钛纳米高分子合金材料开发及在油田防腐领域应用研究
2012技术交流会演示稿
![2012技术交流会演示稿](https://img.taocdn.com/s3/m/05026d200722192e4536f618.png)
性能对比试验
表3 几种当前用于油井管道防腐蚀涂料的性能比较试验
检测结果综合比较
• 为了获得油田方面的准入认可,我们委托中国石油塔里木油田将涂层 管材与涂料样品分别送往国家工业专用管材质量监督检测中心和中石 油防腐保温涂料产品质量监督检验中心进行涂层评价和涂料质量检验, 检验结果各项指标全部合格。
表1 采油用小口径管道地下深层工作环境及腐蚀因素* 环境因素 内 容
0~7000 m 80~200 ℃ >10 MPa CaCl2,MgCl2等 Cl -、SO42-、 HCO3-、F-
备 注
深度>2000 m 每深100 m +1℃ 高压蒸汽>3 MPa 地质构造差异 酸性腐蚀介质
使用寿命在 9~18 个月,腐 蚀问题成为油田正常采油 和降低生产成本的技术关 键。
2.涂层在化学介质中浸泡试验
4.钛纳米高分子合金涂层在油井管上试验
国家检验机构出具的检测照片
钛 纳 米 高 分 子 合 金 涂 层
1.高温高压试验后试样 4.拉伸试验后试样
2.耐阴极剥离试验后试样 5.展平试验后试样
3.扭转弯曲试验后试样
国家检验机构出具的检测照片
纳 米 有 机 钛 防 腐 涂 层
采用传统材料涂层保护,无
埋管地层深度 埋管地层温度 油管承受压力 地下水水型 地下水 溶解离子 石油中所含元素 地下水的矿化度 细菌
法解决油气田深井油管严 重腐蚀问题。
本研究采用自制的钛纳米
高分子合金涂料,在油气 田井管腐蚀与防护试验中 获得成功的应用,起到了 延长油气田采输管道的使 用寿命、 降低生产成本、 提高经济效益的目的。
表4 涂料检测结果与相关技术标准对照比较
我们将检测数据与 行业标准进行对比,
钛纳米高分子合金聚合物
![钛纳米高分子合金聚合物](https://img.taocdn.com/s3/m/1b2fbf3c31126edb6f1a1030.png)
4.钛纳米含氟聚芳醚酮基体共聚物(T52-4)
F
[O
O
O - ( Al2O2)
O
C
][ O
m
O
C
HHH —C—C—Ti—O—
CH3
] H H H - ( Al2O2)
—O—Ti—C—C
H OHH
C
n
H HO H
CH3
钛纳米含氟聚芳醚酮基体共聚物结构式
特性:聚合物本身具有醚酮基和羟基,因此可用环氧树脂改性做基体成膜物,用氨基树脂做固化剂(如 甲醚化 N303 或 A717、 A747),制备热固性防腐涂料。
5.0
8 正丁醇
6.0
9 异佛尔酮
3.0
10
合计
103.0
国内
wt,g
数量 日期
1000 g 2013-12-17
工艺要点
1.将 1~9 号材料称量后分散研磨, 要求细度达到 15µm,过滤包装。
2.固化剂选用 T-33。配方:
T-33
64% 160g
DMC
16% 40g
正丁醇 20% 50g
合计
100% 250g
3.技术指标
钛纳米高分子合金聚合物:金属钛含量≥20±0.5%,纳米钛粒径:D50 = 50~80 nm,聚合度:n = 3~20; T52-1 环氧当量:37~38(g/eq);T52-2 羟基含量;其它两种聚合物以添加的环氧树脂环氧当量计算即可。
2
表 3-1 钛纳米高分子合金聚合物内控技术指标
上石油平台等钢结构和海水以下(户内)部位构筑物的特种工况环境的腐蚀与防护。建议做底漆和中层漆
配套设计使用。海底使用设计,底、中、面漆配套,预期寿命≥40 年。
钛纳米高分子合金涂料
![钛纳米高分子合金涂料](https://img.taocdn.com/s3/m/73c92a86680203d8ce2f2438.png)
钛纳米高分子合金涂料
钛纳米高分子合金涂料是以新型钛纳米聚合物为基体成膜材料,配以填料和涂料添加剂经特殊工艺加工而成的具有超强的耐腐蚀、抗老化、耐高温、高硬度、抗划伤和不粘性等一系列优异特性的特种涂料。
根据改姓树脂(官能团树脂)的种类不同把新型钛纳米聚合物分为四类:纳米有机钛环氧基体聚合物、纳米有机钛聚脲基体聚合物、纳米有机钛酰亚胺基体聚合物和钛纳米含氟聚芳醚酮基体聚合物。
其中钛纳米聚芳醚酮基体聚合物是专门为攻克油气田井管的腐蚀问题而开发的新型功能高分子合金材料,用其制备的油井管专用钛纳米高分子合金漆的各项性能如下:
ⅰ)耐热性:可长期在200~250℃苛刻环境下服役;
ⅱ)高硬度:常温下漆膜硬度6~9H,高温下仍可保持4H;
ⅲ)耐磨性:漆膜的高硬度提高了其抗划伤和乃冲刷性;
ⅳ)耐腐蚀:涂层具有优异的耐油品和吐酸的强腐蚀性能;
ⅴ)抗高压:涂层成功通过48小时高温高压蒸汽测试;
ⅵ)不粘性:低表面能特性赋予其不粘性和不结垢性;
该油井管专用钛纳米高分子合金漆制备技术源自北京科技大学,在江苏金陵特种涂料有限公司实现产业化生产,在产业化期间得到了江苏省重大科技成果转化项目专项资金近千万元的资助,该产品技术已获得国家科技部知识产权局的发明专利授权。
高温高压天然气开采用钛合金油管柱力学分析
![高温高压天然气开采用钛合金油管柱力学分析](https://img.taocdn.com/s3/m/ec6f456fcec789eb172ded630b1c59eef8c79ae4.png)
◀石油管工程▶高温高压天然气开采用钛合金油管柱力学分析∗胡芳婷1㊀刘强2ꎬ3㊀赵密锋1㊀郭文婷4㊀张伟福2㊀张强5㊀练章华5(1 中国石油塔里木油田分公司油气工程研究院㊀2 中国石油集团工程材料研究院有限公司㊀3 石油管材及装备材料服役行为与结构安全国家重点实验室㊀4 中国石油集团测井有限公司长庆分公司㊀5 西南石油大学)胡芳婷ꎬ刘强ꎬ赵密锋ꎬ等.高温高压天然气开采用钛合金油管柱力学分析[J].石油机械ꎬ2023ꎬ51(2):115-122HuFangtingꎬLiuQiangꎬZhaoMifengꎬetal.Mechanicalanalysisoftitaniumalloytubingstringunderhightempera ̄tureandhighpressurefornaturalgasproduction[J].ChinaPetroleumMachineryꎬ2023ꎬ51(2):115-122.摘要:我国油气开发环境较为恶劣ꎬ油井管在井下面临高温高压㊁硫化氢㊁二氧化碳㊁高浓度盐水/完井液㊁单质硫和强酸等腐蚀环境的作用ꎮ钛合金材料以其高强度低密度㊁低弹性模量㊁优异的韧性㊁疲劳性能和耐蚀性ꎬ成为油井管和海洋开发工具的热门材料ꎬ但其在高温高压气井开采过程中的受力状态和安全可靠性研究尚不足ꎮ为此ꎬ以我国西部某油田典型高温㊁高压㊁高产量气井开采工况为典型参考环境ꎬ设计了3种油管柱结构方案ꎬ使用有限元模拟方法ꎬ计算分析3种方案下的管柱力学情况ꎮ分析结果表明ꎬ使用钛合金油管可使气井生产中的油管柱载荷减小㊁安全系数增大ꎬ部分时刻管柱内无中和点ꎻ使井筒与套管之间轻度接触甚至不接触ꎬ可以有效改善生产过程中管柱的振动状态ꎮ研究结果为钛合金油管柱在气井中的使用提供了理论依据ꎮ关键词:钛合金油管ꎻ管柱力学分析ꎻ高温高压天然气开发ꎻ管柱振动ꎻ屈曲中图分类号:TE921㊀文献标识码:A㊀DOI:10 16082/j cnki issn 1001-4578 2023 02 016MechanicalAnalysisofTitaniumAlloyTubingStringUnderHighTemperatureandHighPressureforNaturalGasProductionHuFangting1㊀LiuQiang2ꎬ3㊀ZhaoMifeng1㊀GuoWenting4㊀ZhangWeifu2㊀ZhangQiang5㊀LianZhanghua5(1 OilandGasEngineeringInstituteꎬPetroChinaTarimOilfieldCompanyꎻ2 CNPCTubularGoodsResearchInstituteꎻ3 StateKeyLaboratoryofPerformanceandStructuralSafetyforPetroleumTubularGoodsandEquipmentMaterialsꎻ4 ChangqingBranchofCNPCLoggingCo.ꎬLtd.ꎻ5 SouthwestPetroleumUniversity)Abstract:ThedownholeenvironmentofoilandgasproductioninChinaisharshꎬandwelltubularsaresub ̄jectedtocorrosionattributedtohigh ̄temperatureꎬhigh ̄pressure(HTHP)ꎬhydrogensulfideꎬcarbondioxideꎬhigh ̄salinitybrineanddrill ̄influidsꎬelementalsulfurandstrongacids.Duetotheabove ̄mentionedꎬtitaniumal ̄loycharacterizedbyhighstrengthꎬlowdensityꎬlowelasticmodulusꎬhightoughnessꎬandfavorablefatigueandcorrosionresistancehasbecomethepreferredmaterialforwelltubularsandtoolsofoffshoreresourcerecovery.Howeverꎬtheresearchontheloadingstatusandsafereliabilityofsuchmaterialsinapplicationstohigh ̄tempera ̄turehigh ̄pressuregasproductionisinsufficient.ThereforeꎬbasedontheoperationconditionsoftherepresentativeHTHPhigh ̄rategasproductionwellofanoilfieldinWestChinaꎬthreeproductiontubingstringstructureschemesaredevelopedꎬandthemechanicalstatusofthetubingstringofthesethreeschemesisanalyzedviathefinite ̄ele ̄511 ㊀2023年㊀第51卷㊀第2期石㊀油㊀机㊀械CHINAPETROLEUMMACHINERY㊀㊀㊀∗基金项目:国家重点研发计划项目 高承载钛合金特殊螺纹接头制造及连接关键技术研究与应用 (2021YFB3700804)ꎻ中国石油天然气集团有限公司科学研究与技术开发项目 耐蚀㊁抗菌㊁高强度低密度油井管新材料开发 (No 2021DJ2703)ꎻ陕西省自然科学基金项目 Nb对极端油气工况下钛合金微观结构与耐蚀性交互影响机制研究 (2021JM-607)ꎮment ̄methodnumericalsimulation.Theanalysisshowsthattheuseoftitaniumalloycanreducetheloadofthetub ̄ingstringandincreasethesafetyfactor.Insomecasesꎬthetubingstringisassociatedwithnoneutralpointꎬandthecontactbetweenthetubingandcasingisminimizedoreveneliminatedꎬwhicheffectivelysuppressesthetubingvibrationduringgasproduction.Thefindingsofthisresearchprovidethetheoreticalbasisforapplicationsoftheti ̄taniumalloytubingstringtogaswells.Keywords:titaniumalloytubingꎻpipestringmechanicalanalysisꎻHTHPgasproductionꎻpipevibrationꎻbuckling0㊀引㊀言深井超深井㊁ 三高环境 和大位移井㊁长段水平井等非常规油气资源勘探开发环境对石油管材的要求不断提高[1-2]ꎮ油管作为井下管柱的主要通道及完整性防护主体ꎬ在井下不仅要经受高温高压以及多种腐蚀性环境的综合作用ꎬ还会受到石油天然气开采过程中引起的冲击㊁振动及疲劳等复杂受力行为[3-4]ꎬ因此对管材的综合性能要求非常苛刻ꎮ钛合金材料以其较高的强度㊁较低的密度㊁优异的抗疲劳性能㊁优秀的耐腐蚀性能ꎬ以及低弹性模量和高韧性ꎬ已经成为石油管材料开发的热门材料[5-6]ꎮ早在20世纪80年代ꎬ国内外企业㊁高校及科研机构已开始对钛合金材料用于油气开发的可行性和性能等进行探讨及研究ꎮ美国RMI公司的R W SCHUTZ等[5-7]对油气工况下使用钛合金材料的性能进行多种测试及评价ꎬ综合结果认为ꎬ钛合金材料在石油天然气开发领域有巨大的应用潜力ꎮR D KANE和B CRAIG等[8-9]模拟高温高压下天然气开采环境ꎬ对多种钛合金的性能进行了试验评价ꎬ初步得出了不同钛合金油井管材料在不同工况下的耐腐蚀性能ꎮ美国RMI公司通过大量试验和模拟ꎬ证实了钛合金材料在高温㊁高压㊁高腐蚀环境中使用的可行性并发现了性能局限[10]ꎬ并针对钛合金在应用中出现氢脆提出了防治办法[11]ꎬ成功开发出钛合金油管㊁钻具㊁海洋隔水管等产品ꎬ在Oryx海王星钻井项目和墨西哥湾的MobileBayField的油气开发中成功应用[12-13]ꎮ国内方面ꎬ中国石油集团石油管工程技术研究院(简称管研院)最早对钛合金管在油气开发行业应用的可行性进行了分析ꎬ展望了钛合金材料在石油工业的应用前景[6]ꎬ并对钛合金石油管服役工况极限和环境适用性进行研究[14-16]ꎬ解决了钛合金油套管应用的一些瓶颈问题ꎬ推动了钛合金油套管产品在国内天然气水合物㊁高温高压油气开采中投入现场应用ꎮ东方钽业等对TA18材质的钛合金管材产品开展了热加工及试制ꎬ成功制备出了TA18材质的厚壁钛合金管[17]ꎮ天钢㊁攀钢等企业均试制出了钛合金油管ꎬ并在我国西南油气田元坝区块进行了试验性使用[18-19]ꎮ由于钛合金材料价值较高ꎬ生产工艺更为复杂ꎬ考虑到材料特性和应用成本ꎬ所以主要用于高温㊁高压㊁高腐蚀介质(三高)的高产油气开发领域ꎬ如我国的西部塔里木油田和西南区域的油气田ꎮ在这些开发环境中ꎬ除了井筒对管柱的载荷外ꎬ还有生产的高速油气对管柱的冲击㊁冲蚀和交互作用ꎬ大多为三高环境并且油管柱受力情况较为复杂ꎮ目前国内外对钛合金油井管在这种复杂环境管柱力学方面的研究鲜有报道ꎬ但管柱的力学性能对于钛合金油管的设计㊁使用和安全评估具有重要的意义ꎮ因此ꎬ笔者以我国西部某油气田的典型井况为基础ꎬ研究设计使用不同钛合金管柱时的管柱静力学和动力学性能ꎬ分析由于钛合金油管柱的加入对整体管柱振动状态方面的改善情况ꎬ以期为今后钛合金管的设计和使用提供参考ꎮ1㊀管柱力学模拟1 1㊀模拟条件㊀选取我国西部某油气田高产气井为模拟环境ꎬ模拟井深大约为7500mꎬ酸压完井管柱采用177 8mm(7in)套管ꎬ液压封隔器的坐封深度大约为7100mꎮ假设井筒温度分布如图1所示ꎮ试验中为高温高压气藏ꎬ产层地层压力为86 88MPaꎬ地层压力系数为1 17ꎬ温度梯度为每100mm上升2 0ħꎮ酸压完井管柱按高排量10m3/min设计ꎬ井口泵压125MPaꎬ最小安全系数为1 50ꎬ压裂液密度1 10g/cm3ꎬ破裂压力梯度每100m1 80MPaꎬ井底破裂压力140MPaꎮ计算用开发管柱结构为:ø114 3mmˑ12 7mm(气密扣)ˑ2300m+ø114 3mmˑ7 37mm(气密扣)ˑ4800mꎮ环空液体密度611 ㊀㊀㊀石㊀油㊀机㊀械2023年㊀第51卷㊀第2期为1 15g/cm3ꎬ地层压力系数取低值ꎬ套管控制抗内压安全系数为1 41(2123m)ꎮ图1㊀假设的井筒温度分布曲线Fig 1㊀Assumedwellboretemperaturedistribution1 2㊀模拟计算条件与方法为了分析钛合金油管对管柱力学的影响ꎬ管柱结构方面假设最内层套管规格为ø177 8mmˑ11 51mmꎬ在套管内设计了3种油管柱结构方案ꎬ如图2所示ꎮA方案为全部使用钢制油管ꎬ上部2300m为ø114 3mmˑ12 7mm规格油管ꎬ下部4800m为ø114 3mmˑ7 37mm规格油管ꎻB方案上部2300m为ø114 3mmˑ12 7mm规格752MPa钢级的钢制油管ꎬ下部4800m为ø114 3mmˑ7 37mm规格同等强度的钛合金油管ꎻC方案油管柱规格与A方案相同ꎬ但全部使用同等强度的钛合金油管ꎮ图2㊀计算用开发管柱结构Fig 2㊀Productiontubingstringschemesforcomputation利用Matlab(2017)b版软件建立3种管柱方案的有限元模型ꎮ由于建模的管柱具有超长细比特征ꎬ所以对模型做如下假设:①管柱质量分布均匀且各向同性ꎻ②管柱是完全弹性的ꎻ③管柱变形属于小变形ꎻ④管柱截面不发生翘曲ꎻ⑤井筒的截面为圆形ꎮ取固定于地面井口的整体坐标系为O-XYZꎬ原点O为井口ꎬX轴沿重力方向为正ꎻY轴指向正北方向ꎻZ轴指向正东ꎮ固定于钻柱上的单元局部坐标系为O-XYZ(X轴沿钻柱轴线的切向方向为正ꎬY轴沿主法线方向)ꎮ三维空间梁单元及坐标系见图3ꎮ图3中标出了节点i的载荷(FixꎬFiyꎬFiz)与相应方向的力矩(MixꎬMiyꎬMiz)ꎬ节点j的位移(ujxꎬujyꎬujz)及相应方向的扭转(θjxꎬθjyꎬθjz)ꎮ图3㊀空间梁单元及坐标系Fig 3㊀Spatialbeamelementandthecoordinatesystem在有限元模型建立方面ꎬ首先将整体管柱离散为有限个单元ꎬ建立管柱单元的三维力学有限元模型ꎬ再形成管柱整体的三维力学有限元模型ꎮ细长钻柱在井下处于静力平衡状态ꎬ其平衡方程为:Λσ+f=0(1)式中:σ为应力分量矩阵ꎬPaꎻf为体积力向量ꎬN/m3ꎻΛ为微分算子ꎮ几何方程为:ε=ΛTu(2)式中:u为位移分量矩阵ꎬmꎻε为应变分量矩阵ꎬ无量纲ꎮ物理方程为:σ=Dε(3)式中:D为弹性矩阵ꎬPaꎮ由哈密尔顿变分原理得到单元的力平衡矩阵方程[20]:(KeL+KeN)ue=Fe(4)式中:KeL㊁KeN㊁Fe分别为单元的线性刚度矩阵㊁非线性刚度矩阵和外力矩阵ꎬPaꎻue为位移分量矩阵ꎮ在管柱动力学计算中ꎬ使用弹性动力学的Hamilton原理[21]ꎬ在满足位移边界约束的情况下ꎬ弹性体由t1时刻到t2时刻的运动状态的所有可能运动中ꎬ弹性体的真实运动使Hamilton作用量泛函取驻值ꎬ即:δʏt2t1(T-E-W)dt=0(5)式中:δ为变分符号ꎻT为弹性体的动能ꎬJꎻE为711 2023年㊀第51卷㊀第2期胡芳婷ꎬ等:高温高压天然气开采用钛合金油管柱力学分析㊀㊀㊀弹性体的势能ꎬJꎻW 为弹性体所受的保守力所做的功ꎬJꎮ用Euler ̄Bernoulli梁单元对管柱离散后ꎬ梁单元的位移包括平动位移和转动位移ꎮ相应地ꎬ其动能也包含平动动能和转动动能2部分ꎮ梁单元平动速度v可以用单元轴线的运动表示为:v=u•oI+v•oJ+w•oK(6)式中:u•o㊁v•o㊁w•o分别为梁单元轴线的速度ꎬm/sꎻI㊁J和K分别为井眼坐标系X㊁Y和Z轴的单位矢量ꎮ据此ꎬ梁单元的平动动能Tt可以表示为:Tt=12ʏvρu•o()2+v•o()2+w•o()2[]dV=12ʏle0ρAu•o()2+v•o()2+w•o()2[]dx(7)式中:ρ为管柱密度ꎬkg/m3ꎻle为梁单元的长度ꎬmꎻA为梁单元横截面面积ꎬm2ꎻV为梁单元的体积ꎬm3ꎮ梁单元的势能(又称应变能)可以根据管柱受力变形后的应力和应变表示为:E=12ʏVσTεdV(8)式中:应力矢量σ=σxxꎬσyyꎬσzzꎬτxyꎬτxzꎬτyz[]TꎬPaꎻ应变矢量ε=εxxꎬεyyꎬεzzꎬγxyꎬγxzꎬγyz[]Tꎮ对梁单元做功的外力主要有重力㊁不平衡力以及液体的黏性阻力ꎮ梁单元所受重力做功可以表示为:Wg=ʏle0qxuo-qyvo()dx(9)式中:Wg为重力功ꎬJꎻqx㊁qy为X轴和Y轴上的动量ꎬkg/sꎮ在梁单元的动能㊁势能和外力项的表达式基础上ꎬ利用形函数对梁单元的连续位移进行插值后ꎬ推导出钻柱动力学有限元方程ꎬ推导后写成矩阵的形式为:MeU••e+CeU•e+KeUe=Fe(10)式中:U••e㊁U•e㊁Ue分别为单元节点的广义加速度(m/s2)㊁广义速度(m/s)和广义位移(m)矢量ꎻFe为广义力矢量ꎬNꎻMe㊁Ce㊁Ke分别为单元质量矩阵(kg)㊁阻尼矩阵(kg/s)和刚度矩阵(kg/s2)ꎮ边界条件方面ꎬ在井口和7100m深封隔器处对管柱分别进行全约束ꎬ计算静力学时选取井口温度为16ħꎬ选取封隔器处温度为160ħꎬ其余部分的井筒温度按照图1的数据进行设定ꎮ封隔器坐封后管柱外环空保护液密度为1 15g/cm3ꎬ生产时按日产气量8ˑ105m3计算ꎬ井口流压为68MPaꎬ无背压ꎬ井口温度为125ħꎮ为了简化计算ꎬ模拟工况计算时所选取的钢制油管和钛合金油管材料强度均设定为758MPaꎮ考虑到升温对材料强度的影响ꎬ按照高温拉伸试验结果ꎬ设定钢制油管强度在150ħ时下降10%ꎬ为682MPaꎻ200ħ时强度下降13%ꎬ为660MPaꎮ同样ꎬ钛合金材料在150和200ħ时的强度分别为608和558MPaꎮ材料其他性能ꎬ如热膨胀系数等如表1所示ꎮ采用软件内置的材料模型ꎬ在计算时自动带入ꎮ然后分别计算3种管柱方案的静力学㊁动力学及管柱屈曲ꎮ表1㊀计算用油管柱材料特性2㊀结果及讨论2 1㊀3种管柱结构静力学分析对3种管柱结构加内㊁外压力载荷后的轴向受力进行分析ꎬ结果如图4所示ꎮ其中正值为拉应力ꎬ负值为压应力ꎮ由图4可知:全钢管柱A方案中井口和封隔器处的拉应力均为最大ꎻ当采用下半部为钛合金油管的B方案时ꎬ井口和封隔器处的应力均有所降低ꎻ当管柱全部使用钛合金油管的C方案时ꎬ轴向载荷最低ꎮ这主要是由于钛合金材料的密度较低ꎬ由此带来了管柱自重降低的效果ꎮ同时由图4还可以发现ꎬ钛合金油管对管柱的受力中和点也有较大影响ꎮ3种方案中ꎬ中和点从A方案的井下4858m处降低到C方案的井下5669m处ꎮ图4㊀加钛合金后管柱轴向力变化对比Fig 4㊀Axialforcevariationafterapplicationsoftitaniumalloys811 ㊀㊀㊀石㊀油㊀机㊀械2023年㊀第51卷㊀第2期模拟日产8ˑ105m3天然气时的生产工况ꎬ据此分析井口的安全系数ꎬ结果如图5所示ꎮ由图5可知:A方案的全钢油管柱在8ˑ105m3/d产量时井口三轴安全系数为1 868ꎻB方案中8ˑ105m3/d产量时井口三轴安全系数为1 898ꎻC方案的管柱结构ꎬ在8ˑ105m3/d生产时井口三轴安全系数为1 964ꎮ可以看出ꎬ随着钛合金管柱使用量的增加ꎬ井口的安全系数随之增大ꎮ图5㊀3种方案管柱结构井口安全系数对比(日产量8ˑ105m3)Fig 5㊀Comparisonofwellheadsafetyfactorsforthethreetubingstringschemes(dailygasproduction=8ˑ105m3)㊀㊀图6为模拟日产8ˑ105m3天然气时3种管柱方案井底的三轴㊁抗拉及抗内压安全系数的对比图ꎮ图6㊀3种管柱结构的三轴㊁抗拉和抗压安全系数对比Fig 6㊀Comparisonoftriaxialꎬtensileandcollapsestrengthsafetyfactorsforthethreetubingstringschemes㊀㊀由图6可知ꎬ随着钛合金管柱用量的不断增加ꎬ抗拉及三轴安全系数也随之增大ꎬ而抗内压安全系数基本保持不变ꎮ2 2㊀3种管柱结构动力学分析从2 1节的分析中可以看出ꎬ将钢制管柱部分或者全部更换为钛合金管柱后ꎬ管柱中和点位置将发生下移ꎮ但是在实际生产中ꎬ由于高压天然气产流的冲击作用ꎬ管柱在复杂受力下产生高速震颤ꎬ受力变化不同ꎬ动力学作用不同ꎬ需要对其进行动力学分析ꎮ本文仍按照模拟日产气8ˑ105m3的工况ꎬ计算油管柱不同振动时间下的模态和振型ꎬ分析油管柱的振动姿态随着时间t的变化而产生的复合效果ꎬ分析结果如图7所示ꎮ图7㊀3种方案管柱结构的振动轴向力对比Fig 7㊀Comparisonofvibratingaxialforcesforthethreetubingstringschemes911 2023年㊀第51卷㊀第2期胡芳婷ꎬ等:高温高压天然气开采用钛合金油管柱力学分析㊀㊀㊀㊀㊀由图7可知ꎬ管柱振动使得油管柱的轴向力分布发生了变化ꎬ相比于全钢管柱ꎬ部分或者全部更换为钛合金管柱后ꎬ轴向应力发生了显著下降ꎬ同时中和点位置也发生了变化ꎮA方案中的油管中和点深度变化范围为4265~7016mꎬ而另外2个方案中的中和点深度变化范围逐渐减小ꎬ甚至在部分时刻(见图7c中t=6 0s㊁t=7 5s和t=8 5s时)ꎬ由于多阶振动的耦合效应ꎬ使得这些时刻瞬间管柱全部处于拉伸状态ꎬ管柱结构无中和点ꎬ这种改变会极大地改善中和点附近螺纹接头的受力状态ꎬ减小螺纹密封失效的载荷因素ꎬ有利于油管柱结构和密封的完整性ꎮ对中和点处的Mises应力进行分析ꎬ结果如图8所示ꎮ由图8可知:油管柱在中和点处承受交变应力ꎬ在3种油管结构中ꎬA方案全钢油管柱的中和点处的应力交变幅度最大ꎬ达到42 82MPaꎬ更换钛合金管后油管柱中和点处的应力交变幅度得到了降低ꎻB方案中管柱应力交变幅度降到16 05MPaꎻC方案中管柱中和点处应力幅度变化约为17 82MPaꎮ分析认为ꎬ由于钛合金密度的减小ꎬ有效地减小了管柱的载荷ꎬ所以在中和点处的Mi ̄ses应力交变幅度得到了有效降低ꎮMises应力交变幅度的降低有利于延长其疲劳寿命和提高管柱的安全性ꎮ图8㊀3种方案管柱结构的中和点处Mises应力交变对比Fig 8㊀ComparisonofalternatingMisesstressatneuralpointsforthethreetubingstringschemes2 3㊀钛合金油管对管柱振动位移的影响生产管柱在井底受到多重复杂交变应力的影响ꎬ易发生屈曲变形ꎬ已知屈曲问题是引发油井管柱在井下发生失效的主要因素之一[21-22]ꎬ而造成屈曲的因素中振动位移的影响较大ꎬ因此对比研究钢管㊁钛合金油管对管柱振动位移的影响至关重要ꎮ图9㊀3种方案管柱结构的油管柱横向位移对比Fig 9㊀Comparisonoftubingstringlateraldisplacementforthethreetubingstringschemes图9为基于日产量8ˑ105m3天然气的工况ꎬ3种不同管柱结构处于复杂受力下的高速震颤而带来的管柱横向位移ꎮ由图9可知ꎬA方案中的全钢油管柱在X方向的最大位移为20 24mmꎬ在Y方向的最大位移为20 24mmꎮ这是由于计算时设定的外层套管内径为154 78mmꎬ此时油管柱与外层套管之间的间隙最大为20 24mmꎬ所以A方案中的钢制油管柱与外层套管井筒发生了接触ꎬ如图9a所示ꎬ此时由于井壁的干涉ꎬ油管柱在振动的过程中对管柱及螺纹的伤害较大ꎻ当使用B方案底部加钛合金油管柱后ꎬ油管柱沿X方向最大位移为20 24mmꎬY方向最大位移为5 16mmꎬX方向与井壁接触ꎻ使用全部为钛合金油管的C方案时ꎬ021 ㊀㊀㊀石㊀油㊀机㊀械2023年㊀第51卷㊀第2期油管柱X方向最大位移为11 56mmꎬY方向最大位移为0 29mmꎬX和Y方向均未与井壁接触ꎮ上述结果表明钛合金油管柱可以有效地缓解管柱的振动幅度ꎬ改善管柱的受力状态ꎮ图10为天然气日产量8ˑ105m3时ꎬ3种管柱结构方案的弯矩计算结果ꎮ由图10可知ꎬA方案中的全钢油管最大弯矩值为12kN mꎬ底部加钛合金的B方案油管柱最大弯矩值为4 9kN mꎬ全部使用钛合金的C方案油管柱最大弯矩值仅为0 64kN mꎬ表明钛合金油管弯矩极限得到了明显改善ꎮ图10㊀加钛合金管柱后油管柱弯矩对比Fig 10㊀Tubingstringbendingmomentvariationafterapplicationsoftitaniumalloys3㊀结㊀论本文通过有限元分析ꎬ模拟我国典型区块高温高压井生产工况下ꎬ3种方案油管柱结构的管柱静力学和动力学性能ꎬ并分析钛合金油管柱的使用对管柱振动状态方面的改善情况ꎮ得出以下结论:(1)使用钛合金油管作为生产管柱后ꎬ气井生产时油管柱的安全系数均增大ꎬ井口处轴向拉力减小ꎬ全部使用钛合金油管的完井方案比下半部使用钛合金油管的完井方案具有更低的载荷和更大的安全系数ꎬ在8ˑ105m3/d的产气情况下其安全系数可达1 964ꎮ(2)管柱振动使得油管柱的轴向力分布和Mi ̄ses应力分布发生了变化ꎬ中和点位置也发生了变化ꎮ含有钛合金或全钛合金油管柱部分时刻管柱内无中和点ꎬ管柱处于拉伸状态ꎮ(3)增加钛合金材质后的油管柱屈曲状态得到了改善ꎬ使用和全部使用钛合金管柱ꎬ可使管柱的横向位移和弯矩均减小ꎬ使套管与井管之间轻接触或不接触ꎬ说明增加钛合金管柱有利于改善油管使用时的振动状态ꎮ(4)在高温高压油气开采中使用钛合金管柱ꎬ可以有效地降低管柱载荷㊁增大安全系数ꎬ改善振动ꎬ提高管柱的安全可靠性和完整性ꎮ参㊀考㊀文㊀献[1]㊀谷坛ꎬ霍绍全ꎬ李峰.酸性气田防腐蚀技术研究及应用[J].石油与天然气化工ꎬ2008ꎬ37(增刊1):63-72.GUTꎬHUOSQꎬLIF.Researchandapplicationofanti ̄corrosiontechnologyinsourgasfields[J].Chemi ̄calEngineeringofOilandGasꎬ2008ꎬ37(S1):63-72.[2]㊀叶登胜ꎬ任勇ꎬ管彬ꎬ等.塔里木盆地异常高温高压井储层改造难点及对策[J].天然气工业ꎬ2009ꎬ29(3):77-79.YEDSꎬRENYꎬGUANBꎬetal.Difficultyandstrategyofreservoirstimulationonabnormal ̄hightem ̄peratureandhighpressurewellsintheTarimbasin[J].NaturalGasIndustryꎬ2009ꎬ29(3):77-79.[3]㊀杜伟ꎬ李鹤林.海洋石油装备材料的应用现状及发展建议(上)[J].石油管材与仪器ꎬ2015ꎬ1(5):1-7.DUWꎬLIHL.Applicationstatusanddevelopmentsuggestionsonoffshoreoilequipmentmaterials(partI)[J].PetroleumTubularGoods&Instrumentsꎬ2015ꎬ1(5):1-7.[4]㊀SCHUTZRWꎬWATKINSHB.Recentdevelopmentsintitaniumalloyapplicationintheenergyindustry[J].MaterialsScienceandEngineering:Aꎬ1998ꎬ243(1/2):305-315.[5]㊀刘强ꎬ宋生印ꎬ李德君ꎬ等.钛合金油井管的耐腐蚀性能及应用研究进展[J].石油矿场机械ꎬ2014ꎬ43(12):88-94.LIUQꎬSONGSYꎬLIDJꎬetal.Researchandde ̄velopmentoftitaniumalloyOCTGapplicationinenergyindustry[J].OilFieldEquipmentꎬ2014ꎬ43(12):88-94.[6]㊀SCHUTZRW.EffectiveutilizationofTitaniumalloysinoffshoresystems[C]ʊOffshoreTechnologyConfer ̄ence.HoustonꎬTexas:OTCꎬ1992:OTC6909-MS.[7]㊀KANERDꎬCRAIGSꎬVENKATESHA.Titaniumal ̄loysforoilandgasservice:areview[C]ʊCORRO ̄SION2009 AtlantaꎬGeorgia:NACEꎬ2019:NACE09078.[8]㊀KANERDꎬSRINIVASANSꎬCRAIGBꎬetal.A121 2023年㊀第51卷㊀第2期胡芳婷ꎬ等:高温高压天然气开采用钛合金油管柱力学分析㊀㊀㊀comprehensivestudyoftitaniumalloysforhighpressurehightemperature(HPHT)wells[C]ʊCORROSION2015 DallasꎬTexas:NACEꎬ2015:NACE2015-5512.[9]㊀SCHUTZRW.Performanceofruthenium ̄enhancedal ̄pha ̄betatitaniumalloysinaggressivesourgasandgeo ̄thermalwellproduced ̄fluidbrines[C]ʊCorrosion97NewOrleansꎬLouisiana:NACEꎬ1997:NACE97032. [10]㊀GARTLANDPOꎬBJONASFꎬSCHUTZRW.Pre ̄ventionofhydrogendamageofoffshoretitaniumalloycomponentsbycathodicprotectionsystems[C]ʊCor ̄rosion97 NewOrleansꎬLouisiana:NACEꎬ1997:NACE97477.[11]㊀SCHUTZRWꎬLINGENEV.CharacterizationoftheTi-6Al-4V-Rualloyforapplicationintheenergyin ̄dustry[C]ʊProceedingsofEurocon 97Congress.TapirꎬNorway:[s.n.]ꎬ1997:259-265. [12]㊀SCHUTZRWꎬJENABCꎬWALKERHW.Compa ̄ringenvironmentalresistanceofUNSR55400alloytu ̄bularstootheroilfieldtitaniumalloys[C]ʊCORRO ̄SION2016 VancouverꎬBritishColumbiaꎬCanada:NACEꎬ2015:NACE2016-7328.[13]㊀刘强ꎬ惠松骁ꎬ宋生印ꎬ等.油气开发用钛合金油井管选材及工况适用性研究进展[J].材料导报ꎬ2019ꎬ33(5):841-853.LIUQꎬHUISXꎬSONGSYꎬetal.Materialsselec ̄tionoftitaniumalloyOCTGusedforoilandgasexplo ̄rationandtheirapplicabilityunderservicecondition:asurvey[J].MaterialsReportsꎬ2019ꎬ33(5):841-853.[14]㊀刘强ꎬ惠松骁ꎬ汪鹏勃ꎬ等.油气开采用钛合金石油管材料耐腐蚀性能研究[J].稀有金属材料与工程ꎬ2020ꎬ49(4):1427-1436.LIUQꎬHUISXꎬWANGPBꎬetal.Anti ̄corrosionpropertiesoftitaniumalloyOCTGusedinoilandgasexploration[J].RareMetalMaterialsandEngineer ̄ingꎬ2020ꎬ49(4):1427-1436.[15]㊀刘强ꎬ申照熙ꎬ李东风ꎬ等.钛合金油套管抗挤毁性能计算与试验[J].天然气工业ꎬ2020ꎬ40(10):94-101.LIUQꎬSHENZXꎬLIDFꎬetal.Calculationandexperimentalstudiesonthecollapsestrengthoftitani ̄umalloytubingandcasing[J].NaturalGasIndus ̄tryꎬ2020ꎬ40(10):94-101.[16]㊀李永林ꎬ朱宝辉ꎬ王培军ꎬ等.石油行业用TA18钛合金厚壁管材的研制[J].钛工业进展ꎬ2013ꎬ30(2):28-31.LIYLꎬZHUBHꎬWANGPJꎬetal.ResearchonprocessofTA18titaniumalloythick ̄walledtubeusedinoilindustry[J].TitaniumIndustryProgressꎬ2013ꎬ30(2):28-31.[17]㊀孟祥林ꎬ何佳持.攀钢钛合金油管有望填补国内市场空白[N].世界金属报导.2014-12-09(2).MENGXLꎬHEJC.Pangang'stitaniumalloytubingisexpectedtofillthegapinthedomesticmarket[N].WorldMetalsReport.2014-12-09(2).[18]㊀杨冬梅.抗腐蚀钛合金油管井首次在超深高含硫气井应用[J].钢铁钒钛ꎬ2015ꎬ36(3):15.YANGDM.Thefirstapplicationofcorrosion ̄resistanttitaniumalloytubingwellsinultra ̄deepandhigh ̄sulfurgaswells[J].IronSteelVanadiumTitaniumꎬ2015ꎬ36(3):15.[19]㊀王勖成.有限单元法[M].北京:清华大学出版社ꎬ2003.WANGXC.Finiteelementmethod[M].Beijing:TsinghuaUniversityPressꎬ2003.[20]㊀陈锋.复杂载荷条件下钻具接头三维应力特征分析[D].上海:上海大学ꎬ2014.CHENF.Three ̄dimensionalstressanalysisoftooljointsundercomplexloads[D].Shanghai:ShanghaiUniversityꎬ2014.[21]㊀高国华ꎬ张福祥ꎬ王宇ꎬ等.水平井眼中管柱的屈曲和分叉[J].石油学报ꎬ2001ꎬ22(1):95-99.GAOGHꎬZHANGFXꎬWANGYꎬetal.Bucklingandbifurcationofpipesinhorizontalwells[J].ActaPetroleiSinicaꎬ2001ꎬ22(1):95-99.[22]㊀彭建云ꎬ周理志ꎬ阮洋ꎬ等.克拉2气田高压气井风险评估[J].天然气工业ꎬ2008ꎬ28(10):110-112ꎬ118.PENGJYꎬZHOULZꎬRUANYꎬetal.Riskevalu ̄ationofhigh ̄pressuregaswellsinthekela-2gasfield[J].NaturalGasIndustryꎬ2008ꎬ28(10):110-112ꎬ118㊀㊀第一作者简介:胡芳婷ꎬ女ꎬ高级工程师ꎬ生于1980年ꎬ2005年毕业于西安石油大学材料加工工程专业ꎬ现从事石油钻井工程科研工作ꎮ地址:(841000)新疆库尔勒市ꎮ电话:(0996)21739031ꎮE ̄mail:huft ̄tlm@petrochi ̄na com cnꎮ通信作者:刘强ꎬE ̄mail:liuqiang030@cnpc com cnꎮ㊀收稿日期:2022-08-25(本文编辑㊀宋治国)221 ㊀㊀㊀石㊀油㊀机㊀械2023年㊀第51卷㊀第2期。
纳米二氧化钛的应用研究进展
![纳米二氧化钛的应用研究进展](https://img.taocdn.com/s3/m/a25d282fa9114431b90d6c85ec3a87c240288ad6.png)
太阳光中的紫外线波长短,蕴含着很强的能量, 因而破坏力巨大,人体长时间接受紫外线照射,会使 皮肤受到伤害,轻者晒伤皮肤,重者产生炎症乃至皮 肤癌。纳米二氧化钛除了能透过可见光,还对紫外 线有反射、散射和吸收作用。实验已经证明,纳米二 氧化钛对紫外线有阻隔作用,在中波区以吸收为主, 在长波区以散射为主。对纳米二氧化钛来说,粒径 为10 nm〜60 nm屏蔽紫外线的效果最佳,因此添 加到化妆品中的纳米二氧化钛要求粒径就处在这个 范围,另外,纳米二氧化钛的分散性、透明性等性能 对屏蔽紫外线也有一些影响。纳米二氧化钛没有毒 性、性质稳定,不会对皮肤造成刺激,添加到化妆品 中防晒效果良好[⑶。纳米二氧化钛的优良特性,使 其在化妆品行业中广泛应用,很受青睐,潜力巨大。 2.4光催化降解污染物
1纳米材料的结构及性质
1.1化学反应性质 纳米材料的粒径为纳米级,性质非常活泼,有很
钛纳米涂层换热器管束在大型冷换设备中的应用
![钛纳米涂层换热器管束在大型冷换设备中的应用](https://img.taocdn.com/s3/m/c5d16a8b185f312b3169a45177232f60dccce77a.png)
钛纳米涂层换热器管束在大型冷换设备中的应用
王巍
【期刊名称】《石油化工腐蚀与防护》
【年(卷),期】2024(41)3
【摘要】针对石油化工装置中的特大型水冷器与冷凝器的设备防腐,目前主要是采用热固化涂料对换热器管束进行防腐涂装。
经过实践证明,防腐蚀涂层通常使用
2~3 a便会出现失效问题,其使用寿命达不到设计要求。
某0.6 Mt/a甲醇深加工装置丙烯制冷剂冷凝器循环水侧管束的防腐蚀涂层已使用3 a,重点对该管束涂层的失效原因进行分析,认为其失效原因主要有两个,一是涂层材料与涂装的问题;二是涂层表面存在水垢层,造成垢下腐蚀,使换热管热阻增加,冷凝效果下降。
根据换热器管束防腐涂层存在的问题,设计了一种节能防腐钛纳米涂层管束。
此钛纳米涂料可常温固化,有利于现场涂装施工。
管束经涂装后可以连续安全使用10 a以上,在换热器管束防腐蚀技术中,钛纳米涂层是目前综合效益最好的一种。
【总页数】6页(P45-50)
【作者】王巍
【作者单位】中国石油大庆石化公司
【正文语种】中文
【中图分类】TG1
【相关文献】
1.钛纳米聚合物涂层技术在炼油厂换热设备中的应用
2.钛纳米聚合物涂层在冷却器管束上的应用
3.钛纳米涂层技术解决换热设备管束内表面腐蚀
4.“节能防腐钛纳米涂层换热管束的研制”项目通过鉴定
5.钛纳米涂层技术解决管束涂层高温固化的施工难题
因版权原因,仅展示原文概要,查看原文内容请购买。
特种材料在石化领域的应用
![特种材料在石化领域的应用](https://img.taocdn.com/s3/m/a3fe6cc52cc58bd63186bd92.png)
室温
0.46
室温
0.63
室温
0.10
室温
0
65
0.010
45
室温
62
室温
10
190
20
190
0.5
35
100
0.0025 0.0015 0.05 0.33 0.001 0.009
介质 HCl(通空气)
HCl(通氮气)
1
35
60
100
2
60
100
0.003 0.004 0.46 0.016 6.9
浓度 (﹪)
1
材料名称 工业纯钛
Ti-32Mo Ti-0.2Pd Ti-0.3Mo-主要成分和使用特性
主要成分
使用特性
Ti-99%以上
耐湿氯气、多种氯化物,硝酸(除含水极低)醋酸及
各种氧化性介质腐蚀,耐含氧化剂的还原性酸、耐硫
化物及海水腐蚀;不推荐在强还原性条件下使用。
3.175
35
9
HCl5%+CuSO40.05%
HCl5%+CuSO41%
HCl5%+CuSO40.05% HCl5%+CuSO40.5% HCl10%+CuSO40.05% HCl10%+CuSO41% HCl10%+CuSO40.05% HCl10%+CuSO40.5% HCl5%+ CrO40.5%
5
7.5 10
15 20 37 1
3
5 7.5 10 15 20
(续)
温度 腐蚀率(mm/a) (℃)
35
0.009
60
1.07
35
0.28
HTH 鉴定演示文稿
![HTH 鉴定演示文稿](https://img.taocdn.com/s3/m/eb274fcf58f5f61fb73666d3.png)
《涂料工业》2006年第36卷2期(总第259期)介绍,刘玉琴,冯燕桃,
彭轩等人的调查研究表明(见表-1所示):地下深层采油管道, 受到地质构造和油层条件的影响,腐蚀非常严重,地下油管的平
均腐蚀速率高达1.5~3.3mm/a,点蚀速率高达5~15mm/a,腐蚀
状况是3~6个月穿孔,6~12个月就需要大修,1~2年即报废。采油 用地下油管的平均寿命在9~18个月不等,最短的仅3个月。深层
② 研磨介质 不锈钢球: Ф20mm、Ф15mm、Ф10mm、Ф5mm
四种;比例:15∶20∶30∶35(wt,%)。
③ 涂料原料 纳米有机钛齐聚物(自制基料);E-20环氧树脂; BYK-助剂;Z-401偶联剂、L108F、L108F、L881B助剂、SF908
复合锌粉、SF808铬酸锌、SF508铬酸锶、云母氧化铁灰等防锈颜
新产品简介
1. 油气田井用管道特种防腐涂料(钛纳米高分子合金涂料)—
—详见《特种涂料产品手册》HP5230NK油气井管道特种防 腐涂料01页介绍,此略。
2. 油气田埋地输送管道特种防腐涂料(纳米有机特种防腐蚀钛
涂料)——详见《特种涂料产品手册》HP5230N油气井管道特 种防腐涂料 02 页和 44 页。
替代不锈钢,解决工业腐蚀的难题,又能大大减低制造成本,
机高分子化学接枝的方法制备纳米有机钛杂化高分子齐聚物,并
以此作为基体树脂开发系列特种涂料产品,为工业防腐蚀领域开
辟一条新途径。 2 实验部分
2.1 主要设备及原料
2.1.1 主要设备 ① SW-2密闭式行星球磨反应器; ② LBM-T1型立式分散机; ③ LBM-T2篮式砂磨机。 2.1.2 主要原料 ① 基体原料 金属钛粉,规格:≥400目,纯度: Ti≥99.5%(广州有 色金属研究院提供);E44环氧树脂(市售);(Al2O2)nx- 分散液(自 制); JLY-121增韧剂(锦西化工研究院提供); PBT催化剂、SF570、WX-311、WX-411助剂(Siflon化工材料有限公司提供)。
材料科学中的新材料研究与创新应用
![材料科学中的新材料研究与创新应用](https://img.taocdn.com/s3/m/53831b540a1c59eef8c75fbfc77da26925c596b7.png)
材料科学中的新材料研究与创新应用近年来,材料科学领域不断涌现出新材料的研究和创新应用,这些新材料不仅拥有更好的性能,还能满足人们不断变化的需求。
本文将深入探讨材料科学中的新材料研究与创新应用。
一. 新型材料的研究新型材料是指相对于传统材料而言,产生了新组分、新结构、新组织或具有新功能的材料。
在新型材料的研究方面,现代科技手段,如纳米技术、生物技术和计算机仿真等技术,起到了至关重要的作用。
1. 纳米材料纳米材料是指至少一维尺寸在纳米级别的材料,具有高比表面积和尺寸效应等特性。
纳米材料在许多领域中都有巨大的应用前景,例如纳米电子、纳米传感器、纳米催化剂等方面。
近年来,许多新型纳米材料成为材料科学研究的热点,如石墨烯、纳米金、纳米银等,这些材料均因其独特的物理、化学、生物和机械性能得到了广泛应用。
2. 高分子材料高分子材料是由高分子化合物制成的材料,可以广泛应用于材料制造、医学、电子、环保等领域。
高分子材料的研究包括合成高分子材料、改进高分子化学结构、高分子成型工艺和高分子加工工艺等,其主要应用领域包括塑料、纤维、涂料和胶水等。
近年来,以聚酰亚胺、聚芳醚、高性能聚酰胺等为代表的高分子材料,因其拥有优异的热力学、力学和电学性能而被广泛应用。
二. 新型材料的应用新材料的研究不仅在理论层面具有重要价值,更为重要的是应用。
在工业化、信息技术和医疗健康等领域,新材料的应用正在逐步展开。
1. 信息技术领域信息技术领域需要的新材料包括电子材料、光学材料、磁性材料和超导材料等,这些材料扮演着实现高性能计算、高速数据传输和存储、高品质显示等重要角色。
例如,基于石墨烯、硒化钼等纳米材料的柔性电子元件已被广泛应用于高灵敏传感器、用于人体生物医学监测和医疗方面。
2. 医疗健康领域医疗健康领域需要的新材料包括生物材料和医疗材料。
生物材料包括人工血管、人造骨骼和织物修复材料等,主要用于人体内植入物和组织修复。
医疗材料包括医用纤维、医用胶水和医用粘合剂等,主要用于医疗设备的制造和治疗替代品的生产。
输油气管道内减阻多功能防腐涂层的开发与研究
![输油气管道内减阻多功能防腐涂层的开发与研究](https://img.taocdn.com/s3/m/0c8970020166f5335a8102d276a20029bd64632f.png)
输油气管道内减阻多功能防腐涂层的开发与研究岑日强,张驰(广东健玺表面工程技术有限公司,广州511455)Development of Inner Drag Reduction Coatings with Multi-Functional Anticorrosive Performance for Oil andGas Transport Pipeline摘要:介绍了以纳米有机钛聚合物为基料、通过硅氟材料的改性,研制了钛基氟硅高分子合金涂料的开发过程,并通过对材料结构的表征和涂层性能的研究,证明了该涂层材料具有超疏水表面、不沾污、不结垢、耐高温、导静电、防腐蚀等多种功能,减阻效果显著,是保障石油与天然气输送管道安全运行必不可少的新型防护涂层材料。
关键词:内减阻涂料;钛基氟硅高分子合金;红外特征图谱表征;多功能防腐涂层中图分类号:TQ630.7文献标识码:A文章编号:2096-8639(2020)11-0007-06Cen Riqiang Zhang Chi(Guangdong Jianxi Surface Engineering Technology Co.,Ltd.,Guangdong 511455,China )Abstract:The titanium-based fluorosilicon high molecular alloy coatings based on nano-organictitanium polymer are prepared via the modification of silicon -fluorine material.The structure and film performance of the prepared coating material are characterized,showing that the coating material has good properties including super hydrophobic surface,fouling resistance,scaling resistance,high temperature resistance,static electricity conduction and anticorrosion,etc.It is a novel protective coating especial for the safe operation of oil and gas pipelines.Keywords:inner drag reduction coating ;Ti-based fluoro-silicon polymer alloy ;characterization of infrared characteristic spectrum ;multi-functional anticorrosive coating0引言石油与天然气管道内减阻涂层的防护应用,是从20世纪60、70年代欧美国家最早提出并实施的一项先进技术。
科技计划申报书填写范例
![科技计划申报书填写范例](https://img.taocdn.com/s3/m/fbffe2a728ea81c758f578e8.png)
编号:技术领域:特别声明:为提高企业填写申报书的水平,本申报书仅供学习填写方法的参考资料,未经台山科技局同意,不得外传,否则,承担一切责任。
台山市科技计划项目申报(任务)书项目名称:特种耐腐蚀涂料在铝制品上的应用研究承担单位:推荐单位:申报日期:台山市科学技术局二00九年制承担单位基本情况表知识产权状况表申请项目基本情况表(一)申请项目基本情况表(二)申请项目基本情况表(三)一、立项依据申请项目基本情况表(三)一、立项依据申请项目基本情况表(三)一、立项依据申请项目基本情况表(四)二、研究开发内容、方法、技术路线申请项目基本情况表(四)二、研究开发内容、方法、技术路线申请项目基本情况表(五)三、工作基础和条件申请项目基本情况表(六)申请项目基本情况表(七)申请项目基本情况表(八)六、工作进度安排申请项目基本情况表(九)审核意见填表说明一、《申报书》各项内容实事求是,逐项认真填报。
图形、图像、框图、流程图、表格请用WORD档录入后作为附件一并上报。
二、推荐单位应对项目申报单位及《申报书》内容真实性负责。
三、市科技项目只接受单位申报,不接受个人申请。
项目的承担者是申报单位而非课题组,申报单位负责项目的具体实施,承担相应的权利和义务。
四、《申报书》采用A4纸,左侧装订。
五、填报内容应力求详尽,表达完整、准确,外来语要同时用原文和中文表达。
内容过于简单,不能说明项目情况者,视《申报书》无效。
六、填写合作单位,应征得对方同意,并表明合作的方式。
填写了合作单位,但没有盖合作单位章者,视《申报书》无效。
七、涉及国家安全、秘密的项目,申请另行处理。
八、附件清单中所列附件如果有请尽量提供,将作为审核项目的参考依据。
九、《申报书》及相关信息可从台山市特色产业网站()上阅览和下载。
十、填表参考信息(一)技术领域1.信息技术2.新材料3.光机一体化4.生物技术5.医药卫生6.农业7.资源与环保8.能源技术9.海洋技术10.其它(二)单位类型1.政府部门2.高等院校3.科研机构4.国有企业5.集体企业6.股份合作企业7.联营企业8.有限责任公司9.股分有限公司10.私营企业11.港澳台商投资企业12.外商投资企业13.其它(三)单位特性1.省市高新技术企业2.省软件企业3.已建有国家级研究机构4.已建有省级研究机构5.高新区内企业6.星火密集区内企业7.可持续发展试验区内企业8.专业镇内企业9.其它(四)项目阶段1.前期研究2.小试3.中试4.产业化(五)技术水平1.国际领先2.国际先进3.国内领先4.国内先进5.省内领先6.省内先进(六)课题活动类型1.应用研究2.试验发展3.研究与试验发展成果应用4.科技服务5.生产性活动。
高分子纳米复合材料研究进展_高分子纳米复合材料的制备_表征和应用前景
![高分子纳米复合材料研究进展_高分子纳米复合材料的制备_表征和应用前景](https://img.taocdn.com/s3/m/d8311823aaea998fcc220eeb.png)
编者按:纳米材料是当前材料科学研究的热点之一,涉及多种学科,具有极大的理论和应用价值,被誉为/21世纪最有前途的材料0,国内众多科研单位在此领域也作了大量工作,形成各自特有的研究体系。
本文(Ñ、Ò)就其中的高分子纳米复合材料,提出了作者的一些见解,供同行们共同探讨,以促进研究水平的提高,不断取得创新的成果。
高分子纳米复合材料研究进展*(I)高分子纳米复合材料的制备、表征和应用前景曾戎章明秋曾汉民(中山大学材料科学研究所国家教委聚合物复合材料及功能材料开放研究实验室广州510275)文摘综述了高分子纳米复合材料的发展研究现状,将高分子纳米复合材料的制备方法分为四大类:纳米单元与高分子直接共混(内含纳米单元的制备及其表面改性方法);在高分子基体中原位生成纳米单元;在纳米单元存在下单体分子原位聚合生成高分子及纳米单元和高分子同时生成。
介绍了高分子纳米复合材料的表征技术及其应用前景。
关键词高分子纳米复合材料,纳米单元,制备,表征,应用Progress of Polymer2Nanocomposites(I)Preparation,Characterization and Application of Polymer2NanocompositesZeng Rong Zhang Mingqiu Zeng Hanmin(Materials Science Institute of Z hongshan Uni versity,Labo ratory of Poly meric Co mpo si te&Functio nal Materials,The State Educational Commissi on of China G uangzhou510275)Abstract The progress of polymer2nanocomposites is revie wed.The preparation methods are classified into four categories:direc tly blending nano2units with polymer(including preparation and surface2modification of nano2units),in situ synthesizing nano2units in polymer matrix,in situ polymerizing in the presence of nano2units and simultaneously syn2 thesizing nano2units and polymer.The characterization and application of polymer2nanocomposites are also introduced.Key words Polymer2Nanocomposites,Nano2Unit,Preparation,Characterization,Application3高分子纳米复合材料的表征技术高分子纳米复合材料的表征技术可分为两个方面:结构表征和性能表征。
新材料在军工方面的研究现状和发展趋势
![新材料在军工方面的研究现状和发展趋势](https://img.taocdn.com/s3/m/ab8455e1998fcc22bcd10db7.png)
新材料在军工方面的研究现状和发展趋势摘要:随着现代军事科技的不断发展,促使各国对武器装备的性能提出了更高的要求。
由于军用新材料能够满足武器材料强韧化、轻量化、多功能化和高效化的发展要求,促使军工新材料的研究十分繁荣。
本文主要综述了国内外军用结构新材料和功能新材料的研究进展,并对未来军用新材料的研究趋势进行了总结。
关键词:军用新材料,钛合金,高强度钢,纳米隐身材料,磁性材料1 前沿新材料是指那些新出现或正在发展中的具有传统材料所不具备的优异性能的材料。
新材料的研制、开发与应用不仅构成对高技术发展的推动力,而且也成为衡量一个国家科技水品的高低的重要标志。
因此,新材料是技术革命与创新的基石,是社会现代化的先导。
现代高新技术对新材料的依赖越来越多,这使得发达国家和发展中国家都争相将新材料列为高新技术优先发展的领域和关键技术,各国都采取各种措施,力争抢占新材料技术的“制高点”[1]。
新材料的出现和应用又为国防安全提供了保证。
国防科一直都是高、精、尖技术的集合,新材料是高技术的先导和基础。
纳米材料出现使微型武器出现在战场,先进高分子材料出现使洲际导弹的出现成为可能,新型锂离子电池材料的出现让“无人机”出现在人们的视野,而非晶软磁合金材料大大提高了一些精密武器的工作环境。
由此可见,新材料也是军事工业发展的重要促进力量,是新型武器装备的物质基础, 也是当今世界军事领域的关键技术。
所以,对新材料在军工方面的研究现状总结和发展趋势的展望,对促进我国军事工业的发展有重大意义。
2 军用结构材料军用新材料按材料性能和用途可分为结构材料和功能材料两大类, 主要应用于航空工业、航天工业、兵器工业和船舰工业中。
结构材料主要是利用材料的力学和理化性能,以满足高强度、高刚度、高硬度、耐高温、耐磨、耐蚀和抗辐射等性能要求, 目前在军事领域应用的结构材料主要有以下几类。
2.1 先进金属结构材料2.1.1 变形镁合金变形镁合金有很高的比强度、比刚度和塑性,是航空航天领域中最有前途的金属结构材料之一,座舱架、吸气管、导弹舱段、壁板、蒙皮、直升机上机闸等大都采用镁理合金制件。
油田化学中纳米材料的应用综述-高分子材料论文-化学论文
![油田化学中纳米材料的应用综述-高分子材料论文-化学论文](https://img.taocdn.com/s3/m/dbbcbcf210a6f524cdbf8544.png)
油田化学中纳米材料的应用综述-高分子材料论文-化学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:介绍了纳米材料独特的尺寸大小、表面性能以及目前在油田实验研究中使用的纳米材料种类,分别从钻完井施工、压裂增产改造、提高采收率、油田废液处理等方面综述了纳米材料在油田化学工程中的研究现状,发现了纳米材料凭借其独特的物理化学性质可以有效提高油田开发效率、节约施工成本、减少储层伤害,是油田化学工程中应用前景极好的新型材料,展望了纳米材料在油田开发各个环节中的应用前景。
关键词:纳米材料; 油田化学; 钻井完井液; 压裂液; 提高采收率; 油田污水处理;Abstract:Introduced the unique size, surface properties of nanomaterials and the nanomaterials currently used in oilfield experimental research. Reviewed the research status of nanomaterials in oilfield chemical engineering from drilling and completion engineering,fracturing stimulation, EOR, oilfield waste liquid treatment and so on. Founded that nanomaterials with their unique physical and chemical properties can effectively improve oilfield development efficiency, save construction costs and reduce reservoir damage, and are promising new materials in oilfield chemical engineering. The prospect of the application of nanomaterials in all aspects of oilfield development in the future is put forward.Keyword:nanomaterials; oilfield chemistry; drilling and completion fluid; fracturing fluid; EOR; oilfield waste liquid treatment;纳米材料特指在材料的三维空间结构中至少有一维的尺度处于1~100nm,其极小的尺寸、极高的比表面积、极强的不饱和性,赋予了纳米材料诸多特有的性能:表面效应、体积效应、量子尺寸效应、宏观量子隧道效应、力学性能效应等[1,2,3]。
钛纳米重防腐涂料与普通防腐涂料比较
![钛纳米重防腐涂料与普通防腐涂料比较](https://img.taocdn.com/s3/m/32c5434826fff705cd170a84.png)
钛合金纳米重防腐涂料防腐机理与常规涂料比较钛合金纳米重防腐涂料表现出较常规重防腐涂料优异的耐酸、碱、盐、海水、油品的性能。
究其原因可能是多方面的,其中有些因素通过检测可以得到证实。
因此,我们在现有认识的基础上加以分析,与专家们探讨。
钛合金耐蚀性、钝化膜与阴极保护钛合金与钛正常处于钝化状态。
此时,它的表面由一层钝化膜保护。
钛合金钝化有三大特点:①强烈的钝化倾向②稳定电位范围宽③钝态下不易被Cl-破坏。
钛合金纳米也承袭了这种特性,只要涂层中钛合金纳米达到一定浓度,涂层也处于钝化状态,在各种腐蚀介质中可以维持极低的腐蚀电流,即腐蚀十分缓慢。
故在上述酸、碱、盐、海水中表现出长时间稳定特性。
钛合金耐蚀性显着特点是对氯化物、氧化性介质、海水有突出的耐蚀性能,被誉为“海洋金属”。
与之相反,大多数不锈钢对氯化物、海水敏感,点腐蚀、应力腐蚀在PPm级Cl-条件下可以发生。
因此,我们可以解释钛合金纳米涂层在氯化物、海水、部分酸中处于钝化状态,表现出优异的耐蚀性能。
在这种状态下,涂层对基层钢铁起着阴极保护作用。
只要钝化状态不破坏,钢板就不被腐蚀。
这也是我们选择钛合金纳米作为涂料活性添加剂的初衷。
纳米活性与化学键合纳米技术使材料的常规性能发生了“变异”而引起广泛的重视和研究,就钛合金纳米而言,我们通过检测其比表面积达到18㎡/g以上。
通过光电子能谱分析,发现其与C、H、O有化学键合信息,键合力的结合强度应明显高于化学吸附,更高于普通颜填料的吸附力和机械结合力。
钛合金纳米粒子高活性悬空键,与包覆树脂配位形成上述强有力的化学键合。
同时由于树脂的闭环打开,形成开环的羟基与醚键进一步与成膜树脂形成化学键合与吸附,并形成新的活性开环,与钢铁基面发生化学键合与吸附,这就大大改善了涂层附着力。
清华、北大的专家在产品鉴定会上,海军技术研究所通过检测均对钛合金纳米技术和具备高附着力这一特点给予很高评价。
网络结构与层障效应涂层内部“网络结构”是一种理想结构,因为常规涂层颜填料颗粒粗大,与成膜物质只是简单的物理结合和吸附,在高倍显微镜下可以观察到它们之间的微小间隙。
油田开发中的新型材料与应用技术研究
![油田开发中的新型材料与应用技术研究](https://img.taocdn.com/s3/m/ab449108a88271fe910ef12d2af90242a895abfe.png)
油田开发中的新型材料与应用技术研究在当今能源需求不断增长的背景下,油田开发作为重要的能源获取途径,其技术的不断创新和发展至关重要。
新型材料与应用技术的研究与应用,为油田开发带来了新的机遇和挑战。
一、新型材料在油田开发中的应用1、高强度耐腐蚀合金材料在油田开发的恶劣环境中,如高温、高压、高腐蚀性的油井条件下,传统的金属材料往往难以长期稳定运行。
高强度耐腐蚀合金材料的出现改变了这一局面。
例如,镍基合金和钛合金具有出色的抗腐蚀性能,能够在富含硫化氢、二氧化碳等腐蚀性介质的油井中保持良好的机械性能,延长油井管柱和井下工具的使用寿命,降低维修成本和生产中断的风险。
2、高分子聚合物材料高分子聚合物材料在油田开发中也发挥着重要作用。
聚合物驱油技术是提高原油采收率的重要手段之一。
通过向油藏注入特定的聚合物溶液,增加驱替液的黏度,改善流度比,从而扩大波及体积,提高原油采收率。
此外,高分子聚合物还用于制作防砂筛管、堵水材料等,有效地解决了油井出砂和水窜等问题。
3、纳米材料纳米材料因其独特的物理和化学性质,在油田开发中展现出巨大的应用潜力。
纳米级的催化剂能够提高化学反应的效率,例如在重油加氢裂化过程中,纳米催化剂可以降低反应条件,提高轻质油的收率。
纳米复合材料用于制备防腐涂层,能够提供更优异的防护性能,延长设备的使用寿命。
同时,纳米级的传感器可以实时监测油藏的温度、压力和化学成分等参数,为优化油田开发方案提供准确的数据支持。
4、陶瓷材料陶瓷材料具有耐高温、耐磨、耐腐蚀等优良性能,在油田开发中的应用日益广泛。
陶瓷内衬油管能够有效地抵抗磨损和腐蚀,提高油管的使用寿命。
陶瓷压裂球在水力压裂作业中表现出色,能够承受高温高压环境,实现准确的分层压裂。
此外,陶瓷膜过滤器在油田污水处理中也发挥着重要作用,能够高效地去除污水中的悬浮物和油滴。
二、新型应用技术在油田开发中的作用1、水平井和多分支井技术水平井和多分支井技术是近年来油田开发中的重要突破。
新材料在高端装备制造领域的应用研究考核试卷
![新材料在高端装备制造领域的应用研究考核试卷](https://img.taocdn.com/s3/m/f97ba4416ad97f192279168884868762caaebb9c.png)
C.铜合金
D.塑料
12.以下哪种材料具有良好的生物降解性?()
A.聚乳酸
B.聚乙烯
C.聚氨酯
D.聚丙烯
13.关于3D打印材料,以下哪个说法是正确的?()
A.金属粉末
B.线性聚乙烯
C.陶瓷颗粒
D.木粉
14.以下哪种材料在半导体设备制造领域应用广泛?()
A.硅
B.铜
C.铝
D.钢
15.以下哪种材料在风力发电机制造中具有重要应用?()
A.玻璃纤维复合材料
B.铜合金
C.铝
D.不锈钢
16.关于纳米材料的应用,以下哪个说法是错误的?()
A.提高材料力学性能
B.提高催化活性
C.提高电子设备的功率
D.降低材料的生物兼容性
17.以下哪种材料在激光焊接领域应用较多?()
A.钢
B.铜合金
C.铝
D.硅
18.以下哪个不是生物医用材料的主要特点?()
3.石墨烯是一种具有_______导电性和高强度的新型二维材料。()
4.在半导体行业,制作芯片的主要材料是_______。()
5.生物医用材料中,用于制造人工关节的常用材料是_______。()
6. 3D打印技术中,常用的打印材料包括塑料、金属_______和陶瓷。()
7.航空航天领域,用于制造火箭发动机的耐高温材料是_______。()
C.纤维素材料
D.高分子聚合物
2.新材料在高端装备制造中的应用包括哪些方面?()
A.提高机械性能
B.减轻重量
C.提高耐腐蚀性
D.增加成本
3.以下哪些是纳米技术的应用?()
A.纳米涂层
B.纳米药物输送系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
80℃浸泡 90d 无明显变化
80℃浸泡 90d 无明显变化
80℃浸泡 90d 无明显变化
3 结果与讨论
3.1 施工性能的研究 3.1.1 涂装方法
高压无气喷涂:多道涂装 2~3 道,采用“湿碰 湿”原厂漆粘度(涂-4#杯, 80~100s)喷涂,涂装间隔 10~15min,25~30℃环境下闪干,湿膜厚度不小于 20ቤተ መጻሕፍቲ ባይዱ~250μm, 一 次 烘 干(220~250 ℃ /30~15min)成 膜,干膜厚度可达150~200μm。本法适合于梯式温 度隧道烘烤流水线作业。
钛纳米高分子合金涂层:试板制备时,采用“湿 碰湿”喷涂法,先喷涂两道底漆,在 120℃条件下闪 干 15min,再喷涂两道面漆,烤干温度 220℃固化 20min;试板检测要求干膜厚度达到≥100µm,按 标准进行理化性能项目检测。
-2-
试棒制备时,将涂料用专用稀释剂调整至 35~40s(涂-4 杯),用试棒浸涂一道,吊挂在恒温烤 箱,升温至120~150℃烤干;再浸涂一道烤干后直 接升温至 280℃固化 15min;测试干涂层厚度应 ≥100µm,按标准进行理化性能检测。 2.5 试验条件
将 3,5-二(三氟甲基)苯代对苯醌放入三颈瓶中, 加入定量锌粉和去离子水,搅拌,升温至 90℃, 缓慢滴加盐酸,反应约 6h,将混合液过滤后,将 滤液倒入2000mL 去离子水中。将生成的白色粘稠 状液体用冷去离子水反复洗涤,再置于真空低温烘 干箱中干燥,得到固体单体。用甲苯重结晶 2 次, 充分干燥后制得 3,5-(三氟甲基)苯代对苯二酚白 色结晶。 2.1.3 含氟聚芳醚酮的制备
纳米有机钛涂料特种防腐涂料是以纳米有机 钛齐聚物为基料、辅助环氧树脂和有机胺类固化剂 的常温固化成膜体系。设计配方分为底、中、面漆 配套。
制备工艺与常规的涂料生产工艺相同。 2.4.3 涂层制备
纳米有机钛防腐涂层:规格为120×60×0.5 mm 冷轧钢板和规格为φ100×120mm 碳钢试棒,用丁 酮洗净晾干,用粗砂纸打磨底材,再将涂料 A/B 组份按使用配比混合,搅拌均匀,用稀释剂调整至 喷涂或刷涂。试片分别作底、中、面单涂层;试棒 作复合涂层。制备复合涂层时,每道漆涂覆间隔 12 h,室温干燥,完全固化需一周后做耐腐蚀性能 检测。
>10~50 MPa 高压蒸汽>30kg
CaCl2,MgCl2 等 Cl -、SO42-、HCO3-、F-
K+、Na+、Ca2+、Mg2+ C、H、N、O、S
等微量元素
地质构造差异 酸性腐蚀介质 碱性腐蚀介质
H2S、CO2、H2O
废,最短的仅有 3 个月。地下深层采油井管的平均 使用寿命在 9~18 个月,腐蚀问题成为油田正常采 油和降低生产成本的技术关键[1]。
下深层采油井管,受到地质构造和油层条件的影 酚醛改性环氧树脂、有机硅改性环氧树脂、呋喃改
响,地下油管的平均腐蚀速率高达 1.5~3.3mm/a, 性酚醛树脂、聚氨酯树脂等,以至最新的聚脲、偏
点蚀速率高达 5~15mm/a,腐蚀状况非常严重,是 氟、四氟材料等,制备的涂层材料均无法满足技术
3~6 个月穿孔,6~12 个月就需要大修,1~2 年即报 要求,没有一种涂层能够全部通过检验。
2 新材料的研制
2.1 纳米改性含氟聚芳醚酮的合成 油井管内涂层技术有三项重要指标,即涂层耐
地下水的矿化度 细菌
3×103-1×105mg/L 硫酸盐还原菌
地质构造差异 (SRB)
高温、高压(80~200℃,>60MPa)气体和土酸腐蚀。 这是三项硬指标,研发过程中曾选用过多种国内外
刘玉琴,冯燕桃,彭轩等人的调查研究表明:地 传统的和最新的聚合物做成膜材料,如环氧树脂、
附着力、抗冲击、涂层硬度、耐磨蚀、耐高温、耐高压等物理性能和耐化学腐蚀性方面具有明显的技术优势。另
外,本文还介绍了纳米有机钛重防腐涂料的开发与应用前景。
关键词 防腐蚀;纳米有机钛;高分子合金;涂层
1 引言
地下深层原油或天然气的开采,地质情况和
腐蚀环境十分复杂(表-1)。由于高温(80~200℃)及 高压(>50MPa)热蒸汽的强力渗透作用,加之原油 及污水中的各类腐蚀介质(如 SO42-、NO3-、Cl-、F-、 CN-、Ba+、Ca+等)和有害细菌的侵蚀,加速了油气 井管和地上输油气管线、容器、贮罐的化学腐蚀和
取定量的纳米改性剂置于烧杯内,再加入聚合 物含氟聚芳醚酮和 TAZ-ND1 表面活性剂,置于分 散机上进行混合搅拌,溶解过程有放热反应现象发 生。完全溶解后,即为纳米氧化铝改性含氟聚芳醚 酮树脂液。
2.2 钛纳米前躯体的制备 2.2.1 材料与设备
材料:①金属钛粉,规格: -300 目,纯度: Ti≥99.5%;②128 环氧树脂;③ 纳米氧化铝改性 剂;④催化剂 DQJ-40、T-301;⑥化学助剂。
测 试 项目 耐废油污水性
钛纳米高分子 合 金 涂 料①
●
涂 纳米有机钛 重防腐涂料②
◎
层
性
酚醛环氧油井 管道防腐涂料③
◎
能* 油井管道纳米 环氧防腐涂料④
◎
聚脲弹性体 防腐蚀涂料⑤
●
耐盐雾性
●
●
○
◎
●
耐原油性 耐土酸腐蚀试验 (5%H2SO4+ 5% HCl +5%HF),80℃,30d
耐沾污积垢性
沉积结垢,不但缩短了开采设备的使用寿命,造成
油气田开采成本的增高,并且严重地影响企业的正
常生产。
表 1 采油用小口径管道地下深层工作环境及腐蚀因素
环境因素
内容
备注
埋管地层深度 埋管地层温度 油管承受压力 地下水水型 地下水 溶解离子
石油中所含元素
0~7000 m
深度>2000 m
80~200℃
每深 100 m+1℃
固 化 温 度/℃
图 1 固化温度与烘干时间的关系
… 热塑性成膜物 ―― 热固性成膜物
3.1.3 层间影响 钛纳米高分子合金涂料由于具有低表面能不
粘附特性,故每道固化后的漆膜层间结合不是很 好。从图 1 中我们可以基本了解钛纳米高分子合 金涂层的成膜特性。为了提高漆膜的层间附着力, 可选择“湿碰湿”的涂装方法,使湿膜层间融合为 一体,固化后的涂层不存在层间剥离现象。这是解 决层间附着性能最有效的办法。 3.1.4 稀释剂
“湿碰湿”涂装,稀释剂要选择得当,否则在 烘干过程容易发生起泡、针孔等现象。经过反复试 验,确定使用溶解力比较强的高沸点极性溶剂和中 沸点极性溶剂合理搭配,如环丁砜、N-甲基吡咯 烷酮、二甲基甲酰胺或二甲基乙酰胺等按比例混 配,可以消除上述漆病。 3.2 性能对比试验
我们选用了几种目前国内外油井管内涂层比 较优秀的防腐蚀涂料进行了性能比较试验。分析结 果见表 3。纳米有机钛重防腐涂料、聚脲防腐涂料 在热老化性试验中,拉伸强度、撕裂强度不降反升, 原因可能是在高温环境下促进了涂层完全固化,导 致刚性增强、弹性降低的缘故;经 150℃/48h 环境 条件下的高温高压热蒸汽环境试验,涂层无异常; 但聚脲防腐涂料经过200℃/48h 环境条件下的高温
2.3 钛纳米含氟聚芳醚酮共聚物的合成 将米有机钛前躯体、纳米改性含氟聚芳醚酮、
NMP、MEK、活化剂、化学助剂等按配方量分别 装入密闭式行星球磨反应器的4 个罐中,按比例加 入不锈钢,然后旋紧螺栓密封罐盖,启动球磨反应 器正常运行,运行反应时间大约需要 5h,制得粒径 为 30~80 nm 的钛纳米含氟聚芳醚酮共聚物,它是制 造纳米有机钛高分子合金涂料的基料。
表 2 钛纳米高分子合金涂层性能
项目
附着力(划格法),级 柔韧性,mm 铅笔硬度 抗冲击性*, cm 耐磨损性 耐热性* 耐热高压热蒸汽性* 耐废油污水性 耐原油性* 模拟土酸试验*
性能指标
底漆
面漆
0
0
1
1
/
6H
50
50
平磨仪 10000 次不漏底
150℃,100d,无明显变化
150℃,48h 不起泡,不脱落
2.4 涂料与涂层的制备 2.4.1 主要设备及原料
设备:变频分散机、篮式砂磨机等。原料:纳 米有机钛齐聚物、、钛纳米含氟聚芳醚酮共聚树脂、 环氧树脂、氨基树脂、增韧剂、涂料助剂、、铬酸 锌、云母氧化铁防锈颜料、超细锌粉、、NMP 等。 3.4.2 涂料制备
钛纳米高分子合金涂料是以钛纳米含氟聚芳 醚酮共聚物为基料、辅助氨基树脂做交联剂,热固 化的成膜体系。设计配方分为底、面漆配套。
————————————
作者简介:张驰(1954-),男,硕士,高级工程师,主要从 事高分子新材料方面的研究。E-mail:jan_cy@.
2.1.1 纳米改性剂的制备 按配方量称取一定量的纳米三氧化二铝溶
-1-
胶、纳米分散剂、载体树脂、NMP 等,置于带有 电动搅拌机、温度计、分水器、加热装置的三颈瓶 中,升温至160℃保持恒定,在超声波辅助电动搅 拌作用下进行蒸发脱水, 直至高沸点的 NMP 将 分散液中的水分全部置换完毕,最终形成稳定的的 纳米氧化铝悬浮液。 2.1.2 含氟单体的制备
设备:①QM-1SP04 密闭式行星球磨反应器; ②LBM-T1 型立式分散机。 2.2.2 纳米有机钛前驱体的制备
按配方比例将各组份原料称量装入密闭式行 星球磨反应器中进行球磨反应,制得黑色淤泥状的
粒径约为80~100 nm 的合成产物,即为纳米有机钛 前驱体齐聚物(或称“纳米有机钛杂化聚合物 ”)。
-3-
高压热蒸汽环境试验,局部有小泡产生。酚醛环氧 防腐涂料经 150℃/48h 环境条件下的高温高压热蒸 汽环境试验,局部起有小泡;经 200℃/48h 环境条
件下的高温高压热蒸汽环境试验,全部起有大泡。 钛纳米高分子合金涂层可以通过高温高压热蒸汽 及耐土酸等各项检测试验。