微电网控制简介剖析

合集下载

微电网是什么_微电网的概念及技术特点

微电网是什么_微电网的概念及技术特点

微电网是什么_微电网的概念及技术特点微电网的概念微电网(Micro-Grid)也称为微网,是指由分布式电源、储能装置、能量转换装置、负荷、监控和保护装置等组成的小型发配电系统。

微电网是一个可以实现自我控制、保护和管理的自治系统,它作为完整的电力系统,依靠自身的控制及管理供能实现功率平衡控制、系统运行优化、故障检测与保护、电能质量治理等方面的功能。

微电网的提出旨在实现分布式电源的灵活、高效应用,解决数量庞大、形式多样的分布式电源并网问题。

开发和延伸微电网能够充分促进分布式电源与可再生能源的大规模接入,实现对负荷多种能源形式的高可靠供给,是实现主动式配电网的一种有效方式,使传统电网向智能电网过渡。

微电网中的电源多为容量较小的分布式电源,即含有电力电子接口的小型机组,包括微型燃气轮机、燃料电池、光伏电池、小型风力发电机组以及超级电容、飞轮及蓄电池等储能装置。

它们接在用户侧,具有成本低、电压低以及污染小等特点。

由于环境保护和能源枯竭的双重压力,迫使我们大力发展清洁的可再生能源。

高效分布式能源工业(热电联供)的发展潜力和利益空间巨大。

提高供电可靠性和供电质量的要求以及远距离输电带来的种种约束都在推动着在靠近负荷中心设立相应电源。

通过微电网控制器可以实现对整个电网的集中控制,不需要分布式的就地控制器,而仅采用常规的量测装置,量测装置与就地控制器之间采用快速通讯通道。

采用分布式电源和负荷的就地控制器实现微电网暂态控制,微电网集中能量管理系统实现稳态安全、经济运行分析。

微电网集中能量管理系统与就地控制器采用弱通讯连接。

微电网的特点微电网系统结构图微电网系统由于包含有数量众多、特性各异的多种分布式电源而成为一个大规模、非线性、多约束和多时间的多维度复杂系统,具有复杂性、非线性、适应性、开放性、空间层次性、组织性和自组织性、动态演化性等复杂系统特征,属于一类变量众多、运行机制复杂、不确定性因素作用显著的特殊的复杂巨系统。

智能微电网的调度与控制

智能微电网的调度与控制

智能微电网的调度与控制智能微电网是一种基于分布式能源资源和智能调度控制技术的现代化电力系统,它具有高效、可靠、环保等诸多优点。

随着社会经济的不断发展和环境问题的日益凸显,智能微电网作为一种新型的电力供应方式,正在逐渐受到人们的关注和重视。

一、智能微电网的基本概念智能微电网是指一种小规模的、近距离供电的电力系统,通常由多种分布式能源资源、能量存储设备和智能调度控制系统组成。

其主要特点包括资源多元化、供电可靠性高、环境友好等。

智能微电网的基本工作原理是利用先进的通信和控制技术,实现对电力系统中各种设备的统一调度和管理,以提高系统的运行效率和经济性。

同时,智能微电网还可以实现与主电网的互联互通,以实现电力资源的共享和优化利用。

二、智能微电网的调度与控制技术1. 电力系统的调度管理智能微电网的调度管理是指通过对各种设备的运行状态进行监测和控制,实现对电力系统的灵活调度和优化配置。

其中,智能微电网的调度管理主要包括负荷预测、发电计划、存储能量管理等内容。

在负荷预测方面,智能微电网可以通过对用户用电行为的数据分析和建模,实现对未来负荷的精确预测,从而为发电计划和设备运行提供参考依据。

而发电计划则是通过对各种发电设备的性能参数和运行条件进行分析和优化,确定最佳的发电方案,以满足用户需求和系统运行要求。

此外,存储能量管理是智能微电网调度管理的另一个重要方面。

通过合理地配置储能设备和优化其运行策略,可以实现对系统中电能的储存和释放,以提高系统的供电可靠性和经济性。

2. 智能控制技术的应用智能微电网的智能控制技术是实现对系统运行状态实时监测和控制的关键。

其中,智能微电网的智能控制技术主要包括数据采集、通信技术、控制算法等内容。

数据采集是智能微电网智能控制技术的第一步,通过对系统中各种设备的状态和性能参数进行实时采集和监测,可以为系统控制提供准确的数据支持。

通信技术则是实现各种设备之间的信息交互和协调,以实现对系统整体运行的统一调度。

微电网中能量管理与控制

微电网中能量管理与控制

微电网中能量管理与控制随着能源消费的不断增长和能源供给方式的多样化,微电网的重要性不断增加。

微电网是一种基于本地化能源供给和需求管理的能源模式,具有很强的可靠性、灵活性和防灾性,能够为用户提供高质量的电能供应。

微电网中的能量管理和控制是微电网运行的核心,对于微电网的使用者来说,它可以帮助用户更好地理解自己的能源消耗情况,更加有效地管理和控制能源消费,实现低碳环保的目标。

一、微电网的基本结构微电网的基本结构由四个部分组成:第一是微电网底层的能源发电系统,主要包括太阳能发电、风能发电和燃料电池发电等;第二是能源储存系统,可以存储多种能源形式如电能、氢气和液态天然气等;第三是能源管控系统,实现对能源储存系统和能源发电系统的监测和控制;第四是网侧负载系统,包括微电网内部的负载和微电网对外部的负载供给。

二、微电网能量管理微电网能量管理是针对微电网底层的能源发电系统、能源储存系统和网侧的负载系统,实现对其能量采集、储存和分配的全面管理。

为了实现微电网能量管理的目标,需要建立清晰的能源管理体系,根据不同的用电需求量制定不同的能源分配计划。

此外,还需要对微电网各个部分的工作情况进行精细的监测和控制,以保证微电网的运行效率和稳定性。

1. 能源采集管理能源采集是微电网能源供给的基础,需要对太阳能、风能、水能等能源采集系统进行充分的管理。

在进行能源采集管理时,需要注意一下几个方面:(1)太阳能发电管理:太阳能发电是目前微电网中最常用的能源采集方式之一,因此我们需要管理太阳能电池板、逆变器和电池等组成的太阳能系统,以保证它们的高效稳定运行。

(2)风能发电管理:风能发电是指通过风力驱动发电机,利用风能生成的电能,对于微电网的能源供给有着重要的意义。

风能系统包括风力涡轮发电机、风速检测系统和电子控制单元等。

在风速较弱或较强情况下,需要通过风速监测系统对风轮的转速进行监控,以保证风能系统的运行稳定性和安全性。

(3)水能发电管理:水能发电是指利用水流的动能与势能,通过水力发电机将能量转换成电能的发电方式。

微电网控制系统设计与优化

微电网控制系统设计与优化

微电网控制系统设计与优化随着新能源技术的不断发展,微电网已成为改善电能供应、降低能耗、保护环境的一种可行的选择。

微电网由多种能源供应设备、储能系统和电能负载设备以及相关的控制系统组成,是一种更加智能化、可靠性和安全性更高的电网形式。

本文将介绍微电网控制系统的设计与优化。

一、微电网控制系统的设计微电网控制系统包括能量管理系统(EMS)和微电网控制器(MGC)。

EMS主要负责能量的监测和管理,包括能源输入输出管理、负荷管理、储能管理等;而MGC则主要负责微电网内部的电能管理和控制。

1. 能量管理系统(EMS)的设计(1) 能源输入输出管理能源输入输出管理是EMS的重要功能之一,其主要目的是监测和管理可再生能源的输入和传统能源的输出。

当可再生能源不足时,传统能源会被调用,以保证电力供应的可靠性。

可再生能源的输入变化会影响电网的稳定性和效率,因此需要对其进行实时监测和控制。

(2) 负荷管理负荷管理是EMS的另一个核心功能。

负荷预测技术可以帮助EMS实现有效的负荷管理,通过分析历史电力数据和未来天气预测等多种因素,对未来的负荷情况进行预测,并制定相应的调度策略。

负荷管理可以减少能源的浪费和损失,并提高微电网的供电质量。

(3) 储能管理微电网的储能系统是EMS所需要管理的关键部分,储能系统的设计和管理可以使微电网更加稳定和高效。

储能系统可以为微电网提供备用功率,以应对突发负荷增加或可再生能源输入波动的情况。

此外,储能系统还可以缓解电网压力,平衡接口电压和频率等。

2. 微电网控制器(MGC)的设计微电网控制器是指植入微电网的一个专门的控制单元,主要负责微电网内部的电能管理和控制。

MGC的设计可以通过电网稳定性控制技术、电能质量控制技术、储能控制技术等方面实现对微电网的精准控制。

(1) 电网稳定性控制技术电网稳定性控制技术是MGC的重要功能之一,其主要用于控制微电网的电压、频率等参数,以保持电网的稳定性。

电网的稳定性受到外界负荷变化和可再生能源输入波动等影响,MGC通过对电压、频率等参数进行精准控制,以保证微电网的供电质量和稳定性。

微电网技术应用及案例分析

微电网技术应用及案例分析

1. 多级分层微电网结构,提高了微电网可扩展性、可控性、可靠性。
2. 多种可再生能源并入电网接口的兼容性
3. 开发了大功率变流装置并联运行与均流控制技术;
4. 开发了无线云端通讯技术;
5. 自学习功能,不断修正自身运行参数;
6. 预测可再生能源,太阳辐射预测到10分钟误差10%;
7. 电池矩阵逐检;
更重要的是,关于微电网建设、运营模式,国家的相关政策尚不清晰,国家应该 制定相关补贴政策,从政策上进一步推动微电网的发展。
二、微电网案例介绍
国家分布式能源工程研究中心兴业分中心
兴业公司总部大楼微电网
二、微电网案例介绍
国家分布式能源工程研究中心兴业分中心
兴业公司总部大楼微电网
二、微电网案例介绍
珠海东澳岛微电网介绍 —中国第一个商业运行的孤岛型智能微电网
研究机构数据显示,微电网市场有望在未来5年迎来高速成长期。从全球来看,目 前微电网主要处于实验和示范阶段,但从过去5年来看,微电网的技术推广已经度过幼 稚期,市场规模稳步成长。未来5到10年,微电网的市场规模、地区分布和应用场所分 布都将会发生显著变化。
事实上,微电网的发展依旧面临诸多问题。“一是技术成熟度还有待提高,二是 如何降低成本,三是采用何种运营模式,四是如何提高与配电网的协调控制能力,五是 目前还很少相关技术标准可以遵循。”
+ 光伏发电本身
间歇性\不稳定性\难调度
“垃圾电”
1、什么是微电网
美国电气可靠性技术解决方案联合会(CERTS)
微网是一种由负荷和分布式电源共同组成的系统,它可同时提供电能和热 能;微网内部的电源主要由电力电子器件负责能量的转换,并提供必需 的控制。微网相对于外部电网表现为单一的受控单元,可同时满足用户 对电能质量和供电安全等的要求。

微电网并网控制与保护论述

微电网并网控制与保护论述

微电网并网控制与保护论述摘要:介绍了微电网概述及其发展现状,并对其控制和保护方面进行了分析。

关键词:微电网;控制;保护中图分类号:tm770引言微电网从系统来看,是将发电机、负荷、储能装置及控制装置等结合,形成一个单一可控的单元,同时向用户供给电能和热能。

与传统集中式能源供电系统相比,微电网接近负荷,可以减少线损,节省输配电建设投资和运行费用;微电网有以下几方面特点,首先由于分布式电源的灵活性可就地供电,解决了电力系统输配电中存在的一些问题提高了供电可靠性。

其次,微电网中电源包括风力发电机、光伏电池、小型燃气轮机以及超级电容等,随着微网的运用有利于可再生能源在我国的发展。

再次,微电网采取电能在靠近用户的地方生产并直接为用户供电的方式能够有效减少对集中式大型发电厂电力生产的依赖以及远距离电能传输、多级变送的损耗,从而延缓电网投资,降低网损有利于建设节约型社会。

微电网的特点适应中国电力发展的需求与方向,在中国有着广阔的发展前景。

但是微网接入大电网还存在很多问题,如分布式电源供电的可靠性、电能质量和供电效率等问题,为了保证稳定、可靠的系统运行,需要对接入电网的微源发电系统进行有效的控制是解决问题的有效方法之一。

欧盟把微网定义为:“充分利用一次能源,将小的、模块化的分布式电源互联,能实现冷、热、电联供,配有储能装置,连接到低压配电网的系统”。

光伏、燃料电池和微型燃气轮机通过电力电子接口连接到微网,小的风力发电机直接连接到微网,中心储能单元被安装在交流母线侧。

美国电气可靠性技术解决方案联合会(certs)和威斯康辛大学定义微网为:“微网是一个由负载和分布式电源组成的独立可控系统,对当地提供电能和热能”。

采用微型燃气轮机和燃料电池作为主要的电源,储能装置连接在直流侧与分布式电源一起作为一个整体通过电力电子接口连接到微网。

其控制方案相关研究重点是分布式电源的“即插即用”式控制方法。

到目前为止,他们不允许微网向大电网供电。

微电网对等控制原理的应用

微电网对等控制原理的应用

微电网对等控制原理的应用1. 概述微电网(Microgrid)是一种分布式能源系统,由多种能源设备和负荷组成。

微电网对等控制原理是指通过实现能源设备之间的对等通信和协调控制,实现微电网内部的能量管理和优化调度。

本文将介绍微电网对等控制原理的应用,并解释其在能源管理领域的重要性。

2. 微电网对等控制原理的原理微电网对等控制原理基于分布式能源设备之间的对等通信和协调控制。

在微电网中,各种能源设备(如太阳能发电系统、风力发电系统、储能系统等)通过通信协议相互连接,形成一个能量互联网。

能源设备之间可以实现信息交换和能量交换,实现能源的共享和优化调度。

3. 微电网对等控制原理的应用案例3.1 多能源协调调度微电网对等控制原理可以实现多能源设备之间的协调调度。

通过对能源设备的运行状态和预测负荷进行实时监测,微电网可以根据能源供需情况进行智能调度。

例如,当太阳能发电系统发电量过剩时,可以将多余的能量转移到储能系统中进行储存;当负荷增加时,可以从储能系统中释放能量,满足负荷需求。

3.2 微电网内部能源管理微电网对等控制原理可以实现微电网内部能源的管理和优化。

通过对能源设备之间的通信和协调控制,微电网可以实现能源生产、储存和消费之间的平衡。

例如,当太阳能发电系统的发电量不足时,可以通过调度储能系统或传统电网的供电来满足负荷需求,保持微电网的稳定运行。

3.3 能源市场参与微电网对等控制原理可以使微电网成为能源市场的参与者。

通过对能源设备之间的通信和协调控制,微电网可以根据能源市场的需求和价格,灵活调整自身的能源生产和消费行为。

例如,当能源市场供能价格较高时,微电网可以选择向市场供能;当市场需求较高时,微电网可以选择从市场购买能源,以获取经济效益。

4. 微电网对等控制原理的优势微电网对等控制原理具有以下优势: - 灵活性:微电网对等控制原理可以灵活调整能源设备的运行状态和能量交换方式,以适应不同的负荷需求和能源供需情况。

微电网的设计、运行与控制

微电网的设计、运行与控制

微电网的设计、运行与控制研究问题及背景随着能源需求的不断增长和可再生能源的快速发展,微电网逐渐成为解决能源供应可靠性和经济性的一种新型电能系统。

微电网是一个小尺度、局部化的电能系统,由多种分布式能源资源(DER)以及能量存储设备组成,可以实现电力的自给自足和互联互通。

然而,微电网系统的设计、运行与控制仍然面临许多挑战和问题。

本研究的主要问题是如何设计、运行和控制一个高效可靠的微电网系统,以实现对能源的有效管理和优化能源供应。

研究方案方法1. 确定微电网系统的需求和目标:首先,我们需要分析微电网所服务的负载类型、负荷需求特点以及可用的能源资源类型和容量。

同时,系统需要具备电力质量、能源安全和环境友好性方面的目标。

2. 微电网的设计与拓扑结构选择:在确定需求和目标后,我们需要考虑微电网的拓扑结构,包括DER的选择、容量规模以及互连方式。

设计时考虑能源负荷的预测、微电网系统的容量规模以及系统的红利最值。

3. 微电网的运行策略与控制算法:微电网的运行策略需要考虑各种情况下的资源调度和能源管理问题,包括能源存储、供需平衡、能量负荷管理等。

控制算法的选择需要综合考虑负载需求、能源供应以及微电网系统的运行效率。

4. 数据分析和结果呈现研究过程中,我们将收集微电网系统的运行数据,并对其进行分析。

通过对微电网系统的性能指标如电力质量、能源利用率、稳定性等方面进行评估,可以得出微电网系统的运行效果。

结论与讨论通过对微电网系统设计、运行和控制方案的研究,我们可以得出以下结论:1. 微电网系统的设计需要综合考虑负载需求、能源资源和存储容量以及系统容量规模等因素,以实现高效可靠的能源供应。

2. 微电网系统的运行策略和控制算法需要根据实际情况进行设计和优化,以实现能源的有效管理和供需平衡。

3. 数据分析和性能评估可以验证微电网系统的运行效果,为系统运行和控制的改进提供依据。

在未来的研究中,可以进一步探索微电网系统设计、运行和控制方案的优化,以提高微电网系统的能源利用效率、可靠性和经济性,为可持续发展提供更好的能源解决方案。

微电网能量管理与控制策略

微电网能量管理与控制策略
短路保护、过压保护
等功能
微电网的应用场景
城市配电系统:用于提高城 市配电系统的可靠性和自愈
能力
偏远地区供电: 用于解决偏远 地区电力供应 不足的问题
• 可以在传统电网的基 础上,增加微电网的接入 和协同控制
• 可以利用当地的可再 生能源资源,建设独立运 行的微电网
工业生产线: 用于为工业生 产提供稳定、 可靠的电力保
件下的最优运行状态
• 可以采用时间序列分析法、机器 学习等方法进行预测 • 能够提前调整发电装置和储能装 置的运行状态,以满足预测需求
• 可以采用遗传算法、粒子群算法 等优化方法 • 能够实现能源的高效利用和成本 的降低
基于模型的能源管理策 略:通过建立微电网的 数学模型,分析其运行
特性和稳定性
• 可以采用物理建模、数据驱动建 模等方法 • 能够为微电网的设计、运行和优 化提供理论支持
实验数据的收集与分析:对实验数据进 行收集和分析,评估策略的实际性能
• 可以采用统计学、信号处理等方法 • 能够为微电网能量管理和控制策略的 优化提供数据支持
05
微电网能量管理与控制策略的未来展望
微电网能量管理与控制策略的技术发展趋势
智能化:利用人工智能、大数据等技 术,提高微电网能量管理和控制策略
分布式控制的方法:通过通信技术,实 现各控制器之间的信息交换和协同控制
• 可以采用有线通信、无线通信等方式 • 能够实现微电网的高效运行和稳定可 靠
04
微电网能量管理与控制策略的仿真与实验
微电网仿真平台介绍
仿真平台是一种用于模拟微电网运行和研究的工具
• 可以实现对微电网的实时模拟和动态分析 • 能够为微电网的能量管理和控制策略提供验证和支持

新能源微电网电压稳定性分析及控制策略

新能源微电网电压稳定性分析及控制策略

新能源微电网电压稳定性分析及控制策略摘要:社会发展离不开对新能源的应用,随着新兴产业的不断发展,新一轮的能源革命也随之到来,对于新能源的应用变得十分广泛,尤其是在微电网运行过程中,离不开新能源的应用,它是微电网顺利运行的质量保证。

新能源是对传统能源结构的有力一击,改变了传统能源的格局,促进能源利用率的有效提升,对我国经济发展有着重要的帮助。

本文主要从三个方面介绍了新能源微电网,希望对今后的产业发展带来一定帮助。

关键词:新能源;微电网;电压;稳定性;控制引言新能源微电网的运行模式主要有两种,一种是并网,一种是独立,在不同的场景中各有作用。

运用有效的控制手段可以保证能源供给,促进微电网系统更加高效的运行。

为了能让我国电网更加稳定的运行,就必须要加强对电压稳定性的研究,进而推动电网行业的发展。

1、对新能源微电网的概述新能源微电网对于互联网来说是一种重要的应用载体,尤其是在可再生能源种类越来越多的背景下,其应用范围也变得愈发宽泛。

和传统微电网相比,新能源微电网的稳定性更强,可以在不同能源之间形成互联,让电力系统在层次上变得更加丰富。

随着科学技术的不断发展,新能源微电网与“互联网+”实现了结合,使得控制效果得到进一步提升。

针对微电网而言,其可借助自身电力局域网的身份和能源互联网之间密切合作,旨在促使电网信息可以达到高效传输以及处理的效果,由此构建了一个具有更高层次和功能的综合性互联网。

2、新能源微电网电压稳定性分析2.1如何维持新能源微电网的电压稳定性倘若想要让新能源微电网的电压稳定性得到有效强化,那么就要控制好各个层次的电压,让新能源微电网可以更加稳定的运行。

制定控制策略的前提条件是要保证参数信息的准确无误,只有这样才能得到综合性的管理效果,促使该电网的最大价值得以充分发挥。

除此之外,如果想要让新能源微电网电压稳定性效果上升到一个新的层次,那么还应当将目光放在数据的收集之上,之所以这样做是因为这些数据信息能够在很大程度上为新能源微电网电压稳定性方案起到一定的调整作用,让控制效果变得更加稳定,提高综合效果的处理水平,达到更加完美的调整效果,在潜移默化中切实保障微电网的电压稳定性。

第四章 微电网运行与控制技术

第四章 微电网运行与控制技术

(2)对等控制策略。即基于电力电子的“即 插即用(Plug and Plug)”和“对等(Point to Point)”的控制。系统中各个分布式电源 是“平等”的关系,不存在从属关系。根据微 电网的控制目标,灵活的设定下垂系数,调节 受控微电源,保证整个微电网的电压稳定、频 率稳定以及电能的供需平衡,具有简单可靠的 优点。但是对等控制策略只考虑了一次调频, 而忽略了传统电网的二次调频问题,即没有考 虑微电网系统电压和频率的恢复问题,因此, 在微电网受到大扰动时,很难保证系统的频率 质量,不能保证负荷的正常运行。另外,此方 法是针对有电力电子技术的微电源的控制,没 有考虑传统发电机如微型燃气轮机与微电网之 间的协调控制。
(4)基于多代理技术的控制。该方法将传统 电网的多代理技术应用到微电网控制系统。该 控制策略综合了多种控制方式,能够随时插入 某种控制,实现了微电网的经济优化调度,保 证了微电网系统安全稳定运行。多代理技术具 有很好的自愈能力,响应能力强等特点可很好 的满足微电网的分散控制的需要。但目前多代 理技术在微电网中的应用还处于起步阶段,还 只是集中对微电网的系统频率、电压等进行控 制的层面,因此要使多代理技术在微电网的控 制中发挥更大的作用,还需要大量的研究工作。
如图4.4所示Droop控制有功-频率(P-f)和 无功-电压(Q-U)呈线性关系,当微电源输 出有功、无功增加时,运行点由A点移动到 B点,达到一个新的稳定运行状态,该控制
方法不需要各微源之间通信联系就可以实
施控制,所以一般采取对微电源接口逆变 器控制。
图4.4 频率、电压下垂特性
4.2 微电网的逆变器控制
4.2.2 微电网中逆变器的控制方法
微电源的控制是微电网控制的基础,而微 电网中大多数微电源通过三相电压型逆变 器(VSI)接入系统,所以对微电源的控制 就是对逆变器的控制。如图4.5,微电源逆 变器控制系统拓扑结构可分为内环控制器 和外环控制器,内环控制器动态响应快, 可以用来提高逆变器输出的电能质量,外 环控制器的动态响应速度较慢,用以体现 不同的控制目的,并产生内环所需的控制 信号。

微电网关键控制技术分析

微电网关键控制技术分析

微电网关键控制技术分析摘要:微电网是由分布式电源、储能系统、能量转换装置、监控和保护装置、负荷等汇集而成的小型发、输、配、用电系统,是一个具备自我控制和自我能量管理的独立系统,既可以与外部电网并网运行,也可以孤立运行。

从微观看,微电网可以看作小型的电力系统;从宏观看,微电网可以认为是配电系统中的一个“虚拟”的电源或负荷。

某些情况下,微电网在满足用户电能需求的同时,还能满足用户热能的需求,此时的微电网实际上是一个能源网。

本文针对微电网关键控制技术进行了分析。

关键字:微电网;能量管理系统;运行控制;控制策略一、微电网概述1.1微电网的定义微电网又可称为微网,是近年来推出的一种新型网络结构,主要是由负荷、微电源、储能控制装置以及系统等共同组合而成的规模相对较小的分散独立系统。

微电网是一个能够实现自我保护、控制和管理的自治管理系统,不仅能够与外部电网联合运行,同时也能够独立运行。

微电网是一种与传统大电网相对的电网概念,主要是由多个分式电源及其相关负载,根据一定的拓扑结构共同组成的网络,并可借助静态开关与常规电网相互关联。

1.2微电网的组成微电网的组成主要包括:(1)储能装置;(2)微源或者微电源,可通过燃料电池、风电、生物质发电等分布式电源;(3)对单元以及调度体系进行监控;(4)离并网开关,对主网以及微电网进行分合;(5)负荷,包括能够进行中断的负荷以及不可进行中断的负荷。

二、微电网综合监控系统根据结构的差异可将微电网的监控系统划分为分布式和集中式两大类型。

其中分布式综合监控系统主要是借助多代理的模式,借助本地控制器来实现对相关设备的独立管理和决策。

而其约束条件、目标函数与集中式监控系统本身基本上无较大差异,但通常需要根据不同的元件特点构建起相应的代理模型,经过代理之间的协调以及通信协议来促使目标不断优化。

通过对这种监控系统模式的合理运用,可最大程度上实现对微电网中分布式电源智能化以及“即插即用”目标,可以说这是微电网综合监控系统一项非常重要的技术发展和理论研究方向。

微电网能量管理与控制策略

微电网能量管理与控制策略

自治性
实现稳态、暂态功率平衡和电压/频率的稳定 对事故自助采取措施进行控制和纠正
二、微电网能量管理
能量管理系统(EMS):主要针对发输电系统,对电网进行 调度决策管理以及控制,提供电网的实时信息给调度管 理人员,能够提高电能质量,保证电网安全运行以及改 善电网运行经济性,是现代电网调度自动化系统的统称。
二、微电网能量管理系统主要功能
➢ 对可再生能源发电与负荷进行功率预测; ➢ 为储能设备建立合理的充、放电管理策略; ➢ 为微网系统内部每个分布式能源控制器提供功率和电压设定点; ➢ 确保满足微网系统中的热负荷和电负荷需求; ➢ 尽可能的使排放量和系统损耗最小; ➢ 最大限度地提高微电源的运行效率; ➢ 对无功功率进行管理, 维持微电网较好的电压水平; ➢ 提供微网系统故障情况下孤岛运行与重合闸的逻辑与控制方法;
控制方法
PQ控制
VF控制
下垂控制
三、单个微电网控制策略
PQ控制是逆变器输出的有功功率P和无功功率Q的大小可控。它是将有功功 率和无功功率解耦后, 对电流进行PI控制, 通过控制逆变器来保证DG输出的有功和无 功保持在恒定值。
V/f控制即恒压恒频控制, 指的是通过控制手段使逆变器输出电压幅值u和频率 f保持恒定。采用双闭环控制, 以滤波器输出电压反馈作为控制外环, 以电容电流反馈 作为控制内环。
而在对等控制策略中, 各个分布式电源互不干扰, 运行 不受彼此影响, 稳定性较高。但从原理上看, 其只考虑到一 次调频问题, 没有考虑系统电压和频率的恢复问题, 并且在 控制和应用上仍存在很多关键问题亟待解决。
微电网能量管理与控制策略
目录
一、微电网的发展 二、微电网能量管理 三、微电网控制策略
一、微电网的发展

微电网控制

微电网控制

一、微电网可以解决的问题(1)增强源网荷储灵活性(小时间尺度,分钟-小时)(2)增强源荷昼夜匹配性(中时间尺度,天)(3)提高异常天气供电韧性(大时间尺度,周)(4)提高定制化供电可靠性(更大时间尺度,年)二、平台的特点(1)方便➢基于HTML5页面开发➢浏览器访问➢多客户端访问➢手机APP访问➢语音播报➢报警订阅➢矢量图➢分类分级报警➢报警联动工单➢多种报警方式➢集团化管理(2)灵活➢跨平台部署(Windows、Linux及国产操作系统标题栏定义、首页定义、图形配置、远程维护菜单管理,个性化定制➢失电报警➢数据加密(硬件或软件加密)➢用户密码管理➢遥控密码管理➢完整的操作记录(4)可靠➢断点续传➢数据压缩➢失电报警(5)高效➢看板管理➢秒级刷新(6)全面➢功能全面,覆盖企业内部用电管理全过程➢协议全面➢设备全生命周期➢菜单权限、功能权限、数据权限,全面的权限管理➢多语言➢多主题➢联动控制➢视频联动➢电气综合管理、集中监控、统一运维(1)功能01 储能监控➢实时监测:PCS和电池的运行状态,包括运行模式、功率控制模式,功率、电压、电流、频率等预定值信息、储能电池充放电电压、电流、SOC、温度、压力、流量。

➢故障告警:储能电池充放电状态、交/直流过压/欠压、交/直流过流、频率过/欠告警、过温、过载、漏电保护等。

➢远程控制:PCS启动、停止、功率设定、装置运行参数设定。

(2)功能02 电瓶车及电动汽车充电管理➢电瓶车充电解决方案✧电瓶车充电桩支持多路插座输出,满足多车同时充电,实现集中充电管理,减少私拉乱接。

✧通过满电自停、过载保护、短路保护等功能减少电气火灾发生风险和人生安全事故,异常状态远程报警。

✧支持投币、刷卡、微信/支付宝扫码等多种支付手段。

➢电动汽车充电解决方案✧提供交/直流充电桩,满足不同充电功率的要求,产品取得国网一纸证明。

✧支持预约充电,实现定时、定量、定金额充电,可设置全时段单价和分时段单价设置。

电力系统的微电网稳定性分析与控制

电力系统的微电网稳定性分析与控制

电力系统的微电网稳定性分析与控制下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!随着电力系统的不断发展和微电网技术的逐渐普及,微电网已经成为电力系统领域的一个热门研究方向。

智能微电网控制技术研究

智能微电网控制技术研究

智能微电网控制技术研究一、智能微电网控制技术的基本理念智能微电网控制技术是指通过先进的信息通信技术和控制策略,对微网中的各种设备进行精密的监控和调节,实现微电网内外部之间的协同管理和优化控制,从而确保微电网系统在不断变化的环境和负荷条件下,能够稳定可靠地运行。

该技术的基本理念包括以下几个方面:1. 自主管理:智能微电网控制技术通过智能化的控制算法和策略,使得微电网内部的各种电力设备能够自主协调,实现电力资源的最优配置和调度。

2. 信息互联:智能微电网控制技术通过高效的信息通信技术,实现微电网内各个设备之间的信息共享和互联,以及与外部电网系统的协调联动。

4. 自适应优化:智能微电网控制技术能够根据外部环境和内部负荷的变化,自适应地调整微电网系统的运行策略和控制参数,以达到最优的系统效率和稳定性。

1. 智能化调度算法:智能微电网控制技术需要设计高效的调度算法,实现对微电网内部各种电力资源的智能管理和调度。

其中包括能源预测算法、负荷预测算法、分布式能源优化调度算法等。

4. 智能化设备控制技术:智能微电网控制技术需要设计智能化的设备控制技术,实现微电网内部各种电力设备的智能化监控和控制。

如智能化逆变器控制技术、分布式发电系统控制技术等。

5. 智能化运行管理系统:智能微电网控制技术需要设计智能化的运行管理系统,实现对微电网整体运行状态和负荷需求的实时监测和管理。

1. 大数据技术的应用:随着大数据技术的不断发展和普及,智能微电网控制技术将会借助大数据技术,实现对微电网系统运行状态和负荷需求的实时监测和预测,为系统调度和管理提供更为精准的数据支持。

2. 人工智能技术的应用:人工智能技术的飞速发展将为智能微电网控制技术注入新的活力,包括智能调度算法、智能优化算法、智能故障诊断等方面的应用。

3. 区块链技术的应用:区块链技术具有去中心化、不可篡改、安全可靠的特点,将在智能微电网控制技术中发挥重要作用,实现微电网内部各种电力资源的安全共享和交易。

微电网运行-有功功率与无功功率控制

微电网运行-有功功率与无功功率控制

微电网运行的未来展望
更高比例的可再生能源接入
随着可再生能源技术的发展,未来微电网中可再生能源的 接入比例将进一步提高,如何实现高比例可再生能源的稳 定运行将是重要研究方向。
智能化和自动化技术的应用
随着智能化和自动化技术的发展,未来微电网的运行将更 加智能化和自动化,实现对分布式电源的实时监测和智能 调度。
多微电网互联与协同控制
未来微电网将实现多微电网互联与协同控制,通过信息交 互和智能调度,提高整个区域微电网的运行效率和稳定性。
THANKS
谢谢
微电网运行-有功功率与无功功 率控制
目录
CONTENTS
• 微电网概述 • 有功功率控制 • 无功功率控制 • 微电网中的有功与无功功率协同控制 • 微电网运行中的挑战与展望
01
CHAPTER
微电网概述
微电网的定义与特点
定义
微电网是一种小型的电力系统,由分 布式电源、储能系统、负荷以及监控 系统组成,能够独立运行或者并网运 行。
04
CHAPTER
微电网中的有功与无功功率 协同控制
有功与无功功率协同控制的意义
保障微电网稳定运行
有功和无功功率的协同控制有助于维持微电网的电压稳定,降低 功率波动,提高供电可靠性。
提高能源利用效率
通过优化有功和无功功率的分配,可以降低能源损耗,提高能源利 用效率,实现节能减排。
促进可再生能源的接入
微电网运行中的解决方案
采用先进的控制策

通过采用先进的控制策略,如基 于人工智能、机器学习的控制算 法,实现对微电网中分布式电源 的优化调度,提高功率平衡能力。
引入储能系统
通过引入储能系统,如电池储能、 超级电容储能等,实现对微电网 中功率的有效调节,提高微电网 的稳定性。

微型电网控制技术的研究

微型电网控制技术的研究

微型电网控制技术的研究一、概述随着全球能源结构的转型和可再生能源的快速发展,微型电网作为分布式能源系统的重要组成部分,正逐渐受到越来越多的关注。

微型电网是指在一个局部区域内,通过集成多种分布式能源资源(如太阳能、风能、生物质能等)和储能设备(如蓄电池、超级电容等),形成的小规模、自平衡的电力系统。

它能够实现自给自足的电力供应,并在大电网故障时提供紧急电力支持,提高电力系统的可靠性和韧性。

微型电网控制技术是实现微型电网高效、稳定运行的关键。

它涉及到电源管理、能量调度、负荷预测、优化运行等多个方面,旨在通过先进的控制策略和方法,实现对微型电网内部各种资源的优化配置和协同运行。

微型电网控制技术还需要考虑与大电网的互联互通,实现能量的双向流动和协同调度,以充分发挥分布式能源的优势。

随着物联网、云计算、大数据等新一代信息技术的快速发展,微型电网控制技术也迎来了新的发展机遇。

通过引入智能化、自动化的控制手段,可以实现对微型电网的实时监控、故障诊断和预测维护,提高电力系统的安全性和运行效率。

微型电网控制技术还可以结合需求侧管理,通过优化用户的用电行为,实现能源的节约和减排,推动绿色、低碳的能源消费模式。

微型电网控制技术的研究具有重要的理论和实践意义。

它不仅有助于推动分布式能源的发展和应用,提高电力系统的可靠性和韧性,还可以为构建清洁、低碳、高效的能源体系提供有力支撑。

本文将对微型电网控制技术进行深入探讨,以期为相关领域的研究和实践提供有益的参考和借鉴。

1. 微型电网的定义与特点作为一种新兴的分布式能源系统,是指由分布式电源、储能装置、能量转换装置、相关负荷和监控、保护装置汇集而成的小型发配电系统。

它能够实现自我控制、保护和管理,既可以与外部电网并网运行,也可以孤岛运行。

微型电网的核心理念在于实现能源的本地化管理,通过优化调度和能量管理,提高能源利用效率,降低对外部电网的依赖。

微型电网具有高度的灵活性和可扩展性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


微电网提出的背景和意义
分布式发电
优势

满足负荷增长需求、提供可靠性高、经济学好、多样性供电 污染少、能源综合利用率高、安装地点灵活 与大电网互为备用 缺点 单机接入成本高、控制困难 分布式电源的不可控性、电网出现故障时,限制隔离来处置

微电网定义与特点
微电网( Micro-Grid )也译 为微网,是一种新型网络结构, 是一组微电源、负荷、储能系统 和控制装置构成的系统单元。微 电网是一个够实现自我控制、 保护和管理的自治系统,既可以 与外部电网并网运行,也可以孤 立运行。微电网是相对传统大电 网的一个概念,是指多个分布式 电源及其相关负载按照一定的拓 扑结构组成的网络,并通过静态 开关关联至常规电网。 开发和延 伸微电网能够充分促进分布式电 源与可再生能源的大规模接入, 实现对负荷多种能源形式的高可 靠供给,是实现主动式配电网的 一种有效方式,是传统电网向智 能电网过渡。
微电网具有控制、协调、管理等功能,并由以下系统来实现。
(1)微电源控制器微电网主要靠微电源控制器来调节馈线潮流、母线电压级与主 网的解、并网运行。由于微电源的即拔即插功能,控制主要依赖于就地信号,且响应 是毫秒级的。
( 2)保护协调器饱和协调器既适用于主网的故障,也适用于微电网的故障。当主 网故障时,保护协调器要将微电网中重要的负荷尽快地与主网隔离。其某些情况下微 电网中 重要负荷允许电压短时暂降,在采取一定的补偿措施后可使微电网不与主网 分离。当故障发生在微电网内,该保护应该在尽可能小的范围内将故障段隔离。 ( 3)能量管理器能量管理器按电压和功率的预先整定值对系统进行调度,相应时 间为分钟级。
负荷频率二次控制理论
当微电网运行在孤岛运行时,微电 网内负荷不平衡,储存单元就类似于同步 发电机采用二次调节恢复电压和频率,二 次控制主要指 P/f 下垂特性的移动实现控 制。可采用如下两个方法:本地二次控制 通过每一个可控微电源的控制器来实现, 有 MGCC主导的集中二次控制。两种情况的 原动机的无功功率目标值都由频率偏差来 确定。
主要内容

微电网提出的背景与意义 微电网的定义与特点 微电网的运行和控制 微电网的控制策略 微电网的控制方式
微电网提出的背景和意义
集中式发电
优势

实现大规模,远距离的电能传输 资源优化配置和电能的统一调度 利于电力市场的开放 弊端 成本高,运行难度大 不能灵活的跟踪负载的变化 对于偏远地区的负荷不能理想供电 难以满足供电可靠性、安全性、多样性需求 不能满足节能和环保的要求
常用微电网的控制策略
01
03
主从控制
02
04
对等控制
负荷频率二次控制
联络线控制
主从控制
主从站控制方式是指在微电网由于强制或计划与大电网脱离运行,工作在孤 岛状态时,一个微电源以主站的方式运行在 VSI模式提供参考电压和频率,其他 微电源以从站的方式运行在PQ模式提供恒定出力。该控制方式简单、易实行,并 且对孤网运行时保证供电质量有较强的优势。但该方法也有较多的局限性: (1) 其要求选择一个电源作为主站,来负责孤网时的电压频率的稳定问题。 该 主站的选择有较大的限制性:其一,其必须具备较快的出力调节能力;其二, 其必须具备足够大的出力。 (2) 该方法对保证孤网运行下的电能质量具有一定的作用,但其不能实现使微 电网运行在诸如电能质量、经济性、稳定性等多目标最优的状态,这与广义上的 协调控制是不符合的
微电网的控制方法
所有的控制方法都应当满足下列要求: 1、新的微电源的接入不对大系统造成威胁 2、能够自主的选择系统运行点 3、平滑与大电网联网或解耦 4、对有功、无功可以根据动态的要求进行独立的结构控制。 微电网的控制方式和微电源的类型有关,对于采用的电力电子逆变器来 说,常用的控制方法有微电网联网状态下的 PQ控制方式,电压率VF控制和微 电网孤岛状态下的下垂控制。
微电网的控制策略
微网的控制技术是微网运行中的一个关键部分。成熟的控制技术 可以提高微网的运行灵活性和提供高质量的电能。由于微网内部的电 源多为可再生能源,不可控性强,电源容量小、数目多且分散,所以传 统大电机控制方法将不再适用。同时,微网内部的电源多通过电力电 子装置连接到微网系统中,这对微网内部针对电力电子装置例如逆变 器的控制也提出了更精确的要求。因此,所有微网的特性都要求设计 出针对微网自身的控制策略。
微电网的特点:

并网针对公共连接点 以非集中的方式协调分布式电源,减轻 电网负担 提高大电网的黑启动速度

微电网的运行和控制
微电网的由两种典型的运行模式--并网模式和孤岛模式
并网模式的定义:微电网运行正常状态时,微电网与常规电网联网 运行时向电网提供多余的电能或由电网补足自身发电的不足。 孤岛模式的定义:微电网运行在非正常状态时,微电网与常规电网 脱离运行,此时由自身的微电源和储能元件协调控制提供一段时间电 能以满足微电网内部需求和稳定。 微电网控制的主要目标 • 调节微电网内的功率潮流,实现功率解耦控制 • 调节微电源出口电压,保证局部电压稳定 • 孤岛模式下,提供电压频率参考,实现微电源快速响应和功率负担 • 平滑自主实现与主网分离、并联或者二者过度
对等控制
对等控制侧率,是基于电力电子技术中的“即插即用”和“对等”的控制思想,根据 外特性下降法,分别将频率和有功功率、电压和无功功率关联起来,通过相关的控制算法, 模拟传统电中的有功 -频率曲线和无功 -电压去向,事项电压和频率的自动调节,无需借助 于通信。 采用对等控制策略是,所有的 DG地位“平等”,以预先设定的控制模式参与有功和无 功的调节吗,以位置系统电压和频率的稳定。当有 DG因故障退出运行时,不会影响其他正 常运行的DG;当负荷增加是,可以直接加入新的采用下垂控制方法的发电机组,控制方式 和保护措施无需变化,这就是“即插即用”思想。
V-F控制
V-f控制即恒压恒频控制,指的是通过控制手段使逆变器输出端口电压的幅值 U和 频率f保持恒定。 微网中逆变器的电压和频率控制是电网在孤岛运行中提供强有力的电压稳定和频 率稳定保障,与传统电力系统的频率二次调整类似。当大系统发生故障时,微电网与 大电网发生解列,由于微电网的内部功率不平衡所带来的一些列问题都可以有V/f控制 来解决。
控制方法
PQ控制
VF控制
下垂控制
PQ控制
PQ控制指的是逆变器输出的有功功率P和无功功率Q的大小可控,均可以根据 设定。 通常PQ控制方式用于微电网联网运行状态。在该状态下,微电网内负荷功率 波动、频率和电压的扰动由大电网承担,微电源不参与频率调节和电压调节,直 接采用电网频率和电压作为支撑。中小型的分布式电源以很功率拟负荷的外特性 为宜,关系上类似负荷,但并不完全吸收功率。
下垂控制
下垂控制方式主要是指逆变器的经过一定电力电子控制与传统电力 系统一次调频相似。通过解耦有功-频率与无功-电压之间的下垂特性曲 线进行系统电压和频率调节的方式。目前主要有两种常有逆变器调差率 控制的方式,一种采用有功 -频率和无功 -电压( Q-V)调差率控制方式。 另一种则采用有功-电压(P-V)和无功-功率(Q-f)反调差率控制。两 种控制方式原理基本类似,根据不同线路特性和控制要求,选择不同的 控制方法即可。
当微电网运行在孤岛状态时,通过 MGCC预先设定的频率特性曲线如图所示, 满足微电网的内功率平衡,通过在孤岛和 短路条件下验证,频率能够快速恢复,满 足要求
联络线控制理论
联络线指主网和微电网之间的链接馈线(PCC),联络线控制器负 责管理连接馈线的潮流和电压,协调微电网中个分布电源的出力,如 微电源、储能设备和可控负荷。从连接点来看微电网是一个可分离的 整体,即微电网是电网的好市民。联络线控制方法调节微电网内部的 潮流并与大电网进行功率交换,也能对 PCC点提供电压支持,还能够 对主网与微电网交换的有功和无功功率进行控制,并允许微电网的孤 岛运行,更重要的是可用来补偿某些新能源,如风能和太阳能发电的 间歇性。
相关文档
最新文档