《共现聚类分析》PPT课件
合集下载
3.共现聚类分析PPT课件
软件使用
SPSS SAS Cluster 3.0
http://bonsai.ims.utokyo.ac.jp/~mdehoon/software/cluster/software.ht m#ctv
gCluto
/gkhome/cluto/gcluto/dow nload
论文1 0 0 1
论文2 1 1 0
论文3 论文4 ……
0
1
……
1
0
……
1
1
……
相似矩阵
主题词1 主题词2 主题词3 主题词4 ……
主题词1 主题词2 主题词3 主题词4 ……
1
0.85
0.47 0.66
0.85
1
0.63 0.52
0.47
0.63
1
0.02
0.66
0.52
0.02 1
共现分析
可以进行共现分析的标目
关键问题:
相似度计算:点和点之间的距离 类间距离计算:类和类之间的距离。
聚类分析算法:相似度
如果想要对100个学生进行分类,如果仅仅知道他们的数学成 绩,则只好按照数学成绩来分类;这些成绩在直线上形成100 个点。这样就可以把接近的点放到一类。
0
50
100
聚类分析算法:相似度
如果还知道他们的物理成绩,这样数学和物理 成绩就形成二维平面上的100个点,也可以按 照距离远近来分类。
K-均值聚类
k-means cluster,快速聚类(quick cluster) 先说好要分多少类:假定分3类,这个方法要求你事先确定3
个点为“聚类种子”(SPSS软件自动为你选种子);也就是说, 把这3个点作为三类中每一类的基石。 根据和这三个点的距离远近,把所有点分成三类。再把这三 类的中心(均值)作为新的基石或种子(原来的“种子”就 没用了),重新按照距离分类。 如此迭代下去,直到达到停止迭代的要求(比如,各类最后 变化不大了,或者迭代次数太多了)。 显然,前面的聚类种子的选择并不必太认真,它们很可能最 后还会分到同一类中呢。
聚类分析及其应用实例ppt课件
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
Outlines
聚类的思想 常用的聚类方法 实例分析:层次聚类
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
3. 实例分析:层次聚类算法
定义:对给定的数据进行层次的分解
第4 步
➢
凝聚的方法(自底向上)『常用』
思想:一开始将每个对象作为单独的
第3 步
一组,然后根据同类相近,异类相异 第2步 的原则,合并对象,直到所有的组合
并成一个,或达到一个终止条件。 第1步
a, b, c, d, e c, d, e d, e
X3 Human(人) X4 Gorilla(大猩猩) X5 Chimpanzee(黑猩猩) X2 Symphalangus(合趾猿) X1 Gibbon(长臂猿)
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
离差平方和法( ward method ):
各元素到类中心的欧式距离之和。
Gp
Cluster P
Cluster M
Cluster Q
D2 WM Wp Wq
G q
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
凝聚的层次聚类法举例
Gp G q
Dpq max{ dij | i Gp , j Gq}
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
Outlines
聚类的思想 常用的聚类方法 实例分析:层次聚类
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
3. 实例分析:层次聚类算法
定义:对给定的数据进行层次的分解
第4 步
➢
凝聚的方法(自底向上)『常用』
思想:一开始将每个对象作为单独的
第3 步
一组,然后根据同类相近,异类相异 第2步 的原则,合并对象,直到所有的组合
并成一个,或达到一个终止条件。 第1步
a, b, c, d, e c, d, e d, e
X3 Human(人) X4 Gorilla(大猩猩) X5 Chimpanzee(黑猩猩) X2 Symphalangus(合趾猿) X1 Gibbon(长臂猿)
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
离差平方和法( ward method ):
各元素到类中心的欧式距离之和。
Gp
Cluster P
Cluster M
Cluster Q
D2 WM Wp Wq
G q
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
凝聚的层次聚类法举例
Gp G q
Dpq max{ dij | i Gp , j Gq}
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
聚类分析的思路和方法 ppt课件
PPT课件
7
例 对10位应聘者做智能检验。3项指标X,Y
和Z分别表示数学推理能力、空间想象能力和语 言理解能力。得分如下,选择合适的统计方法 对应聘者进行分类。
应聘者 1 2 3 4 5 6 7 8 9 10 X 28 18 11 21 26 20 16 14 24 22 Y 29 23 22 23 29 23 22 23 29 27 Z 28 18 16 22 26 22 22 24 24 24
PPT课件
19
二值(Binary)变量的聚类统计量
PPT课件
20
聚类的类型
根据聚类对象的不同,分为Q型聚类和R型聚 类。
Q型聚类:样本之间的聚类即Q型聚类分析, 则常用距离来测度样本之间的亲疏程度。
R型聚类:变量之间的聚类即R型聚类分析, 常用相似系数来测度变量之间的亲疏程度。
PPT课件
p
dij 1 xik x jk k 1
2. 欧氏距离(Euclidean distance)
1
dij2Biblioteka p( xik
x
jk
)
2
2
k 1
PPT课件
15
3. 明考斯基距离(Minkowski)
4. 兰氏距离
1
dij
p
( xik
PPT课件
8
PPT课件
9
PPT课件
10
聚类分析根据一批样本的许多观 测指标,按照一定的数学公式具体地 计算一些样本或一些指标的相似程度, 把相似的样本或指标归为一类,把不 相似的归为一类。
PPT课件
11
样本或变量间亲疏程度的测度
《聚类分析》PPT课件
应聘者 X Y Z
1 2 3 4 5 6 7 8 9 10 28 18 11 21 26 20 16 14 24 22 29 23 22 23 29 23 22 23 29 27 28 18 16 22 26 22 22 24 24 24
2021/8/17
5
2021/8/17
6
2021/8/17
Ch6 聚类分析
2021/8/17
1
聚类分析根据一批样品的许多观测指标,按 照一定的数学公式具体地计算一些样品或一些参 数(指标)的相似程度,把相似的样品或指标归为 一类,把不相似的归为一类。
例如对上市公司的经营业绩进行分类;据经 济信息和市场行情,客观地对不同商品、不同用 户及时地进行分类。又例如当我们对企业的经济 效益进行评价时,建立了一个由多个指标组成的 指标体系,由于信息的重叠,一些指标之间存在 很强的相关性,所以需要将相似的指标聚为一类, 从而达到简化指标体系的目的。
2021/8/17
29
(1) 所 选 择 的 亲 疏 测 度 指 标 在 实 际 应 用中应有明确的意义。如在经济变量分析 中,常用相关系数表示经济变量之间的亲 疏程度。
2021/8/17
30
(2)亲疏测度指标的选择要综合考虑已对样本观测 数据实施了的变换方法和将要采用的聚类分析方法。如在 标准化变换之下,夹角余弦实际上就是相关系数;又如若 在进行聚类分析之前已经对变量的相关性作了处理,则通 常就可采用欧氏距离,而不必选用斜交空间距离。此外, 所选择的亲疏测度指标,还须和所选用的聚类分析方法一 致。如聚类方法若选用离差平方和法,则距离只能选 用 欧氏距离。
剂的种类等。在名义尺度中只取两种特性状态的变量是很
重要的,如电路的开和关,天气的有雨和无雨,人口性别
聚类分析部分 PPT课件
距离
设xij 为第i个样品的第j个指标,数据矩阵表如下:
在上表中,每个样品有p个变量,故 p 每个样品都可以看成是 R 中的一个点,n p 个样品就是 R 中的n个点。在 R p中需定义 某种距离,将第i个样品与第j个样品之间 的距离记为dij ,在聚类过程冲,相距较近的 点倾向于归为一类,相距较远的点应归属 不同的类。
聚类时,比较相似的变量倾向于 归为一类,不太相似的变量归属不同 的类。
相似系数性质
变量 xi 与 x j 的相似系数用 cij 来表示,它一般应满 足如下三个条件: (1)cij 1 ,当且仅当 xi ax j b, a( 0)和b为常 数; (2) cij 1,对一切i,j; (3) cij c ji ,对一切i,j。
正因为如此,判别分析和聚类 分析往往联合起来使用,例如判别 分析是要求先知道各类总体情况才 能判断新样品的归类,当总体分类 不清楚时,可先用聚类分析对原来 的一批样品进行分类,然后再用判 别分析建立判别式以对新样品进行 判别。
聚类分析与判别分析、主成分 分析、回归分析等方法联合起来使 用,往往效果更好。
x1 y1
s11
2
x2 y2 s22
2
x
p
yp
2
1 1 所加的权是 k1 , k2 , s11 s22
1 , k p ,即用样本方差 s pp
s pp
除相应坐标。当取 y1 y2 y p 0 时,就是点P 到原点O的距离。若 s11 s22 s pp 时,为欧氏距 离。
距离的性质
距离dij 一般应满足如下四个条件: (1) dij 0,对一切i,j; dij 0,当且仅当第i个样品与第j个样品的 (2) 各变量值都相同; dij d ji ,对一切i,j; (3) dij dik dkj ,对一切i,j,k。 (4)
聚类分析 PPT课件
(f) (f) p dij f 1 ij d (i, j) (f) p f 1 ij
f is binary or nominal: dij(f) = 0 if xif = xjf , or dij(f) = 1 otherwise f is ordinal Compute ranks rif and Treat zif as interval-scaled
x1 x2 x3 x4
x1 0 3.61 5.1 4.24
x2 0 5.1 1
x3
x4
5
0 5.39
0
第二节 相似性的量度
一 样品相似性的度量
二 变量相似性的度量
含名义变量样本相似性度量
例: 学员资料包含六个属性:性别(男或女);外语语种
(英、日或俄);专业(统计、会计或金融);职业(教师 或非教师);居住处(校内或校外);学历(本科或本科以 下) 现有两名学员: X1=(男,英,统计,非教师,校外,本科)′ X2=(女,英,金融,教师,校外,本科以下)′ 对应变量取值相同称为配合的,否则称为不配合的 记配合的变量数为m1,不配合的变量数为m2,则样本之间 的距离可定义为
第五章 聚类分析
第一节 第二节 第三节 第四节 第五节 引言 相似性的量度 系统聚类分析法 K均值聚类分析 K中心点聚类
第六节
R codes
第一节 引言
“物以类聚,人以群分” 无监督分类聚类分析 分析如何对样品(或变量)进行量化分类的 问题 Q型聚类—对样品进行分类 R型聚类—对变量进行分类
用他们的序代替xif
zif
rif 1 M f 1
10
混合型属性
A database may contain all attribute types Nominal, symmetric binary, asymmetric binary, numeric, ordinal 可以用加权法计算合并的影响
f is binary or nominal: dij(f) = 0 if xif = xjf , or dij(f) = 1 otherwise f is ordinal Compute ranks rif and Treat zif as interval-scaled
x1 x2 x3 x4
x1 0 3.61 5.1 4.24
x2 0 5.1 1
x3
x4
5
0 5.39
0
第二节 相似性的量度
一 样品相似性的度量
二 变量相似性的度量
含名义变量样本相似性度量
例: 学员资料包含六个属性:性别(男或女);外语语种
(英、日或俄);专业(统计、会计或金融);职业(教师 或非教师);居住处(校内或校外);学历(本科或本科以 下) 现有两名学员: X1=(男,英,统计,非教师,校外,本科)′ X2=(女,英,金融,教师,校外,本科以下)′ 对应变量取值相同称为配合的,否则称为不配合的 记配合的变量数为m1,不配合的变量数为m2,则样本之间 的距离可定义为
第五章 聚类分析
第一节 第二节 第三节 第四节 第五节 引言 相似性的量度 系统聚类分析法 K均值聚类分析 K中心点聚类
第六节
R codes
第一节 引言
“物以类聚,人以群分” 无监督分类聚类分析 分析如何对样品(或变量)进行量化分类的 问题 Q型聚类—对样品进行分类 R型聚类—对变量进行分类
用他们的序代替xif
zif
rif 1 M f 1
10
混合型属性
A database may contain all attribute types Nominal, symmetric binary, asymmetric binary, numeric, ordinal 可以用加权法计算合并的影响
聚类分析(共8张PPT)
第4页,共8页。
聚类分析
三、聚类分析中的测度与标准化
在聚类分析技术的发展过程中,形成了很多种测度相似性的方法。每一种方法 都从不同的角度测度了研究对象的相似性。
在数据采集过程中,一般可以用三种方式采集数据:二分类型数据、等级类型 数据和连续类型数据。在进行聚类分析时可以根据不同的数据特点采用相应的测度 方法。
尽量避免绝对数据。
研究个案 A B C
受教育年限 10 16 6
年收入(万元) 2
1.5 1
年收入(元) 20000 15000 10000
A、B、C在不同距离单位时的距离图
A
B
B
10.01
C
A
10000
C
单位:万元
第6页,共8页。
单位:元
聚类分析
四、常用两种聚类分析方法
1.快速聚类法
快速聚类过程是初始分类的有效方法。适用于大容量样本的情形,由用户指定须聚类的 类数之后,系统采用标准迭代算法进行运算,把所有的个案归并在不同的类中。
m维空间中点与点之间的某种距离就可用来描述样品之间的亲疏程度。 而聚类分析则较常使用于将变量属性相似程度较高的观察值,加以分类,使类与类间的异质性达到最大,而同一类的几个观察值同质性很高。 ③对数据进行变换处理,(如标准化或规格化);
mm维维空 空间间中中点点与与点点实之之际间间的的应某某用种种距距时离离,就就可可两用用者来来描描的述述主样样品品要之之差间间的的别亲亲在疏疏程程于度度因。。子分析是针对“变量”予以分组,而聚类分析 按照这种方则法是不断将进“行合观并察,直值到个把所体有”的样予品以合为分一组个,大类亦为即止。因子分析时,根据因变量(题项)间关系密切与 四⑦、最常 后用绘两制否种系,聚统类聚将分类变析谱方系量法图予,按以不分同的类分(类标分准为或不几同个的层分类面原因则,子得)出不;同而的分聚类类结果分。析则较常使用于将变量属性相似 从数据结构程和度统计较形高式上的看观,因察子值分析,是加一种以“横分向类合并,”的使方类法,与聚类类分间析的则是异一质种“性纵向达合到并”最的方大法,。 而同一类的几个观察值 适每用一于 种大方容法同量都质样从本不性的同很情的形角高,度。由测用度户了指研定究须对聚象类的的相类似数性之。后,系统采用标准迭代算法进行运算,把所有的个案归并在不同的类中。 研究学生学业差异、因教师素教分学水析平:等等横,向都需简要化对研,究聚对象类进分行分析类:。纵向分组
聚类分析
三、聚类分析中的测度与标准化
在聚类分析技术的发展过程中,形成了很多种测度相似性的方法。每一种方法 都从不同的角度测度了研究对象的相似性。
在数据采集过程中,一般可以用三种方式采集数据:二分类型数据、等级类型 数据和连续类型数据。在进行聚类分析时可以根据不同的数据特点采用相应的测度 方法。
尽量避免绝对数据。
研究个案 A B C
受教育年限 10 16 6
年收入(万元) 2
1.5 1
年收入(元) 20000 15000 10000
A、B、C在不同距离单位时的距离图
A
B
B
10.01
C
A
10000
C
单位:万元
第6页,共8页。
单位:元
聚类分析
四、常用两种聚类分析方法
1.快速聚类法
快速聚类过程是初始分类的有效方法。适用于大容量样本的情形,由用户指定须聚类的 类数之后,系统采用标准迭代算法进行运算,把所有的个案归并在不同的类中。
m维空间中点与点之间的某种距离就可用来描述样品之间的亲疏程度。 而聚类分析则较常使用于将变量属性相似程度较高的观察值,加以分类,使类与类间的异质性达到最大,而同一类的几个观察值同质性很高。 ③对数据进行变换处理,(如标准化或规格化);
mm维维空 空间间中中点点与与点点实之之际间间的的应某某用种种距距时离离,就就可可两用用者来来描描的述述主样样品品要之之差间间的的别亲亲在疏疏程程于度度因。。子分析是针对“变量”予以分组,而聚类分析 按照这种方则法是不断将进“行合观并察,直值到个把所体有”的样予品以合为分一组个,大类亦为即止。因子分析时,根据因变量(题项)间关系密切与 四⑦、最常 后用绘两制否种系,聚统类聚将分类变析谱方系量法图予,按以不分同的类分(类标分准为或不几同个的层分类面原因则,子得)出不;同而的分聚类类结果分。析则较常使用于将变量属性相似 从数据结构程和度统计较形高式上的看观,因察子值分析,是加一种以“横分向类合并,”的使方类法,与聚类类分间析的则是异一质种“性纵向达合到并”最的方大法,。 而同一类的几个观察值 适每用一于 种大方容法同量都质样从本不性的同很情的形角高,度。由测用度户了指研定究须对聚象类的的相类似数性之。后,系统采用标准迭代算法进行运算,把所有的个案归并在不同的类中。 研究学生学业差异、因教师素教分学水析平:等等横,向都需简要化对研,究聚对象类进分行分析类:。纵向分组
聚类分析法ppt课件全
8/21/2024
25
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(3)分类函数
按照修改原则不同,动态聚类方法有按批修改法、逐个修改法、混合法等。 这里主要介绍逐步聚类法中按批修改法。按批修改法分类的原则是,每一步修 改都将使对应的分类函数缩小,趋于合理,并且分类函数最终趋于定值,即计 算过程是收敛的。
8/21/2024
23
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(2)初始分类 有了凝聚点以后接下来就要进行初始分类,同样获得初始分类也有不同的
方法。需要说明的是,初始分类不一定非通过凝聚点确定不可,也可以依据其 他原则分类。
以下是其他几种初始分类方法: ①人为分类,凭经验进行初始分类。 ②选择一批凝聚点后,每个样品按与其距离最近的凝聚点归类。 ③选择一批凝聚点后,每个凝聚点自成一类,将样品依次归入与其距离
8/21/2024
14
1.2 聚类分析的种类
(2)系统聚类分析的一般步骤 ①对数据进行变换处理; ②计算各样品之间的距离,并将距离最近的两个样品合并成一类; ③选择并计算类与类之间的距离,并将距离最ቤተ መጻሕፍቲ ባይዱ的两类合并,如果累的个
数大于1,则继续并类,直至所有样品归为一类为止; ④最后绘制系统聚类谱系图,按不同的分类标准,得出不同的分类结果。
8/21/2024
18
1.2 聚类分析的种类
(7)可变法
1 2 D kr
2 (8)离差平方和法
(D k 2 pD k 2 q)D p 2q
D k 2 rn n ir n n p i D i2 pn n ir n n q iD i2 qn rn in iD p 2 q
8/21/2024
聚类分析模型ppt课件
i1
xi
yi
2
2
3
契比雪夫距离
dX,Y
max
1i p
xi
yi
3
1
4
闵可夫斯基距离
dX,Y
p
i1
xi
yi
qq
,q
0
1
5 马氏距离 d X ,Y X Y 1X Y 2 ,其中
是所有样品的样本协差阵。
6 兰氏(Lance---William)距离
dX ,Y
1
p
xi
yi
,(适用于样品各分量皆非负的情形)
15
聚类 类间
顺序 距离
1
1.000 x2 x5
2
1.000 x2 x5 x8
3
1.414 x1 x4
4
1.414 x2 x5 x8 x9
5
1.414 x2 x5 x8 x9 x7
6
1.414 x2 x5 x8 x9 x7 x3
7
1.414 x6 x10
8
1.732 x2 x5 x8 x9 x7 x3 x6 x10
9
3.000 x1 x4 x2 x5 x8 x9 x7 x3 x6 x10
16
类间距离
最短距离法聚类图
3.5 3.0 2.5 2.0 1.5 1.0 0.5
X10 X6 X3 X7 X9 X8 X5 X2 X4 X1
17
Spss软件实现
1.运动员的聚类分析:spss 数据 :运动员三项指标 关注:数据格式、结果解读、聚类图、最短距离法、最长距离法 2.汽车的聚类分析:spss 数据 :13-01 3.湿度的聚类分析:spss 数据 :18-03 4.国别饮料产量的聚类分析:spss 数据 :18-05
xi
yi
2
2
3
契比雪夫距离
dX,Y
max
1i p
xi
yi
3
1
4
闵可夫斯基距离
dX,Y
p
i1
xi
yi
,q
0
1
5 马氏距离 d X ,Y X Y 1X Y 2 ,其中
是所有样品的样本协差阵。
6 兰氏(Lance---William)距离
dX ,Y
1
p
xi
yi
,(适用于样品各分量皆非负的情形)
15
聚类 类间
顺序 距离
1
1.000 x2 x5
2
1.000 x2 x5 x8
3
1.414 x1 x4
4
1.414 x2 x5 x8 x9
5
1.414 x2 x5 x8 x9 x7
6
1.414 x2 x5 x8 x9 x7 x3
7
1.414 x6 x10
8
1.732 x2 x5 x8 x9 x7 x3 x6 x10
9
3.000 x1 x4 x2 x5 x8 x9 x7 x3 x6 x10
16
类间距离
最短距离法聚类图
3.5 3.0 2.5 2.0 1.5 1.0 0.5
X10 X6 X3 X7 X9 X8 X5 X2 X4 X1
17
Spss软件实现
1.运动员的聚类分析:spss 数据 :运动员三项指标 关注:数据格式、结果解读、聚类图、最短距离法、最长距离法 2.汽车的聚类分析:spss 数据 :13-01 3.湿度的聚类分析:spss 数据 :18-03 4.国别饮料产量的聚类分析:spss 数据 :18-05
聚类分析的思路和方法ppt课件
14
❖ 1. 绝对距离(Block距离)
p
dij 1 xik xjk k1
❖ 2. 欧氏距离(Euclidean distance)
1
dij 2 p (xikxjk)2 2
k1
精选ppt
15
❖ 3. 明考斯基距离(Minkowski)
❖ 4. 兰氏距离
1
dij
p
(xik xjk)q
k1
n
n
(xki xi )2 (xkj xj )2
k1
k1
❖ 2. 夹角余弦
n
xkixkj
Cij
k 1
1
n xk2i n xk2j 2
k 1 k 1
精选ppt
18
计数变量(Count)(离散变量)的聚类统计量
❖ 对于计数变量或离散变量,可用于度量样本 (或变量)之间的相似性或不相似性程度的 统计量主要有卡方测度(Chi-square measure) 和Phi方测度(Phi-square measure)。
应聘者 1 2 3 4 5 6 7 8 9 10 X 28 18 11 21 26 20 16 14 24 22 Y 29 23 22 23 29 23 22 23 29 27 Z 28 18 16 22 26 22 22 24 24 24
精选ppt
8
精选ppt
9
精选ppt
10
聚类分析根据一批样本的许多观测 指标,按照一定的数学公式具体地计算 一些样本或一些指标的相似程度,把相 似的样本或指标归为一类,把不相似的 归为一类。
精选ppt
19
二值(Binary)变量的聚类统计量
精选ppt
20
做聚类分析 共40页PPT资料
4.pearson correlation
皮尔逊相关系数(R)
5.chebychev
切比雪夫距离
dx,yMxa iyix i
毛本清 2019.08.27
6.block 绝对值距离
dx,y i xiyi
7.minkowski 明考斯基
1
d
x,
yi xiyi
q
毛本清 2019.08.27
毛本清 2019.08.27
Plot
树状结构图 冰柱图
冰柱的方向
毛本清 2019.08.27
Vertical Icicle
Number
Case
of
clust X X X X X X X X
ers
75 4 3 6 8 2 1
1
XXXXXXXXXXXXXXX
2
XXXXXXXXXXXXX X
见(一)聚类方法 见( 二)各种距离和相似系数
毛本清 2019.08.27
Method
亲疏关系指标 标准化变换
聚类方法
毛本清 2019.08.27
(一)聚类方法
1.Between-groups linkage 类间平均法
两类距离为两类元素两两之间平均平方距离
2.Within-groups linkage 类内平均法
Agglomeration Schedule
Cluster Combined
Cluster 1 Cluster 2
3
8
14
15
9
16
3
5
6
12
7
13
9
11
4
10
3
7
4
14
聚类分析-PPT精选.ppt
聚类指标
❖ 系统聚类法对k个指标进行聚类的具体步骤如 下:
❖ ①确定每一类的类内指标总变异被类成分所 解释的最低比例P;
❖ ②把所有指标看成一类,计算类内指标总变 异被类成分所解释的比例,如果所解释的比 例大于或等于P,则聚类停止;否则进行③;
聚类指标
❖ ③将这个类分解成两个类,分类原则是使得每一类 内的指标总变异尽可能地被该类的类成分所解释且 类间相关系数达到最小,计算每一类的类内指标总 变异被类成分所解释的比例,如果所解释的比例大 于或等于P,则聚类停止;否则进行④;
❖ 例如,我们可以根据学校的师资、设备、学 生的情况,将大学分成一流大学,二流大学 等;国家之间根据其发展水平可以划分为发 达国家、发展中国家;
概述
❖ 这些问题的本质就是希望能找到一种合理的 方法将一批研究对象按其所属特性分门别类。 统计学上用于解决这种分类问题的主要方法 是聚类分析法和判别分析法。这一章主要讨 论聚类分析。
第18章 聚类分析
中国疾病预防控制中心
学习目标
❖ 了解聚类分析的基本思想; ❖ 了解聚类分析的一些常见统计量; ❖ 掌握聚类分析的基本方法; ❖ 通过实例练习掌握聚类分析的SAS过程步。
概述
❖ 聚类分析是将随机现象归类的统计学方法, 已广泛应用于医学科学研究之中。聚类分析 也称群分析、点群分析,他是研究分类的一 种多元统计方法。
❖ 把一些相似程度较大的样品(或指标)聚合为一类, 把另外一些彼此之间相似程度较大的样品(或指标) 又聚合为另一类,关系密切的聚合到一个小的分类 单位,关系疏远的聚合到一个大的分类单位,直到 把所有的样品(或指标)聚合完毕,这就是分类的 基本思想。由此得知,聚类分析的任务有两个,第 一就是寻找合理的度量事物相似性的统计量;第二 是寻找合理的分类方法。