浅谈求极限的方法
关于复变函数求极限的方法浅谈
关于复变函数求极限的方法浅谈复变函数是数学中的一个重要分支,它在物理、工程、经济等领域都有着广泛的应用。
在复变函数中,求极限是一个基本且重要的问题,它可以帮助我们理解函数的性质和行为。
本文将就复变函数求极限的一些方法进行浅谈,希望能够帮助读者更好地理解这个问题。
1. 利用极限的定义在求解复变函数的极限时,我们可以直接运用极限的定义。
设f(z)是一个复变函数,z0是一个复数,则当z趋向z0时,如果对于任意的ε>0,都存在一个δ>0,使得当0<|z-z0|<δ时,有|f(z)-A|<ε成立,那么我们就称A是f(z)当z趋向z0时的极限,记作lim(z→z0)f(z)=A。
这种方法直接运用极限的定义来求解复变函数的极限,可以帮助我们理解极限的概念和性质。
2. 利用复变函数的性质复变函数在求解极限时,通常会利用其性质进行变换和简化。
比如利用复变函数的加法和乘法的性质,可以将复变函数进行分解和合并;利用复变函数的倒数性质,可以将复变函数进行倒数运算,从而简化计算。
这些性质可以帮助我们更好地理解和处理复变函数的极限问题。
4. 利用洛必达法则洛必达法则是求解极限问题的一个重要工具,它也适用于复变函数的极限问题。
当复变函数的极限存在,并且是无穷大或者无穷小的形式时,可以利用洛必达法则对极限进行运算。
具体来说,当被求极限的函数以及其极限为0或无穷时,可以对其进行求导,然后再求极限,从而简化极限的计算。
这种方法在处理复杂的复变函数极限问题时非常有用。
5. 利用泰勒展开对于复变函数,我们还可以利用泰勒展开来求解其极限。
泰勒展开是将一个函数在某一点附近展开成一个无穷级数的形式,可以将一个复变函数表示为一系列幂函数的和。
利用泰勒展开,可以帮助我们更好地理解复变函数的性质和行为,从而求解其极限。
复变函数求极限是一个重要且基础的问题,对于复变函数的理解和应用都有着重要的意义。
在求解复变函数的极限时,可以运用极限的定义、复变函数的性质、极限的性质、洛必达法则和泰勒展开等方法,从而更好地理解和处理复变函数的极限问题。
关于复变函数求极限的方法浅谈
关于复变函数求极限的方法浅谈复变函数是指在复平面上定义的函数。
复变函数具有许多特殊的性质和求极限的方法,下面就复变函数求极限的方法进行浅谈。
对于复变函数f(z)而言,极限的概念与实变函数有所不同。
在复平面上,点z趋于复数a时,函数f(z)的极限L存在的充要条件是,对于给定的ε>0,存在某个δ>0,使得当0<|z-a|<δ时,有|f(z)-L|<ε。
也就是说,当z趋于a时,函数值f(z)逼近于极限L。
对于复变函数f(z)而言,求极限时可以利用以下几种方法:1. 直接代入法:对于一些简单的复变函数,可以直接代入极限点计算得到极限值。
当z→0时,f(z)=sin(z)/z,可以直接代入得到f(0)=1。
2. 利用实部和虚部的性质:复变函数可以表示为实部和虚部的和或积,因此可以利用实部和虚部的性质来求解极限。
当z→0时,f(z)=Re(z)+Im(z),可以分别计算出Re(z)和Im(z)的极限再求和得到f(0)的极限。
3. 利用极坐标表示法:复数可以用极坐标表示:z=ρ eiθ,其中ρ为模,θ为幅角。
当z→a时,可以将z和a都表示为极坐标形式,即z=ρ eiθ和a=ρ' e iθ',然后进行化简。
当z→0时,f(z)=|z|·e iarg(z),可以将z表示为z=ρ eiθ,然后进行化简计算。
4. 利用洛必达法则:洛必达法则可以用来处理一些特殊的复变函数极限。
如果f(z)和g(z)在某个点a的邻域内除了可能在a处,都有定义且连续,且g(z)≠0,当z→a时均趋于0,且f(a)=g(a)=0,那么可以利用洛必达法则求解f(z)/g(z)的极限。
5. 利用级数展开:复变函数可以用级数展开的形式来表示。
当z→a时,可以利用级数展开来计算函数的极限值。
当z→1时,f(z)=1/(1-z),可以利用泰勒展开将f(z)展开成无穷级数形式,然后进行计算。
复变函数求极限的方法有很多种。
浅谈求极限的方法与技巧
目录中文摘要 (2)外文摘要 (3)引言 (4)1.求极限的相关技巧与方法 (4)1.1 利用极限的四则运算法则求极限 (4)1.2 利用函数的连续性求极限 (5)1.3 利用无穷小的性质求极限 (6)1.4 利用等价无穷小的代换求极限 (6)1.5 利用两个重要极限求极限 (7)1.6 利用两个极限存在准则求极限 (9)1.7 利用L'Hospital法则求极限 (10)1.8 利用泰勒展式求极限 (11)1.9 利用积分求极限 (13)1.10 利用Lagrange中值定理求极限 (14)1.11 利用微分中值定理来求极限 (15)1.12 用Stolz法求极限 (16)1.13 用代数函数方法求极限 (17)2.多种极限方法的综合运用 (19)参考文献 (22)致谢 (23)浅谈求极限的方法与技巧陶习满指导老师:胡玲(黄山学院数学系,黄山,安徽 245041)摘要:极限的概念是高等数学中最重要、最基本的概念之一,它是研究分析方法的重要理论基础,但极限定义并未直接提供如何去求极限。
然而求极限的方法很多,本文总结几种常用的求极限的方法。
关键词:极限;技巧;方法。
Of Getting The Methods And TechniquesLimitTao XimanDirector : Hu Ling(The mathematics department of huangshan university,Huangshan,Anhui,245041)Abstract:The concept of limit of higher mathematics is the most important and one of the most basic concepts,the definition does not tell us how to seek limits.There are a lot of methods to get limits, This paper summarizes several common ways to limit demand for reference.Key Words: Limit; skills; method.引言在数学分析与微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,许多重要的概念如连续、导数、定积分、无穷级数的和及广义积分等都是用极限来定义的。
浅谈两个重要极限解题技巧
浅谈两个重要极限解题技巧极限是数学中一个非常重要的概念,它描述了数列或函数在无限接近某个值时的行为。
在解决极限问题时,有一些重要的技巧可以帮助我们更好地理解问题和找到解题的思路。
本文将浅谈两个重要的极限解题技巧。
首先是夹逼定理。
夹逼定理是一种用于确定极限存在和确定其值的方法。
当我们想要求解一个复杂的极限问题时,可以通过夹逼定理将其转化为一个更容易求解的问题。
夹逼定理的核心思想是通过将待求极限的函数夹在两个已知的函数之间,来确定极限的存在和值。
具体的操作步骤如下:1. 设待求极限的函数为f(x),已知上下限函数分别为g(x)和h(x),即有g(x) ≤ f(x) ≤ h(x)。
2. 如果已知当x趋向于某个值a时,g(x)和h(x)的极限存在且相等,即lim (x→a) g(x) = lim (x→a) h(x) = L。
那么我们可以得到lim (x→a) f(x) = L。
夹逼定理常用于解决一些无法直接计算的极限问题。
通过找出与待求极限函数相邻的两个已知函数,确定它们的极限存在且相等,从而确定待求极限的值。
当我们要求解极限lim (x→0) x·sin(1/x)时,可以利用夹逼定理将其转化为极限lim (x→0) –|x| ≤ x·sin(1/x) ≤ |x|,由于已知lim (x→0) –|x| = lim (x→0) |x| = 0,因此可以得到lim (x→0) x·sin(1/x) = 0。
第二个重要的极限解题技巧是分子有理化。
有时候,我们在计算一个极限时会遇到分母含有根式的情况,这时候通过分子有理化可以简化计算过程。
分子有理化的思想是通过一定的变换将包含根号的分子转化为一个有理式,从而方便计算极限。
具体的操作步骤如下:1. 先将分子的根式进行有理化。
有理化的方法包括乘以共轭式、利用等式、平方分解等。
2. 完成有理化后,可以将有理化后的分子和原始的分母进行合并,得到一个简化的表达式。
浅谈极限的求解方法毕业论文
共17页第1页浅谈函数极限求解方法学生:陈智年指导老师:赵守江三峡大学理学院摘要:极限是数学分析的基础,数学分析的基本概念的表述,都可以用极限来描述。
如函数在某点处导数的定义,定积分的定义,偏导数的定义,二重积分的定义,三重积分的定义,无穷级数的定义都是用极限来定义的。
极限是研究数学分析的基本工具。
极限是贯穿数学分析的一条主线。
学好极限要从以下两个方面着手:1)是考察所给函数是否存在极限;2)若函数存在极限,则考虑如何计算此极限。
本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。
对于简单的极限的计算,利用定义求值或利用极限的四则运算法则求值都是可行的,但是对于一个比较复杂的极限的计算,例如的值时则不能直接采用一般的定义或者定理,即使采用洛必达法则也是比较繁琐的,然而用泰勒展示则计算简单多了,这就说明为一般地解决极限求值问题时,就必须利用有效有针对性的计算方法,对各个具体问题还要善于发现和利用其特点以简化手续.传统的极限的计算方法不下十几种,但具体到计算不同特征的极限时,究竟采用哪种方法,很多人总感到无从下手.只有将这些方法进行归纳总结,从而才可以针对不同特征的式子选择适当的计算方法,进而简化计算Abstract:Limit is the basis of mathematical analysis ,the basic concepts of mathematical analysis of expression ,can be used to describe the limit as a function definition derivative at some point ,the definition of the definite integral , the definition of partial derivative , the definition of double integrals ,triple integral definition , infinite series of definitions are used to define the limits of the limit is the basic tool to study the limits of mathematical analysis is a main theme throughout the mathematical analysis to learn the limits from the following two aspects is to investigate the function if there is a limit .If there is a limit function , then consider how to calculate this limit this article is the second question that under the conditions of the existence of the limit , how to find the limits are reviewed for a simple calculation of the limit of the use . define the limits of the evaluation or the use of four evaluation algorithms are feasible,but for a more complicated limit calculations,such asFind in coslimx when exxx values are not directly using the general definition or theorem, even with the Hospital's Rule is more complicated , however,Taylor shows the calculation is much simpler ,which is generally described when the limit is evaluated to solve the problem , we must use effective targeted method of calculation for each specific issues but also good at finding and using its features to simplify procedures. The traditional method of calculating the limit of no less than a dozen,but when calculating the limits specific to different characteristics ,whether using either method, a lot of people always feel unable to start . These methods will only be summarized, so that we can choose the appropriate method of calculation formulas for different characteristics ,and thus simplify the calculation 关键词:极限;极限的定义;极限的性质;罗必达法则;泰勒公式;单调有限法则;积分中值定理;拉格朗日中值定理共17页第2页Keywords :Limit;ultimate limits of nature;Luo's Rule; Taylor formula;monotonous limited law;integral mean value theorem; Lagrange mean value theorem与一切科学方法一样,极限法也是社会实践的产物。
浅谈极限的求解方法毕业论文
浅谈极限的求解方法毕业论文1000字一、引言极限是微积分中最基本的概念之一,也是微积分理论的重要组成部分。
求极限可以帮助我们对函数的性质有更全面的了解,进而掌握一些更深入的微积分及数学分析知识。
本文将从定义、性质和求解方法三个方面进行讨论,希望能够帮助读者深入理解极限的概念和应用。
二、极限的定义在微积分中,极限是用来描述一个函数在某一点处的趋势性质的。
一般来说,我们将自变量不断逼近某一个值时,对应的函数值是否会逐渐趋近于一个确定的数,就称这个数为函数在该点的极限。
严格来说,极限的定义应该满足以下要求:(1)函数在无穷远点时也应有极限;(2)左极限等于右极限;(3)如果函数有极限,那么极限值应该是唯一确定的。
三、极限的性质(1)极限的唯一性:如果一个函数在某一点处有极限,那么它的极限值应该是唯一的。
这个性质可以通过反证法来证明。
假设一个函数f在某一点x0处有两个不同的极限L1和L2,那么我们就可以得到一个矛盾。
如果L1≠L2,那么我们就可以找到一个足够小的邻域,使得f(x)与L1的距离和f(x)与L2的距离之和小于某一个正数e。
但这与L1和L2不相等的前提矛盾,即假设不成立。
(2)局部有界性:如果一个函数在某一点x0处有极限,那么它在该点的某个邻域内是有界的。
因为如果函数在x=x0处有极限,那么意味着随着x越来越靠近x0,f(x)与L的差距会越来越小,也就是说函数值的范围将会越来越集中在一个很小的区域内。
(3)保号性:如果一个函数在某一点x0处有极限且不等于0,那么在该点的某个邻域内,函数与极限值之间的关系将会有一个明确的规律。
具体来说,如果极限值L>0,那么在一个充分小的邻域内,函数值将始终大于0;如果极限值L<0,那么在一个充分小的邻域内,函数值将始终小于0。
四、极限的求解方法(1)初值法:初值法又称数列逼近法,是一种基本的极限求解方法。
这个方法的具体过程是,我们先找到一个充分靠近极限的初始点,然后不停地不断逼近目标值,直到误差达到所需精度。
浅谈极限的求法技巧
浅谈极限的求法技巧极限是贯穿高等数学的一条主线。
学好极限是从以下两方面着手。
首先,考察所给函数是否存在极限。
其次,若函数否存在极限,则考虑如何计算此极限。
本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行阐述。
一、利用两个准则(1)夹逼准则:若一正整数 N,当n>N 时,有n x ≤n y ≤n z 且lim lim ,n n x x x z a →∞→∞==则有 lim n x y a→∞= .利用夹逼准则求极限关键在于从n x 的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列{}n y 和 {}n z ,使得n n n y x z ≤≤。
例n x =求n x 的极限解:因为n x 单调递减,所以存在最大项和最小项.......n x ≥=.......n x ≤+=n x ≤≤又因为1x x ==lim 1n x x →∞=(2):单调有界准则:单调有界数列必有极限,而且极限唯一。
利用单调有界准则求极限,关键先要证明数列的存在,然后根据数列的通项递推公式求极限。
例:证明下列数列的极限存在,并求极限。
123,ny y y y a a a a===++++证明:从这个数列构造来看ny显然是单调增加的。
用归纳法可证。
又因为23,ny y y===所以得21n ny a y-=+. 因为前面证明ny是单调增加的。
两端除以n y得1nnayy<+因为1ny y≥则nay≤从而11nay+≤1ny≤即n y是有界的。
根据定理{}ny有极限,而且极限唯一。
令limnny l→∞=则21lim lim()n nn ny y a-→∞→∞=+则2l la=+. 因为0,ny>解方程得12l=所以1lim2nny l→∞+==二、利用四则运算极限的四则运算性质:两收敛数列的和或积或差也收敛且和或积或差的极限等于极限和的或积或差。
两收敛数列且作除数的数列的极限不为零,则商的极限等于极限的商。
浅谈数学分析中求极限的常用方法.
浅谈数学分析中求极限的常用方法Preliminary analysis on the common method of limit problem inmathematical analysis摘要求极限问题是数学分析学习的基础,也是其极为重要的内容之一。
极限问题分为函数极限和数列极限两类,其他很多重要的数学概念的学习都建立在极限基础上,比如导数,积分,级数等等。
因此要学好数学分析,就要学好极限。
解决极限问题看似简单,但却很抽象,往往很难求出。
我们不能仅仅局限于用极限的概念求极限,我们应该掌握多种方法,并且运用各种方法结合,快速而准确的求出极限。
因为极限贯穿于数学分析学习的始终,许多数学概念是从极限出发而得出的。
所以反过来,我们也可以通过有关于极限的数学概念而求出极限。
但是这并不是非常容易的事情,因为极限问题过于抽象,所以我们应该单独的学习各种方法针对性的求极限,最后再进行整合,把多种方法相结合来求极限。
由此可以看出求极限问题是十分繁琐的,针对这种情况,本文中介绍了多种基本的求极限方法和注意事项,并且通过例题的运算过程清晰明了的展现了极限问题的解决过程,使极限问题变得相对简单易懂,为数学分析的学习打下基础。
关键词:数列极限;函数极限;方法Preliminary analysis on the common method of limit problem inmathematical analysisAbstractLimit problem is the base of mathematical analysis. It can be divided into function limit and sequence limit, both of them are very important. Mary other important mathematical ideas are based on limit, such as derivative integral and progression. If one wants to learn mathematical analysis well, he must learn limit well. It is usually very hard to solve limit problem, it seems to be simple, but rather abstract in fact we can not be restricted to solve limit problem by using the concept of limit. We should master multiple methods and use them together to solve the limit problem quickly and accurately. Limit exists in the whole process of mathematical analysis many mathematical concepts start from limit. On the contrary, we can use these concepts to solve limit problem. All these are no easy things. Because of the abstract of limit problem, we should learn multiple of methods in a target way and eventually combine them to solve limit problem. We can see that solving limit problem is very complicated. Aiming at this circumstances, this article introduce multiple basic ways to solve the problem and master needing attention, The calculation of example shows the solving process of limit problem. It make limit problem easier to understand and provide a foothold for the study of mathematical analysis.目录摘要 (I)Abstract (III)引言 (1)1 极限相关的概念 (2)1.1 数列极限 (2)1.2 函数极限 (2)1.3 函数极限和数列极限的关系 (3)2 求极限的常用方法 (4)2.1 极限的四则运算法则 (4)2.2 两个重要极限 (5)2.3 用函数的连续性求极限 (7)2.4 等价无穷小代换 (8)2.5 洛必达法则 (9)2.6 根据定积分的定义求极限 (11)2.7 利用泰勒公式求极限 (12)2.8 利用极限存在准则求极限 (13)2.9 拉格朗日中值定理求极限 (15)3 求极限的小技巧 (15)3.1 有界函数与一个无穷小量的积仍为无穷小量 (16)3.2 换元法 (16)3.3 数列极限转化成函数极限 (17)结论 (18)参考文献 (19)引言求数列极限和函数极限是数学分析中的基础,求极限问题贯穿在数学分析学习的始终。
浅谈两个重要极限解题技巧
浅谈两个重要极限解题技巧在数学中,极限是数列或函数随着自变量趋近某个值而趋近的极限值。
求解极限问题在中学数学和大学数学中都有重要地位。
在实际应用中,极限也扮演着重要的角色。
在解题过程中,有些极限问题相对简单,有些则较为复杂,需要运用一些技巧求解。
本文将重点讨论两个重要极限解题技巧。
一、夹逼准则夹逼准则是求解极限的常用技巧之一。
夹逼准则的基本思想是将一个难以直接求解的极限沿着与它接近的两个易于处理的极限间侧面逼近。
夹逼准则主要有以下三个方面的应用:1.对于数列的夹逼准则若存在两个数列 $a_n$ 和 $b_n$ 以及一个数 $c$,满足对于所有 $n> N$ 都有 $a_n \leq c \leq b_n$,并且 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = L$,则 $\lim\limits_{n \to \infty} c = L$。
这个参数有一个非常直接的解释:如果 $a_n$ 和 $b_n$ 这两个数列非常逼近某个恒定值 $L$,而 $c$ 又一直被夹在两者之间,那么 $c$ 最终也会逼近到 $L$。
例如:求证:$\lim\limits_{n\to\infty}\dfrac{1}{n^2+n}=\lim\limits_{n\to\infty}\dfrac{1}{n^ 2}=\lim\limits_{n\to\infty}\dfrac{1}{n(n+1)}=0$。
例如:求证:$\lim\limits_{x\to0}x^2\sin\dfrac{1}{x}=0$。
解:由于 $-1\leq \sin\dfrac{1}{x}\leq1$,所以 $-x^2\leqx^2\sin\dfrac{1}{x}\leq x^2$,当 $x\to0$ 时,$-x^2$ 和 $x^2$ 的极限都是 $0$,因此根据夹逼准则可知,当 $x\to0$ 时,$x^2\sin\dfrac{1}{x}$ 的极限也为 $0$,即$\lim\limits_{x\to0}x^2\sin\dfrac{1}{x}=0$。
浅谈两个重要极限解题技巧
浅谈两个重要极限解题技巧极限是高等数学中的一个重要概念,它是指一个函数在一个点上趋近于某一值的过程。
在实际的解题中,常常会遇到需要求解极限的问题,因此,掌握一些极限的解题技巧对于学生来说至关重要。
本文将浅谈两个重要的极限解题技巧,供广大同学参考学习。
一、夹逼准则夹逼准则也称为挤压定理,它是解决极限问题的一种经典方法。
夹逼准则的思路是通过比较原函数与其他两个已知的函数之间的关系,来推导出原函数的极限。
通常情况下,夹逼准则适用于以下两种情况:1. 原函数与其他两个函数都趋近于同一个值,且中间的那个函数能够通过比较确定原函数的上限或下限。
2. 原函数在某个区间内“夹在”两个已知函数之间,且这两个函数具有相同的极限。
例如,假设我们需要求解函数$f(x)=\frac{x^3+3x^2-1}{x^2+2}$在$x=2$处的极限。
我们可以通过夹逼准则来求解该极限。
具体步骤如下:首先找到两个函数$g(x)$和$h(x)$,它们满足$g(x)\leq f(x)\leq h(x)$,且$g(x)$和$h(x)$在$x=2$处的极限相等,即$\lim_{x\to 2}g(x)=\lim_{x\to 2}h(x)$。
其次,我们需要确定$g(x)$和$h(x)$的表达式。
由于当$x$趋近于2时,分母$x^2+2$的值变得非常接近于4,因此我们可以令$g(x)=3x-1$和$h(x)=\frac{x^3+3x^2+5x+1}{x^2+2}$。
这样,在$x=2$处,$g(x)=5$,$h(x)=5$,且$g(x)\leq f(x)\leq h(x)$。
最后,我们需要证明$\lim_{x\to 2}g(x)=\lim_{x\to 2}h(x)$。
对于函数$g(x)$,我们可以使用极限的定义来证明:$$ \begin{aligned} \lim_{x\to 2}g(x) &=\lim_{x\to 2}(3x-1)\\ &=5 \end{aligned} $$对于函数$h(x)$,我们可以将其进行分解,得到:因此,根据夹逼准则,可以得到:$$ \lim_{x\to 2}\frac{x^3+3x^2-1}{x^2+2}=5 $$二、洛必达法则洛必达法则是解决极限问题的另一种有效方法,它是通过求函数在某一点处的导数来确定函数的极限。
关于复变函数求极限的方法浅谈
关于复变函数求极限的方法浅谈复变函数是指定义在复数域上的函数。
在复数域上,函数的极限存在的判定方法与实数域上的函数有所不同。
本文将从极限的定义、极限存在的条件以及极限计算方法等方面进行讨论。
1. 极限的定义对于复数列{zn},当复数z无论多么接近于z0时,对应的函数值f(z)都无论多么接近于某个复数A时,称A为函数f(z)在复数点z0处的极限,记作lim_(z→z0)(f(z))=A。
2. 极限存在的条件与实数域上的函数类似,极限存在的充要条件是满足柯西收敛准则。
即对于任意正数ε,存在正数δ,使得当|z - z0| < δ时,有|f(z) - A| < ε。
3. 极限计算方法3.1 用直接代入法计算极限当函数在z0附近连续时,可以直接将z0代入函数中计算极限。
计算极限lim_(z→1)((z+1)/(z-1))时,直接代入z=1可得lim_(z→1)((z+1)/(z-1))=2。
3.2 用极坐标法计算极限对于复数z=r(cosθ+isinθ),可以将其表示为极坐标形式,即z=|z|e^(iθ)。
利用极坐标形式计算复变函数的极限可以简化计算过程。
计算极限lim_(z→0)(z^2/(z^4+1)),可以将z=r(cosθ+isinθ)代入,得到lim_(z→0)(z^2/(z^4+1))=lim_(z→0)((r^2(cosθ+isinθ)^2)/((r^4(cosθ+isinθ)^4+1)))。
再利用欧拉公式化简即可。
3.3 用洛必达法则计算极限当计算存在一个不定型的复变函数极限时,可以使用洛必达法则。
洛必达法则适用于计算函数之间的极限,不论是实数函数还是复变函数。
计算极限lim_(z→0)((cosz-1)/z),可以利用洛必达法则转化为计算lim_(z→0)(-sinz),最终得到极限为0。
3.4 用级数展开法计算极限级数展开法是一种常用的计算复变函数极限的方法,特别适用于计算指数函数和三角函数类型的复变函数。
浅谈两个重要极限解题技巧
浅谈两个重要极限解题技巧数学中的极限是指函数在某一点趋于无限接近于某个值的情况,它是许多数学问题的基础。
在解题过程中,有两个重要极限解题技巧,它们分别是夹逼定理和洛必达法则。
1. 夹逼定理夹逼定理,也称为夹挤准则,通常用于解决极限存在性和唯一性问题。
该定理的原理是:如果存在两个函数在某一点附近夹住一个待求极限函数,那么这个待求极限函数的极限也必须在相同的范围内。
夹逼定理的具体应用方式是:(1)先找到一个上界函数和较小的下界函数;(2)证明当自变量趋于无穷或趋近于某个特定值时,这两个函数都趋于相同的极值;(3)再用这两个函数夹住待求函数,证明它的极限也必须在两个函数的极值之间。
以下是一个夹逼定理的求解例子:先考虑如下无穷级数:$${\sum}_{n=1}^{\infty}\frac{n}{2^n}$$通过比级数原型,我们已经得知该级数是收敛的。
现在我们使用夹逼定理证明该级数的和为2:而级数$\sum_{n=1}^{\infty}\frac{1}{2^{n-1}}$是等比数列,它的总和是 2. 因此,$$0\leq{\sum}_{n=1}^{\infty}\frac{n}{2^n}\leq{\sum}_{n=1}^{\infty}\frac{1}{2^{n-1}}=2$$2. 洛必达法则洛必达法则是解决函数极限问题中的常用方法之一,通常用于解决不定式的极限问题。
该方法的原理是:如果一个函数的极限值不易确定,但它可以表示成两个导数之比的形式,那么这两个导数的极限必须存在,且该比的极限值等于两个导数的比值的极限值。
具体应用方式如下:(1)求出函数的导数;(2)将导数表达式分别表示成分子分母两个函数的形式;(4)如果分母函数的极限为0或发散,则寻找一种不同的解决方法;(5)利用极限值相等的洛必达法则,得出函数极限。
我们知道,当$x\to1$时,$x-1$趋于0。
因此,将式子重写为:$$\lim_{x\to1}\frac{(x+1)(x-1)}{x-1}$$抵消$x-1$后,我们得到:使用洛必达法则代替极限,我们必须求出分子和分母的导数:当$x\to1$时,$2x$趋近于2,因此该极限等于2。
浅谈两个重要极限解题技巧
浅谈两个重要极限解题技巧【摘要】本文将讨论两个重要的极限解题技巧:利用夹逼准则和使用换元法。
首先解释了这两种技巧的基本原理和应用方法,然后进一步讨论了如何在实际问题中灵活运用这两种技巧。
通过具体例题的分析演示了这两个技巧在解决极限问题中的重要性和有效性。
同时提醒读者在使用这些技巧时需要注意的问题,避免在解题过程中出现错误或误解。
通过本文的介绍和讨论,读者将能够更好地掌握和运用这些重要的极限解题技巧,提高解题效率和准确性。
【关键词】极限解题技巧、夹逼准则、换元法、实例分析、注意事项、引言、结论1. 引言1.1 引言极限是高等数学中重要的概念之一,它在微积分、数学分析等领域中都有着广泛的应用。
在求解极限时,常常需要运用一些技巧和方法来辅助计算,提高求解的效率和准确性。
本文将重点讨论两个重要的极限解题技巧:利用夹逼准则和使用换元法。
在学习极限的过程中,我们经常会遇到一些难以直接计算的极限表达式,这时可以考虑利用夹逼准则来近似求解。
夹逼准则是一种常用的极限方法,通过构造一个夹在待求极限函数和已知函数之间的函数序列,来逼近待求极限的值。
这种方法常常可以简化复杂的极限计算,提高求解的效率。
使用换元法也是解决极限问题的重要技巧之一。
当遇到形式复杂的极限表达式时,可以尝试通过换元的方式将问题转化为更简单的形式,从而更容易求解。
换元法可以帮助我们找到一些隐含的规律和关联,为极限计算提供新的思路和方法。
通过深入学习和实践这两种极限解题技巧,我们可以更加灵活地处理各种复杂的极限计算问题,并提高解题的效率和准确性。
接下来,我们将详细讨论如何应用这两个技巧来解决不同类型的极限问题,并通过实例分析和具体例题演示技巧的运用。
我们也将介绍在使用这些技巧时需要注意的问题和注意事项。
希望本文能够帮助读者更好地理解和掌握极限解题的方法和技巧,提升数学分析的能力和水平。
2. 正文2.1 技巧一:利用夹逼准则夹逼准则是解决极限问题时非常重要且常用的一种技巧。
浅谈函数极限的求解方法
浅谈函数极限的求解方法函数极限是数学分析中一个重要的内容,通过对函数极限的求解,可以发现函数的特点,进而研究函数的性质和求解函数的问题。
那么,函数极限的求解方法有哪些呢?本文将对函数极限的求解方法进行浅谈。
首先,可以使用测点法来求解函数极限。
在这种方法中,需要选择若干个点作为测点,查看这些点对应的函数值,从而推断函数极限。
例如,函数y=1/x,在x趋于无穷大时,y趋于0,这就是函数y=1/x 的极限形式。
在求解时,可以任意选择若干个点,比如x=1、x=2、x=3…,依次求出相应的函数值y=1、y=1/2、y=1/3…,发现随着x的值越来越大,函数值y也越来越小,最终收敛到0,表明函数的极限为0。
其次,可以使用函数的定义域、等价转换和关系式等方法来求解函数极限。
函数的定义域指的是函数取值的范围,比如函数y=x2的定义域是[0,∞),即x的取值范围是[0,∞),据此可以求出函数y=x2的极限是无穷大,及其对应的极限形式是lim x2=∞。
等价转换指的是将函数表示成另一种形式,而关系式则是比较函数的极限值,可以根据它们来求解函数极限。
例如函数y=x2 + 3x + 2,其定义域为(-∞,∞),可以通过等价转换将y表示成y = (x+1)2 + 1的形式,显然,(x+1)2 + 1的极限就是1,及其对应的极限形式为lim (x+1)2 + 1=1,那么推断函数y=x2 + 3x + 2的极限也就是1。
此外,还可以使用洛必达法则、局部极限定义和初等函数来求解函数极限。
洛必达法则是用来计算函数在连续处处有极限的情况,即可以把连续处限简化为一个极限,而局部极限定义则是用来计算极限的特殊情况,可以通过局部极限的定义求出函数的极限。
另外,初等函数指的是常用的函数,如多项式、指数函数和对数函数等,这些函数的极限可以直接应用定义和定理来求解。
综上所述,函数极限的求解方法可以分为测点法、函数的定义域、等价转换及关系式、洛必达法则、局部极限定义、初等函数等几种。
浅谈两个重要极限解题技巧
浅谈两个重要极限解题技巧在高等数学的学习中,极限是一个非常重要的概念,也是解题中常见的一个步骤。
对于求解极限的过程中,有许多技巧和方法可以帮助我们更好地理解和计算极限。
在下面的文章中,我将简要介绍两个重要的极限解题技巧。
第一个技巧是使用夹逼定理。
夹逼定理是解决极限问题时非常重要的一个方法,它是通过将待求极限和已知的两个极限进行比较,从而确定待求极限的值。
具体步骤如下:找到一个与待求极限函数相夹的两个函数,使得这两个函数的极限分别为L1和L2,并且L1和L2相等。
然后,利用夹逼定理的推论,即如果一个函数上下夹逼着另外一个函数,并且两个函数极限相等,则夹逼函数的极限也等于这个极限。
通过这个推论将待求极限转化为两个已知极限的比较,从而求得极限的值。
举个例子来说明夹逼定理的运用。
假设我们要求解极限lim(x->0)(sinx)/x。
由于这个极限是一个不定式0/0型,我们可以将它转化为一个可以计算的形式,即利用等式sinx/x=1。
然后,我们可以找到两个极限函数g(x)=x和h(x)=1,使得g(x)<=sinx/x<=h(x)。
当x>0时,我们有sinx/x<=1,所以g(x)<=sinx/x<=1;当x<0时,我们有sinx/x>=1,所以g(x)>=sinx/x>=1。
对于任意的x,都有g(x)<=sinx/x<=h(x)成立。
由于lim(x->0)g(x)=lim(x->0)h(x)=0,根据夹逼定理,我们可以得到lim(x->0)(sinx)/x=0。
第二个技巧是使用洛必达法则。
洛必达法则是解决函数极限问题时一个非常有用的工具,它可以求出函数在某个点的导数的极限。
其基本思想是通过求函数的导数来逼近函数的极限,从而化简问题。
洛必达法则的公式如下:若函数f(x)和g(x)在点a的某个去心邻域内可导,且g'(x)在该去心邻域内不为零,那么当x->a时,f(x)/g(x)的极限等于f'(x)/g'(x)当x->a时的极限。
浅谈两个重要极限解题技巧
浅谈两个重要极限解题技巧在数学学科中,极限是一个非常重要的概念,涉及到函数的发散、收敛性质等等。
极限问题的解题技巧对于学生来说是非常重要的,它可以帮助学生更好地理解和掌握数学中的极限概念。
在本文中,我们将会浅谈两个重要的极限解题技巧,希望能够对广大学生有所帮助。
一、套路分析法套路分析法是一种常见的解决极限问题的技巧,它主要通过找到一个适当的“套路”或者“路线”,来解决一些较为复杂的极限问题。
在数学中,很多极限问题都是通过套路分析法来解决的,它可以帮助学生更好地理解和掌握极限的性质和运算规律。
套路分析法的核心在于发现合适的“套路”,而这种“套路”本质上是一种数学规律或者性质。
在解决极限问题时,学生可以通过观察和分析函数的性质和特点,找到其中的规律和“套路”,从而更好地解决问题。
比如对于一些复杂的函数极限问题,学生可以通过观察函数的单调性、周期性、对称性等性质,来发现其中的规律和“套路”,从而更好地解决问题。
套路分析法也需要学生熟练掌握各种数学运算技巧和性质,这样才能在解决问题时更加得心应手。
套路分析法的优势在于它能够帮助学生更好地把握问题的本质和规律,从而更加方便快捷地解决问题。
通过套路分析法,学生可以更好地发现问题中的一些隐藏性质和特点,从而更好地理解和掌握数学中的极限概念。
二、极限函数逼近法极限函数逼近法的核心在于利用一些简单的、已知的极限函数来逼近复杂的函数,从而更好地求解其极限值。
在解决极限问题时,学生可以通过构造一些极限函数序列,逐步逼近目标函数,从而更好地了解其极限性质。
比如对于一些复杂的函数极限问题,学生可以通过构造一些简单的、已知的极限函数,逐步逼近目标函数,从而更好地求解其极限值。
极限函数逼近法也需要学生熟练掌握各种已知的极限函数及其性质,这样才能更好地逼近目标函数,并求解其极限值。
套路分析法和极限函数逼近法是两种非常重要的极限解题技巧,它们都可以帮助学生更好地解决一些复杂的函数极限问题,从而更好地理解和掌握极限的性质和运算规律。
浅谈函数极限的求解方法
浅谈函数极限的求解方法
函数极限是指对变量按照特定的规则做无限次运算,得出的结果不为正无穷或
负无穷,而是一个有限的常数,这独特的数学结果就称为函数的极限。
求函数极限的方法是多种多样的,可以从多面入手,用不同的角度来推导出函数的极限,例如可以利用极限的定义,也可以根据定义符号和法则来求解。
首先,可以利用极限的定义来求解函数极限,用符号定义法将函数极限表示出来。
例如:定义极限,当x趋近于某个值a时,函数y=f(x)可以写成
∞lim_(x→a)f(x)=L,其中L为某个有限的常数,对应的极限就是L。
其次,可以利用极限的定义符号和法则来求解函数极限。
最常见的极限法则有
及时差法则、加法法则、乘法法则、恒等式法则、极限连续性法则等等,比如加法法则是:若前提是除0之外,且若存在此限就是f(x)+g(x) 的极限,则。
此外,还可以结合数学定理等来求解极限,比如利用不等式定理来进行证明等等。
最后,可以利用数值计算来求解函数极限,例如根据函数的定义域进行计算,
并逐步缩小它的范围来求解极限值,或者使用数值计算软件等来进行计算,jsut make sure you enter the correct formula and parameters for the program.
总之,函数极限的求解方法有很多,以上三种方法是最常用的。
借助于这三种
方法,我们可以轻松计算出函数极限所对应的有限值,有能力的人还可以从科学的角度推出极限的公式,从而加深我们对函数极限的理解。
浅谈两个重要极限解题技巧
浅谈两个重要极限解题技巧极限是高等数学中非常重要的一个概念,它在数学和物理等领域中都有着广泛的应用。
在解题过程中,掌握一些重要的极限解题技巧对于提高解题效率和准确性都有着非常重要的意义。
本文将从两个重要的极限解题技巧进行浅谈,希望能够对大家在学习和应用极限时起到一定的帮助和指导。
一、变量代换法变量代换法在解极限题时是一种非常常用且有效的技巧。
它常常适用于那些包含复杂变元的极限题目,通过合理的变量代换,可以将原极限题目转化成更加简单的形式,从而更容易求解。
对于极限\lim_{n \to \infty} (\frac{n+1}{n})^n,我们可以用变量代换方法进行解题。
首先令a=\frac{1}{n},则当n \to \infty时,a \to 0。
这样原极限题目就可以转化成\lim_{a \to 0} (1+\frac{1}{a})^{1/a}。
这时候再用一些常用的极限公式和技巧,就能够比较容易地求解出极限的值。
二、夹逼定理夹逼定理也是解极限题时经常用到的一种重要技巧。
夹逼定理适用于那些求解极限题目时比较难以直接求解的情况,通过构造一个上下夹逼的序列,可以找到目标极限值的范围,从而更容易求解出极限的值。
对于极限\lim_{n \to \infty} \frac{sin n}{n},我们可以通过夹逼定理进行解题。
由于-1 \leq sin n \leq 1,所以-\frac{1}{n} \leq \frac{sin n}{n} \leq \frac{1}{n},根据夹逼定理,当n \to \infty时,-\frac{1}{n} \to 0,\frac{1}{n} \to 0,所以\lim_{n \to \infty} \frac{sin n}{n}=0。
在进行极限题的解题过程中,变量代换法和夹逼定理都是非常重要的解题技巧。
希望大家在学习和应用极限过程中,能够灵活运用这些技巧,提高解题效率和准确性。
浅谈两个重要极限解题技巧
浅谈两个重要极限解题技巧在数学中,极限是一个非常重要的概念,有着广泛的应用。
因此,学好极限的解题技巧对于数学学习非常重要。
下面我们将讨论两个重要的极限解题技巧。
第一个极限解题技巧是利用夹逼准则。
夹逼准则是非常常用的一种极限解题方法,它通常用于求解两个极限相同的式子的极限值。
夹逼准则的思想是,在某一个区间内,如果一个函数夹在两个比它小的函数之间,那么这个函数的极限值也一定夹在这两个函数的极限值之间。
具体来说,如果在某一区间内,函数 f(x) <= g(x) <= h(x) 且 lim{f(x)} = lim{h(x)} = L ,那么 lim{g(x)} = L。
夹逼准则的应用范围非常广泛,可以用来证明各种有关极限的结论。
例如,当计算某个复杂函数的极限值时,我们可以使用夹逼准则,将该函数拆分为若干个简单的函数,从而求解。
第二个极限解题技巧是利用无穷小量。
无穷小量是指在某一极限点处函数取值无限接近于某个数,但不等于这个数的量。
无穷小量通常可以表示为f(x) = α(x)·g(x),其中α(x) 为一个趋近于0的函数,g(x) 为一个在极限点 x0 处不为0的函数。
根据无穷小量的定义,我们可以得到以下结论:1. 无穷小量与常量的积依然是无穷小量;利用无穷小量的性质,我们可以简化复杂函数的运算,从而求出它们的极限值。
通常,我们将一个复杂函数分解为若干个无穷小量,然后通过无穷小量的性质,求解其极限值。
例如,假设要求解 f(x) = (2x+1)/(x+3) 在 x=1 处的极限值。
我们可以将其拆分为两个无穷小量:f(x) = [(2x+1)/x]·[1/(1+3/x)]通过无穷小量的运算,我们可以很容易地求解出该函数在 x=0 处的极限值,从而得到答案。
综上所述,利用夹逼准则和无穷小量这两个极限解题技巧,可以帮助我们简化复杂函数的运算,快速求解极限值。
在数学学习中,应该积极掌握并熟练应用这两个方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈求极限的方法极限是高等数学中最基本最重要的概念,极限思想贯穿高等数学的全部内容,它是研究问题,分析问题的重要理论基础.因此掌握好求极限的方法对学好高等数学是十分重要的,求极限的方法因题而异,变化多端,有时甚至无从下手.本文总结了12种常用的求极限的方法,意在广开思路,然后举出三个一题多解的例子,希望这些例题对初学者有所帮助.1 求极限的方法1.1 利用斯托兹定理 定理1[1](57)P (∞∞型Stolz 公式) 数列{},{}n n x y ,设{}n x 严格递增(即∀n ∈N 有1n n x x +<),且lim n n x →∞=+∞,若11limn n n n n y y a x x -→∞--=- (有限数,+∞,或-∞),则lim n n nya x →∞=.证 )1( (a 为有限数)目的在于证明:0,0,ε∀>∃N >当n >N 时,有nny a x ε-<. ① 记 11n n n n n y y a x x α---≡--. ②按已知条件有lim 0n n α→∞=,即0,0,ε∀>∃N >当n ≥N 时,有2n εα<. ③现在的目的在于从③推出①,为此从②解出n y 再代入①,由②得11()()n n n n n y y a x x α--=++- (再迭代使用此式)21121()()()()n n n n n n n y a x x a x x αα-----=++-++- =⋅⋅⋅111()()()()n n n y a x x a x x ααN N+N+N -=++-+⋅⋅⋅++- 1111()()()n n n n n y x x x x a x x ααN N+N+N --=+-+⋅⋅⋅+-+- 两边同时除以n x ,再同时减去a ,得111n n n n n n nx x x x y y ax a x x x ααN+N+N -N N -+⋅⋅⋅+---≤+22n n n n y ax y ax x x x x x εεN N N N N---<+<+将n 再进一步增大,因n x →+∞,故1∃N >N ,使得1n >N 时有2n y ax x εN N -<.于是 22n n y a x εεε-<+=. )2( (极限为+∞的情况)因已知11limn n n n n y y x x -→∞--=+∞-,所以11lim 0n n n n n x x y y -→∞--=-,利用(1)中的结论,只要证明n y 严↗+∞(严格单调上升趋向无穷大),则有lim0n n n x y →∞=,lim n n ny x →∞=+∞(问题得证).因n x 严↗,要证n y 严↗,只要证111n n n n y y x x --->-,事实上, 11limn n n n n y y x x -→∞--=+∞-,所以对1,0M =∃N >,当n >N 时,有111n n n n y y x x --->-,即 n >N 时,110n n n n y y x x --->-> ④ 所以当n >N 时, n y 严↗.④式中令1,2,,,n k =N +N +⋅⋅⋅然后相加, 可知k k y y x x N N ->-,令k →∞,知k y →∞,证毕.)3( (极限-∞的情况) 只要令n n y z =-,即可转化为)2(中的情况.注 11limn n n n n y y x x -→∞--=∞-,一般推不出lim n n nyx →∞=∞,如令n x n =,222{}{0,2,0,4,0,6,}n y =⋅⋅⋅,这时虽然 11limn n n n n y y x x -→∞--=∞-,但{}{0,2,0,4,0,6,}nny x =⋅⋅⋅并不趋向于无穷. 定理2[1](60)P (型Stolz 公式 ) 数列{},{}n n x y ,设n →∞时0n y →,n x 严↘0(严格单调下降趋向零) 若11limn n n n n y y a x x -→∞--=- (有限数,+∞,或-∞),则lim n n nya x →∞=.注 定理1是∞∞型,其实只要求分母n x ↗+∞,至于分子n y 是否趋向无穷大,无关紧要.定理2则是名副其实的型.因为定理条件要求分子,分母都以0为极限. 例1 1112lim ln n n n→∞++⋅⋅⋅+ 解 设1112n y n=++⋅⋅⋅+,ln n x n =.显然,n x 严格单调递增,且lim n n x →∞=+∞,11lim n n n n n y y x x -→∞--=-1lim ln1n n n n →∞-11lim lim 1ln ln(1)11n n n n n n n →∞→∞==+-- 11lim 111ln[(1)(1)]11n n n n →∞-==++-- 由斯托兹定理1, 1112lim ln n n n→∞++⋅⋅⋅+1= 例2 求(ln 2)(ln 3)(ln )lim 12n n nK K K→∞++⋅⋅⋅+++⋅⋅⋅+ (K 为正整数).解 令(ln 2)(ln 3)(ln )n y n K K K=++⋅⋅⋅+,12n x n =++⋅⋅⋅+ ,显然,{}n x 单调递增,且lim n n x →∞=+∞,11lim nn n n n y y x x -→∞--=-()n n n K∞→ln lim 又1(ln )(ln )!limlim lim 0k k x x x x k x k x xx -→+∞→+∞→+∞==⋅⋅⋅==,由海涅定理()n n n K∞→ln lim 0= ,由斯托兹定理1, (ln 2)(ln 3)(ln )lim 12n n nK K K→∞++⋅⋅⋅+++⋅⋅⋅+0=1.2 定义法 定义1[2](23)P 数列极限的""N ε-方法 设{}n a 为数列,a 为定数,lim 0,0,,.n n n a a n a a εε→∞=⇔∀>∃N >>N -<有定义2[2](4244)P - 函数极限的""N ε-方法 设f 为定义在[,)a +∞上的函数,A 为定数,lim ()0,()0,x f x a ε→∞=A ⇔∀>∃M ≥>使得当x >M 时有()f x ε-A <.函数极限的""εδ-方法 设函数f 在点0x 的某个空心邻域0(;)U x δ'内有定义,A 为定数.0lim ()0,()0,x x f x εδδ→'=A ⇔∀>∃<>使得当00x x δ<-<时有()f x ε-A <.例3[1](17)P 按极限定义(εδ-法)证明11x →= 证2711169x =≤-=-1611(43)(43)x x x x +-+- 再用分步法寻找δ,使上式右端继续扩大,此方法在操作上有较大的灵活性、自主性、多样性,并不要求一步到位,可以逐步缩小搜寻范围.此题因1x →,若要简化分子可先设11x -<即02x <<,则上式右端16313344x x ⋅-≤⋅-3((1;1)[,))4U +∞在成立,进一步设118x -<即 111188x -<<+,于是上式右端321x ≤-(在1(1;)8U 内成立).故0,ε∀>取1min{,}328εδ=,则当1x δ-<时, 就有1ε<.用定义证明极限存在,有一先决条件,即事先得知极限的猜测值A ,但通常只给定了数列}{n x ,或函数)(x f ,对其极限A 不得而知,我们只能根据具体情况进行具体分析和处理,不妨再参考一下1.1,1.5,1.7或1.10.1.3 利用四则运算法则 定理3(四则运算法则)[2](30)P 若{}n a 与{}n b 为收敛数列,则{}n n a b +,{}n n a b -,{}n n a b ⋅也都是收敛数列,且有lim n →∞(n n a b ±)=lim lim n n n n a b →∞→∞±,lim n →∞(n n a b ⋅)=lim lim n n n n a b →∞→∞⋅.若再假设0n b ≠及lim 0,n n b →∞≠则{}n na b 也是收敛数列,且有lim lim .lim nn n n n n n a a b b →∞→∞→∞=注 对指数运算亦成立.若n x 0>,⋅⋅⋅=,2,1n 且a x n n =∞→lim ,b y n n =∞→lim ,则 b y nn a x n=∞→lim .1.3.1 “∞+∞∞+∞”型.例4 求极限1(4)7sin lim57cos(1)n n n n n n n +→∞-+++++解 1(4)7sin lim 57cos(1)nn n nn n n +→∞-+++++4sin ()777lim 75cos(1)()177n nn n nn n →∞-++==+++ 1.3.2“∞-∞∞-∞”型 例5 求极限n解n=n =13112123lim ++++∞→nnn =32. 注 函数的四则运算法则同样成立,这里不再一一列出来.但必须强调的是函数极限四则运算法则的条件是充分而非必要的,所以,利用四则运算法则求函数极限时,要对所给的函数进行验证,看是否满足条件.满足条件者,方能利用极限四则运算法则进行求之.但并非不满足该条件的函数就没有极限,而是不再适用该方法,通常用一些简单的技巧如拆项,分子分母同乘某一因子,变量替换,分子分母有理化等等.例6求极限lim x →+∞解lim x →+∞=limx=55limx +52=1.4 利用无穷小量的性质 1.4.1 无穷小量定义3 若lim 0,n n a →∞=则称n a 是n →∞时的无穷小量.定义4[2](59)P lim ()0,x x f x ︒→=则称()f x 是0x x →时的无穷小量.性质(1)有限个无穷小量的和、差、积为无穷小量.(2)有界量乘以无穷小量是无穷小量. 例7 求极限222(21)!!1lim[]sin cos (2)!!n n n n n→∞+解 222(21)!!1lim[]sin cos (2)!!n n n n n →∞+2222221sin(21)!!(21)lim()cos 1(2)!!n n n n n n n n →∞-+= 其中2(21)!!113355(23)(23)(21)(21)0()(2)!!224466(22)(22)22n n n n n n n n n n-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----≤=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅2210()(2)n n n -<→→∞,所以 2(21)!!lim()0(2)!!n n n →∞-=, 又22221sin(21)lim4141n n n n n →∞+=⋅=(有限数),2cos 1n ≤(有界量),根据无穷小量性质(2)得 原式0=,从而 222(21)!!1lim[]sin cos (2)!!n n n n n→∞+0=.1.4.2 等价无穷小量 定义5[2](61)P 设函数()f x ()g x ,0lim ()0x x f x →=,0lim ()0x x g x →=,且()0g x ≠,若0()lim1()x x f x g x →=,则称f 是g 当0x x →时的等价无穷小量.记为()fx 0()()g x x x →.常用的等价无穷小量有, 当0x →时, sinxx ,tanx x ,arctanx x ,ln(1)x+x ,(1cos )x-22x ,1xe-x11x n.例8[1](33)P求极限21cos)limn n -解因1n =,故原式2224111(1cos)n n n n n -==2212lim 1112n n n→∞==.所以21cos )n n -1=但是还应注意,等价无穷小求函数极限不要轻易代换,一般只在以乘除形式出现时使用,若以和差形式出现时,必须先变换形式才能用.例9 求极限302sin 2sin 4limx x xx →-解 32002sin 2sin 42sin 21cos 2lim lim x x x x x xx x x→→--=⋅=220222lim x x x x x →⋅⋅8= 错误的解法是302sin 2sin 4limx x x x →-=30224lim x x xx →⋅-0=错在对加减中的某项进行了等价无穷小代换.1.5 利用迫敛性定理1.5.1 数列及函数的迫敛性定理 定理4(数列的迫敛性定理)[2](30)P 设收敛数列{}n a ,{}n b 都以a 为极限,数列{}n c 满足:存在正数N ,当n >N 时有n n n a c b ≤≤则数列n c 收敛,且lim n n c a →∞=.定理5(函数的迫敛性定理)[2](49)P 设0lim ()x x f x →=0lim ()x x g x →=A ,且在某邻域0(;)U x δ内有()()()f x h x g x ≤≤,则0lim ()x x h x →=A .当极限不易直接求出时,可考虑将求极限的变量作适当的放大、缩小,使所得的新变量易于求极限,且二者的极限值相同,则原极限存在,且等于此公共值.例10 求极限lim[(1)]n n n αα→∞+- (01)α<<解 10(1)(1)n n n n nααααα≤+-=+-1((1)1)n nαα=+- 由1(1)xα+ (01)α<<的单调性知11(1)1x x α+<+,于是111(1)111n n nα+-<+-=所以 1110(1)((1)1)0n n n n nααααα-≤+-=+-<→ ()n →∞由迫敛性定理, lim[(1)]n n n αα→∞+-0=例11 求极限1,,m n a a ⋅⋅⋅其中为正数.解 记A =1max{,,},,m i a a a i ⋅⋅⋅=为某一整数则A =i a =≤≤=A A ()n →∞由迫敛性定理知 lim n =A例12 求极限lim n n x →∞,13(21)24(2)n n x n ⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅解 因几何平均值小于算术平均值,故分母中的因子1322+=> 3542+=>⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ (21)(21)22n n n -++=>由此可知, 13(21)0024(2)n n x n ⋅⋅⋅⋅⋅⋅-<=<→⋅⋅⋅⋅⋅⋅,故lim n n x →∞=0.注 迫敛性定理求极限应用十分广泛,优越性在于经过放大或缩小,可以把复杂的东西去掉,使问题化简,但应注意,放大不能放得过大,缩小也不能缩得过小,必须具有相同的极限.1.5.2 利用子列收敛定理定理6(子列收敛定理)[2](37)P 数列收敛的充要条件是:任何非平凡子列都收敛(且收敛于 同一个数).即A →n x (当∞→n 时)∀⇔子列}{k n x 有A →k n x (当∞→k ). 同样还有这样的结论:}{n a 收敛}{2k a ⇔,}{12-k a 都收敛且收敛于同一个数.(证明略)例13 }{n a 满足∑∞=1n na收敛,且n k a a 1000≤≤,(n k n 2≤≤)证明 ∞→n lim 0=n na .证明 n ∀,i n i 22≤≤(12,1,-⋅⋅⋅+=n n n i )所以,i n a a 10002≤≤(12,1,-⋅⋅⋅+=n n n i )把式子展开再对应相加,得 )(10001212-++⋅⋅⋅++≤≤n n n n a a a na从而有 )(200201212-++⋅⋅⋅++≤≤n n n n a a a na )(0∞→→n 得偶子列收敛于0. 同理 n ∀,212i n i ≤-≤(,1,21)i n n n =+⋅⋅⋅-所以, 210100n i a a -≤≤(,1,21)i n n n =+⋅⋅⋅-,把式子展开再对应相加, 得 211210100()n n n n na a a a -+-≤≤++⋅⋅⋅+从而有21211210(21)2200()n n n n n n a na a a a --+-≤-≤≤++⋅⋅⋅+0()n →→∞ 得奇子列收敛于0,从而 ∞→n lim 0=n na .1.6 利用单调有界定理 定理7(数列的单调有界定理)[2](35)P 在实数系中,有界的单调数列必有极限.即若单调递增数列有上界,则上确界便是它的极限;若单调递减数列有下界,则下确界便是它的极限.定理8(函数单侧极限的定理)[2](35)P ()f x 为定义在0()U x ︒+的单调有界函数,则右极限lim ()x x f x +→存在; ()f x 为定义在0()U x ︒-的单调有界函数,则左极限0lim ()x x f x -→存在. 例14设数列1x =2x =⋅⋅⋅,n x ,⋅⋅⋅,求极限lim n n x →∞.解 1) {}n x 为单调递增数列.事实上,12x x =<=,设1x x K -K <则由于1x K+=故,11x x K+K ==>,即10x x K+K >>,由归纳法知,数列{}n x 单调递增. 2) {}n x 有上界.13x =<,设3x K <,则13x K+=<=.由数学归纳法知{}n x 有上界.3) 由数列的单有界定理得lim n n x →∞存在.设lim n n x →∞=A,对n x = 两端关于n →∞求极限,则A=230⇒A =A ⇒A =或3A =,而}{n x 为正值数列,0=A 舍去.所以lim n n x →∞3=.1.7 柯西收敛准则定理9(数列的柯西收敛准则)[2](38)P数列{}n a 收敛⇔0,()0,,,n m n m a a εεε∀>∃N >∀>N -<使有.⇔0,()0,,,n n n a a εεε+P ∀>∃N >∀>N ∀P -<使正整数有.定理10(函数的柯西收敛准则)[2](54)P 函数()f x 定义在0(;)U x δ︒上,0lim ()x x f x →∃0,()0,εηδ⇔∀>∃<>使0,(;)x x U x η︒'''∀∈,有()()f x f x ε'''-<例15 数列{}n x ,0110,,0,1,2,2n nx x n x +>==⋅⋅⋅+,证明lim n n x →∞存在,并求值.证明 设0<0x <12,0<1x =012x +<12,假设0<n x <12,则0<1n x +=12n x +<12, 由数学归纳法,,n ∀0<n x <12. 111111112222n n n n n n n n x x x x x x x x +P--+P +P--+P----=-=++++ 112221144n n n n x x x x +P--+P--<-<-<⋅⋅⋅ 1111111111()()()44224n n n x x --P+-<-<⋅+=ε∀0>,要使11()4n ε-<取ln []2ln 4εN =+-,当n >N 时,有n n x x ε+P -<, 由柯西收敛准则{}n x 收敛,从而极限存在,不妨设为0x ,则对112n nx x +=+两边当n →∞时, 取极限得0012x x =+,解得01x =-,由数列极限的保不等式性,取正值01x =-,从而lim 1n n x →∞=-.1.8 利用海涅定理 定理11(海涅定理)[2](52)P (或称归结原则) 设()f x 在0(;)U x δ内有定义,lim ()x x f x →∃⇔{}n x ∀⊂ 0(;)U x δ,0lim ,n n x x →∞=都有lim ()n n f x →∞存在且相等.这个定理深刻地揭示了函数极限和数列极限的关系.例16求极限n nπ解 取{}{}n x n =,令lim n n x →∞=+∞,则原式⇔sin limlim0x x x xxπππ→+∞==. 由海涅定理n nπ0=.例17[3](37)P求极限lim(,(0,0)2nn a b →∞≥≥ 解 (1)当,a b 有一为0时,比如0a =,则n n →∞=lim 2n n b→∞0== ①(2)当0,0a b >>时,令1()2x x x a b y +=,则1ln ln 2x xa b y x +=.0limln x y →=0012ln ln lim lnlim 22x x x x x x x x a b a a b b x a b →→++=+1(ln ln )2a b =+=. 由海涅定理,当0,0a b >>时, lim(2nn →∞=② 再由①,②两式得lim(2nn →∞=1.9 利用重要极限即利用①0sin lim 1x x x →=[2](56)P ②1lim(1)x x ex→∞+=[2](56)P 和1lim(1)xx x e →+=,其中的x 都可以看作整体来对待.第一个重要极限是“00”型,第二个重要极限是“1∞”型. 例18 求极限 01cos cos 2cos3lim 1cos x x x xx →--解 这是“0”型,那么想办法把它凑成第一个重要极限的形式.原式01cos cos (1cos 2)cos cos 2(1cos3)lim 1cos x x x x x x x x→-+-+-=-00cos (1cos 2)cos cos 2(1cos3)1lim lim 1cos 1cos x x x x x x x x x→→--=++--2200223cos cos 22sin cos 2sin 21lim lim 2sin 2sin 22x x x x x x x x x→→⋅⋅⋅=++22222002223()sin ()sin 2221limcos 4limcos cos 293sin ()sin 222x x x x x x x x x x x x x →→=+⋅⋅⋅+⋅⋅⋅⋅ 14914=++=.例19[2](58)P 求极限211lim(1)n n n n→∞+- 解 这是“1∞”型的.显然要用第二个重要极限的形式.2111(1)(1)()n n e n n n n+-<+→→∞. 另一方面,当1n >时有2221112221111(1)(1)(1)n nn n n n n n n n n nn -------+-=+≥+,而由海涅定理,(取2,2,3,1n n x n n ==⋅⋅⋅-) 得 222112211lim(1)lim(1)n n n n n n n n n n ---→∞→∞--+=+=x x x)11(lim ++∞→=e . 所以,由数列极限的迫敛性得211lim(1)nn n n →∞+-e =. 1.10 利用定积分的定义求极限由于定积分是一个有特殊结构和式的极限,这样又可利用定积分的值,求出某一和数的极限.若要利用定积分求极限,其关键在于将和数化成某一特殊结构的和式.定义6 若()f x 在[,]a b 上连续,那么()baf x dx ⎰存在,01()lim ()nbi i ai f x dx f x ζT →==∆∑⎰110()lim ().()lim ().nn i n n i i b a b a f a n n i b a b a f a n n →∞=-→∞=--⎧+⋅⎪⎪=⎨--⎪+⋅⎪⎩∑∑ 取右端点 取左端点 例20 求极限22233333312lim()12n n n n n n →∞++⋅⋅⋅++++ 解 22233333312lim()12n n n n n n→∞++⋅⋅⋅++++ 2222333312()()()lim ()121()1()1()n nnn n n n n n n n→∞=++⋅⋅⋅++++231()1lim 1()nn i i n i n n→∞==⋅+∑21301x dx x =+⎰13301131dx x =+⎰1ln 23= 例21 求极限221lim1nn n →∞K=K+K +∑ 解 221(1)nn K =K +K +∑≤2211n n K =K +K +∑≤221nn K=K+K ∑ 左边 221(1)nn K =K +K +∑=22221111(1)(1)n nn n K=K=K +-+K ++K +∑∑ =222111111(1)1()nnn n n nK=K=K +-K ++K ++∑∑ 其中, 22211100(1)nn n K =≤≤→+K +∑ ()n →∞ lim n →∞211111()nn n nK=K +K ++∑=1201ln 212x dx x =+⎰所以, limn →∞221(1)nn K =K +K +∑ =1ln 22 右边 221nn K=K +K ∑=21111()nnn nK=KK +∑=1201ln 212x dx x =+⎰由迫敛性定理得 221lim 1nn n →∞K=K +K +∑=1ln 22 1.11 利用洛比达法则洛比达法则是计算不定式极限的重要方法,形如00,,0,,0,,10∞∞∞⋅∞∞-∞∞∞等七种未定式均可用洛比达法则求解.定理12(洛比达法则)[2](127)P 假设①函数()f x 和()g x 在x a =的某邻域()U a 可微,且()0g x '≠;②lim ()lim ()0x ax af xg x →→==(或为无穷大);③()lim()x af xg x →存在(或为无穷大);则 ()()limlim ()()x ax a f x f x g x g x →→'=' 如果用洛比达法则算不出结果,不等于极限不存在.只是因为它是充分条件,不是必要条件.但只要满足洛比达法则的条件就可进一步微分,也可多次使用该法则.例22 求极限30sin lim 7x x xx→- 解 这是一个“0”型的极限,满足洛比达法则的条件,注意两次使用洛比达法则,得30sin lim 7x x x x →-2001cos sin 1lim lim 214242x x x x x x →→-===. 例23 求极限1121cos 2lim4x x tdt x t→+∞⎰ 解 由于202cos 214lim 14t tt t →=所以112cos 24xtdt t→+∞⎰()x →+∞ 因此,原极限是∞∞型的,满足洛比达法则的条件. 所以 1121cos 2lim 4x x t dt x t →+∞⎰12122cos 21cos 2114lim lim 144()x x x t dt t x x x x→+∞→+∞-===⎰. 例24[1](45)P 求极限11cos0sin lim()xx x x-→解 首先像这样幂指函数较复杂,要考虑取对数后再求极限,那么求极限11cos0sin lim ln()xx x x-→, 11cos 0sin lim ln()xx xx-→01sin limln 1cos x xx x→=-20sin (ln)lim()2x xx x →'='20cos sin lim sin x x x x x x→-= 30(cos sin )lim ()x x x x x →'-='20sin lim 3x x x x →-=13=-,故原式13e -=. 1.12 利用函数的泰勒展式.泰勒公式的形式有很多种,但是在利用泰勒公式求极限的时候,通常用到的是皮亚诺型麦克劳林公式,因此在这里就只给出泰勒公式的这种特殊的形式:[2](136)P()2(0)(0)(0)()(0)()1!2!!n nn f f f f x f x x x o x n '''=+++⋅⋅⋅++下面是具体的常用皮亚诺型麦克劳林公式:[2](136)P231()2!3!!nxn x x x e x o x n =++++⋅⋅⋅++ ()x -∞<<+∞351212(1)sin ()3!5!(21)!n n n x x x x x o x n ---=-++⋅⋅⋅++- ()x -∞<<+∞24221(1)cos 1()2!4!(2)!n nn x x x x o x n +-=-++⋅⋅⋅++ ()x -∞<<+∞231ln(1)(1)()23nn n x x x x x o x n++=-++⋅⋅⋅+-+ (11)x -<≤ 2(1)(1)(1)(1)1()2!n n n x x x x o x n ααααααα--⋅⋅⋅-++=+++⋅⋅⋅++ (1)x <211()1n n x x x o x x=+++⋅⋅⋅++- (1)x < 例25求极限x x →解 2211()2xe x x o x =+++2211()2x o x =-+.所以22002211()12lim 122(1())2xx x x x o x x x o x →→+++--=--+222201()12lim ()2x x o x x o x →+==+. 例26 求极限2240cos limx x x e x -→-解 244cos 1()2!4!x x x o x =-++; 222224442()21()()1()22!28x x x x x e o x o x --=+-++=-++则2240cos lim x x x e x -→-=242444011()2!4!28lim x x x x x o x x→-+-+-+44401()112lim 12x x o x x →-+==-例27[1](46)P 222012lim (cos )sin x x x x e x→+- 解 利用泰勒展式,12244211(1)1()28x x x o x +=+-+,24241()2!x x e x o x =+++, 224sin ()x x o x =+,244cos 1()2!4!x x x o x =-++;代入原式,有222012lim (cos )sin x x x x e x→+-0lim x →=224424442424111(1())228(1()(1()))(())2!4!2!x x x o x x x xo x x o x x o x +-+-+-++-++++ 0limx →=44244241()8311(())(())224x o x x x o x x o x +--++=112- 综上所述,本文精选了十二种常用的求极限的方法,我们学生在解题时要根据具体的情形选用合适简洁的方法.另外,求极限的方法还有很多,比如求某种递推数列极限时要证明其存在用到的“压缩映像”原理和不动点方法,而这些方法又是比较难,在此就不一一列举了.适当的时候还可用变量代换法把一些复杂的式子简单化,再选用上述的十二种方法中的一种来求数列或一元函数的极限.2 一题多解有些求极限问题可以用多种方法来解决,下面我选择了一些题目运用上述方法进行求解. 例1 求极限1lim ((1))nn n e n→+∞-+解法1 首先求极限101lim((1))xx e x x →-+,即求10(1)lim xx e x x→-+.101lim ((1))xx e x x →-+10(1)limxx e x x→-+==洛比达1ln(1)0lim((1))lim()x x xx x x e+→→''-+=-ln(1)0lim x xx e +→=-⋅2ln(1)1x x x x -++=连续性0ln(1)lim x x x e →+-⋅20ln(1)1lim x x x x x →-++ =洛比达e -⋅1()2-2e =,再由海涅定理1lim ((1))n n n e n →+∞-+2e=.解法2 首先求极限101lim((1))xx e x x →-+,即求10(1)lim xx e x x→-+.利用泰勒展式,22()1ln(1)2(1)x x o x x xxxx ee-+++==1()2xo x e-+=,所以, 10(1)limxx e x x →-+1()()22001limlimxxo x o x x x e eee xx-+-+→→--===洛比达2e, 再由海涅定理 1lim ((1))nn n e n→+∞-+2e =. 解法3 1lim ((1))n n n e n→+∞-+1(1)lim1nn e n n→∞-+=, 令1(1)n n y e n =-+,1n x n =,lim lim 0n n n n x y →∞→∞==,1n n x x -<,11lim n n n n n y y x x -→∞---111(1)(1)1lim 111n nn n n n n -→∞+-+-=--12112(1)(1)lim (1)n n n n n n n n n n n ----→∞+--=- 11111(1)(1)1lim11(1)1n n n n n n n n n -→∞--+--=-- 到这里式子已经很复杂,也许可以再用洛比达法则和海涅定理来求出极限或者用泰勒展式求出极限,再由斯托兹定理得出所求值,也许它根本就没有极限值,或极限值不确定,那么就不能再用斯托兹定理求出所要的值.这里由于表达式很复杂,计算量很大,就不再写出过程,我们重在解题思想,所以选择适当的方法很重要.例2 ()f x 在[1,1]-上连续,恒不为0,求极限0x →解法1 由等价无穷小性质,31x-ln3(0)x x →,11()sin 3f x x . 故0x →001()sin sin ()3lim limln 33ln 3x x f x x x f x x x →→===(0)3ln 3f .解法2 ()f x 在[1,1]-上连续,因而()f x 在其上有界.11()sin ()3f x x o x =++,31ln 3()x x o x =++得0x →01()sin ()3lim ln 3()x f x x o x x o x →+=+01sin ()(1)3lim ln 3(1)x x f x o x o →+=+=(0)3ln 3f . 例3 设113(1)0,,1,2,3n n nx x x n x ++>==⋅⋅⋅+证明:此数列有极限,并求其极限值.解法1 由已知0n x >.)1(当1x >12113(1)63333x x x x +==->-=++16333n n x x -=->-=+213333n n nn n n x x x x x x ++---=+0n=<,1,n n n x x x +<,从而n x 收敛.)2(当0n x <≤160333n n x x -<=-≤-=+且1)03n n n n nx x x x x +-=≥+,即1n n x x +≥,n xn x 收敛.由)2(),1(知n x 必收敛,且13(1)lim lim3n n n n nx x x x +→+∞→+∞+==+,得3(1)3x x x +=+,23x =,由0n x >得x =lim n n x →∞=解法2 假设0n x >收敛,令lim n n x x →∞=由解法1知x =下用ε-N 证明n x0ε∀>取N ∈N,使N >,当n N >时,有13(1)3n n nx x x ++=+n =≤11n Nx x ε≤⋅⋅⋅≤-≤<.所以lim n n x →+∞=.有很多求极限的题目可以用多种方法来求解,这里不再一一举例.我们应选择最适当的方法,这样不仅可以使题简化,而且使我们的解题思路更加清晰,解题正确率高,节省时间,提高效率.极限是高等数学中一个基础而重要的概念,它贯穿高等数学的内容始终,是研究问题,分析问题的重要理论基础.因此掌握好求极限的方法对学好高等数学是十分重要的.希望我的论文能为正在学习和已经学过数学分析的人提供一些有益的视觉.。