测原理,编码器可分为光学式、磁式、感应式和电容式。

根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。

1.增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B 两组脉冲相位差90°,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。

它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。

其缺点是无法输出轴转动的绝对位置信息。

2.绝对式编码器是利用自然二进制或循环二进制(莱码)方式进行光电转换的。

绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。

编码的设计可采用二进制码、循环码、二进制补码等。

它的特点是:
(1)可以直接读出角度坐标的绝对值;
(2)没有累积误差;
(3)电源切除后位置信息不会丢失。

但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数,目前有10位、14位等多种。

3.混合式绝对值编码器,它输出两组信息:一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。

光电编码器是一种角度(角速度)检测装置,它将输入给轴的角度量,利用光电
转换原理转换成相应的电脉冲或数字量,具有体积小,精度高,工作可靠,接口数字化等优点。

它广泛应用于数控机床、回转台、伺服传动、机器人、雷达、军事目标测定等需要检测角度的装置和设备中。

一、增量型旋转编码器
轴的每转动一周,增量型编码器提供一定数量的脉冲。

周期性的测量或者单位时间的脉冲计数可以用来测量移动的速度。

如果在一个参考点后面脉冲数被累加,计算值就代表了转动角度或行程的参数。

双通道编码器输出脉冲A、B之间相差为90°,能使接收脉冲的电子设备接收轴的旋转感应信号,因此可用来实现双向的定位控制;另外,三通道增量型旋转编码器每一圈产生一个称之为零位信号的脉冲(Z)。

二、增量型绝对值旋转编码器
绝对值编码器为每一个轴的位置提供一个独一无二的编码数字值。

特别是在定位控制应用中,绝对值编码器减轻了电子接收设备的计算任务,从而省去了复杂的和昂贵的输入装置:而且,当机器合上电源或电源故障后再接通电源,不需要回到位置参考点,就可利用当前的位置值。

单圈绝对值编码器把轴细分成规定数量的测量步,最大的分辨率为13位,这就意味着最大可区分8192个位置+多圈绝对值编码器不仅能在一圈测量角位移,而且能够用多步齿轮测量圈数。

多圈的圈数为12位,也就是说最大4096圈可以被识别。

总的分辨率可达到25位或者33,554,432个测量步数。

并行绝对值旋转编码器传输位置值到估算电子装置通过几根电缆并行传送。

假设串行绝对值编码器,输出数据可以用标准的接口和标准化的协议传送,同时在过去点对点的连接实现了串行数据传送。

RD端口的RD0-7和RE端口的RE0-2是与LCD模块连接,主要是从PIC单片机输出数据或指令到LCD模块,因此可以将其全部设置为输出方向;另外,由于RE0-2上电复位默认为模拟输入口,不是数字I/O口,因此需要对ADCON1控制寄存器配置RE0-2为数字I/O口。

由于RB端口接有3个按键K1-3和INT0外部中断信号输入,因此需要将RB端口配置成带有上拉功能的输入端口,可以启用RB部弱上拉。

P1A和P1B是PWM信号的输出,应将R1A和R1B配置成输出引脚。

P1A和P1B分别接在L298的IN3和IN4引脚上来控制电机正反转并实现对电机的调速。

此时,必须将ECCP模块初始化在PWM模式下,并且采用周期相同。

放大电路的连接电路
IR2111外围电路如图所示。

单片机输出的PWM 信号经光耦PC817后,输出至IR2111输入端,此处的光耦对PWM 信号起到隔离、电平转换和功率放大的作用。

图中,1R 、2R 为光耦上拉电阻,其值根据所用光耦的输入和输出地电流参数决定:1C 为电容滤波电容,2C 为自举二极管,3R 、4R 为栅极驱动电阻。

键盘输入电路
转速测量电路设计
一个完善的闭环系统,其定位精度和测量精度主要由测量元件决定,因此,高精度的测量转速对测量元件的质量要求相当高。

光电编码器是现代系统中必不可少的一种数字式速度测量元件,被广泛应用于微处理器控制的闭环控制系统中。

光栅盘是在圆盘边刻有很多光栅。

当光源照射到光栅部分时,没有被光栅挡住的光源就透射过去。

本系统中采用了一个圆面上刻有60个均匀光栅格的光栅盘。

当电机旋转一周时,会产生60个光脉冲信号。

光电传感器
光电传感器原理是有一个发光二极管和一个由光信号控制放大的三极管组成。

由发光二极管发出红外光线通过3mm 宽的气隙透射到另一端的三极管上,使得该三极管导通。

其特征如下:
● 气隙是3mm 。

● 分辨率达到0.5mm 。

● 大电流传输比
10030I I F
C
>。

● 暗电流为:0.25A μ
● 在F I =10mA 时,发光二极管产生的光线的波长为940nm 。

安装时将光栅盘圆面钳到沟槽中,光电传感器的发光二极管发出的红外线通过3mm 气隙照射到光栅盘,光通过光栅盘面上透光的光栅气隙可以使得光传感器的三极管导通,从C 极会输出一个低电平,被光栅挡住的光不能透过去,使得光电传感器的C 极会输出一个高电平。

光电传感器在硬件电路设计上很简单, 如图3.8.2。

在光电传感器的1引脚上接一个限流电阻R ,限制流过发光二极管的电流F I =10mA 左右。

计算公式如下:
R /V -V I F CC F )(=
其中,左右。

,计算出,,Ω====390R m A 10I V 5V V 15.1V F CC F。

相关文档
最新文档