半导体物理学复习提纲(重点)教学提纲
蒋玉龙教授-半导体物理复习大纲

nn0 n(x) p n0
Xn X
pp0 np0
-Xp Xn
nn0 pn0
X
pp0 np0
-Xp Xn
nn0 pn0
X 8/13
重要物理图象
p-n结中的电场和电势分布
Ε(x)
四种电流的动态平衡
-Xp
Xn
x
-x p
-
-
E
Εmax
++ ++ ++ ++
xn
中性区 P型
扩 耗 扩 散 尽 散 区 区 区
⎛ x − xn ⎞ ⎟ Δp( x) = Δp( xn ) exp⎜ − ⎜ L ⎟ p ⎠ ⎝
⎡ ⎛ qV ⎞ ⎤ Δp( xn ) = pn 0 ⎢exp⎜ ⎟ − 1⎥ ⎣ ⎝ kT ⎠ ⎦
n p0 ni2 = NA
n i2 ⎛ qDp ni2 qDn ni2 ⎞ ⎟ pn0 = + Js = ⎜ ⎜L N ND Ln N A ⎟ ⎝ p D ⎠
+ n p0 p p0 ⎡ ⎤⎫ ⎪ ⎛ qVs ⎞ qVs exp 1 − − ⎜ ⎟ ⎢ ⎥⎬ kT kT ⎝ ⎠ ⎣ ⎦⎪ ⎭
1/ 2
欧姆 接触
11/13
重要物理图象
MIS电容的C-V特性
C C
i
V
’
C
C
i
V
12/13
重要物理图象
异质结的能带图
真空能级
χ1 W 1
E c1 EF 1 E g1 Ev1 ΔEc W2 χ 2 E c1 EF 2
C=
ε 0ε r
d
玻尔兹曼统计 耗尽近似
半导体复习提纲

第一章、第二章1.能带理论的基本假定是什么?①绝热近似:离子的波函数与电子的位置及状态无关。
多粒子问题→多电子问题。
②平均场近似:忽略电子和电子件的相互作用,用平均场代替电子与电子间的相互作用。
③周期场近似:单电子问题→单电子在周期场中运动的问题。
2.用能带理论解释绝缘体半导体和金属的导电性固体能够导电是固体中的电子在外场作用下做定向运动的结果.从能带理论看,是电子从一个能级跃迁到另一个能级上去。
对于满带(价带),其中能级已被电子占满,在外电场的作用下满带中的电子并不形成电流,对导电没有贡献。
对于被电子部分占满的能带,在外电场的作用下,电子可以从外电场中吸收能量跃迁到未被电子占据的能级去,形成了电流,起导电作用,我们称之为导带。
金属:由于组成金属的原子中的价电子占据的能级是部分占满的,在外电场作用下,电子可以吸收能量跃迁到违背电子占据的能级,所以金属是良好的导体。
绝缘体和半导体类似,下面都是已被电子占满的满带(价带),中间是禁带,上面是空带(导带),所以在热力学零度时,在外电场的作用下并不导电。
当外界条件变化时,就有少量电子被激发到空带上去,使能带处于几乎为满或几乎为空的状态,在半导体中,价带顶产生的空的量子状态也称为空穴,相当于正电荷的导电作用,电子和空穴在外场作用下就会参与导电。
而绝缘体只是禁带宽度太大,激发电子需要很大的能量,在通常温度下,激发上去的电子很小,导电性差。
3.解释直接带隙和间接带隙半导体直接带隙:导带最底边和价带最顶边处于K空间的相同点的半导体,跃迁只吸收能量。
性质:跃迁时电子波矢不变,动量守恒,直接复合(不需声子接受或提供能量),载流子寿命短,发光效率高。
间接带隙:导带边和价带边处于K空间不同点,形成半满带不止吸收能量还要改变动量。
性质:大几率将能量释放给晶格转化为声子,变成热能释放掉。
4.什么是施主杂质,受主杂质?施主杂质:V族杂质在硅、锗中电离时,能够释放电子而产生导电电子并形成正电中心,称他们为施主杂质会n型杂质;受主杂质:III族杂质在硅、锗中电离时,能够接受电子而产生导电空穴并形成负电中心,称他们为受主杂质会p型杂质。
半导体物理学复习纲要

练习1
1。写出三种立方单胞的名称,并分别计算 单胞中所含的原子数。 (简立方,体心立方,面心立方,1,2,4)
2. 计算金刚石型单胞中的原子数。
(8)
练习2
1、简化能带图,指出各符号意义。
2、什么是载流子?金属和半导体中载流子分别是 什么? 材料中荷载电流的粒子,金属中为电子,半导体 中为电子和空穴
第四章
第四节 电阻率及其与杂质浓度和温度的关系 • 电阻率和杂质浓度的关系 • 电阻率随温度的变化 第六节 强电场下的效应、热载流子 • 欧姆定律的偏移 • 平均漂移速度与电场强度的关系 第七节 多能谷散射 耿氏散射 • 多能谷散射、 体内负微分电导 • 高场畴区及耿氏振荡
练习6
• 图中C是空穴电流方向,问A、B、D中哪个 是电子漂移方向?哪个是电子电流方向? 哪个是空穴漂移方向?
第1章 半导体中的电子状态
要求1-7节
1.1 半导体的晶格结构和结合性质 1.2 半导体中的电子状态和能带 1.3 半导体中电子的运动 有效质量 1.4 本征半导体的导电机构 空穴 1.5 回旋共振 1.6 硅和锗的能带结构 1.7 Ⅲ-Ⅴ族化合物半导体的能带结构 1.8 Ⅱ-Ⅵ族公合物半导体的能带结构 1.9 SI1-xGex合金的能带 1.10 宽禁带半导体材料
1、T>0K时,电子占据费米能级的概率是( 1/2 )。
Chap4 载流子的输运现象
(5-6不要求)
§4.1 §4.2 §4.3 §4.4 §4.5 §4.6 §4.7
载流子的漂移运动,迁移率 载流子的散射 迁移率与杂质浓度和温度的关系 电阻率及其与杂质浓度和温度的关系 玻尔兹曼方程 电导率的统计理论 强电场效应 热载流子 耿氏效应 多能谷散射
第五章 非平衡载流子(要求1-7)
半导体物理学复习纲要

第四章
第四节 电阻率及其与杂质浓度和温度的关系 • 电阻率和杂质浓度的关系 • 电阻率随温度的变化 第六节 强电场下的效应、热载流子 • 欧姆定律的偏移 • 平均漂移速度与电场强度的关系 第七节 多能谷散射 耿氏散射 • 多能谷散射、 体内负微分电导 • 高场畴区及耿氏振荡
练习6
• 图中C是空穴电流方向,问A、B、D中哪个 是电子漂移方向?哪个是电子电流方向? 哪个是空穴漂移方向?
第一章
第一节 半导体的晶体结构和结合性质 • 金刚石型结构和共价键 • 闪锌矿型结构和混合键 • 纤锌矿型结构 第二节 半导体中的电子状态和能带 • 原子的能级和晶体的能带 • 半导体中的电子状态和能带 • 导体、半导体、绝缘体的能带
第一章
第三节 半导体中电子的运动和有效质量 • 半导体中E(k)与k的关系 • 半导体中电子的平均速度 • 半导体中电子的加速度 • 有效质量的意义 第四节 本征半导体的导电机构 空穴 第五节 回旋共振 • k空间等能面 • 回旋共振 第六节 硅和锗的导带结构 • 间接带隙半导体 第七节 砷化镓的能带结构 • 直接带隙半导体
第六章
第三节 pn结电容 • pn结电容的来源 • 突变结的势垒电容 • 线性缓变结的势垒电容 • 扩散电容 第四节 pn结击穿 • 雪崩击穿 • 隧道击穿(齐纳击穿) • 热电击穿 第五节 pn结隧道效应 • 重掺杂 p+-n+结
练习8
• 1.开关二极管、检波二极管、稳压二极管、变容 二极管分别利用了PN结的那个特性?
3.1 状态密度 3.2 费米能级和载流子的统计分布 3.3 本征半导体的载流子浓度 3.4 杂质半导体的载流子浓度 3.5 一般情况下的载流子分布 3.6 简并半导体 3.7补充材料:电子占据杂质能级的概率
半导体物理复习提纲

基础知识1.导体,绝缘体和半导体的能带结构有什么不同?并以此说明半导体的导电机理(两种载流子参与导电)与金属有何不同?导体能带中一定有不满带;绝缘体能带中只有满带和空带,禁带宽度较宽一般大于2eV;半导体T=0 K时,能带中只有满带和空带,T>0 K时,能带中有不满带,禁带宽度较小,一般小于2eV。
(能带状况会发生变化)半导体的导带没有电子,但其价带中电子吸收能量,会跃迁至导带,价带中也会剩余空穴。
在外电场的情况下,跃迁到导带中的电子和价带中的空穴都会参与导电。
而金属中价带电子是非满带,在外场的作用下直接产生电流。
2.什么是空穴?它有哪些基本特征?以硅为例,对照能带结构和价键结构图理解空穴概念。
当满带附近有空状态k’时,整个能带中的电流,以及电流在外场作用下的变化,完全如同存在一个带正电荷e和具有正有效质量|m n* | 、速度为v(k’)的粒子的情况一样,这样假想的粒子称为空穴。
3.半导体材料的一般特性。
(1)电阻率介于导体与绝缘体之间(2)对温度、光照、电场、磁场、湿度等敏感(3)性质与掺杂密切相关4.费米统计分布与玻耳兹曼统计分布的主要差别是什么?什么情况下费米分布函数可以转化为玻耳兹曼函数?为什么通常情况下,半导体中载流子分布都可以用玻耳兹曼分布来描述?麦克斯韦-玻尔兹曼统计的粒子是可分辨的;费米-狄拉克统计的粒子不可分辨,而且每个状态只可能占据一个粒子。
低掺杂半导体中载流子遵循玻尔兹曼分布,称为非简并性系统;高掺杂半导体中载流子遵循费米分布,称为简并性系统。
费米分布:f(E)=11+exp(E−E Fk0T )玻尔兹曼分布:f(E)=e−E−E Fk0T空穴分布函数:f V(E)=1−f(E)=1exp(−E−E Fk0T )+1(能态E不被电子占据的几率)当E-E F≫k0T时有exp(E−E Fk0T )≫1,所以1+exp(E−E Fk0T)≈exp(E−E Fk0T),则费米分布函数转化为f(E)=e−E−E Fk0T,即玻尔兹曼分布。
半导体复习提纲

第一章半导体中的电子(diànzǐ)状态1半导体的三种(sān zhǒnɡ)结构:金刚石型(硅和锗)闪锌矿型(Ⅲ-Ⅴ族化合物半导体材料(cáiliào)以及部分Ⅱ-Ⅵ族化合物如GaAs, InP, AlAs ,纤矿型(Ⅱ-Ⅵ族二元化合物半导体ZnS、ZnSe、CdS、CdSe).结晶学原胞是立方(lìfāng)对称的晶胞。
2电子(diànzǐ)共有化运动:当原子相互接近形成晶体时,不同原子的内外各电子壳层出现交叠,电子可由一个原子转移到相邻的原子,因此,电子可以在整个晶体中运动,称为电子的共有化运动。
由于内外壳层交叠程度很不相同,所以,只有最外层电子的共有化运动才显著。
3有效质量:将晶体中电子的加速度与外加的作用力联系起来,并且包含了晶体中的内力作用效果。
有效质量的物理意义:把晶体周期性势场的作用概括到电子的有效质量中去,使得在引入有效质量之后,就可把运动复杂的晶体电子看作为简单的自由电子。
有效质量的正负与位置有关。
大小由共有化运动的强弱有关。
引入有效质量的用处:使讨论晶体电子运动时,问题变得很简单,否则几乎不可能。
4回旋共振就是当半导体中的载流子在一定的恒定磁场和高频电场同时作用下会发生抗磁共振的现象。
该方法可直接测量出半导体中载流子的有效质量,并从而可求得能带极值附近的能带结构。
(母的)要样品纯度更高,在低温。
5直接带隙半导体材料:导带最小值(导带底)和满带最大值相应于相同的波矢k0间接带隙半导体材料:导带最小值(导带底)和满带最大值在k空间中不同位置 . 硅、锗与砷化镓的区别:硅锗为间接带隙半导体;砷化镓是直接带隙半导体。
砷化镓的禁带宽度大,E。
-1.43eV,宽于硅,更宽于锗,因此砷化镓半导体器件能在远高于硅半导体器件工作温度、更高于锗半导体器件工作温度的450℃下正常工作;其pn结的反向电压高,反向饱和电流低,适用于制作大功率半导体器件;能够引入深能级的杂质,制成体电阻率比锗和硅高出三个数量级以上的集成电路衬底。
《半导体物理与器件》教学大纲讲解(5篇)

《半导体物理与器件》教学大纲讲解(5篇)第一篇:《半导体物理与器件》教学大纲讲解物理科学与技术学院《半导体物理与器件》教学大纲课程类别:专业方向课程性质:必修英文名称:Semiconductor Physics and Devices 总学时:讲授学时:48 学分:先修课程:量子力学、统计物理学、固体物理学等适用专业:应用物理学(光电子技术方向)开课单位:物理科学与技术学院一、课程简介本课程是应用物理学专业(光电子技术方向)的一门重要专业方向课程。
通过本课程的学习,使学生能够结合各种半导体的物理效应掌握常用和特殊半导体器件的工作原理,从物理角度深入了解各种半导体器件的基本规律。
获得在本课程领域内分析和处理一些最基本问题的初步能力,为开展课题设计和独立解决实际工作中的有关问题奠定一定的基础。
二、教学内容及基本要求第一章:固体晶格结构(4学时)教学内容: 1.1半导体材料 1.2固体类型 1.3空间晶格1.4原子价键1.5固体中的缺陷与杂质 1.6半导体材料的生长教学要求:1、了解半导体材料的特性, 掌握固体的基本结构类型;2、掌握描述空间晶格的物理参量, 了解原子价键类型;3、了解固体中缺陷与杂质的类型;4、了解半导体材料的生长过程。
授课方式:讲授第二章:量子力学初步(4学时)教学内容:2.1量子力学的基本原理 2.2薛定谔波动方程2.3薛定谔波动方程的应用 2.4原子波动理论的延伸教学要求:1、掌握量子力学的基本原理,掌握波动方程及波函数的意义;2、掌握薛定谔波动方程在自由电子、无限深势阱、阶跃势函数、矩形势垒中应用;3、了解波动理论处理单电子原子模型。
授课方式:讲授第三章:固体量子理论初步(4学时)应用物理学专业教学内容:3.1允带与禁带格 3.2固体中电的传导 3.3三维扩展3.4状态密度函数 3.5统计力学教学要求:1、掌握能带结构的基本特点,掌握固体中电的传导过程;2、掌握能带结构的三维扩展,掌握电子的态密度分布;3、掌握费密-狄拉克分布和玻耳兹曼分布。
半导体物理复习提纲

半导体物理复习提纲《半导体物理学》复习提纲第⼆章平衡状态下半导体体材的特性重点掌握描述每个量⼦态被电⼦占据的⼏率随能量E变化的分布函数;费⽶能级E F;本征半导体的载流⼦浓度;掺杂半导体的载流⼦浓度;第三章⾮平衡状态下半导体体材的特性重点掌握⾮平衡状态指的是什么;载流⼦的漂移输运现象;载流⼦的扩散输运现象;电导率⽅程;爱因斯坦关系;布尔兹曼关系;连续性-输运⽅程第四章平衡和偏置状态下的PN结特性重点掌握PN的能带图;接触势;PN结的偏置;耗尽区厚度与电压的关系;结电容第五章PN结的伏-安特性重点掌握肖克莱定律;正偏条件下的PN 结特性;反偏条件下的PN 结特性;PN 结的瞬态特性第六章半导体表⾯和MIS 结构重点掌握p 型和n 型半导体积累、耗尽、反型和强反型状态下的表⾯感⽣电荷层表⾯势;p 型和 n 型半导体在积累、耗尽、反型和强反型状态下的能带结构MIS 结构的 C-V 第七章⾦属-半导体接触和异质结重点掌握⾦属和掺杂半导体形成的接触;肖特基势垒;功函数;半导体的亲和能;例题:1,分别计算⽐E F ⾼2kT 、3 kT 和低2 kT 、3 kT 能级电⼦的占有⼏率(e = 2.7183)。
解:(1) ⽐E F ⾼2kT 的能级2F E E kT-=根据()()21110.1192117.38911F E E kTf E ee-====+++(2) ⽐E F ⾼3kT 的能级3F E E kT-=根据()()31110.0474121.08591F E E kTf E ee-==(3) ⽐E F 低2kT 的能级2F E E kT-=根据()()21110.8807110.13531F E E kTf E ee--====+++(4) ⽐E F ⾼3kT 的能级3F E E kT-=根据()()31110.95251 1.04981F E E kTf E ee--====++⽐E F ⾼2kT ,3 kT 和低2 kT ,3 kT 能级电⼦的占有⼏率分别是12%、5%、88% 和95%。
半导体物理复习提纲

半导体物理复习提纲基础知识1.导体,绝缘体和半导体的能带结构有什么不同并以此说明半导体的导电机理(两种载流⼦参与导电)与⾦属有何不同导体能带中⼀定有不满带;绝缘体能带中只有满带和空带,禁带宽度较宽⼀般⼤于2eV;半导体T=0 K时,能带中只有满带和空带,T>0 K时,能带中有不满带,禁带宽度较⼩,⼀般⼩于2eV。
(能带状况会发⽣变化)半导体的导带没有电⼦,但其价带中电⼦吸收能量,会跃迁⾄导带,价带中也会剩余空⽳。
在外电场的情况下,跃迁到导带中的电⼦和价带中的空⽳都会参与导电。
⽽⾦属中价带电⼦是⾮满带,在外场的作⽤下直接产⽣电流。
2.什么是空⽳它有哪些基本特征以硅为例,对照能带结构和价键结构图理解空⽳概念。
当满带附近有空状态k’时,整个能带中的电流,以及电流在外场作⽤下的变化,完全如同存在⼀个带正电荷e和具有正有效质量|m n* | 、速度为v(k’)的粒⼦的情况⼀样,这样假想的粒⼦称为空⽳。
3.半导体材料的⼀般特性。
(1)电阻率介于导体与绝缘体之间(2)对温度、光照、电场、磁场、湿度等敏感(3)性质与掺杂密切相关4.费⽶统计分布与玻⽿兹曼统计分布的主要差别是什么什么情况下费⽶分布函数可以转化为玻⽿兹曼函数为什么通常情况下,半导体中载流⼦分布都可以⽤玻⽿兹曼分布来描述麦克斯韦-玻尔兹曼统计的粒⼦是可分辨的;费⽶-狄拉克统计的粒⼦不可分辨,⽽且每个状态只可能占据⼀个粒⼦。
低掺杂半导体中载流⼦遵循玻尔兹曼分布,称为⾮简并性系统;⾼掺杂半导体中载流⼦遵循费⽶分布,称为简并性系统。
费⽶分布:玻尔兹曼分布:空⽳分布函数:(能态E不被电⼦占据的⼏率)当时有,所以,则费⽶分布函数转化为,即玻尔兹曼分布。
半导体中常见费⽶能级位于禁带中,满⾜的条件,因此导带和价带中的所有量⼦态来说,电⼦和空⽳都可以⽤玻尔兹曼分布描述。
5.由电⼦能带图中费⽶能级的位置和形态(如,⽔平、倾斜、分裂),分析半导体材料特性。
靠近费⽶能级的能带上的载流⼦远⼤于远离费⽶能级那边,因此将该能带上的载流⼦称为多数载流⼦简称多⼦。
半导体物理复习提纲Word版

基础知识1.导体,绝缘体和半导体的能带结构有什么不同?并以此说明半导体的导电机理(两种载流子参与导电)与金属有何不同?导体能带中一定有不满带;绝缘体能带中只有满带和空带,禁带宽度较宽一般大于2eV;半导体T=0 K时,能带中只有满带和空带,T>0 K时,能带中有不满带,禁带宽度较小,一般小于2eV。
(能带状况会发生变化)半导体的导带没有电子,但其价带中电子吸收能量,会跃迁至导带,价带中也会剩余空穴。
在外电场的情况下,跃迁到导带中的电子和价带中的空穴都会参与导电。
而金属中价带电子是非满带,在外场的作用下直接产生电流。
2.什么是空穴?它有哪些基本特征?以硅为例,对照能带结构和价键结构图理解空穴概念。
当满带附近有空状态k’时,整个能带中的电流,以及电流在外场作用下的变化,完全如同存在一个带正电荷e和具有正有效质量|m n* | 、速度为v(k’)的粒子的情况一样,这样假想的粒子称为空穴。
3.半导体材料的一般特性。
(1)电阻率介于导体与绝缘体之间(2)对温度、光照、电场、磁场、湿度等敏感(3)性质与掺杂密切相关4.费米统计分布与玻耳兹曼统计分布的主要差别是什么?什么情况下费米分布函数可以转化为玻耳兹曼函数?为什么通常情况下,半导体中载流子分布都可以用玻耳兹曼分布来描述?麦克斯韦-玻尔兹曼统计的粒子是可分辨的;费米-狄拉克统计的粒子不可分辨,而且每个状态只可能占据一个粒子。
低掺杂半导体中载流子遵循玻尔兹曼分布,称为非简并性系统;高掺杂半导体中载流子遵循费米分布,称为简并性系统。
费米分布:f(E)=11+exp(E−E Fk0T )玻尔兹曼分布:f(E)=e−E−E Fk0T空穴分布函数:f V(E)=1−f(E)=1exp(−E−E Fk0T )+1(能态E不被电子占据的几率)当E-E F≫k0T时有exp(E−E Fk0T )≫1,所以1+exp(E−E Fk0T)≈exp(E−E Fk0T),则费米分布函数转化为f(E)=e−E−E Fk0T,即玻尔兹曼分布。
半导体复习提纲(I)

第一章半导体中的电子状态1半导体的三种结构:金刚石型(硅和锗)闪锌矿型(Ⅲ-Ⅴ族化合物半导体材料以及部分Ⅱ-Ⅵ族化合物如GaAs, InP, AlAs ,纤矿型(Ⅱ-Ⅵ族二元化合物半导体ZnS、ZnSe、CdS、CdSe).结晶学原胞是立方对称的晶胞。
2电子共有化运动:当原子相互接近形成晶体时,不同原子的内外各电子壳层出现交叠,电子可由一个原子转移到相邻的原子,因此,电子可以在整个晶体中运动,称为电子的共有化运动。
由于内外壳层交叠程度很不相同,所以,只有最外层电子的共有化运动才显著。
4回旋共振就是当半导体中的载流子在一定的恒定磁场和高频电场同时作用下会发生抗磁共振的现象。
该方法可直接测量出半导体中载流子的有效质量,并从而可求得能带极值附近的能带结构。
(母的)要样品纯度更高,在低温。
5直接带隙半导体材料:导带最小值(导带底)和满带最大值相应于相同的波矢k0 间接带隙半导体材料:导带最小值(导带底)和满带最大值在k空间中不同位置. 硅、锗与砷化镓的区别:硅锗为间接带隙半导体;砷化镓是直接带隙半导体。
6能带结构:固体的能带结构(又称电子能带结构)描述了禁止或允许电子所带有的能量,这是周期性晶格中的量子动力学电子波衍射引起的。
第二章半导体中杂质和缺陷能级1、杂质类型:杂质原子进入半导体硅以后,只可能以两种方式存在。
一种方式是杂质原子位于晶格原子间的间隙位置常称为间隙式杂质:另一种方式是杂质原子取代晶格原子位于晶格点处,常称为替位式杂质。
2、使电子挣脱束缚成为导电电子所需要的能量称为杂质电离能。
能释放电子而产生导电电子并形成正电中心的杂质,称为施主杂质;受主杂质:能接受电子而产生导电空穴并形成负电中心的杂质。
把被受主杂质所束缚的空穴的能量状态称为受主能级;and施主能级3 N,P型半导体,施主杂质失去电子,受主杂质得到电子。
5施主电子刚好够填充受主能级,虽然杂质很多,但不能向导带和价带提供电子和空穴,这种现象称为杂质的高度补偿. (控制不当)误认高纯半导体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 半导体中的电子状态§1.1 锗和硅的晶体结构特征 金刚石结构的基本特征§1.2 半导体中的电子状态和能带 电子共有化运动概念绝缘体、半导体和导体的能带特征。
几种常用半导体的禁带宽度; 本征激发的概念§1.3 半导体中电子的运动 有效质量导带底和价带顶附近的E(k)~k 关系()()2*2nk E k E m 2h -0=; 半导体中电子的平均速度dEv hdk=; 有效质量的公式:222*11dk Ed h m n =。
§1.4本征半导体的导电机构 空穴空穴的特征:带正电;p n m m **=-;n p E E =-;p n k k =-§1.5 回旋共振§1.6 硅和锗的能带结构 导带底的位置、个数; 重空穴带、轻空穴第二章 半导体中杂质和缺陷能级§2.1 硅、锗晶体中的杂质能级基本概念:施主杂质,受主杂质,杂质的电离能,杂质的补偿作用。
§2.2 Ⅲ—Ⅴ族化合物中的杂质能级 杂质的双性行为第三章 半导体中载流子的统计分布热平衡载流子概念§3.1状态密度定义式:()/g E dz dE =;导带底附近的状态密度:()()3/2*1/232()4ncc m g E VE E h π=-;价带顶附近的状态密度:()()3/2*1/232()4p v Vm g E V E E hπ=-§3.2 费米能级和载流子的浓度统计分布 Fermi 分布函数:()01()1exp /F f E E E k T =+-⎡⎤⎣⎦;Fermi 能级的意义:它和温度、半导体材料的导电类型、杂质的含量以及能量零点的选取有关。
1)将半导体中大量的电子看成一个热力学系统,费米能级F E 是系统的化学势;2)F E 可看成量子态是否被电子占据的一个界限。
3)F E 的位置比较直观地标志了电子占据量子态的情况,通常就说费米能级标志了电子填充能级的水平。
费米能级位置较高,说明有较多的能量较高的量子态上有电子。
Boltzmann 分布函数:0()FE E k TB f E e--=;导带底、价带顶载流子浓度表达式:0()()ccE B c E n f E g E dE '=⎰00exp F cc E E n N k T -= , ()3*2322nc m kT N h π=导带底有效状态密度00exp v Fv E E p N k T-= , ()320322p v m k T N hπ*=价带顶有效状态密度载流子浓度的乘积0000exp exp g C V C V C V E E E n p N N N N k T k T ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭的适用范围。
§3.3. 本征半导体的载流子浓度 本征半导体概念;本征载流子浓度:⎪⎪⎭⎫ ⎝⎛-===T k E N N p n n g V C i 021002exp )(;载流子浓度的乘积200i n p n =;它的适用范围。
§3.4杂质半导体的载流子浓度电子占据施主杂质能及的几率是⎪⎪⎭⎫⎝⎛-+=T k E E E f F D D 0exp 2111)(空穴占据受主能级的几率是⎪⎪⎭⎫ ⎝⎛-+=T k E E E f A F A 0exp 2111)(施主能级上的电子浓度D n 为: ⎪⎪⎭⎫⎝⎛-+==T k E E N E f N n F D DD D D 0exp 211)(受主能级上的空穴浓度A p 为0()11exp 2AA A A F A N p N f E E E k T ==⎛⎫-+ ⎪⎝⎭电离施主浓度+D n 为:D D D n N n +=- 电离受主浓度-A p 为:A A A p N p -=-费米能级随温度及杂质浓度的变化§3.5 一般情况下的载流子统计分布§3.6. 简并半导体1、重掺杂及简并半导体概念;2、简并化条件(n 型):0C F E E -≤,具体地说:1)N D 接近或大于N C 时简并;2)ΔE D 小,则杂质浓度N D 较小时就发生简并;3)杂质浓度越大,发生简并的温度范围越宽;4)简并时杂质没有充分电离;5)简并半导体的杂质能级展宽为能带,带隙宽度会减小。
3、杂质能带及杂质带导电。
第四章 半导体的导电性§4.1 载流子的漂移运动 迁移率欧姆定律的微分形式:J E σ=u r ;漂移运动;漂移速度d v E μ=u v;迁移率μ,单位 22//m V s cm V s ⋅⋅或; 不同类型半导体电导率公式:n p nq pq σμμ=+§4.2. 载流子的散射.半导体中载流子在运动过程中会受到散射的根本原因是什么? 主要散射机构有哪些?电离杂质的散射:32i i P N T -∝晶格振动的散射:32s P T ∝§4.3 迁移率与杂质浓度和温度的关系描述散射过程的两个重要参量:平均自由时间τ,散射几率P 。
他们之间的关系,1pτ=;1、电导率、迁移率与平均自由时间的关系。
22**;p nn n p p n ppq nq nqu pqu m m ττσσ====22**p p n p npnq pq nqu pqu mmττσ=+=+2、(硅的)电导迁移率及电导有效质量公式:n c c q m τμ=、11123c l t m m m ⎛⎫=+ ⎪⎝⎭3、迁移率与杂质浓度和温度的关系§4.4 电阻率及其与杂质浓度和温度的关系 各种半导体的电阻率公式:1n pnq pq ρμμ=+;不同温区电阻率的变化/不同温区载流子的散射机制。
§4.7 多能谷散射 耿氏效应用多能谷散射理论解释GaAs 的负微分电导。
第五章 非平衡载流子§5.1 非平衡载流子的注入与复合 非平衡态与非平衡载流子或过剩载流子; 小注入;附加电导率:()n p np nq pq pq σμμμμ∆=∆+∆=∆+§5.2非平衡载流子的寿命 非平衡载流子的衰减、寿命τ;复合几率:表示单位时间内非平衡载流子的复合几率,1τ;复合率:单位时间、单位体积内净复合消失的电子-空穴对数。
p τ∆。
§5.3 准Fermi 能级 1、“准Fermi 能级”概念2、非平衡状态下的载流子浓度:0000exp ()exp ()nC F C pF V V E E n N n n n k T E E p N p p p k T ⎛⎫-=-=+∆ ⎪⎝⎭⎛⎫-=-=+∆ ⎪⎝⎭000000exp exp exp exp n nF i F F i p pi F F F i E E E E n n n k T k T E E E E p p n k T k T ⎛⎫⎛⎫--== ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫--== ⎪ ⎪⎝⎭⎝⎭3、“准Fermi 能级”的含义1)从(5-10)可以看出,E F n -E F ,E F -E F p 越大,n 和p 值越大,越偏离平衡状态。
反之也可以说,n 和p 越大,E F n 和E F p 偏离E F 越远。
2)E F n 和E F p 偏离E F 的程度不同 如n-type 半导体n 0>p 0。
小注入条件下:◆ Δn<<n 0,n=n 0+Δn ,n>n 0,n≈n 0,E F n 比E F 更靠近导带底,但偏离E F 很小。
◆ Δp>>p 0,p=p 0+Δp ,p>p 0,E F p 比E F 更靠近价带顶,且比E F n 更偏离E F 。
可以看出:一般情况下,在非平衡状态时,往往总是多数载流子的准Fermi 能级和平衡时的Fermi 能级偏离不多,而少数载流子的准Fermi 能级则偏离很大。
3)20000exp exp n p n pF F F F i E E E E np n p n k T k T ⎛⎫⎛⎫--== ⎪ ⎪⎝⎭⎝⎭反映了半导体偏离热平衡态的程度。
E F n -E F p 越大,np 越偏离n i 2。
E F n =E F p 时,np=n i 2。
§5.4. 复合理论非平衡载流子复合的分类以及复合过程释放能量的方式 1、直接复合 2、间接复合定量说明间接复合的四个微观过程:俘获电子过程:电子俘获率=r n n(N t -n t ) 发射电子过程:电子产生率=s -n t ,1n s r n -= 俘获空穴过程:空穴俘获率=r p pn t发射空穴的过程:空穴产生率=s +(N t -n t ),s +=r p p 1 有效复合中心能级的位置为禁带中线附近。
§5.6. 载流子的扩散运动。
1、扩散流密度:()p p d p x S D dx ∆=-;()n n d n x S D dx∆=-⋅(单位时间通过单位面积的粒子数)。
2、空穴的扩散电流()()p pd p x J qD dx∆=-扩。
电子的扩散电流()()n n nd n x J qS qD dx∆=-=扩 3、光注入下的稳定扩散:稳定扩散:若用恒定光照射样品,那么在表面处非平衡载流子浓度保持恒定值()0p ∆,半导体内部各点的空穴浓度也不随时间改变,形成稳定的分布。
这叫稳定扩散。
稳态扩散方程及其解。
§5.7. 载流子的漂移运动 爱因斯坦关系爱因斯坦关系的表达式:0nn D k Tq μ=,0p p D k T qμ=§5.8. 连续性方程式 1、连续性方程式的表达式()22p p p p E p x p p pD E p g t x x x μμτ∂∂∂∂∆=---+∂∂∂∂vv 其中()22pp x D x ∂∂的含义是单位时间单位体积由于扩散而积累的空穴数;p p Ep E p x xμμ∂∂--∂∂vv的含义是单位时间单位体积由于漂移而积累的空穴数;pτ∆的含义是单位时间单位体积由于复合而消失的电子-空穴对数。
2、稳态连续性方程及其解 3、连续性方程式的应用。
牵引长度()PL E u v和扩散长度Lp 的差别。
()p Lp E E u τ=u v u v;Lp =第六章 p-n 结§6.1 p-n 结及其能带图 1、p-n 结的形成和杂质分布 2、空间电荷区 3、p-n 结能带图 4、p-n 结接触电势差 5、p-n 结的载流子分布§6.2 p-n 结的电流电压特性 1、非平衡状态下的p-n 结 非平衡状态下p-n 结的能带图2、理想p-n 结模型及其电流电压方程式 ● 理想p-n 结模型 1) 小注入条件2) 突变耗尽层近似:电荷突变、结中载流子耗尽(高阻)、电压全部降落在耗尽层上、耗尽层外载流子纯扩散运动;3) 不考虑耗尽层中载流子的产生与复合作用;4) 玻耳兹曼边界条件:在耗尽层两端,载流子分布满足玻耳兹曼统计分布。