内力分析的基本方法-截面法

合集下载

截面法求杆件的内力

截面法求杆件的内力

截面法求杆件的内力教学目标:1、理解和掌握求杆件内力的方法——截面法;2、熟练运用截面法求不同杆件受到拉伸时的内力。

教学重点:截面法求杆件内力的步骤。

教学难点:如何运用截面法求内力的方法解决工程力学中求内力的实际问题。

教学方法:提出问题——实例演示——练习点拨——归纳总结教学过程:一、复习旧知1、杆件有哪几种基本变形?2、拉伸和压缩的受力特点是什么?3、拉伸和压缩的变形特点是什么?二、新课讲解思考:当杆件受到拉伸、压缩时,就会在杆件内部产生力的作用,怎样才能确定杆件的内部会产生多大的力?(引出课题)出示本节课的学习目标。

(一)、教学什么是杆件的内力?内力:杆件在外力作用下产生变形,其内部相互间的作用力称为内力。

一般情况下,内力将随外力增加而增大。

当内力增大到一定限度时,杆件就会发生破坏。

内力是与构件的强度密切相关的,拉压杆上的内力又称为轴力。

(二)、教学截面法求杆件的内力。

1、什么是截面法?截面法:将受外力作用的杆件假想地切开,用以显示内力的大小,并以平衡条件确定其合力的方法,称为截面法。

它是分析杆件内力的唯一方法。

2、实例演示:如图AB 杆受两个力,一个向左,一个向右,大小均为F 。

作用点分别为A 和B 。

①、确定要截开的次数和位置(要根据杆件的受力情况而定) ②、选取一半截面为研究对象(一般选取受力较少的一段作为研究对象)③、假设出截面上的内力(取左段内力向右设,取右段内力向左设,方向跟坐标轴方向一致,左负右正、下负上正)④、用平衡方程求出截面上的内力(求出的内力为正值为拉力,负值为压力)取左段 ∑Fx=O -F +FN =0 取右段 ∑Fx=O F -FN =0FN =F FN =F 3、总结截面法求杆件内力的步骤:(1)截:在需求内力的截面处,沿该截面假想地把构件切开。

(2)取:选取其中一部分为研究对象。

(3)代:将截去部分对研究对象的作用,以截面上的未知内力F F N来代替。

(4)平:根据研究对象的平衡条件,建立平衡方程,以确定未知内力的大小和方向。

浅探内力分析之截面法

浅探内力分析之截面法

浅探内力分析之截面法摘要: 材料力学离不开内力分析,截面法更是求内力的一般方法,在展开工程设计时,如果建筑的受力分析准确性得不到保障,那么建筑的安全性和耐久性等就会出现问题。

本文从截面法对不同种内力的具体应用进行初步研究寻找其计算方法。

关键词: 材料力学;内力;截面法引言在工程设计过程中会运用许多的理论力学知识,截面法便是其中至关重要的一种,且短时间内难以被取代,因此截面法受到广泛运用。

本文即从截面法对不同种内力的具体应用题展开计算分析。

1 截面法1.1 截面法的定义截面法:用截面假想地把构件分成两部分,以此来分析明确内力大小,并以平衡条件确定其合力的方法。

1.2 截面法的研究对象内力:物体在受到外力作用而变形时,其内部各质点间的相对位置将发生变化。

相应地,各质点间的相互作用力也将发生改变。

这种由外力作用而引起的质点间相互作用力的改变量,即为材料力学中所研究的内力。

1.3 截面法的步骤主要分以下三个步骤:1、截开:在需要求内力的截面处,假想地将杆分为两部分;2、代替:将两部分中的任意一部分留下,把弃去部分对留下部分的作用,以作用在截面上的内力(力或力偶)代替;3、平衡:对留下部分建立平衡方程,根据上面的已知外力来计算杆件在截开面上的未知内力。

注意,截开面上的内力对留下部分而言已属外力。

图 12 轴力与杆件轴线相重合的内力,称为轴力,用符号FN表示。

轴力的正负规定: 当轴力的指向离开截面时,杆受拉,规定轴力为正;反之,当轴力指向截面时,杆受压,规定轴力为负。

即拉为正,压为负。

2.1 轴力分析计算已知F1=4OKN,F2=-30KN,求AB杆的内力。

应用截面法求杆件横截面上的内力,如图2所示。

截开:用假想平面m-m将构件切开分为两部分。

代替:取出其中任一部分如I部分为研究对象,画出I部分的受力图平衡:列出Ⅰ部分的平衡方程式:由∑Fx=0,得Fx-F=0,得FN=F1=4OKN(背离横截面,拉力为正)求BC杆的内力。

02截面法求内力基本方法

02截面法求内力基本方法
例1. 求以下桁架各杆的内力
0 -33 34.8
19
19
Y 0 YNAD 11 kN YNAD CD 0.5 X NAD AC 1.5 X NAD 3YNAD 33 kN
X 0 FNAC 33 kN
0 -33
-33
34.8 -8
19
19
0 -33
-33
34.8
dM dx

FQ ,
dFQ q( x), dx
dFN p( x) dx
Mq
M+dM
dx
FN
dx
FN+d FN
FQ
FQ+dFQ
dM dx

FQ ,
dFQ q( x), dx
dFN p( x) dx
集中力
梁上 无外力 均布力作用 集中力作用 偶M作 铰处
情况
(q向下)
处(FP向下) 用处
斜直 剪力图 水平线 线(
)
为 零 处
有突 变(突 变值=
FP)
如 变 号
无 无变化 影

一般 抛物 有 有尖 有 有突变
弯矩图 为斜 线(
极 角(向 极 (突变 为零
直线 下凸) 值 下) 值 值=M)
曲杆微分关系
曲杆微段
dFN ds
=-qt+
FQ R
dFQ ds
=qn-
FN R
dM ds
=FQ-m
求内力基本方法:截面法
材料力学规定: 轴力FN --拉力为正 剪力FQ--绕隔离体顺时针方向转动者为正
弯矩M--使梁的下侧纤维受拉者为正
M
M+dM

第二章 杆件的内力·截面法讲解

第二章 杆件的内力·截面法讲解

F
FN (+)FN
F
F
FN (-)FN
F
轴力图: 轴力沿轴线变化的图形
F
F
FN
轴力图的意义
+ x
① 直观反映轴力与截面位置变化关系; ② 确定出最大轴力的数值及其所在位置,即确定危险截面位置,为 强度计算提供依据。
例 图示杆的A、B、C、D点分别作用着大小为FA = 5 F、 FB = 8 F、 FC = 4 F、 FD= F 的力,方向如图,试求各段内力并画出杆 的轴力图。
应变
一、正应变(线应变)定义
av

Du Ds
棱边 ka 的平均正应变
lim
Du k点沿棱边 ka 方向的正应变
Ds0 Ds
正应变特点
1、 正应变是无量纲量 2、 过同一点不同方位的正应变一般不同
二、切应变定义 微体相邻棱边所夹直角的
改变量 g ,称为切应变
切应变量纲与单位
切应变为无量纲量 切应变单位为 弧度(rad)
BC
D
FN 2 FB FC FD 0
FB
FC
FD
FN2= –3F,
求BC段内力:
FN3
C
D
Fx 0 FN3 FC FD 0 FN3= 5F,
FC
FD
FN4
D
求CD段内力:
Fx 0 FN 4 FD 0
FN4= F
FD
FN1 2F, FN2= –3F, FN3= 5F, FN4= F
M
M
取左段为研究对象:
M 0, T M 0 M x
Tx
T M
取右段为研究对象:

试述求杆件横截面上内力的截面法步骤和方法

试述求杆件横截面上内力的截面法步骤和方法

试述求杆件横截面上内力的截面法步骤和方法哎呀,这可是个不简单的问题啊!不过别着急,我这个“知识小百科”可是见过世面的,一定能帮你解决。

今天我们就来聊聊:试述求杆件横截面上内力的截面法步骤和方法。

我们要知道杆件横截面上的内力是什么。

简单来说,就是杆件在受力时,由于各个部位的材料不同,所以产生的应力也不一样。

这些应力就会在杆件内部形成一种力量,我们称之为内力。

而求解这种内力的过程,就叫做截面法。

那么,截面法有哪些步骤呢?其实很简单,可以分为以下几步:
第一步:确定截面形状和尺寸。

这是非常重要的一步,因为不同的截面形状和尺寸会影响到内力的分布情况。

所以我们需要根据实际情况来选择合适的截面形状和尺寸。

第二步:建立坐标系。

这个步骤的目的是为了方便我们进行计算。

我们可以将杆件看作一个长方体,然后在这个长方体上建立一个坐标系,用来表示各个部位的位置和方向。

第三步:确定材料的性质和截面几何参数。

这一步也是非常关键的,因为不同的材料有着不同的弹性模量、泊松比等性质参数,而这些参数又会影响到内力的计算结果。

第四步:应用胡克定律和其他力学公式进行计算。

这一步需要我们掌握一定的力学知识和技巧,才能够正确地求解出内力的大小和方向。

好了,以上就是求解杆件横截面上内力的截面法步骤和方法了。

看起来有点复杂吧?但是只要认真学习,相信你也能轻松掌握哦!
希望我的回答对你有所帮助!如果你还有其他问题或者疑问,欢迎随时提出哦!。

截面法求内力讲解

截面法求内力讲解

解: 1. 确定支座反力
B Fx 0 MA 0
FBy
Fy 0
FAx 0 2FPa FPa FBy 3a 0 FAy FBy 2FP 0
FBy

FP 3
FAy

5FP 3
2FP FQE
A 5FP
C E ME
3
Fy 0
2FP
FQE

5FP 3

0
C
a
FAy
b l
FPb l
+
FP a
-
l FQ图
FPab M图
l
B FBy
A FPb
l
FQ
M
MA 0
Fy 0
FBy

FP a l
FAy

FPb l
FQ
FQ

FPb l
(0 x a)
M
M FPb x (0 x a)
l
B
FQ


FP a l
(a x l)
FPa M FPa (l x)
平: 对留下部分写平衡方程求出内力的值
FQ(+)
FQ(+)
M(+)
M(+)
(1)平衡方程的正负和内力的正负是完全不同性质的两套符号系统。 (2)取简单部分作为隔离体,列平衡方程时,尽量使一个方程含有一个未知量
例1 求E截面内力
A FAx
FAy
2FP FPa
C
D
1.5a E
a
a
a
2. 用截面法研究内力
M JK J
F QJK
M JK J

材料力学内力和截面法

材料力学内力和截面法
材料力学内力和截面法
课程导入:
工程实例
1.内力
内力--由于物体受外力作用而引起的内部各 质点间互相作用的力的改变量。
根据可变形固体的连续性假设可知,物 体内部相邻部分之间的作用力是一个连续分 布的内力系,我们所说的内力是该内力系的 合成(力或力偶)
2.截面法
求内力的一般方法------截面法 步骤: (1)截开;
(2)代其作用线 均与杆件的轴线重合,因而称之为轴力用符号 FN表示。
3.轴力符号的规定
引起伸长变形的 轴力为正--拉力 (背离截面);
引起压缩变形的 轴力为负--压力 (指向截面)。
4.轴力图
若用平行于杆轴线的坐标表示横截面的位 置,用垂直于杆轴线的坐标表示横截面上轴 力的数值,所绘出的图线可以表明轴力与截 面位置的关系,称为轴力图。
注意: 用截面法求内力的过程中,在截面取分离
前,作用于物体上的外力(荷载)不能任意移 动或用静力等效的相当力系替代。
5.例题
试作图示杆的轴力图。
解:求支反力 FR=10kN
横截面1-1:注意假设轴力为拉 力
横截面2-2:
横截面3-3:此时取截面3-3右边为分离体方便, 仍假设轴力为拉力。

《截面法求内力》课件

《截面法求内力》课件
通过使用截面法求内力,工程师可以 更好地了解结构的受力状态,优化结 构设计,提高结构的承载能力和安全 性。
截面法求内力的基本步骤
确定截面位置
根据结构的特点和受力情况,选择适 当的截面位置。
进行截面分析
对所选截面进行详细的分析,包括该 截面的受力状态、约束条件以及与周 围结构的相互作用关系等。
计算内力
截面法的优缺点
截面法的优点在于简单易懂,易于操作,适用于各种形状和尺寸的构件。然而,截面法也存在一些局限 性,如对于复杂结构和多跨连续梁的计算可能较为繁琐,需要借助其他分析方法。
截面法求内力的展望
截面法的进一步研究和改进
随着科技的发展和工程实践的深入,截面法的研究也在不断进步。未来可以进一步研究截 面法的精度和可靠性,提高其计算效率和准确性。同时,可以结合数值分析方法和其他现 代技术手段,对截面法进行改进和优化。
《截面法求内力》 ppt课件
contents
目录
• 截面法求内力概述 • 截面法求内力的基本原理 • 截面法求内力的具体操作 • 截面法求内力的实例解析 • 截面法求内力的注意事项与优化建议 • 总结与展望
01
CATALOGUE
截面法求内力概述
截面法求内力的定义
截面法求内力是指在结构分析中,通过在结构上选择适当的截面,并按照一定的 步骤和方法,计算出该截面所承受的内力(如轴力、剪力和弯矩等)的方法。
内力计算
计算内力时,应考虑所有可能的受力情况, 避免遗漏。
边界条件
正确处理结构的边界条件,如固定、自由、 简支等,对分析结果至关重要。
优化建议
简化模型
使用软件辅助
在保证分析精度的前提下,尽量简化模型 ,减少计算量。
利用专业软件进行内力分析,可以大大提 高计算效率和准确性。

第二章 杆件的内力·截面法

第二章 杆件的内力·截面法
3
二、分别计算各段的扭矩
M2 A M2 A
1 1
1 1
M3
B T1 x M3 B
2 2
M1 C
3
3
M4
D
T1 M 2 4.78kN m
2 2
M2
T2
T2 M 2 M 3
x
9.56kN m
T3
3 3
A
M4 D
T3 M 4 6.37kN m
x
扭矩图 M2 M3 B M1 C M4
q(x) — 分布力
L
M — 集中力偶
L
F — 集中力
3、外伸梁:overhanging beam q — 均布力
L (L称为梁的跨长)
L
弯曲内力的确定(截面法)
a A l F F B [例]已知:如图,F,a,l。
求:距A端 x 处截面上内力。
解:①求外力(支座反力)
FAX A FAY
B FBY
研究对象:m - m 截面的左段: Fy 0, FAY Fs 0.
m x
Fs
M
Fs FAY
C
(F ) 0, M FAY x 0.
M FAY x F (l a) x l
F (l a ) l
C
Fs
M
F
∴ 弯曲构件内力: Fs -剪力, M -弯矩。
若研究对象取m - m 截面的右段:
的轴力图。
O A FA FN1 A FA B FB B FB C FC C FC D FD D FD
解: 求OA段内力FN1:设截面如图
F
x
0
FD FC FB FA FN1 0

内力的计算——截面法截面法PPT课件

内力的计算——截面法截面法PPT课件
如图211所示受到轴向拉伸和轴向压缩的杆件ab和bc当杆ab受到外力包括载荷和约束反力拉伸作用而产生伸长变形时其内部材料的分子之间因相对位置改变而产生相互作用力来抵抗这种伸长变形这种相互作用力将随外力增大而加大但有一定限度如果超过了这个限度时杆件就会发生过大变形或被拉断
一、任务描述
在工程实际中,构件受到轴向拉伸或压缩地实例很多。如图2-1-1a所示 的悬臂式吊车中,AB和BC两杆就是受到轴向拉伸和压缩的构件。AB和BC 两杆铰接于B点。α=30°,在B铰接点悬吊一重G=20kN的物体,试分析计算, 在外力作用下AB和BC两杆件截面上的内力。(不计杆的自重)
7、轴向拉伸或压缩的概念
杆件受到沿轴线方向的拉力 或压力作用,杆件变形是沿轴 向的伸长或缩缩
特点:
受力特点——作用于杆件两端的外力大小相 等,方向相反,作用线与杆件轴线重合。
变形特点——杆件变形是沿轴线方向伸长或 缩短。
构件特点——等截面直杆。
第11页/共21页
第19页/共21页
小结:
拉伸、压缩杆件内力计算的方法与步骤 用静力学平衡方程计算相关杆件所受外力。 用截面法求解杆件的内力:截开、代替、平衡。 为了使应用静力学方程计算出的内力不仅在大小而且在方向 上与材料力学内力的规定统一, 通常采用“设正法”画截面上的内力。即无论截面上的内力 是拉力还是压力,一律按正的内力 (即背离横截面)画出。这样用平衡方程式求出的内力若为 正,则为拉力,反之则为压力。
轴力的正负规定:
当轴力的指向离开截面时,杆受拉,规定轴力为正;反之, 当轴力指向截面时,杆受压,规定轴力为负。即拉为正,压为 负。
第16页/共21页
10、轴力图
直观地表明各截面上轴力沿轴线的变化,横坐标X轴表示 杆截面的位置,纵坐标表示相应截面上轴力的大小。

单元十二 静定结构内力分析

单元十二 静定结构内力分析

反映剪力(弯矩)随截面位置变化规律的曲线, 称作剪力(弯矩)图。
返回 下一张 上一张 小结
二、剪力图和弯矩图的作法: 取平行梁轴的轴线表示截面位置,规定 正值的剪力画轴上侧,正值的弯矩画轴下侧; 可先列内力方程再作其函数曲线图。
如悬臂梁:当x=o, Q(x)=-P, M(x)=0; x=l, Q(x)=-P-ql, M(x)=-Pl-ql2/2. 其剪力图和弯矩图如图示。
pL 2L P VB L 0 2 3 7P VB () 6 PL L M 0 P VA L 0 B 2 3 P V A () 6 P 7P Y V P V P 0 A B 校核 6 6
MA 0

遇到向左的P, 轴力N 增量为正; 遇到向右的P , 轴力N 增量为负。
8kN
5kN
3kN
5kN + 8kN – 3kN
[例2] 图示杆长为L,受分布力 q = kx 作用,方向如图,试画出 杆的轴力图。
q(x) 解:x 坐标向右为正,坐标原点在 自由端。 取左侧x 段为对象,内力N(x)为:
例 用叠加法作图所示外伸梁的 M 图。 解:1)先分解荷载为P1、P2单独作用情况; 2)分别作出各荷载单独作用下梁的弯矩图; [如图 a] 3)叠加各控制截面各弯矩图上的纵坐标得梁的弯矩图。[如图d]
三、区段叠加法作梁弯矩图
梁中取出的任意梁段都可看作是简支梁, 用叠加法作简支梁的弯矩图即梁段的弯矩图。
3)画内力图:(先求控制截面内力值,再按
内力图特征画图。) 剪力图 AB 段: QA Qc VA 6KN BC 段:QC 6KN , QB VA q 4 6 6 4 18KN 弯矩图 AB 段: M A 0, M C VA 2 12KN m BC 段:

材料力学内力和截面法

材料力学内力和截面法

最新课件
12
7
5.例题
试作图示杆的轴力图。
解:求支反力 FR=10kN
最新课件
8
横截面1-1:注意假设轴力为拉力 横截面2-2:
最新课件
9
横截面3-3:此时取截面3-3右边为分离体方便, 仍假设轴力为拉力。
最新课件
10
由轴力图可看出
FN,max=FN2=50kN
最新课件
11
此课件下载可自行编辑修改,供参考! 部分内容来源于网络,如有侵权请与我联系删除!-截面法 步骤: (1)截开;
(2)代替;
(3)平衡。
可看出:杆件任一横截面上的内力,其作用线
均与杆件的轴线重合,因而称之为轴力用符号
FN表示。
最新课件
4
3.轴力符号的规定
引起伸长变形的 轴力为正--拉力 (背离截面);
引起压缩变形的 轴力为负--压力 (指向截面)。
2.2内力●截面法●轴力及轴力图
课前复习:
工 程 桁 架
拉压杆
最新课件
1
课程导入:
工程实例
最新课件
2
1.内力
内力--由于物体受外力作用而引起的内部各 质点间互相作用的力的改变量。
根据可变形固体的连续性假设可知,物 体内部相邻部分之间的作用力是一个连续分 布的内力系,我们所说的内力是该内力系的 合成(力或力偶)
最新课件
5
4.轴力图
若用平行于杆轴线的坐标表示横截面的位 置,用垂直于杆轴线的坐标表示横截面上轴 力的数值,所绘出的图线可以表明轴力与截 面位置的关系,称为轴力图。
注意: 用截面法求内力的过程中,在截面取分离
前,作用于物体上的外力(荷载)不能任意移 动或用静力等效最的新课相件当力系替代。 6

工程力学杆件的内力

工程力学杆件的内力
(iii) 作图 在CA段内再适当 算出几个弯矩值,标于坐标上, 并与MC,MA的坐标相连,画出抛 物线;再以直线MA,MD左和MD右, MB的坐标,可得全梁的弯矩图 如图所示。由图可见,在D稍右 处横截面上有绝对值最大的弯 矩,其值为
M 15kN m max 40
例 作梁的内力图
q P qa q

18
解:
(1)计算外力偶矩
由公式
Pk/n
19
(2)计算扭矩
(3) 扭矩图
20
• 传动轴主动轮A的输入功率NA=50 马力,从动轮B、C、D输出功率分 别为NB=NC=15马力,ND=20马 力,转速n=300r/min。画扭矩图。
21
mA=1170 N·m
用截面法求出内力 mB= mC= 351 N·m mD= 468 N·m
且轴力或为拉力,或为压力。
正负号规定: 轴力 拉为正,压为负。
二 轴力计算 (利用截面法进行计算) 计算轴力的方法:
(1)在需求轴力的横截面处,假象用截面将杆切开,并任 选切开后的任一杆段为研究对象;
(2)画所选杆段的受力图,为计算简便,可将轴力假设为 拉力,即采用所谓设正法;
(3)建立所选杆段的平衡方程,由已知外力计算切开截6面 上的未知轴力。
剪力图和弯矩图的作法:
(1)根据剪力方程和弯矩方程;
(2)叠加法(superposition method);
(3)根据集度(intensity)、剪力和弯矩的微分关系;
30
解:(1)列剪力方程和弯矩方程
由平衡方程
Y 0,Q P 0 得Q P 由M 0, Px M 0
截面法求内力举例:求杆AB段和BC段的内力

截面法求内力讲解

截面法求内力讲解

l
l
(a ? x ? l)
x A FAy
M0
C
B
a
l
b FBy
? MA ? 0
? Fy ? 0
FBy
?
?
M0 l
FAy
?
M0 l
M0 l
+
FQ图
M 0b l
M0a l
M图
A M0 l
FQ
M
FQ
FQ
?
M0 l
M M ? M0 x
l
(0 ? x ? a) (0 ? x ? a)
B
FQ
?
M0 l
(a ? x ? l)
FAy 70 +
A
A
4m
2m 2m
FBy
A
EC D 10 10 -
B 70
50 50
FQ
FQ图(单位kN)
M
F
EC D
B
q FQ FQ ? 70 ? 20x
M ? 70x ? 10x2
M
40 B
FQ ? ?10
50 M ? 160 ? 10x
(0 ? x ? 4) (0 ? x ? 4)
(4 ? x ? 6) (4 ? x ? 6)
100 120 100 122.5
M图(单位kN.m)
FQ M
FQ ? ?50 (6 ? x ? 8)
B 50 M ? 400 ? 50x (6 ? x ? 8)
叠加法
条件:结构线弹性、小变形
荷载叠加法: 当结构上同时作用有许多荷载
时,先分别作出各荷载单独作用 下的内力图,再将各个内力图的 竖标相叠加(代数和),便得到 各荷载共同作用下的内力图。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
2m 2m
10
解: 求支座反力
FC-10-20-30= 0

A

F
y
=0
得:FC= 60 kN(↑)
用截面Ⅰ—Ⅰ将桁架截开,如下图所示:
10kN E Ⅰ 1 20kN 30kN
取右边部分,作受力图如下:
20kN 30kN
4
2
N1
D C
N2
B
ⅡⅠ
N3
D
C 60kN


y
=0
N2 sin45+60-20-30= 0 (60-30)×2+ N1×2= 0
内力分析的基本方法-截面法
一、内力的概念 外力:作用在杆件上的载荷和约束力。 内力 :杆件在外力作用下发生变形,引起内部相邻各部分 相对位置发生变化,相连两部分之间的互相作用力。 二、截面法 1、截面法:是求内力的基本方法。 截面法的步骤: (1)截 (2)取代
m
P
m
P
P
m m
m
N N
P
m
(3)平衡
取左段为研究对象:ΣΧ= 0
或取右段为研究对象:ΣΧ= 0
N-P = 0
-N+P = 0
得 N = P
得 N = P
1
三种主要内力
1、拉、压杆的内力-轴力 定义:通过截面形心,沿着杆件轴线的内力称为 轴力。用N表示。 轴力的正负号规定:使杆件产生拉伸变形为正; 产生压缩变形为负。或轴力离开截面为正;指向 截面为负。 矩 计算步骤: 1、用假想截面从指定截面处将梁截为两段;
2、以其中任一部分为对象,在截开的截面上按剪力、 弯矩的正方向画出未知剪力Q及弯矩M; 3、应用平衡方程ΣΥ= 0和Σmc= 0计算出Q和M,C点 为所求截面形心。 四、举例说明
15
例:试计算图示外伸梁指定截面上的剪力和弯矩 ΣΎ= 0 RA– QD – qL= 0
简 支梁
悬臂梁
外伸梁
12
三、梁的内力剪力和弯矩
P1 RA
m
M
Q
M Q
m
P2
m
m
RA
RB
RB
取截面m-m以左为对象:
该相切于横截面的集中力称为剪力,用Q表示; 位于纵向对称平面内的力偶称为弯矩,用M表示。
由平衡方程: ΣΥ=0 Σmc=0 求得Q 求得M 取截面m-m以右为对象, 同理可得。
13
剪力、弯矩的正负号规定 剪力使隔离体产生顺转为正,逆转为负; 弯矩使隔离体产生下凸为正,上凸为负。
N2
N2 = 0
N1 = - P
2、不共线的两杆结点,外力沿一杆作用,则另一杆轴 5 力为零。
N1
3、无外力作用的三杆结点
N2 N2 = 0 N1 = N3 N3
二、截面法
用截面截取两个以上结点作为对象,列出平面一般 力系的三个平衡方程:∑X = 0,∑Y = 0,∑M0= 0 计算三个杆件的未知轴力。 截面法适合于计算桁架中指定杆件的轴力。在计算 中为了避免解联立方程,应注意对平衡方程的选择。 一般情况下,用截面法计算时未知力不超过三个, 但在某些特殊情形下,当截断杆数超过三根是时,可 以求出其中一根杆的轴力。 6
-10-NAC Sin30o =0 NAC = -20kN(压杆) ∑X= 0
-NAB -NAC Cos30o =0
NAB = 10√3 =17.3kN(拉杆)
7
NAC=NC E=NE G
例2:求图示指定杆的轴力 8kN
8kN 3m 3m 4m m 4kN D C N1 4kN 2 3 4 n m B E
得:N2= -14.1kN(压) 得:N1=-30 kN(压) 得:N3=40 kN(拉)
11



MD = 0
E
M
=0
-30×4-N3×2-20×2+60×4= 0
再取截面Ⅱ-Ⅱ可分析
N4 = 0
2.弯曲梁内力-弯矩、剪力
一、弯曲变形和平面弯曲
外力特点:杆件受到垂直于轴线的外力或在纵向 对称平面内受到力偶作用。 变形特点:杆轴由直线变成曲线,并位于加载平面内。 二、单跨梁的类型
8kN 4kN E
4kN D C 4kN
C 4m n 1
A
D 4kN
N4
N1 N2 N3 N4
由结点E可知: N2 = -N3
取m-m截面以上为对象 由∑x= 0 得
解:取n-n截面以上为对象 ∑MD= 0 N1 ×6+8×3+4×4 = 0 得: N1 = -6.67 kN
N2=-6.67 kN
所以:
三、桁架杆件轴力的正负号规定
桁架杆件的轴力以拉力为正,压力为负。计算时 通常假设杆件的未知轴力为拉力,若计算结果为正, 说明杆件受拉,反之受压。
桁架斜杆轴力的表示:
B L A N LX LY N N X A
B
Y
存在以下比例关系:
Y X N = = LY LX L
4
计算桁架杆件轴力的方法 一、结点法
例1:求图示桁架各杆的轴力。 取A结点为对象:
2m 2m 2m
F
17. 3D 17. 3 B 17. 3 0 30o -20 0 0
10kN A
NAB 10kN
30o
A
-20C G -20 E
0
NAC
∑Y= 0
解:利用各结点的平 衡条件计算各杆轴力
由结点B、C、D、E可知: NBC=NCD=NDE=NEF= 0 且:NAB=NBD=NDF
截取一个结点为对象,列出平面汇交力系的两个平 衡方程:∑X = 0; ∑Y = 0计算杆件的未知轴力。 结点法宜应用于解简单桁架的全部杆件的轴力,以 及和截面法联合应用求解桁架部分杆件的轴力。
结点法的特殊情形 — 零杆的判别
1、无外力作用的不共线的两杆结点,两杆轴力都为零。
N1
N1 N2 N1 =N2 =0 P
由∑MC= 0得N4=-1.33 kN
N3 = 6.67 kN
8
例:求图示1、2杆的轴力。 解:取m-m面以上为对象, 由∑X = 0得 N1= 0 取n-n面以右为对象,由∑ Y= 0得 N2
m P 2 1
n m
n
9
题型1、求静定桁架结构的内力——轴力
10kN A 2m E 4 1 2 3 D 2m C 20kN 30kN
RA
RB 1、计算支座反力
得: QD= qL/2 Σmc= 0 MD–RA×L+qL×L/2 = 0 得: MD= qL2 取E--E截面右段为对象
P P N N P P
N N
压力 轴力的单位:N 或 kN
2
结构内力1:平面桁架内力计算
一、桁架的特点
(1)结点都是铰结点;
(2)各杆的轴线都是直线,且通过铰的中心; (3)荷载和支座反力都作用在结点上; (4)各杆只有轴力;
二、桁架的几何组成分类 (1)简单桁架;(2)联合桁架;(3)复杂 桁架。 3
相关文档
最新文档