高一数学教案:函数的基本性质

合集下载

1.3函数的基本性质教学设计教案(最终5篇)

1.3函数的基本性质教学设计教案(最终5篇)

1.3函数的基本性质教学设计教案(最终5篇)第一篇:1.3 函数的基本性质教学设计教案教学准备1. 教学目标(1)理解函数的最大(小)值及其几何意义;(2)学会运用函数图象理解和研究函数的性质;2. 教学重点/难点教学重点:函数的最大(小)值及其几何意义.教学难点:利用函数的单调性求函数的最大(小)值.3. 教学用具投影仪等. 4. 标签数学,函数教学过程一、引入课题画出下列函数的图象,并根据图象解答下列问题:1、说出y=f(x)的单调区间,以及在各单调区间上的单调性;2、指出图象的最高点或最低点,并说明它能体现函数的什么特征?(1)(3)(4)二、新课教学(一)函数最大(小)值定义2)(1.最大值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0) = M那么,称M是函数y=f(x)的最大值(Maximum Value).思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value)的定义.(学生活动)注意:1函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0) = M; 2函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M).2.利用函数单调性的判断函数的最大(小)值的方法1)利用二次函数的性质(配方法)求函数的最大(小)值2)利用图象求函数的最大(小)值3)利用函数单调性的判断函数的最大(小)值如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);(二)典型例题例1.(教材P30例3)利用二次函数的性质确定函数的最大(小)值.解:(略)说明:对于具有实际背景的问题,首先要仔细审清题意,适当设出变量,建立适当的函数模型,然后利用二次函数的性质或利用图象确定函数的最大(小)值.巩固练习:如图,把截面半径为625px的圆形木头锯成矩形木料,如果矩形一边长为x,面积为y试将y表示成x的函数,并画出函数的大致图象,并判断怎样锯才能使得截面面积最大?例2.(新题讲解)旅馆定价一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:欲使每天的的营业额最高,应如何定价?解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系.设为为旅馆一天的客房总收入,元时,住房率为为与房价160相比降低的房价,因此当房价,于是得=150··.由于≤1,可知0≤≤90.的最大值的问题.因此问题转化为:当0≤将≤90时,求的两边同除以一个常数0.75,得1=-2+50x+17600.由于二次函数1在x=25时取得最大值,可知y也在=25时取得最大值,此时房价定位应是160-25=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元).所以该客房定价应为135元.(当然为了便于管理,定价140元也是比较合理的)例3.(教材P37例4)求函数解:(略)注意:利用函数的单调性求函数的最大(小)值的方法与格式.巩固练习:(教材P38练习4)三、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论四、作业布置1.书面作业:课本P45 习题1.3(A组)第6、7、8题.2、提高作业:快艇和轮船分别从A地和C地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h和15 km/h,已知AC=150km,经过多少时间后,快艇和轮船之间的距离最短?在区间[2,6]上的最大值和最小值.课堂小结归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论课后习题1.书面作业:课本P45 习题1.3(A组)第6、7、8题.2、提高作业:快艇和轮船分别从A地和C地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h和15 km/h,已知AC=150km,经过多少时间后,快艇和轮船之间的距离最短?板书略第二篇:1.3 函数的基本性质教学设计教案教学准备1. 教学目标(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断数在某区间上的的单调性.2. 教学重点/难点教学重点:函数的单调性及其几何意义.教学难点:利用函数的单调性定义判断、证明函数的单调性.3. 教学用具投影仪等. 4. 标签数学,函数教学过程一、引入课题1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:1 随x的增大,y的值有什么变化?2 能否看出函数的最大、最小值?3 函数图象是否具有某种对称性?2.画出下列函数的图象,观察其变化规律: 1.f(x) = x1 从左至右图象上升还是下降______?2 在区间____________ 上,随着x的增大,f(x)的值随着 ________ .2.f(x) = -2x+11 从左至右图象上升还是下降______?2 在区间____________ 上,随着x的增大,f(x)的值随着 ________ . 3.f(x) = x21 在区间 ____________ 上,f(x)的值随着x的增大而 ________ .2 在区间____________ 上, f(x)的值随着x的增大而 ________ .二、新课教学(一)函数单调性定义 1.增函数一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1思考:仿照增函数的定义说出减函数的定义.(学生活动)注意:1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 2必须是对于区间D内的任意两个自变量x1,x2;当x1 如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间: 3.判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:1 任取x1,x2∈D,且x12 作差 f(x1)-f(x2); 3变形(通常是因式分解和配方); 4定号(即判断差f(x1)-f(x2)的正负);5下结论(即指出函数f(x)在给定的区间D上的单调性).一、新课教学(一)函数单调性定义 1.增函数一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1思考:仿照增函数的定义说出减函数的定义.(学生活动)注意:1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 2必须是对于区间D内的任意两个自变量x1,x2;当x1 如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间:3.判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:1任取x1,x2∈D,且x12作差f(x1)-f(x2); 3变形(通常是因式分解和配方); 4定号(即判断差f(x1)-f(x2)的正负);5下结论(即指出函数f(x)在给定的区间D上的单调性).(二)典型例题例1.(教材P34例1)根据函数图象说明函数的单调性.解:(略)巩固练习:课本P38练习第1、2题例2.(教材P34例2)根据函数单调性定义证明函数的单调性.解:(略)巩固练习:1课本P38练习第3题; 2证明函数在(1,+∞)上为增函数.例3.借助计算机作出函数y =-x2 +2 | x | + 3的图象并指出它的的单调区间.解:(略)思考:画出反比例函数的图象.1这个函数的定义域是什么?2它在定义域I上的单调性怎样?证明你的结论.说明:本例可利用几何画板、函数图象生成软件等作出函数图象.一、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论二、作业布置1.书面作业:课本P45 习题1.3(A组)第1- 5题. 2.提高作业:设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),1求f(0)、f(1)的值;2若f(3)=1,求不等式f(x)+f(x-2)>1的解集.课堂小结1、归纳小结,强化思想2、函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论课后习题作业布置1.书面作业:课本P45 习题1.3(A组)第1- 5题. 2.提高作业:设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),(1)求f(0)、f(1)的值;(2)若f(3)=1,求不等式f(x)+f(x-2)>1的解集.板书略第三篇:1.3函数的基本性质教学设计1.3 函数的基本性质一、教材分析函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其他性质提供了方法依据。

函数的基本性质教案

函数的基本性质教案

函数的基本性质教案一、教学目标1. 让学生理解函数的概念,掌握函数的基本性质,包括单调性、奇偶性、周期性等。

2. 能够运用函数的基本性质解决实际问题,提高学生的数学应用能力。

3. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。

二、教学内容1. 函数的概念及定义2. 函数的单调性3. 函数的奇偶性4. 函数的周期性5. 函数的基本性质在实际问题中的应用三、教学重点与难点1. 教学重点:函数的基本性质,包括单调性、奇偶性、周期性。

2. 教学难点:函数性质的证明和应用。

四、教学方法1. 采用讲授法,系统地讲解函数的基本性质。

2. 利用实例进行分析,帮助学生理解函数性质的应用。

3. 引导学生进行自主学习,培养学生的逻辑思维能力。

4. 利用小组讨论,提高学生的合作能力。

五、教学过程1. 导入:通过生活中的实例,引导学生认识函数,激发学生的学习兴趣。

2. 讲解:讲解函数的概念,定义,并引入函数的单调性、奇偶性、周期性等基本性质。

3. 分析:分析函数性质的证明方法,并通过实例进行分析,让学生理解函数性质的应用。

4. 练习:布置练习题,让学生巩固所学内容。

5. 总结:对本节课的内容进行总结,强调函数基本性质的重要性。

6. 作业布置:布置课后作业,巩固所学知识。

7. 课后辅导:针对学生学习中遇到的问题进行辅导,提高学生的学习能力。

六、教学评价1. 评价方式:采用课堂表现、课后作业和单元测试相结合的方式进行评价。

2. 评价内容:(1) 函数概念的理解和运用;(2) 函数单调性、奇偶性、周期性的理解和证明;(3) 函数性质在实际问题中的应用能力。

七、教学资源1. 教材:《数学分析》;2. 教学课件;3. 实例素材;4. 练习题库;5. 课后辅导资料。

八、教学进度安排1. 第1周:讲解函数的概念及定义;2. 第2周:讲解函数的单调性;3. 第3周:讲解函数的奇偶性;4. 第4周:讲解函数的周期性;5. 第5周:函数性质在实际问题中的应用。

高中数学教案《函数的基本性质》

高中数学教案《函数的基本性质》

教学计划高:《函数的基本性质》一、教学目标1.知识与技能:学生能够理解并掌握函数单调性、奇偶性的定义及判断方法;能够运用函数图像理解并阐述这些性质;能够识别并解决与函数基本性质相关的简单问题。

2.过程与方法:通过观察、分析、比较等数学活动,引导学生发现函数的基本性质;通过小组讨论、合作探究等学习方式,培养学生团队协作和问题解决的能力;通过练习和实践,提高学生应用函数性质解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的数学审美意识和严谨的科学态度;通过探索函数性质的过程,让学生体会数学中的对称美、和谐美,增强对数学美的感受力。

二、教学重点和难点教学重点:函数单调性、奇偶性的定义、性质及判断方法;函数图像在理解函数性质中的应用。

教学难点:理解函数单调性、奇偶性的本质,能够灵活运用这些性质解决问题;通过函数图像准确判断函数的性质。

三、教学过程1. 引入新课(约5分钟)情境导入:通过生活中的实例(如气温变化、股票价格波动等)引出函数的概念,让学生感受到函数在生活中的广泛应用。

提出问题:设问“这些函数有哪些共同的特点或性质?”引导学生思考并引出函数的基本性质——单调性和奇偶性。

明确目标:介绍本节课的学习目标,即掌握函数单调性、奇偶性的定义、性质及判断方法,并能够通过函数图像理解这些性质。

2. 讲授新知(约15分钟)定义讲解:详细讲解函数单调性(增函数、减函数)和奇偶性(奇函数、偶函数)的定义,结合实例帮助学生理解。

性质阐述:阐述函数单调性和奇偶性的基本性质,如单调函数的图像特征、奇偶函数的图像对称性等。

示例分析:通过具体函数示例(如一次函数、二次函数、反比例函数等),分析它们的单调性和奇偶性,加深学生的理解。

3. 观察探究(约10分钟)图像观察:利用多媒体展示不同函数的图像,引导学生观察图像的特点,尝试从图像中判断函数的单调性和奇偶性。

小组讨论:组织学生进行小组讨论,分享各自观察到的图像特征和判断结果,相互纠正错误,共同探究函数性质的图像表示方法。

人教版高中数学《函数的基本性质》优质教案

人教版高中数学《函数的基本性质》优质教案

2.1函数的基本性质一、教学目标1.结合具体函数,了解函数单调性的含义;2.会运用函数奇偶性的定义和函数的图象理解研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.二、教学重点1.回顾和理解函数的三大性质单调性、奇偶性以及周期性基础知识,掌握其概念的应用,一般是判断单调性、求参数或求值;2.掌握运用基础知识处理函数性质的综合应用题的解题思路. 其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.三、教学难点掌握周期性与抽象函数结合类的题型.高考对函数周期性的考查,常与抽象函数结合,题型主要以选择题或填空的形式出现,常涉及函数求值问题,且与函数的单调性、奇偶性相结合命题.四、教学过程(一)考情解读设计意图:对2016年广东开始高考卷之后的全国卷类型题进行整合,以表格形式呈现,一目了然,分析可得函数的基本性质是高考的常考内容,题型一般为选择填空,占分一般为5-10分.紧接着分析考点内容,明确复习方向.(二)知识梳理设计意图:对函数的单调性、奇偶性、周期性的定义、图像特点等进行梳理,把重点内容标红,并进行相应讲解,为后面的题型讲解奠定知识基础.1.单调函数的定义及几何意义2.函数的最值3.函数的奇偶性4.周期性(三)典例分析题型一:函数的单调性设计意图:精选了两道单调性的题目作为例题,例1为简单地应用单调性定义及函数图像特征判断单调性的题目,通过此题老师可带领学生总结判断函数单调性的方法:定义法、图像法等;例2为已知分段函数单调性求参数范围的题目,通过此题巩固应用单调性求参数、不等式等题型.【例1】(2021·全国甲卷)下列函数中是增函数的为()A .()f x x =-B .()23x f x ⎛⎫= ⎪⎝⎭C .()2f x x =D .()f x 【例2】已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( )A .11,63⎛⎫ ⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭ 题型二:函数的奇偶性设计意图:精选了两道奇偶性的题目作为例题,例1为简单地应用奇偶性定义求参数的题目,通过此题老师可带领学生巩固奇偶性的定义及图像特征;例2为奇偶性与分段函数结合的题目,但只要把握奇偶性的定义,可很快解决,通过此题再次强化奇偶性相关知识.【例1】(2021·全国Ⅰ卷)已知函数()()322x x x a f x -=⋅-是偶函数,则a =______.【例2】(2019·全国Ⅰ卷)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+题型三:函数的周期性设计意图:由于周期性一般与抽象函数及奇偶性相结合,题目比较综合.这里选取了一道直接利用周期性定义进行求值的题目,教师通过此题引导学生回顾求值由内到外的原则及分段函数求值的相关知识,巩固周期性的定义,为下一题型综合题奠定基础.【例1】(2018·江苏卷)函数()f x 满足()()()4f x f x x +=∈R ,且在区间(]2,2-上,()πcos ,02,21,20,2x x f x x x ⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则()()15f f 的值为________. 题型四:函数性质的综合应用设计意图:精选了两道函数性质的综合应用的题型.例1为单调性与奇偶性相结合解不等式 的相关问题,教师可引导学生将此类已知单调性和奇偶性的抽象函数问题具体化画图来思考,紧紧扣住定义解题.例2为奇偶性与周期性相结合求值的题,通过此题再次巩固奇偶性和周期性的定义,将题目已知条件转化为熟悉的定义再去解题.()2017(,)(1)11(2)1A.[2,2] B.[1,1] C.[0,4] D.[1,3]f x f f x x ⋅-∞+∞ =- -- --【例1】(全国Ⅰ卷)函数在单调递减,且为奇函数,若,则满足的的取值范围是()≤≤ ()(,)(1)(1).(1)2(1)(2)(3)(502018A.50 B.0 C.2 D.0)5f x f x f f f f f f x -∞+∞ -=+=++++= ⋅-若,则…(【例2】(全国Ⅱ卷)已知是定义域为的奇函数,满足)(四)巩固练习设计意图:精选了三道题作为练习题.第一题考查单调性的判断和奇偶性定义,再次巩固函数基本性质的概念,为基础题.第二题为单调性与奇偶性相结合解不等式的相关问题,巩固数形结合思想.第三题为奇偶性和周期性相结合求值的题,为自编题,难度系数不高,巩固学生对周期性和奇偶性的概念理解,提高信心.1.(2020·全国Ⅰ卷)设函数()331f x x x =-,则()f x ( )A .是奇函数,且在()0,+∞单调递增B .是奇函数,且在()0,+∞单调递减C .是偶函数,且在()0,+∞单调递增D .是偶函数,且在()0,+∞单调递减2.(2014·全国Ⅰ卷)已知偶函数f x ()在[0,)+∞单调递减,f (2)0=.若f x >(-1)0,则x 的取值范围是__________.()()()()()3R ,R,4,22,2022=A.2022 B.2 C.2022 D.2f x x f x f x f f ∈ +=-= --.已知函数是上的奇函数对任意都有若则()(五)总结提升设计意图:制作了本节课的思维导图,引导同学们再次巩固函数基本性质高考重点考查的题型及其对应方法.五、作业设计设计意图:作业选取了两道单选题,一道多选题,四道填空题.题一考查单调性判断和奇偶性定义;题二考查奇偶性的定义,深化概念;题三考查单调性解不等式,为单调性的应用类题;题四考查奇偶性应用求解析式;题五考查偶函数的定义,跟2021出现的题目非常相像,说明研究高考题的重要性,值得深思;题六考查周期性的定义,为周期性和奇偶性的简单综合题;题七需要将题目所给等式经过化简才能变为周期性的定义的模式,进一步深化周期性与奇偶性的概念及其应用.。

高中数学教案:函数的基本性质

高中数学教案:函数的基本性质

高中数学教案:函数的基本性质一、函数的定义和表达形式函数是数学中一个重要的概念,它描述了两个数集之间的一种特殊关系。

具体地说,如果存在一个规则将一个数集中的每个元素和另一个数集中的唯一一个元素对应起来,那么这个规则就称为函数。

函数可以用多种形式来表示。

常见的函数表达形式有两种:算式表示和图像表示。

在算式表示中,函数可以用一个显式的算式来表示,例如 f(x) = 2x + 1。

这个算式表示了一个线性函数,在给定x的值时,可以求出f(x)的值。

在图像表示中,函数可以用图像的方式来表达,例如将函数的所有点绘制在坐标系中形成的曲线。

图像表示可以直观地展示函数的性质和规律。

二、函数的定义域和值域函数的定义域是指函数中自变量(通常用x表示)的取值范围。

在定义域内,函数是有意义的,而在定义域外,函数没有定义。

例如,对于函数 f(x) = 1/x,由于0不在其定义域内,所以当x等于0时,函数没有定义。

函数的值域是指函数的所有可能的输出值的集合。

值域可以通过分析函数的定义域和图像来确定。

对于函数 f(x) = 2x + 1,可以发现随着x的取值增加,f(x)也会增加,因此函数的值域是所有实数。

三、函数的奇偶性函数的奇偶性是指函数的性质,它与函数的定义域和图像有关。

如果函数满足以下性质:对于定义域内的任意x,都有f(-x) = f(x),那么这个函数就是偶函数。

如果函数满足以下性质:对于定义域内的任意x,都有f(-x) = -f(x),那么这个函数就是奇函数。

如果一个函数既不是偶函数也不是奇函数,那么它就是一个既非偶函数也非奇函数的普通函数。

通过观察函数的图像或利用性质判定,可以确定一个函数是否为偶函数或奇函数。

例如,函数 f(x) = x^2 是一个偶函数,而函数 f(x) = x^3 是一个奇函数。

四、函数的单调性函数的单调性描述了函数在定义域内的增减规律。

如果函数在定义域内的任意两个数x1和x2满足x1 < x2时有f(x1) < f(x2),那么这个函数就是递增函数。

高中数学教案函数性质

高中数学教案函数性质

高中数学教案函数性质一、函数的定义和性质回顾1. 函数的定义:函数是一个对应关系,将一个集合的元素映射到另一个集合的元素上。

2. 函数的性质:- 定义域:函数的输入值的集合。

- 值域:函数的输出值的集合。

- 自变量和因变量:函数中的输入值和输出值。

- 奇函数和偶函数:关于原点对称的函数。

- 单调递增函数和单调递减函数:函数在定义域内递增或递减。

- 周期函数:函数值在一个固定间隔内重复。

二、函数性质的探究1. 定义域和值域的确定:- 通过函数的定义和表达式,确定函数的定义域和值域。

- 举例让学生练习确定不同函数的定义域和值域。

2. 函数的奇偶性质:- 通过函数的图像或表达式,判断函数的奇偶性质。

- 让学生练习判断各种函数的奇偶性质。

3. 函数的单调性质:- 通过导数或函数的图像,判断函数在定义域内的单调性。

- 给出函数的导数,让学生推断函数的单调性。

4. 函数的周期性质:- 通过函数的定义和图像,判断函数的周期性质。

- 让学生找出给定函数的周期,并画出函数的多个周期。

三、综合练习1. 给出多个函数的表达式或图像,让学生判断函数的性质。

2. 设计实际应用问题,让学生运用函数的性质进行解答。

四、课堂讨论和总结1. 引导学生分析函数性质的重要性和应用价值。

2. 总结本节课学习到的函数性质,加深学生的理解。

五、作业布置1. 练习题目:让学生练习函数性质的判断和运用。

2. 思考题目:设计探究性问题,让学生思考并提出自己的观点。

通过以上教学内容,学生可以更深入地理解函数的性质,提升对函数的认识和运用能力。

高一数学上册《函数的基本性质》教案、教学设计

高一数学上册《函数的基本性质》教案、教学设计
2.学生的数学思维能力、逻辑推理能力和直观想象力发展不平衡,部分学生对数形结合的方法还不够熟悉。教师应针对这一情况,设计丰富的教学活动,提高学生的数学素养。
3.学生在小组合作学习中的参与度有待提高。教师应关注学生的个体差异,调动每个学生的积极性,使他们在合作交流中发挥自己的优势,共同进步。
4.学生对于数学知识在实际生活中的应用认识不足,教师可通过引入实际问题,让学生体会数学知识的价值,激发学生学习数学的兴趣。
6.教学评价,关注成长
在教学过程中,教师应关注学生的成长和发展,采用多元化的评价方式,如课堂表现、作业完成情况、小组合作交流等,全面评估学生的学习效果。
7.创设互动氛围,激发学生学习兴趣
8.融入信息技术,提高教学质量
利用多媒体、网络等信息技术手段,丰富教学资源,提高教学质量。如通过数学软件绘制函数图像,让学生更直观地感受函数性质。
3.结合所学函数性质,尝试解决以下拓展性问题:
(1)已知函数f(x) = x^3 - 6x^2 + 9x + 1,判断其奇偶性,并求单调区间。
(2)已知函数g(x) = 3cos(2x) + 4sin(x),求最小正周期及一个周期内的单调区间。
4.请同学们预习下一节课内容,了解函数的极值及其在实际问题中的应用。
3.鼓励学生积极参与课堂讨论,勇于表达自己的观点,培养学生自信、勇敢的品质。
4.通过解决实际问题,让学生认识到数学知识在生活中的重要作用,增强学生应用数学知识解决实际问题的意识,提高学生的社会责任感。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过讲解、示范、讨论等多种教学手段,使学生在掌握函数基本性质的基础上,提高自身的数学素养和综合素质。同时,注重培养学生的团队合作精神,使其在合作交流中相互学习、共同成长。

数学教案高一数学函数的基本性质

数学教案高一数学函数的基本性质

数学教案高一数学函数的基本性质高一数学函数的基本性质数学教案I. 引言在高中数学中,函数是一个非常基础且重要的概念,广泛应用于各种数学领域和实际问题中。

而了解和掌握函数的基本性质对于学生的数学学习和发展至关重要。

本教案将介绍高一数学函数的基本性质,帮助学生全面了解函数的特点和应用。

II. 函数的定义函数是一种特殊的关系,它将一个集合的元素(自变量)映射到另一个集合的元素(因变量)。

函数可以用多种方式表示,包括代数式、图像和表格等形式。

在数学中,通常用f(x)表示函数,其中x是自变量,f(x)是因变量。

III. 函数的定义域和值域函数的定义域是指自变量可能取值的集合,而值域是指因变量可能取值的集合。

通过确定函数的定义域和值域,可以限定函数的运算范围,使其在特定情境中更具实际意义。

IV. 函数的性质1. 一一对应性质函数的一一对应性质是指每个自变量都对应唯一的因变量,而不会存在多个自变量对应同一个因变量的情况。

这种性质使得函数具有唯一性和可逆性。

2. 奇偶性质函数的奇偶性质是指函数关于原点的对称性。

如果对于任意x值,有f(-x) = f(x)成立,那么函数是偶函数;如果对于任意x值,有f(-x) = -f(x)成立,那么函数是奇函数;如果既不满足偶函数的条件,也不满足奇函数的条件,则函数是既非奇函数也非偶函数。

3. 单调性质函数的单调性质是指函数在定义域内的变化趋势。

如果对于定义域内的任意两个x值,有f(x₁) ≤ f(x₂)或f(x₁) ≥ f(x₂)成立,那么函数是递增函数或递减函数。

4. 周期性质周期性是指函数呈现出固定重复模式的性质。

如果存在一个正数T,对于任意x值,有f(x+T) = f(x)成立,那么函数是周期函数。

常见的周期函数包括三角函数和正弦函数等。

V. 函数图像与性质的关系函数的图像可以直观地展示函数的性质。

通过观察函数的图像,可以推断函数的定义域、值域、奇偶性、单调性和周期性等特征。

高一数学必修1《函数的基本性质》教案

高一数学必修1《函数的基本性质》教案

高一数学必修1《函数的基本性质》教案教学目标:1. 理解函数以及函数的各种表达方式。

2. 掌握函数的基本性质,包括单调性、奇偶性、周期性和零点。

3. 实现函数的简单变换,例如平移、伸缩和反转等。

4. 能够应用函数的基本性质,解决实际问题。

教学重点:1. 理解函数的概念以及函数的各种表达方式。

2. 掌握函数的基本性质,实现函数的简单变换。

3. 能够应用函数的基本性质,解决实际问题。

教学难点:1. 如何理解函数的概念以及函数的各种表达方式。

2. 如何应用函数的基本性质,解决实际问题。

教学方法:一、讲授法。

二、探究法。

三、案例分析法。

教学过程:一. 引入新知识(5分钟):教师简单介绍函数的概念和历史背景,引导学生关注函数在实际生活中的应用,引出本节课的学习目标,激发学生的学习兴趣。

二. 讲解函数的概念(10分钟):1. 函数的定义:任何能够使$x$值唯一对应一个$y$值的规律都称为函数,可以表示为$y=f(x)$。

$x$为自变量,$y$为因变量,函数$f(x)$表示$y$与$x$之间的关系。

2. 函数的图像:函数可以通过绘制它们的图像进行可视化。

函数的图像是平面直角坐标系上的一条曲线。

3. 函数的表示方法:函数可以用表格、图像、公式等多种方式表示。

例如$f(x)=x^2$就是一种表示方式。

三. 掌握函数的基本性质(30分钟):1. 单调性:单调递增和单调递减;2. 奇偶性:奇函数、偶函数和常函数;3. 周期性:周期函数和非周期函数;4. 零点:零点定义以及求零点的方法。

四. 实现函数的简单变换(10分钟):1. 平移变换:表示为$f(x-a)$或$f(x)+b$,注意$a$和$b$的正负性;2. 伸缩变换:表示为$f(kx)$或$f(x)/k$,注意$k$的正负性;3. 反转变换:表示为$f(-x)$或$f(-y)$,注意反转后的坐标轴位置变化。

五. 应用函数的基本性质(10分钟):1. 求函数的最值。

高一函数基本性质教案[1]

高一函数基本性质教案[1]
(3)无奇偶性的函数是非奇非偶函数。
(4)函数 既是奇函数也是偶函数,因为其定义域关于原点对称且既满足 也满足 。
(5)一般的,奇函数的图象关于原点对称,反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数。偶函数的图象关于 轴对称,反过来,如果一个函数的图形关于 轴对称,那么这个函数是偶函数。
(2)f(x)=log2(x+ ) (x∈R);
(3)f(x)=lg|x-2|.
解:(1)∵x2-1≥0且1-x2≥0,∴x=±1,即f(x)的定义域是{-1,1}.
∵f(1)=0,f(-1)=0,∴f(1)=f(-1),f(-1)=-f(1),
故f(x)既是奇函数又是偶函数.
(2)方法一易知f(x)的定义域为R,
D.关于原点对称的图象一定是奇函数的图象
2.在区间 上为增函数的是()
A. B.
C. D.
3.函数 是单调函数时, 的取值范围()
A. B. C. D.
4.如果偶函数在 具有最大值,那么该函数在 有()
A.最大值B.最小值C.没有最大值D.没有最小值
四课后巩固
1.在区间(0,+∞)上不是增函数的函数是()
(3)复合函数的单调性的判断:
设 , , , 都是单调函数,则 在 上也是单调函数。
①若 是 上的增函数,则 与定义在 上的函数 的单调性相同。
②若 是 上的减函数,则 与定义在 上的函数 的单调性相同。
即复合函数的单调性:当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的
单调性相反时则复合函数为增减函数。也就是说:同增异减(类似于“负负得正”)
∴f(x)= 在[1,+∞)上为增函数.
当x≤-1时,u(x)为减函数, 为减函数,

高中数学教案函数的基本性质

高中数学教案函数的基本性质

高中数学教案函数的基本性质教案概述:本节课主要介绍函数的基本性质,包括定义域、值域、奇偶性和周期性等。

通过讲解理论知识和引入实际问题,培养学生对函数性质的理解和运用能力。

教学目标:1.理解函数的定义域和值域的概念;2.掌握函数的奇偶性和周期性的判断方法;3.能够应用函数的基本性质解决实际问题。

教学重点:1.强化函数的定义域和值域的概念;2.提高判断函数的奇偶性和周期性的能力;3.发展解决实际问题的能力。

教学难点:1.理解函数值域的概念;2.掌握函数奇偶性和周期性的判断方法。

教学准备:1.教师准备:教案、课件、黑板、粉笔;2.学生准备:课本、作业本。

教学流程:Step 1:导入与复习(10分钟)1.引导学生回顾上节课的内容,复习函数的定义及其表示方法。

2.引入问题:小明前一天起床时间和当天感冒的程度存在一定的关系,试以小明前一天起床时间为自变量,当天感冒程度为因变量,确定函数的定义域和值域。

Step 2:探究函数的定义域和值域(25分钟)1.讲解函数的定义域:函数的自变量的取值范围称为函数的定义域,记作D(f)。

2.举例说明定义域的确定方法:让学生尝试确定其他函数的定义域。

3.讲解函数的值域:函数的因变量的取值范围称为函数的值域,记作R(f)。

4.通过实际问题引导学生确定函数的值域,如小明的感冒程度等级。

Step 3:探究函数的奇偶性(25分钟)1.讲解函数的奇偶性:若对于定义域内的任意x,都有f(-x)=f(x),则函数为偶函数;若对于定义域内的任意x,都有f(-x)=-f(x),则函数为奇函数。

2.给出函数图像,让学生判断其奇偶性。

3.通过实际问题引导学生思考函数的奇偶性,如一个物体下落的高度与时间的关系。

Step 4:探究函数的周期性(25分钟)1.讲解函数的周期性:若存在一个正数T,对于定义域内的任意x,都有f(x+T)=f(x),则函数为周期函数。

2.给出函数图像,让学生判断其周期性。

3.通过实际问题引导学生思考函数的周期性,如一辆车的速度与时间的关系。

高一数学必修一 教案 3.2 函数的基本性质

高一数学必修一 教案 3.2 函数的基本性质

3.2 函数的基本性质3.2.1 单调性与最大(小)值第1课时函数的单调性学习目标 1.了解函数的单调区间、单调性等概念.2.会划分函数的单调区间,判断单调性.3.会用定义证明函数的单调性.知识点一增函数与减函数的定义一般地,设函数f(x)的定义域为I,区间D⊆I:(1)如果∀x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间D上单调递增,特别地,当函数f(x)在它的定义域上单调递增时,我们称它是增函数.(2)如果∀x1,x2∈D,当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D上单调递减,特别地,当函数f(x)在它的定义域上单调递减时,我们称它是减函数.思考(1)所有的函数在定义域上都具有单调性吗?(2)在增函数和减函数定义中,能否把“任意x1,x2∈D”改为“存在x1,x2∈D”?答案(1)不是;(2)不能.知识点二函数的单调区间如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.特别提醒:(1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,所以单调区间的端点若属于定义域,则该点处区间可开可闭,若区间端点不属于定义域则只能开.(2)单调区间D⊆定义域I.(3)遵循最简原则,单调区间应尽可能大.1.如果f (x )在区间[a ,b ]和(b ,c ]上都是增函数,则f (x )在区间[a ,c ]上是增函数.( × ) 2.函数f (x )为R 上的减函数,则f (-3)>f (3).( √ )3.若函数y =f (x )在定义域上有f (1)<f (2),则函数y =f (x )是增函数.( × )4.若函数y =f (x )在区间D 上是增函数,则函数y =-f (x )在区间D 上是减函数.( √ )一、函数单调性的判定与证明 例1 根据定义,研究函数f (x )=axx -1在x ∈(-1,1)上的单调性. 解 当a =0时,f (x )=0,在(-1,1)上不具有单调性, 当a ≠0时,设x 1,x 2为(-1,1)上的任意两个数,且x 1<x 2, 所以f (x 1)-f (x 2)=ax 1x 1-1-ax 2x 2-1=ax 1x 2-1-ax 2x 1-1x 1-1x 2-1=a x 2-x 1x 1-1x 2-1因为x 1,x 2∈(-1,1)且x 1<x 2, 所以x 2-x 1>0,x 1-1<0,x 2-1<0, 所以x 2-x 1x 1-1x 2-1>0,当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以f (x )在(-1,1)上单调递减, 当a <0时,f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),所以f (x )在(-1,1)上单调递增.综上,当a=0时,f(x)在(-1,1)上不具有单调性;当a>0时,f(x)在(-1,1)上单调递减;当a<0时,f(x)在(-1,1)上单调递增.反思感悟利用定义判断或证明函数单调性的步骤跟踪训练1 求证:函数f(x)=1x2在(0,+∞)上是减函数,在(-∞,0)上是增函数.证明对于任意的x1,x2∈(-∞,0),且x1<x2,有f(x1)-f(x2)=1x21-1x22=x22-x21x21x22=x2-x1x2+x1x21x22.∵x1<x2<0,∴x2-x1>0,x1+x2<0,x21x22>0.∴f(x1)-f(x2)<0,即f(x1)<f(x2).∴函数f(x)=1x2在(-∞,0)上是增函数.对于任意的x1,x2∈(0,+∞),且x1<x2,有f(x1)-f(x2)=x2-x1x2+x1x21x22.∵0<x1<x2,∴x2-x1>0,x2+x1>0,x21x22>0. ∴f(x1)-f(x2)>0,即f(x1)>f(x2).∴函数f(x)=1x2在(0,+∞)上是减函数.二、求单调区间并判断单调性例2 (1)如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?考点 求函数的单调区间 题点 求函数的单调区间解 y =f (x )的单调区间有[-5,-2),[-2,1),[1,3),[3,5],其中y =f (x )在区间[-5,-2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数.(2)作出函数f (x )=⎩⎪⎨⎪⎧-x -3,x ≤1,x -22+3,x >1的图象,并指出函数f (x )的单调区间.解 f (x )=⎩⎪⎨⎪⎧-x -3,x ≤1,x -22+3,x >1的图象如图所示,由图可知,函数f (x )=⎩⎪⎨⎪⎧-x -3,x ≤1,x -22+3,x >1的单调递减区间为(-∞,1]和(1,2),单调递增区间为[2,+∞).反思感悟 (1)函数单调区间的两种求法①图象法.即先画出图象,根据图象求单调区间. ②定义法.即先求出定义域,再利用定义法进行判断求解.(2)函数的单调性是在定义域内的某个区间上的性质,单调区间是定义域的子集;当函数出现两个以上单调区间时,单调区间之间可用“,”分开,不能用“∪”,可以用“和”来表示;在单调区间D 上函数要么是增函数,要么是减函数,不能二者兼有. 跟踪训练2 (1)函数y =1x -1的单调递减区间是________. 答案 (-∞,1),(1,+∞)解析 方法一 y =1x -1的图象可由y =1x的图象向右平移一个单位得到,如图,所以单调减区间是(-∞,1),(1,+∞). 方法二 函数f (x )=1x -1的定义域为(-∞,1)∪(1,+∞), 设x 1,x 2∈(-∞,1),且x 1<x 2,则f (x 1)-f (x 2)=1x 1-1-1x 2-1=x 2-x 1x 1-1x 2-1.因为x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).所以函数f (x )在(-∞,1)上单调递减,同理函数f (x )在(1,+∞)上单调递减. 综上,函数f (x )的单调递减区间是(-∞,1),(1,+∞).(2)函数y =|x 2-2x -3|的图象如图所示,试写出它的单调区间,并指出单调性.考点 求函数的单调区间 题点 求函数的单调区间解 y =|x 2-2x -3|的单调区间有(-∞,-1],[-1,1],[1,3],[3,+∞),其中单调递减区间是(-∞,-1],[1,3];单调递增区间是[-1,1],[3,+∞). 三、单调性的应用例3 (1)已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,则实数a 的取值范围为________. 答案 (-∞,-3]解析 f (x )=x 2+2(a -1)x +2的开口方向向上,对称轴为x =1-a , ∵f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数, ∴4≤1-a , ∴a ≤-3,∴a 的取值范围是(-∞,-3].(2)若函数y =f (x )的定义域为R ,且为增函数,f (1-a )<f (2a -1),则a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫23,+∞ 解析 因为y =f (x )的定义域为R ,且为增函数,f (1-a )<f (2a -1),所以1-a <2a -1,即a >23,所以所求a 的取值范围是⎝ ⎛⎭⎪⎫23,+∞. 延伸探究在本例(2)中,若将定义域R 改为(-1,1),其他条件不变,则a 的范围又是什么?解 由题意可知⎩⎪⎨⎪⎧-1<1-a <1,-1<2a -1<1.解得0<a <1.①因为f (x )在(-1,1)上是增函数, 且f (1-a )<f (2a -1), 所以1-a <2a -1, 即a >23.②由①②可知,23<a <1,即所求a 的取值范围是⎝ ⎛⎭⎪⎫23,1.反思感悟 函数单调性的应用(1)函数单调性定义的“双向性”:利用定义可以判断、证明函数的单调性,反过来,若已知函数的单调性可以确定函数中参数的取值范围.(2)若一个函数在区间[a ,b ]上是单调的,则此函数在这一单调区间内的任意子集上也是单调的. 跟踪训练3 已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,求实数a 的取值范围. 解 函数f (x )=x 2-2ax -3的图象开口向上, 对称轴为直线x =a ,画出草图如图所示.由图象可知函数在(-∞,a ]和[a ,+∞)上都具有单调性, 因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2, 从而a ∈(-∞,1]∪[2,+∞).1.函数y =6x的减区间是( )A .[0,+∞)B .(-∞,0]C .(-∞,0),(0,+∞)D .(-∞,0)∪(0,+∞)答案 C2.函数f (x )在R 上是减函数,则有( ) A .f (3)<f (5) B .f (3)≤f (5) C .f (3)>f (5) D .f (3)≥f (5)答案 C解析 因为函数f (x )在R 上是减函数,3<5,所以f (3)>f (5). 3.函数y =|x +2|在区间[-3,0]上( )A .递减B .递增C .先减后增D .先增后减答案 C解析 因为y =|x +2|=⎩⎪⎨⎪⎧x +2,x ≥-2,-x -2,x <-2.作出y =|x +2|的图象,如图所示,易知函数在[-3,-2)上为减函数,在[-2,0]上为增函数.4.若f (x )=x 2+2(a -2)x +2的单调增区间为[3,+∞),则a 的值是________. 答案 -1解析 ∵f (x )=x 2+2(a -2)x +2的单调增区间为[2-a ,+∞), ∴2-a =3,∴a =-1.5.已知函数f (x )为定义在区间[-1,1]上的增函数,则满足f (x )<f ⎝ ⎛⎭⎪⎫12的实数x 的取值范围为________. 答案 ⎣⎢⎡⎭⎪⎫-1,12 解析 由题设得⎩⎪⎨⎪⎧-1≤x ≤1,x <12,解得-1≤x <12.1.知识清单:(1)增函数、减函数的定义. (2)函数的单调区间. 2.方法归纳:数形结合法.3.常见误区:函数的单调区间不能用并集.1.如图是定义在区间[-5,5]上的函数y =f (x ),则下列关于函数f (x )的说法错误的是( )A .函数在区间[-5,-3]上单调递增B .函数在区间[1,4]上单调递增C .函数在区间[-3,1]∪[4,5]上单调递减D .函数在区间[-5,5]上没有单调性 答案 C解析 单调区间不能用“∪”连接.2.下列函数中,在区间(0,2)上为增函数的是( ) A .y =3-x B .y =x 2+1 C .y =1xD .y =-|x +1|答案 B解析 y =x 2+1在(0,2)上是增函数.3.若y =(2k -1)x +b 是R 上的减函数,则有( ) A .k >12B .k >-12C .k <12D .k <-12答案 C4.若函数f (x )在区间(-∞,+∞)上是减函数,则下列关系式一定成立的是( ) A .f (a )>f (2a )B .f (a 2)<f (a )C .f (a 2+a )<f (a ) D .f (a 2+1)<f (a 2)答案 D解析 因为f (x )是区间(-∞,+∞)上的减函数, 且a 2+1>a 2,所以f (a 2+1)<f (a 2).故选D.5.已知函数y =ax 和y =-bx在(0,+∞)上都是减函数,则函数f (x )=bx +a 在R 上是( ) A .减函数且f (0)<0 B .增函数且f (0)<0 C .减函数且f (0)>0 D .增函数且f (0)>0答案 A解析 因为y =ax 和y =-b x在(0,+∞)上都是减函数, 所以a <0,b <0,f (x )=bx +a 为减函数且f (0)=a <0,故选A.6.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥1,5-x ,x <1,则f (x )的单调递减区间是________.答案 (-∞,1)解析 当x ≥1时,f (x )是增函数,当x <1时,f (x )是减函数, 所以f (x )的单调递减区间为(-∞,1).7.如果二次函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上是增函数,则实数a 的取值范围为________.答案 (-∞,2]解析 因为二次函数f (x )=x 2-(a -1)x +5的图象的对称轴为直线x =a -12,又函数f (x )在区间⎝ ⎛⎭⎪⎫12,1上是增函数,所以a -12≤12,解得a ≤2. 8.已知f (x )是定义在区间[-1,1]上的增函数,且f (x -2)<f (1-x ),则x 的取值范围是________. 考点 函数单调性的应用题点 利用单调性解抽象函数不等式答案 ⎣⎢⎡⎭⎪⎫1,32 解析 由题意,得⎩⎪⎨⎪⎧ -1≤x -2≤1,-1≤1-x ≤1,x -2<1-x ,解得1≤x <32, 故满足条件的x 的取值范围是⎣⎢⎡⎭⎪⎫1,32. 9.已知函数f (x )=2-x x +1,证明:函数f (x )在(-1,+∞)上为减函数. 证明 任取x 1,x 2∈(-1,+∞),且x 1<x 2,则f (x 1)-f (x 2)=2-x 1x 1+1-2-x 2x 2+1=3x 2-x 1x 1+1x 2+1. 因为x 2>x 1>-1,所以x 2-x 1>0,(x 1+1)(x 2+1)>0,因此f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),所以f (x )在(-1,+∞)上为减函数.10.画出函数y =-x 2+2|x |+1的图象并写出函数的单调区间.解 y =⎩⎪⎨⎪⎧ -x 2+2x +1,x ≥0,-x 2-2x +1,x <0, 即y =⎩⎪⎨⎪⎧ -x -12+2,x ≥0,-x +12+2,x <0的图象如图所示,单调增区间为(-∞,-1]和[0,1],单调减区间为(-1,0)和(1,+∞).11.若函数f (x )在区间(a ,b )上是增函数,在区间(b ,c )上也是增函数,则函数f (x )在区间(a ,b )∪(b ,c )上( )A .必是增函数B .必是减函数C .是增函数或减函数D .无法确定单调性 答案 D解析 函数在区间(a ,b )∪(b ,c )上无法确定单调性.如y =-1x在(0,+∞)上是增函数, 在(-∞,0)上也是增函数,但在(-∞,0)∪(0,+∞)上并不具有单调性.12.定义在R 上的函数f (x ),对任意x 1,x 2∈R (x 1≠x 2),有f x 2-f x 1x 2-x 1<0,则( ) A .f (3)<f (2)<f (1)B .f (1)<f (2)<f (3)C .f (2)<f (1)<f (3)D .f (3)<f (1)<f (2) 答案 A解析 对任意x 1,x 2∈R (x 1≠x 2),有f x 2-f x 1x 2-x 1<0, 则x 2-x 1与f (x 2)-f (x 1)异号,则f (x )在R 上是减函数.又3>2>1,则f (3)<f (2)<f (1).故选A.13.已知函数f (x )=⎩⎪⎨⎪⎧ x 2,x >1,⎝ ⎛⎭⎪⎫4-a 2x -1,x ≤1.若f (x )是R 上的增函数,则实数a 的取值范围为________.答案 [4,8) 解 因为f (x )是R 上的增函数,所以⎩⎪⎨⎪⎧ 4-a 2>0,4-a 2-1≤1,解得4≤a <8. 14.函数f (x )=ax 2+(a -3)x +1在(-1,+∞)上单调递减,则实数a 的取值范围是________.答案 [-3,0]解析 ①a =0时,f (x )=-3x +1在R 上单调递减,∴a =0满足条件;②a ≠0时,f (x )=ax 2+(a -3)x +1, 对称轴为x =-a -32a ,∴⎩⎪⎨⎪⎧ a <0,-a -32a ≤-1,解得-3≤a <0.由①②得-3≤a ≤0,故a 的取值范围是[-3,0].15.已知函数f (x )=⎩⎪⎨⎪⎧ x 2+4x ,x ≥0,4x -x 2,x <0,若f (4-a )>f (a ),则实数a 的取值范围是( )A .(-∞,2)B .(2,+∞)C .(-∞,-2)D .(-2,+∞)答案 A 解析 画出f (x )的图象(图略)可判断f (x )在R 上单调递增,故f (4-a )>f (a )⇔4-a >a ,解得a <2.16.已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,求实数a 的取值范围. 解 设1<x 1<x 2,所以x 1x 2>1.因为函数f (x )在(1,+∞)上是增函数, 所以f (x 1)-f (x 2)=x 1-a x 1+a 2-⎝⎛⎭⎪⎫x 2-a x 2+a 2 =(x 1-x 2)⎝ ⎛⎭⎪⎫1+a x 1x 2<0. 因为x 1-x 2<0,所以1+a x 1x 2>0,即a >-x 1x 2. 因为1<x 1<x 2,x 1x 2>1,所以-x 1x 2<-1,所以a ≥-1.所以a 的取值范围是[-1,+∞).。

高中数学教案:函数的概念与基本性质

高中数学教案:函数的概念与基本性质

高中数学教案:函数的概念与基本性质一、函数的概念函数是数学中一种重要的概念,在高中数学中占据着重要的地位。

函数的概念来源于实际生活中的对应关系,它描述了两个集合之间的一种关联规则,是一种量与量之间的依赖关系。

在函数中,一个集合称为定义域,另一个集合称为值域。

函数将定义域中的每个元素与一个唯一的值域中的元素对应起来。

例如,一个餐厅的销售额与每天的顾客人数之间存在关联,可以用一个函数来描述这个关系。

在数学中,通常用f(x)来表示函数,其中f表示函数名,x表示自变量。

函数的定义域和值域可以是实数集、整数集、有理数集或其他特定的集合。

通过函数的定义域和值域,我们可以确定它们的范围和取值的特点。

二、函数的基本性质函数的基本性质包括可定义性、唯一性、有界性、奇偶性和单调性等。

1. 可定义性函数的可定义性是指函数在定义域内是否有确定的取值。

在定义域内的每个元素都要对应一个值域中的元素。

如果函数在定义域内的某些点无法找到对应的值,则称函数在该点不可定义。

2. 唯一性函数的唯一性是指函数的每个自变量都有唯一的函数值。

即使是函数的定义域中有相同的自变量,对应的函数值也必须是相同的。

相反,如果函数的自变量有不同的函数值,那么这个函数就是多值函数。

3. 有界性有界性是指函数在定义域内是否有上界和下界。

上界是指函数值不能超过某个特定的值,下界是指函数值不能小于某个特定的值。

如果一个函数存在上界和下界,那么它是有界函数;如果一个函数不存在上界或下界,那么它是无界函数。

4. 奇偶性奇偶性是指函数在对称轴上的对应关系。

如果一个函数满足f(-x) = f(x),那么它是偶函数;如果一个函数满足f(-x) = -f(x),那么它是奇函数。

奇函数关于坐标原点对称,而偶函数则关于y轴对称。

5. 单调性单调性是指函数在定义域上的增减特性。

如果函数的函数值随着自变量的增大而增大,那么它是增函数;如果函数的函数值随着自变量的增大而减小,那么它是减函数。

函数的基本性质教案

函数的基本性质教案

函数的基本性质教案一、教学目标1. 了解函数的定义及其基本性质,理解函数的概念。

2. 掌握函数的单调性、奇偶性、周期性等基本性质,并能够运用这些性质解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 函数的定义及表示方法2. 函数的单调性3. 函数的奇偶性4. 函数的周期性5. 实际问题中的应用三、教学重点与难点1. 教学重点:函数的基本性质,包括单调性、奇偶性、周期性。

2. 教学难点:函数性质的证明和应用。

四、教学方法1. 采用讲授法,讲解函数的基本性质及其证明方法。

2. 利用例题,展示函数性质在实际问题中的应用。

3. 引导学生进行小组讨论,培养学生的合作能力。

4. 利用信息技术辅助教学,提高教学效果。

五、教学过程1. 引入新课:通过复习初中阶段的知识,如一次函数、二次函数的性质,引出高中阶段函数的基本性质。

2. 讲解函数的定义及表示方法,让学生理解函数的概念。

3. 讲解函数的单调性,引导学生掌握单调性的证明方法,并通过例题展示单调性在实际问题中的应用。

4. 讲解函数的奇偶性,引导学生掌握奇偶性的证明方法,并通过例题展示奇偶性在实际问题中的应用。

5. 讲解函数的周期性,引导学生掌握周期性的证明方法,并通过例题展示周期性在实际问题中的应用。

6. 课堂练习:布置有关函数基本性质的练习题,让学生巩固所学知识。

7. 总结:对本节课的内容进行总结,强调函数基本性质的重要性。

8. 布置作业:布置有关函数基本性质的作业,让学生进一步巩固所学知识。

9. 课后反思:根据学生的课堂表现和作业完成情况,对教学进行反思,为下一步教学做好准备。

10. 教学评价:通过课堂表现、作业完成情况和课后反馈,对学生的学习情况进行评价,为后续教学提供参考。

六、教学评价1. 学生能够准确地描述函数的基本性质,包括单调性、奇偶性和周期性。

2. 学生能够理解并应用函数的基本性质解决实际问题。

3. 学生能够通过实例展示对函数性质的理解,并能够进行简单的证明。

函数的基本性质教案

函数的基本性质教案

函数的基本性质教案函数的基本性质教案教学目标:1. 了解函数的定义和基本性质;2. 熟悉函数的图像;3. 能够根据函数的性质进行函数的图像绘制。

教学重点:1. 函数的定义;2. 函数的性质。

教学难点:1. 根据函数的性质进行函数的图像绘制。

教学准备:1. 教师准备:教材、教具、笔记等;2. 学生准备:课本、作业本。

教学过程:一、导入新课(5分钟)教师先向学生展示一张包含多个函数图像的幻灯片,让学生简单观察每个函数图像,并回答一些问题,如图像中的函数有什么特点?是否有交点?交点的特征是什么等。

二、知识讲解(10分钟)通过对观察到的函数图像进行讨论,引出函数的定义。

然后,教师进一步讲解函数的性质,包括奇偶性、单调性、周期性、对称性等。

同时,教师还要向学生解释,如何通过函数的性质来判断函数图像的特点。

三、教学练习(10分钟)教师设立一些简单的函数,并要求学生判断函数的性质,并画出函数的图像。

教师可以针对每个函数给予学生一定的提示,让学生能够通过函数的性质来判断。

四、学生合作探究(15分钟)学生们分成小组,每个小组分配一个函数,要求他们根据函数的性质,通过计算和分析来确定函数的图像特点,并使用工具(如Geogebra等)绘制出函数的图像。

学生们可以互相讨论和交流,以便更好地理解函数的性质。

五、小结归纳(5分钟)教师提醒学生关于函数的性质和如何通过性质来判断函数图像的方法,并概括出一些关键点和规律。

六、实际应用(10分钟)教师设计一些实际问题,并要求学生运用所学的函数性质来解决问题。

这些问题可以是有关距离、速度、图像等方面的应用题,通过解决这些问题,学生可以更好地理解函数的意义和应用。

七、课堂练习(15分钟)教师根据教材或其他资料,设计一些困难程度适中的练习题,并要求学生在规定时间内完成。

教师可以提供一些提示或指导,帮助学生解决问题。

八、课堂讨论(5分钟)教师和学生一起讨论练习题的解答,并解释解决问题的步骤和方法。

函数的基本性质教案设计

函数的基本性质教案设计

函数的基本性质教案设计这是函数的基本性质教案设计,是优秀的数学教案文章,供老师家长们参考学习。

函数的基本性质教案设计第1篇各位老师,大家好!今天我说课的课题是高中数学人教A版必修一第一章第三节”函数的基本性质”中的“函数的奇偶性”,下面我将从教材分析,教法、学法分析,教学过程,教辅手段,板书设计等方面对本课时的教学设计进行说明。

一、教材分析(一)教材特点、教材的地位与作用本节课的主要学习内容是理解函数的奇偶性的概念,掌握利用定义和图象判断函数的奇偶性,以及函数奇偶性的几个性质。

函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关,而且为后面学习幂函数、指数函数、对数函数的性质打下了坚实的基础。

因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。

(二)重点、难点1、本课时的教学重点是:函数的奇偶性及其几何意义。

2、本课时的教学难点是:判断函数的奇偶性的方法与格式。

(三)教学目标1、知识与技能:使学生理解函数奇偶性的概念,初步掌握判断函数奇偶性的方法;2、方法与过程:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;使学生领会数形结合思想方法,培养学生发现问题、分析问题和解决问题的能力。

3、情感态度与价值观:在奇偶性概念形成过程中,使学生体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

二、教法、学法分析1.教学方法:启发引导式结合本章实际,教材简单易懂,重在应用、解决实际问题,本节课准备采用"引导发现法"进行教学,引导发现法可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,在解决问题的过程中,体验成功与失败,从而逐步建立完善的认知结构.使用多媒体辅助教学,突出了知识的产生过程,又增加了课堂的趣味性.2.学法指导:引导学生采用自主探索与互相协作相结合的学习方式。

让每一位学生都能参与研究,并最终学会学习.三、教辅手段以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方式进行教学四、教学过程为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:设疑导入,观图激趣。

函数的基本性质(教案)

函数的基本性质(教案)

函数的基本性质教学目标:1. 了解函数的定义和基本概念。

2. 掌握函数的域和值域的概念。

3. 理解函数的单调性、连续性和可导性的概念。

4. 学会运用函数的基本性质解决实际问题。

教学内容:第一章:函数的定义与域1.1 函数的定义1.2 函数的域第二章:值域2.1 值域的概念2.2 确定函数的值域第三章:函数的单调性3.1 单调性的定义3.2 单调性的判定第四章:函数的连续性4.1 连续性的定义4.2 连续性的判定第五章:函数的可导性5.1 可导性的定义5.2 可导性的判定教学方法:1. 采用问题驱动的教学方法,引导学生通过实例来理解函数的基本性质。

2. 使用多媒体辅助教学,通过动画和图形来直观展示函数的单调性、连续性和可导性。

3. 组织小组讨论和实践活动,培养学生的合作能力和解决问题的能力。

教学评估:1. 课堂讨论和提问,评估学生对函数基本性质的理解程度。

2. 布置课后习题和作业,巩固学生对函数基本性质的掌握。

3. 进行定期的测验和考试,检验学生对函数基本性质的掌握情况。

教学资源:1. 教科书和参考书籍,提供详细的知识点和实例。

2. 多媒体课件和教学软件,提供直观的图形和动画展示。

3. 在线学习平台和论坛,提供额外的学习资源和交流平台。

教学计划:1. 第一章:2课时2. 第二章:2课时3. 第三章:2课时4. 第四章:2课时5. 第五章:2课时教学总结:通过本章的教学,学生应该能够理解函数的定义和基本概念,掌握函数的域和值域的概念,理解函数的单调性、连续性和可导性的概念,并能够运用函数的基本性质解决实际问题。

函数的基本性质(续)教学内容:第六章:函数的极值与最值6.1 极值的概念6.2 函数的最值第七章:函数的周期性7.1 周期性的定义7.2 周期函数的性质第八章:函数的奇偶性8.1 奇偶性的定义8.2 奇偶函数的性质第九章:函数的图像9.1 图像的性质9.2 图像的变换第十章:函数的极限10.1 极限的概念10.2 极限的计算教学方法:1. 采用问题驱动的教学方法,引导学生通过实例来理解函数的极值、周期性、奇偶性、图像和极限的基本性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学要求:理解增函数、减函数、单调区间、单调性等概念,掌握增(减)函数的证明和判别, 学会运用函数图象理解和研究函数的性质。

教学重点:掌握运用定义或图象进行函数的单调性的证明和判别。

教学难点:理解概念。

教学过程:一、复习准备:1.引言:函数是描述事物运动变化规律的数学模型,那么能否发现变化中保持不变的特征呢?2. 观察下列各个函数的图象,并探讨下列变化规律:①随x 的增大,y 的值有什么变化?②能否看出函数的最大、最小值?③函数图象是否具有某种对称性?3. 画出函数f(x)= x +2、f(x)= x 2的图像。

(小结描点法的步骤:列表→描点→连线)二、讲授新课:1.教学增函数、减函数、单调性、单调区间等概念:①根据f(x)=3x +2、 f(x)=x 2 (x>0)的图象进行讨论:随x 的增大,函数值怎样变化? 当x 1>x 2时,f(x 1)与f(x 2)的大小关系怎样?②.一次函数、二次函数和反比例函数,在什么区间函数有怎样的增大或减小的性质?③定义增函数:设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数(increasing function ) ④探讨:仿照增函数的定义说出减函数的定义;→ 区间局部性、取值任意性⑤定义:如果函数f(x)在某个区间D 上是增函数或减函数,就说f(x)在这一区间上具有(严格的)单调性,区间D 叫f(x)的单调区间。

⑥讨论:图像如何表示单调增、单调减?所有函数是不是都具有单调性?单调性与单调区间有什么关系?y =x 2的单调区间怎样?③练习(口答):如图,定义在[-4,4]上的f(x),根据图像说出单调区间及单调性。

2.教学增函数、减函数的证明:①出示例1:指出函数f(x)=-3x +2、f(x)=x 1的单调区间及单调性,并给出证明。

(由图像指出单调性→示例f(x)=-3x +2的证明格式→练习完成。

)②出示例2:物理学中的玻意耳定律k p V(k 为正常数),告诉我们对于一定量的气体,当其体积V 增大时,压强p 如何变化?试用单调性定义证明.(学生口答→ 演练证明)③小结:比较函数值的大小问题,运用比较法而变成判别代数式的符号。

判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2; →计算f(x 1)-f(x 2)至最简→判断差的符号→下结论。

三、巩固练习:1.求证f(x)=x +x1的(0,1]上是减函数,在[1,+∞)上是增函数。

2.判断f(x)=|x|、y=x 3的单调性并证明。

3.讨论f(x)=x 2-2x 的单调性。

推广:二次函数的单调性4.课堂作业:书P43 1、2、3题。

教学要求:更进一步理解函数单调性的概念及证明方法、判别方法,理解函数的最大(小)值及其几何意义.教学重点:熟练求函数的最大(小)值。

教学难点:理解函数的最大(小)值,能利用单调性求函数的最大(小)值。

教学过程:一、复习准备:1.指出函数f(x)=ax 2+bx +c (a>0)的单调区间及单调性,并进行证明。

2. f(x)=ax 2+bx +c 的最小值的情况是怎样的?3.知识回顾:增函数、减函数的定义。

二、讲授新课:1.教学函数最大(小)值的概念:① 指出下列函数图象的最高点或最低点,→ 能体现函数值有什么特征?()23f x x =-+,()23f x x =-+[1,2]x ∈-;2()21f x x x =++,2()21f x x x =++ [2,2]x ∈- ② 定义最大值:设函数y=f(x)的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有f(x)≤M ;存在x 0∈I ,使得f(x 0) = M . 那么,称M 是函数y=f(x)的最大值(Maximum Value ) ③ 探讨:仿照最大值定义,给出最小值(Minimum Value )的定义.→ 一些什么方法可以求最大(小)值?(配方法、图象法、单调法) → 试举例说明方法.2.教学例题:① 出示例1:一枚炮弹发射,炮弹距地面高度h (米)与时间t (秒)的变化规律是21305h t t =-,那么什么时刻距离达到最高?射高是多少?(学生讨论方法 → 师生共练:配方、分析结果 → 探究:经过多少秒落地?)② 练习:一段竹篱笆长20米,围成一面靠墙的矩形菜地,如何设计使菜地面积最大? (引导:审题→设变量→建立函数模型→研究函数最大值; →小结:数学建模)③ 出示例2:求函数32y x =-在区间[3,6]上的最大值和最小值. 分析:函数3,[3,6]2y x x =∈-的图象 → 方法:单调性求最大值和最小值. → 板演 → 小结步骤:先按定义证明单调性,再应用单调性得到最大(小)值.→ 变式练习:3,[3,6]2x y x x +=∈- ④ 探究:32y x =-的图象与3y x=的关系? ⑤练习:求函数2y x =. (解法一:单调法; 解法二:换元法)3. 看书P34 例题 → 口答P36练习 →小结:最大(小)值定义 ;三种求法.三、巩固练习:1. 求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+-- 2.一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如右:欲使每天的的营业额最高,应如何定价? (分析变化规律→建立函数模型→求解最大值) 3. 课堂作业:书P43 A 组5题;B 组1、2题.第三课时:1.3.2 奇偶性教学要求:理解奇函数、偶函数的概念及几何意义,能熟练判别函数的奇偶性。

教学重点:熟练判别函数的奇偶性。

教学难点:理解奇偶性。

教学过程:一、复习准备:1.提问:什么叫增函数、减函数?2.指出f(x)=2x 2-1的单调区间及单调性。

→变题:|2x 2-1|的单调区间3.对于f(x)=x 、f(x)=x 2、f(x)=x 3、f(x)=x 4,分别比较f(x)与f(-x)。

二、讲授新课:1.教学奇函数、偶函数的概念:①给出两组图象:()f x x =、1()f x x=、3()f x x =;2()f x x =、()||f x x =. 发现各组图象的共同特征 → 探究函数解析式在函数值方面的特征② 定义偶函数:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ).③ 探究:仿照偶函数的定义给出奇函数(odd function )的定义.(如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数。

④ 讨论:定义域特点?与单调性定义的区别?图象特点?(定义域关于原点对称;整体性) ⑤ 练习:已知f(x)是偶函数,它在y 轴左边的图像如图所示,画出它右边的图像。

(假如f(x)是奇函数呢?)2.教学奇偶性判别:① 出示例:判别下列函数的奇偶性:f(x)=34x 、f(x)=43x 、f(x)=-4x 6+5x 2、f(x)=3x +31x 、f(x)=2x 4-+3。

分析判别方法(先看定义域是否关于原点对称,再计算f(-x)并与f(x)进行比较)→ 板演个例 → 学生完成其它② 练习:判别下列函数的奇偶性: f(x)=|x +1|+|x -1|f(x)=23x 、f(x)=x +x 1、 f(x)=21xx +、f(x)=x 2,x ∈[-2,3] ③ 小结奇偶性判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法判别f(x)与f(-x)的关系。

→思考:f(x)=0的奇偶性?3.教学奇偶性与单调性综合的问题:①出示例:已知f(x)是奇函数,且在(0,+∞)上是减函数,问f(x)的(-∞,0)上的单调性。

②找一例子说明判别结果(特例法) → 按定义求单调性,注意利用奇偶性和已知单调区间上的单调性。

(小结:设→转化→单调应用→奇偶应用→结论)③变题:已知f(x)是偶函数,且在[a,b]上是减函数,试判断f(x)在[-b,-a]上的单调性,并给出证明。

三、巩固练习: 1.设f(x)=ax 7+bx +5,已知f(-7)=-17,求f(7)的值。

2.已知f(x)是奇函数,g(x)是偶函数,且f(x)-g(x)=11+x ,求f(x)、g(x)。

3.已知函数f(x),对任意实数x 、y ,都有f(x+y)=f(x)+f(y),试判别f(x)的奇偶性。

(特值代入)4.已知f(x)是奇函数,且在[3,7]是增函数且最大值为4,那么f(x)在[-7,-3]上是( )函数,且最 值是 。

5.课堂作业:书P40 1、2题第四课时:函数的基本性质(练习)教学要求:掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应用函数的基本性质解决一些问题。

教学重点:掌握函数的基本性质。

教学难点:应用性质解决问题。

教学过程:一、复习准备:1.讨论:如何从图象特征上得到奇函数、偶函数、增函数、减函数、最大值、最小值?2.提问:如何从解析式得到奇函数、偶函数、增函数、减函数、最大值、最小值的定义?二、教学典型习例:1.函数性质综合题型:①出示例1:作出函数y =x 2-2|x|-3的图像,指出单调区间和单调性。

分析作法:利用偶函数性质,先作y 轴右边的,再对称作。

→学生作 →口答→ 思考:y =|x 2-2x -3|的图像的图像如何作?→②讨论推广:如何由()f x 的图象,得到(||)f x 、|()|f x 的图象?③出示例2:已知f(x)是奇函数,在(0,+∞)上是增函数,证明:f(x)在(-∞,0)上也是增函数 分析证法 → 教师板演 → 变式训练④讨论推广:奇函数或偶函数的单调区间及单调性有何关系?(偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致)2. 教学函数性质的应用:①出示例 :求函数f(x)=x +x1 (x>0)的值域。

分析:单调性怎样?值域呢?→小结:应用单调性求值域。

→ 探究:计算机作图与结论推广 ②出示例:某产品单价是120元,可销售80万件。

市场调查后发现规律为降价x 元后可多销售2x 万件,写出销售金额y(万元)与x 的函数关系式,并求当降价多少个元时,销售金额最大?最大是多少?分析:此题的数量关系是怎样的?函数呢?如何求函数的最大值?小结:利用函数的单调性(主要是二次函数)解决有关最大值和最大值问题。

2.基本练习题:①判别下列函数的奇偶性:y =1+x +1-x 、 y =⎪⎩⎪⎨⎧≤+>+-)0()0(22x x x x x x (变式训练:f(x)偶函数,当x>0时,f(x)=….,则x<0时,f(x)=? )②求函数y =x③判断函数y=12++x x 单调区间并证明。

相关文档
最新文档