CDMA的语音编码与信道编码
中国电信网规网优3级认证真题004-CDMA通信原理
CDMA通信原理:1、简述CDMA系统的发展历程及各阶段的特点。
2、画出CDMA系统的网络结构,简述接入网各网元的功能,以及主要的接口。
3、什么是扩频?CDMA采用什么扩频方式?扩频是指将信号扩展至一个很宽的频带上进行传输。
CDMA采用直接序列扩频方式。
4、什么是相关系数?如何判断两列码是正交的?相关系数是用来衡量两个信号的相关性;当两信号的相关系数为0时表示两信号正交。
5、简述扩频的整个过程。
发端数据流与一扩频序列结合到一起在终接端,只要具备正确的定时和扩频序列,合成信号可以被压缩并恢复出原始数据压缩频谱后,恢复出的原始数据流仍然保持完整。
6、名词解释:Ec、Io、Eb、Nt、解调门限。
Ec:码片能Io:总干扰Eb:比特能Nt:解扩后总干扰解调门限:系统能够解调的最小Eb/Nt。
7、为什么说CDMA系统是自干扰受限系统?因为CDMA系统容量受CDMA系统总干扰的因素限制。
8、名词解释:爱尔兰、CE、软容量、小区呼吸。
爱尔兰:话务量单位,指一个用户占用一业务信道一小时所产生的话务量为1Erl。
CE:指信道单元。
软容量:指CDMA系统容量的缩放主要因素:反向的干扰小区呼吸:根据基站的忙闲,收放小区的覆盖范围。
9、请画出CDMA的系统框图,并说明每一步操作的作用。
10、什么是处理增益?它是如何计算的?它有什么特点?处理增益理解为最终扩频速率与信息速率的比;处理增益=Eb/Ec特点:处理增益越大,反向干扰越小,前向覆盖越少。
11、语音编码的作用是什么?CDMA系统采用了什么语音编码?由于支持语音激活,在典型的双工通话中,通话的占空比大于35%,不通话的时候降低发射速率,有效提高系统容量。
CDMA系统采用了8K QCELP、13K QCELP、8K EVRC。
12、什么是激活因子?激活因子是指当前语音业务使用时长占总时长的比例。
13、有哪两种什么信道编码方式?它们有什么区别?语音业务用哪种编码方式?卷积码和TURBO码,区别:卷积码是时延小,误码较大,纠错能力低,TURBO码是时延较长,纠错能力强。
CDMA原理
1、CDMA原理图2、编码技术2-1信源编码2-1-1信源编码的目的是通过压缩编码来去掉信号源中的冗余成分,以达到压缩码率和带宽,实现信号的有效传输;2-1-2最常用的信源编码是PCM,它采用A律波形编码。
分为取样、量化和编码三步;一路语音信号编码后的速率为64Kb/s;2-1-3移动通信中如果采用PCM编码技术,则传一路话音信号需要64K带宽,传8路话音需要512K带宽。
对于1个频点只有200KHZ带宽的GSM系统来说,会造成频率资源的浪费,因此GSM系统中采用GMSK编码技术,编码后的速率为13Kb/s;2-1-4第三代移动通信系统中,不仅要支持语音通信,还要支持多媒体数据业务,因此必须采用更加先进的编码技术。
在WCDMA中,采用了自适应多速率语音编码(AMR)技术。
它支持8种编码速率:12.2、10.2、7.95、7.4、6.7、5.9、5.15和4.75Kb/s.3、AMR控制AMR:允许系统根据无线接口资源动态调整语音的编码速率负荷重时,降低AMR的语音速率,这样既减轻负载,又增加系统容量。
采用4.75K时相对12.2K容量提高约40%负载轻时,增加AMR语音速率,尽量提高QOS,增加满意度对于上行覆盖受限的情况,降低AMR的语音速率可以有效扩大上行的覆盖范围4、信道编码目的使接收机能够检测和纠正由于传输媒介带来的信号误差。
同时在原数据流中加入冗余信息,提高数据传输速率。
5、信道编码的特点5-1信道编码技术是通过给原数据添加冗余信息,从而获得纠错能力5-2目前使用较多的是卷积编码和Turbo编码(1/2,1/3)5-3使用编码增加了无效负荷和传输时间5-4适合纠正非连续的少量错误6、交织编码技术6-1优点交织技术是改变数据流的传输顺序,将突发的错误随机化。
提高纠错编码的有效性。
6-2缺点:由于改变了数据流的传输顺序,必须要等整个数据块接收后才能纠错加大了处理延时,因此交织深度应根据不同的业务要求选择。
CDMA编码技术
模块一 3G基础模块 模块二 CDMA技术基础模块 模块三 WCDMA移动通信技术模块 模块四 TD-SCDMA移动通信技术模块 模块五 CDMA2000移动通信技术模块 模块六 WiMAX技术模块
模块二 CDMA技术基础模块
任务1 扩频通信概念
任务2 扩频通信的特点和主要技术指标 任务3 CDMA码序列
图2-19 信道编码和交织实例
本任务要求
识记:语音编码、信道编码方式。
领会:交织技术。
应用:语音编码技术。
26
4)交织技术
为什么要采用交织技术呢?原因有两个: (1)无线传输干扰和误码通常在某个较小时间段内发生,影 响连续的几个突发脉冲。 (2)如果把话音桢内的比特顺序按一定的规则错开,使原来 连续的比特分散到若干个突发脉冲中传输,则可分散误码,使连 续的长误码变成若干分散的短误码,以便于纠错,提高话音质量 。
出Viterbi算法)、MAP(最大后验概率算法)等。由于MAP算法
的每一次迭代性能的提高都优于Viterbi算法,因此MAP算法的迭
代译码器可以获得更大的编码增益。
2)Turbo码
图2-16 Turbo编码器
3)Reed-Solomon码
Reed-Solomon码是一类具有很强纠错能力的多进制BCH码, 它由Reed和Solomon应用MS多项式于1960年构造出来。在线性分 组码中RS码的纠错能力和编码效率是最高的。 R-S码常作为级联码的外码使用,CCSDS标准采用了R-S(255 ,233)与(2,1,7)卷积码加块交织的级联码编码方案,用于 卫星空间数据的传输。
1)卷积码
卷积编码器在任何一段规定时间内产生的n个码元,不仅取决 于这段时间中的k个信息位,而且还取决于前N-1段时间内的信息 位。此时监督码元监督着这N段时间内的信息,这N 段时间内的 码元数目nN称为这种码字的约束长度。
4g和5g通信所采用的信源编码和信道编码
4g和5g通信所采用的信源编码和信道编码4G和5G通信所采用的信源编码和信道编码是不同的,具体如下:1. 4G通信所采用的信源编码4G通信系统采用了多种信源编码方式,其中最常用的是AMR (Adaptive Multi-Rate)编码。
AMR编码是一种自适应多速率语音编解码器,其主要作用是将语音转化为数字数据,并通过无线网络传输。
AMR编码可以根据网络质量自适应调整传输速率,从而提高语音质量。
2. 4G通信所采用的信道编码4G通信系统采用了Turbo编码和LDPC(Low Density Parity Check)编码两种主要的信道编码方式。
Turbo编码是一种迭代式卷积码,能够有效地提高数据传输速率和距离性能。
LDPC编码则是一种基于图像理论的低密度奇偶校验码,具有低复杂度、高效率等优点。
3. 5G通信所采用的信源编码5G通信系统引入了新型的波形调制方式和多路访问技术,因此在信源编解码方面也进行了改进。
5G通信系统主要采用Polar Coding(极化编解码)技术进行数据压缩和解压缩。
Polar Coding是一种基于极化理论的新型编码方式,具有高效率、低复杂度等优点。
4. 5G通信所采用的信道编码5G通信系统主要采用了LDPC编码和Polar Coding两种信道编码方式。
与4G通信系统相比,5G采用了更加先进的LDPC编码技术,能够提高数据传输速率和距离性能。
此外,Polar Coding也可以应用于5G通信系统的信道编码中,进一步提高数据传输效率。
总之,4G和5G通信所采用的信源编码和信道编码各有不同,并且在技术上都进行了不断改进和优化,以满足不断增长的无线通信需求。
CDMA移动通信基础
CDMA移动通信基础CDMA移动通信基础CDMA( Division Multiple Access)是一种移动通信技术,是利用信道编码技术实现多用户使用同一频段的一种通信方式。
CDMA移动通信基础是了解CDMA技术的基本原理和核心技术的基础知识。
1. CDMA技术的原理CDMA技术的基本原理是将不同的用户数据按照一定的编码方式进行编码,然后通过扩频技术将编码后的数据发送到整个频段。
接收端通过解码和去除其他用户干扰的方式,将特定用户的数据还原出来。
CDMA技术主要包括信道编码、信道容量和干扰抑制三个方面。
1.1 信道编码CDMA技术通过采用码片作为信号的传输方式,将用户数据进行编码与解码过程。
码片是一种特殊的伪随机序列,能够使信息在传输过程中增加冗余度,提高信号的鲁棒性和抗干扰能力。
1.2 信道容量CDMA技术具有高信道容量的特点。
由于CDMA技术采用扩频技术,可以在同一频段内传输多个用户的数据,从而提高了频段的利用率。
CDMA技术的信道容量远高于传统的时分多路复用和频分多路复用技术。
1.3 干扰抑制CDMA技术可以通过编码和解码的过程对其他用户的信号进行抑制。
由于CDMA技术是将所有用户的信号混合传输,所以没有固定的时间、频率和位序来分离不同用户的信号。
其他用户的信号会被视为干扰信号,需要通过解码过程进行抑制。
2. CDMA系统的结构CDMA系统由基站、移动台和交换网三部分组成。
基站负责与移动台进行无线通信,传输和接收数据,以及与交换网连接进行调度管理。
移动台是用户使用的移动终端设备,在与基站建立通信连接后可以进行语音通话或数据传输。
交换网则负责处理和转发数据,实现移动通信的集中管理。
3. CDMA系统的优点和应用CDMA技术具有以下优点:抗干扰能力强,能有效抵抗同频干扰和多径干扰。
高带宽利用率,实现多用户使用同一频段。
通信质量稳定,支持高速数据传输和语音通话。
系统容量大,能够容纳大量用户通信。
第4章 语音编码、信道编码和交织讲解
2019/6/7
13
4.1.1 概述
• 混合编码基于参量编码和波形编码发展的一类新的 编码技术。在混合编码的信号中,既含有若干语音 特征参量又含有部分波形编码信息。其编码速率一 般在4~16kbit/s。当编码速率在8~16kbit/s范围时, 其语音质量可达到商用语音通信标准的要求。
• 考虑到中、低比特率的编译码器将尽量利用语音 中的一些特征,将语音以及语音频段内的数据一 起协调的编码算法必将降低语音的质量。因此, 在设计语音编码器时,应首先考虑语音的质量, 而对于语音频段内的数据信号,则通过特殊的终 端适配器来实现。
2019/6/7
34
4.1.6 GSM系统语音编码器
(5)传输时延 造成传输时延的主要原因有以下两方面。 ① 语音编码的时延。 ② 无线分系统中的时延。
• 目前较成功的混合编码方案有两种,多脉冲激励 线性预测编码(MPLPC)和码激励线性预测编码 (CELPC),前者使用一个数目有限且幅度和位置 要调整的脉冲序列作为激励源。后者使用一个波 形矢量作为激励源。图4-3给出三种不同激励序列 及其产生语音方法。
2019/6/7
图4-3 三种不同激励的语言合成模型
• 三种编码技术同时存在通信系统中,波形编码以 其高质量用于长途传输和宽带语音;声码器以高效 压缩性用于保密通信;混合编码以其独有特性用于 各种通信系统。
2019/6/7
27
4.1.5 移动通信中语音编码器的选择
在低比特率语音编码中,有4个参数是很重要的, 即比特率、质量、复杂度和处理时延。 1.语音质量评估 • 当前世界上流行的语音质量评估方法是采用原
第5章语音编码及信道编码讲述介绍
(3) 短时分析滤波。 短时分析滤波的目的在于得出余
量信号d。 (4) 长时预测。 长时预测部分是一个长时预测器环路。
第5章 语音编码及信道编码
(5) 规则脉冲激励(RPE)编码。 RPF编码部分将长
时预测得出的余量信号e进行规则脉冲序列提取及量化 编码。
第5章 语音编码及信道编码
2)
RPE-LTP线性预测解码器
第5章 语音编码及信道编码
咽喉脉冲流 机械力 气室 气流
鼻腔
口腔 舌 喉 气管 横隔膜 功率源 肺 激励信号 (a) 时变有损谐振器 齿 唇
图 5 - 3 语音产生过程的机械和电路模型
(a) 机械模型; (b) 电路模型; (c) 激励功率谱和滤波器的频率响应
第5章 语音编码及信道编码
周期 直流/ 交流 变换 噪声 直流 有声/ 无声 判决 (b) 有声音 f 激励频谱 无声音 f f (c) 滤波前的频率响应 时变滤波器 语声 信号
hM
-1 1 2 1 2 1
-1 2 1
-1 2 1
-1 2 S n (开关1 ) 或 n (开关2 )
∑
(a)
=
Sn- 1
=
Sn- 2
S n -m + 1 S n -M = …
n
h1
h2
h M -1
hM
∑
(b)
Sn
图 5 - 5 线性预测器及合成滤波器
第5章 语音编码及信道编码
应用上述线性预测的分析与合成方法的语音编码, 称为语音的线性预测编码(LPC)。 线性预测编解码器的 简化方框图如图5 - 6所示, 图(a)为LPC编码器, 图(b) 为解码器。
第5章 语音编码及信道编码
激励
TD-SCDMA、CDMA2000、WCDMA比较
2 TDD 和FDD 模式比较现有的移动通信系统都表现出对对称双工语音业务和相应的低比特率数据业务的良好支持特征。
对于这些语音业务,每窄带的业务信道被占用的带宽是20-30KHz,通常整个频谱会被再分为固定数量的业务信道。
毫无疑问,对称成对频带上的FDD(频分多址)运行模式适合于语音业务,因此可成为此类型移动通信系统的典型标准。
然而,移动用户对高速数据处理能力日渐增长的需求,导致对3G 数据传输速率的要求从8kit/s 增长到2Mit/s,以实现带有多种应用的对称和非对称业务。
随着每个用户要求的频带和数据吞吐量的迅速增长,3G 业务的对称和非对称业务的混合导致频谱分配和频谱管理发生相当大的变化,3G 系统被要求支持尽可能高的频谱效率。
2.1 TDD 模式不能实现综合最佳频谱利用率在3G 的对称语音业务和多媒体务方面,上行链路和下行链路产生一个对称双工业务量负载。
FDD 的操作模式,由于上行链路和下行链路的业务负载的对称性,对称业务将在成对对称无线频谱上呈现出最佳的频谱利用率。
在3G 的非对称包交换业务和互联网业务方面,人们看到,所有不对称的双工业务的典型特征是上行链路和下行链路中的业务量负载的不对称性,负载的大小取决于不同的业务类型。
为了达到最佳频谱利用率,非对称业务要求每种业务都可灵活地利用频谱资源。
然而,在一个固定的上/下行链路进行频率分配,想运用灵活的方法理想地实现频谱资源的有效利用是不可能的。
最佳频域的频谱利用率是不能通过成对的频谱分配来实现的。
因此,对对称频带上的FDD 模式,在方便、灵活的适应性要求情况下,实现对称业务和非对称的上/下行链路业务并不是一个最佳的解决方案。
2.2 TD-SCDMA 的总频谱利用率最高对于实现对称和非对称业务的最佳频谱利用率的目标来说,实现灵活的、自适应的频谱分享是十分必要的。
TDD 模式是基于在无线信道时域里的周期地重复TDMA 帧结构实现的。
这个帧结构被再分为几个时隙。
CDMA语音编码和信道编码总结
CDMA的语音编码与信道编码摘要:随着3G移动通信技术的逐步实现以及移动通信与互联网的融合,全球正迅速步入移动信息时代。
CDMA已被广泛接纳为第三代移动通信的核心技术之一,它具有优越的性能。
本文主要介绍CDMA中常用的语音编码技术与信道技术。
关键词:语音编码信道编码受激励线性编码码激励线性预测编码矢量和激励线性预测编码编码器解码器卷积码1 CDMA中的语音编码技术语音编码为信源编码,是将模拟信号转变为数字信号,然后在信道中传输。
在数字移动通信中,语音编码技术具有相当关键的作用,高质量低速率的话音编码技术与高效率数字调制技术相结合,可以为数字移动网提供高于模拟移动网的系统容量。
目前,国际上语音编码技术的研究方向有两个:降低话音编码速率和提高话音质量。
1.1 语音编码技术的分类语音编码技术有三种类型:波形编码、参量编码和混合编码。
●波形编码:是在时域上对模拟话音的电压波形按一定的速率抽样,再将幅度量化,对每个量化点用代码表示。
解码是相反过程,将接收的数字序列经解码和滤波后恢复成模拟信号。
波形编码能提供很好的话音质量,但编码信号的速率较高,一般应用在信号带宽要求不高的通信中。
脉冲编码调制(PCM)和增量调制(ΔM)常见的波形编码,其编码速率在16~64kbps。
●参量编码:又称声源编码,是以发音模型作基础,从模拟话音提取各个特征参量并进行量化编码,可实现低速率语音编码,达到2~4.8kbps。
但话音质量只能达到中等。
●混合编码:是将波形编码和参量编码结合起来,既有波形编码的高质量优点又有参量编码的低速率优点。
其压缩比达到4~16kbps。
泛欧GSM系统的规则脉冲激励-长期预测编码(RPE-LTP)就是混合编码方案。
1.2 CDMA的语音编码CDMA系统如同其它数字式移动电话系统,它也采用语音编码技术来降低语音的编码速率。
CDMA系统的语音编码主要有从线性预测编码技术发展而来的激励线性预测编码QCELP和增强型可变速率编码EVRC。
5 移动通信原理 第五章 语音编码、信道编码和交织技术
第5章语音编码、信道编码和交织技术引言一般的数字通信系统都包含信源编解码、信道编解码和调制解调这三对功能模块,语音编码是一种信源编码的,在移动通信中由于信道的特点,往往还需要交织和去交织这一对功能模块。
为什么要进行信源编码、信道编码和交织呢?从实现过程分析:信源编码——原理:去掉一些信息(信源中统计特性具有相关性的信息);(有效性)目的:尽可能用最少的信息比特表示信源,从而达到压缩信息速率,以较少的信息速率传送信息;信道编码——原理:加入一些信息(监督码或检验码);(可靠性)目的:用来供接收端纠正或检出信息在信道中传输时,由于干扰、噪声或衰落等所造成的误码。
交织——原理:不改变信息量,只改变信息的排序;(可靠性)目的:克服信道中由于深衰落而造成的突发的成串的误码。
对本章的学习,我们复习信源编码和信道编码的基础上,重点掌握:1.移动通信对编码的要求;2.蜂窝移动通信典型系统用到的编码方式;3.在这些系统中的实现过程;4.交织的原理和作用。
5.1 语音编码通信系统中的语音编码的目的是解除语音信源的统计相关性,语音编码大致分为三类。
一.语音编码的分类(参考:《吴伟陵,《移动通信原理》,电子工业出版社,P72)1.波形编码波形编码是以精确再现语音波形为目的,并以保真度即自然度为度量标准的编码方法。
这类编码是保留语音个性特征为主要目标的方法,其码速较高。
常用的波形编码及其原理:PCM、DPCM、ADPCM应用:适用于骨干(固定)通信网。
2.参量编码利用人类的发声机制,仅传送反映语音波形变化主要参量的编码方法。
在接收端,可根据发声模型,由传送过来的变化参量激励产生人工合成的语音。
参量编码的主要标准是可懂度。
显然,这类编码是以提取并传送语音的共性特征参量为目的的编码方式,其码速较低。
(声码器)常用的参量编码及其原理:LPC应用:主要用于军事保密通信。
3.混合编码混合编码是吸取上述两类编码的优点,以参量编码为基础,并附加一定的波形编码特征,以实现在可懂度基础上适当改善自然度目的的编码方式。
语音编码和信道编码
动
度为 P(W/Hz),其信道容量可由下面的
通 信
香农公式给出:
原
理
C = B l o g 2 1 N P 0 B B l o g 2 1 N S ( 5 - 1 )
动 通
对有些应用带来困难(例如对实时语
信 音),但它是目前已知的可实现的最好
原 的编码技术之一。
理
7
第6章 语音编码和信道编码技术
• 6.1 语 音 编 码
移 动
• 6.2 信 道 编 码
通
信
原
理
8
1、 概述
• 语音编码技术通常分为三类
移
– 波形编码(如PCM)
动
– 声源编码(或参量编码)
通 信
编码器类型
比特率/(kbit/s)
复杂度MIPS
时延/ms
质量
脉冲调制
64
自适应差分脉码调制
32
自适应子频段编码
16
多脉冲线性预测编码
8
随机激励线性预测编码
4
线性预测编码的声码
2
0.01 0.1 1 10 100 1
0
高级
0
高级
25
高级
35
通信级
35
通信级
35
合成级
16
5、数字基带信号常用码型
• 矩形脉冲信号所占频带通常从直流和低频
理
对语音进行编码
– 发声时全速率9.6kbit/s编码
– 不发声时为全速率的1/8速率(1.2kbit/s)编码
– 其余就是发声和不发声的过度速率,即全速率的1/2 和1/4速率
33
IS-95系统语音编码器
• QCELP方案即码激励线性预测的可变速
5 移动通信原理 第五章 语音编码、信道编码和交织技术
第5章语音编码、信道编码和交织技术引言一般的数字通信系统都包含信源编解码、信道编解码和调制解调这三对功能模块,语音编码是一种信源编码的,在移动通信中由于信道的特点,往往还需要交织和去交织这一对功能模块。
为什么要进行信源编码、信道编码和交织呢?从实现过程分析:信源编码——原理:去掉一些信息(信源中统计特性具有相关性的信息);(有效性)目的:尽可能用最少的信息比特表示信源,从而达到压缩信息速率,以较少的信息速率传送信息;信道编码——原理:加入一些信息(监督码或检验码);(可靠性)目的:用来供接收端纠正或检出信息在信道中传输时,由于干扰、噪声或衰落等所造成的误码。
交织——原理:不改变信息量,只改变信息的排序;(可靠性)目的:克服信道中由于深衰落而造成的突发的成串的误码。
对本章的学习,我们复习信源编码和信道编码的基础上,重点掌握:1.移动通信对编码的要求;2.蜂窝移动通信典型系统用到的编码方式;3.在这些系统中的实现过程;4.交织的原理和作用。
5.1 语音编码通信系统中的语音编码的目的是解除语音信源的统计相关性,语音编码大致分为三类。
一.语音编码的分类(参考:《吴伟陵,《移动通信原理》,电子工业出版社,P72)1.波形编码波形编码是以精确再现语音波形为目的,并以保真度即自然度为度量标准的编码方法。
这类编码是保留语音个性特征为主要目标的方法,其码速较高。
常用的波形编码及其原理:PCM、DPCM、ADPCM应用:适用于骨干(固定)通信网。
2.参量编码利用人类的发声机制,仅传送反映语音波形变化主要参量的编码方法。
在接收端,可根据发声模型,由传送过来的变化参量激励产生人工合成的语音。
参量编码的主要标准是可懂度。
显然,这类编码是以提取并传送语音的共性特征参量为目的的编码方式,其码速较低。
(声码器)常用的参量编码及其原理:LPC应用:主要用于军事保密通信。
3.混合编码混合编码是吸取上述两类编码的优点,以参量编码为基础,并附加一定的波形编码特征,以实现在可懂度基础上适当改善自然度目的的编码方式。
信源编码和信道编码
信源编码:主要是利用信源的统计特性,解决信源的相关性,去掉信源冗余信息,从而达到压缩信源输出的信息率,提高系统有效性的目的。
第三代移动通信中的信源编码包括语音压缩编码、各类图像压缩编码及多媒体数据压缩编码。
信道编码:为了保证通信系统的传输可靠性,克服信道中的噪声和干扰的。
它根据一定的(监督)规律在待发送的信息码元中(人为的)加入一些必要的(监督)码元,在接受端利用这些监督码元与信息码元之间的监督规律,发现和纠正差错,以提高信息码元传输的可靠性。
信道编码的目的是试图以最少的监督码元为代价,以换取最大程度的可靠性的提高。
信道编码从功能上可分为3类:仅具有发现差错功能的检错码,如循环冗余校验码、自动请求重传ARQ等具有自动纠正差错功能的纠错码,如循环码中的BCH码、RS码及卷积码、级联码、Turbo 码等既能检错又能纠错功能的信道编码,最典型的是混合ARQ信道编码从结构和规律上分两大类线性码:监督关系方程是线性方程的信道编码非线性码:监督关系方程是非线性的FEC是前向就错码,在不同系统中,不同信道采用的FEC都不一样,有卷积码,Turbo码等信源编码&信道编码区别(通院的必杀技):官方课本如是介绍:信源编码:表示信源和降低信源的信息速率。
信道编码:消除或减轻信道错误的影响。
通过适当的调制方式来运载信息,以适应信道特征。
本人总结:一.信源编码信源编码的作用之一是设法减少码元数目和降低码元速率,即通常所说的数据压缩。
码元速率将直接影响传输所占的带宽,而传输带宽又直接反映了通信的有效性。
作用之二是,当信息源给出的是模拟语音信号时,信源编码器将其转换成数字信号,以实现模拟信号的数字化传输。
模拟信号数字化传输的两种方式:脉冲编码调制(PCM)和增量调制(ΔM)。
信源译码是信源编码的逆过程。
1.脉冲编码调制(PCM)简称脉码调制:一种用一组二进制数字代码来代替连续信号的抽样值,从而实现通信的方式。
由于这种通信方式抗干扰能力强,它在光纤通信、数字微波通信、卫星通信中均获得了极为广泛的应用。
GSM语音编码
GSM语音编码2008年09月03日星期三 15:51一、语音编码由于GSM系统是一种全数字系统,话音和其它信号都要进行数字化处理,因此移动台首先要将语音信号转换成模拟电信号,以及其反变换,移动台再把这模拟电信号转换成13Kbit/s的数字信号,用于无线传输。
下面我们主要讲一下TCH全速率信道的编码过程。
目前GSM采用的编码方案是13 Kbit/s的RPELTP(规则脉冲激励长期预测),其目的是在不增加误码的情况下,以较小的速率优化频谱占用,同时到达与固定电话尽量相接近的语音质量。
它首先将语音分成20ms为单位的语音块,再将每个块用8 KHZ抽样,因而每个块就得到了160个样本。
每个样本在经过A率13比特(μ率14比特)的量化,因为为了处理A率和μ率的压缩率不同,因而将该量化值又分别加上了3个或2个的“0”比特,最后每个样本就得到了16比特的量化值。
因而在数字化之后,进入编码器之前,就得到了128Kbit/s的数据流。
这一数据流的速率太高了以至于无法在无线路径下传播,因而我们需要让它通过编码器的来进行编码压缩。
如果用全速率的译码器的话,每个语音块将被编码为260比特,最后形成了13Kbit/s的源编码速率。
此后将完成信道的编码。
在BTS侧将能够恢复13Kbit/s的源速率,但为了形成16Kbit/s的TRAU帧以便于在ABIS和ATER接口上传送,因而需再增加3Kbit/s的信令,它可用于BTS来控制远端TCU的工作,因而被称为带内信息。
这3Kbit/s将包括同步和控制比特(包括坏帧指示、编码器类型、DTX指示等)。
总之,带内信息将能使TCH,知道信息的种类(全速率语音、半速率语音、数据),以及采用何种适用的方法用于上行和下行的传输。
在TCU侧,通过为了适应PSTN网络64Kbit/s的传输,因而在它其中的码型速率转换板将完成将速率由13Kbit/s转换为64Kbit/s的工作,二、信道编码信道编码用于改善传输质量,克服各种干扰因素对信号产生的不良影响,但它是以增加比特降低信息量为代价的。
WCDMA的基本原理及关键技术(第一部分)
Satellite
Empty
Satellite
30 MHz
60 MHz
40 MHz
15 MHz
100 MHz
FDD
WCDMA+CDMA2000
TDD
TD-SCDMA
WCDMA标准演进
继承R99的所有业务和功 能;
电路域结构发生改变, 控制与承载分离MSC采用 MSC SERVER和MGW实现; 继承2G(GSM、GPRS )的所有业务和功能; 继承R4的所有业务和 功能; 核心网引入IMS(IP 多媒体域); 无线引入HSDPA。 RAN向IP发展,增强 的IP QOS。 无线引入HSUPA MBMS框架结构的研究
CDMA原理图
编码技术
信源编码
信源编码的目的是通过压缩编码来去掉信号源中的冗余成分,以达 到压缩码率和带宽,实现信号的有效传输;
最常用的信源编码是PCM,它采用A律波形编码。分为取样、量化 和编码三步;一路语音信号编码后的速率为64Kb/s;
移动通信中如果采用PCM编码技术,则传一路话音信号需要64K带 宽,传8路话音需要512K带宽。对于1个频点只有200KHZ带宽的 GSM系统来说,会造成频率资源的浪费,因此GSM系统中采用 GMSK编码技术,编码后的速率为13Kb/s; 第三代移动通信系统中,不仅要支持语音通信,还要支持多媒体数 据业务,因此必须采用更加先进的编码技术。在WCDMA中,采用 了自适应多速率语音编码(AMR)技术。它支持8种编码速率:12.2 、10.2、7.95、7.4、6.7、5.9、5.15和4.75Kb/s.
白发三千丈
红豆生南国
红红豆豆生生南南国国
红红豆豆生生南?国国
编码技术
卷积码
cdma技术简介
第1章CDMA概述:知识点●介绍移动通信发展的来龙去脉。
●介绍CDMA标准及其演进。
1.1 引言通过本章的学习,你会在短时间内,对移动通信的发展有一个全面的认识,为后面的学习铺路。
1.2 移动通信发展史及CDMA标准移动通信的历史可以追溯到20世纪初,但在近20年来才得到飞速发展。
移动通信技术基本上以开辟新的移动通信频段、有效利用频率和移动台的小型化、轻便化为中心而发展,其中有效利用频率技术是移动通信的核心。
20世纪40年代,第一个移动电话系统在美国开通。
70年代初,美国贝尔实验室提出了蜂窝系统的概念和理论。
此后,蜂窝移动通信系统经历了三代演变,见表1.2-1。
表1.2-1 蜂窝移动通信系统的演变AMPS:Advanced Mobile Phone SystemTACS:Total Access Communication SystemGPRS:General Packet Radio Services1.2.1 第一代蜂窝移动通信系统70年代末,第一代蜂窝移动通信系统诞生于美国贝尔实验室,即著名的先进移动电话系统AMPS。
其后,北欧(丹麦、挪威、瑞典、芬兰)和英国相继研制和开发了类似的NMTS(Nordic Mobile Telephone System)和TACS(Total Access Communication System)移动通信系统。
中国在1987年开始使用模拟制式蜂窝电话通信。
1987年11月,第一个移动电话局在广州开通。
仅仅几年后,采用模拟制式的第一代蜂窝移动通信系统就暴露出了容量不足、业务形式单一及语音质量不高等严重弊端,这就促使了对第二代蜂窝移动通信系统的研发。
1.2.2 第二代蜂窝移动通信系统第二代蜂窝移动通信系统(2G)采用数字制式,提供了更高的频谱利用率、更好的数据业务和通信质量以及比第一代系统更先进的漫游功能。
典型的第二代蜂窝移动通信系统包括:居于主导地位的GSM系统(全球移动通信系统)、美国IS-54/IS-136与IS-95系统、日本PDC(PersonalDigital Celluar)系统。
无线通信资料整理
每载频64个信道,每小区可分3 个扇区,3扇区可共用一个载频 1.25MHz
载频间隔
0.2MHz
10/24/2014
青农大理信学院通信教研室李爱涛
1
(1)国际移动用户识别码(IMSI)
GSM移动通信网给移动客户分配一个特定的识别码。 存储在客户识别模块(SIM)、HLR、VLR中。
IMSI号码结构为:
MCC(3位) MNC(1或2位) MSIN |------------国际移动客户识别 ------------| |--国内移动客户识别 --|
MCC: 移动国家号码,我国为460。 MNC: 移动网号,由2位数字组成,用于识别移动用户所归属 的通信网。 中国移动 GSM PLMN 网为00 、 02 、 07 ,中国 联通GSM PLMN网为0l,中国联通CDMA PLMN网为03。 MSIN: 移动客户识别码,采用等长数字构成。
10/24/2014 青农大理信学院通信教研室李爱涛 7
(7)全球小区识别码(CGI) CGI是用来识别一个位置区内的小区,它 是在位置区识别码( LAI)后加上一个小 区识别码(CI),其结构是:
3位数字 2位数字 最大16bit MCC MNC LAC CI |---------------------LAI-----| |---------------------------------------CGI-------|
10/24/2014 青农大理信学院通信教研室李爱涛 2
(2)临时移动用户识别码(TMSI)
为了对IMSI保密,MSC/VLR可给来访移动
客户分配一个唯一的 TMSI号码,仅限在本 MSC业务区内使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CDMA的语音编码与信道编码摘要:随着3G移动通信技术的逐步实现以及移动通信与互联网的融合,全球正迅速步入移动信息时代。
CDMA已被广泛接纳为第三代移动通信的核心技术之一,它具有优越的性能。
本文主要介绍CDMA中常用的语音编码技术与信道技术。
关键词:语音编码信道编码受激励线性编码码激励线性预测编码编码器解码器一、CDMA中的语音编码技术语音编码为信源编码,是将模拟信号转变为数字信号,然后在信道中传输。
在数字移动通信中,语音编码技术具有相当关键的作用,高质量低速率的话音编码技术与高效率数字调制技术相结合,可以为数字移动网提供高于模拟移动网的系统容量。
目前,国际上语音编码技术的研究方向有两个:降低话音编码速率和提高话音质。
语音编码技术的分类语音编码技术有三种类型:波形编码、参量编码和混合编码。
波形编码:是在时域上对模拟话音的电压波形按一定的速率抽样,再将幅度量化,对每个量化点用代码表示。
解码是相反过程,将接收的数字序列经解码和滤波后恢复成模拟信号。
参量编码:又称声源编码,是以发音模型作基础,从模拟话音提取各个特征参量并进行量化编码,可实现低速率语音编码,达到2kbit/s-4.8kbit/s。
但话音质量只能达到中等。
混合编码:是将波形编码和参量编码结合起来,既有波形编码的高质量优点又有参量编码的低速率优点。
其压缩比达到4kbit/s-16kbit/s。
泛欧GSM系统的规则脉冲激励――长期预测编码(RPE-LTP)就是混合编码方案。
.CDMA的语音编码CDMA系统如同其它数位式行动电话系统,它也采用语音编码技术来降低语音的资料速率。
CDMA系统的语音编码主要有从线性预测编码技术发展而来的激励线性预测编码QCELP和增强型可变速率编码EVRC。
(1)QCELP 受激线性预测编码QCELP,即QualComm Code Excited Linear Predictive(QualComm受激线性预测编码)。
这种算法不仅可工作于4/4.8/8/9.6kbit/s等固定速率上,而且可变速率地工作于800bit/s~9600bit/s之间。
Q4401、Q4413单片语音编码器就是基于这种编码算法。
QCELP算法被认为是到目前为止效率效率最高的一种算法,它的主要特点之一,是使用适当的门限值来决定所需速率。
I‘1限值懈景噪声电平变化而变化,这样就抑制了背景噪声,使得即使在喧闹的环境中,也能得到良好的话音质量,CDMA8Kbit/s的话音近似GSM 13Mbit/s的话音。
CDMA采用QCELP编码等一系列技术,具有话音清晰、背景噪声小等优势,其性能明显优于其他无线移动通信系统,语音质量可以与有线电话媲美。
(2) CELP 码激励线性预测编码CELP 码激励线性预测编码是Code Excited Linear Prediction的缩写。
CELP是近10年来最成功的语音编码算法。
CELP语音编码算法用线性预测提取声道参数,用一个包含许多典型的激励矢量的码本作为激励参数,每次编码时都在这个码本中搜索一个最佳的激励矢量,这个激励矢量的编码值就是这个序列的码本中的序号。
CELP (Code-Excited Linear Prediction) 这是一个简化的 LPC 算法,以其低比特率著称 (4800-9600Kbps),具有很清晰的语音品质和很高的背景噪音免疫性。
CELP 是一种在中低速率上广泛使用的语音压缩编码方案。
它综合使用了线性预测、矢量量化、感觉加权、A-B-S (综合分析法)等技术,在4~16kb/s 的速率上,是电话宽带语音编码得到很高的编码质量。
编码器的基本原理框图如图1所示。
与LPC 模型类似,CELP 模型中也有激励信号和声到滤波器,但它的激励信号不再是LPC 模型中的二元激励信号。
在目前常用的CELP 模型中,激励信号来自两个方面:长时基音预测器(又称自适应码本)和随机码本。
自适应码本被用来描述语音信号的周期性(基音信息)。
固定的随机码本则被用来逼近语音信号经过短时和长时预测后的线性预测余量信号。
从自适应码本和随机码本中搜索出的最佳激励矢量乘以各自的最佳增益后相加,便可得到激励e(n)。
它一方面被用来更新自适应码本,另一方面则被输入到合成滤波器H(z)以得到合成语音^s(n)。
^s(n)与原始语音s(n)的误差通过感觉加权滤波器W(z)后可得到感觉加权误差信号e(n)。
使e(n)均方误差为最小的激励矢量就是最佳激励矢量。
LI图 1 CELP 编码其原理框图CELP 的解码过程已经包含在编码过程中。
在解码时,根据编码传输过来的信息从自适应码本和随机码本中找出最佳码矢量,分别乘以各自的最佳增益并相加,可以得到激励信号e(n),将e(n)输入到合成滤波器H(z),便可得到合成语音s(n)。
可以看出,搜索最佳激励矢量是通过综合出重建语音信号进行的。
这种通过综合来分析语音编码参数的优化方法称为综合分析法,即A-B-S 方法。
采用这种方法明显提高了合成语音的质量,但也使编码运算量增加不少。
固定码本采用不同的结构形式,就构成不同类型的CELP 。
CELP 算法简介:线性预测:y(n)∑=--=p 1i i )i n (y a)n (y ˆCELP 语音合成示意图:从语音产生的机理出发,对人发音模型的有关参数进行编码,即分析-合成编码,可获得较好音质的同时有效降低编码率,其中最具代表性的是线性预测编码(Linear Prediction Code-LPC)和码激励线性预测编码(Code Excited Linear Prediction Code-CELP)。
LPC 的基本原理是根据人发声特点来建立语音产生的数学模型。
人发声时有清音和浊音之分,清音无基音,呈现与白噪声类似的平坦频谱,所以可用白噪声作为清音的激励;浊音则有振动的基本频率(基音),故可用具有一定基音频率的脉冲源作激励;而人的声管相当于一组滤波器,对不同的激励产生不同的响应,形成特定声音的输出。
为了提高重建话音的自然度,编码端可以增加一组预测滤波器,采用闭环LPC 结构,由特征参数激励得到预测信号,将此信号与原信号s(n)相减得到残差信号e(n),把此信号与有关参数一并编码传送,在解码端进行误差修正可有效改善语音质量。
但此时将降低编码效率。
不过如果我们能对一定时间内残差信号可能出现的各种样值的组合按一定规则排列构成一个码本,编码时从本地码本中搜索出一组最接近的残差信号,然后对该组残差信号对应的地址编码并传送,解码端也设置一个同样的码本,按照接收到的地址取出相应的残差信号加到滤波器上完成话音重建,则显然可以大大减少传输比特数,提高编码效率。
这就是CELP 编码的基本原理。
它有两个预测滤波器,短时预测计算每一采样的残差,长时预测计算每个子帧(5ms)的残差。
由码本取出的激励e(n)经长短时预测后得到预测值,与输入信号s(n)相减得到差值,将此差值通过感知加权滤波器,以最小均方误差准则(LMS)判定最佳激励码本e(n)。
CELP 码激励线性预测编码的特点:改善语音的质量:对误差信号进行感觉加权,利用人类听觉的掩蔽特性来提高语音的主观质量;用分数延迟改进基音预测,使浊音的表达更为准确,尤其改善了女性语音的质量;使用修正的MSPE 准则来寻找 “最佳”的延迟,使得基音周期延迟的外形更为平滑;根据长时预测的效率,调整随机激励矢量的大小,提高语音的主观质量;使用基于信道错误率估计的自适应平滑器,在信道误码率较高的情况下也能合成自然度较高的语音。
索引a 增益a0255子帧延迟自适应码本⊗索引s随机码本511增益s ⊗⊕线性预测滤波器线谱参数语音信号更新(3) VSELP矢量和激励线性预测编码VSELP 矢量和激励线性预测编码是Vector Sum Excited Linear Prediction的缩写。
这种算法采用三个码本作为激励信号,其中两个是随机码本,一个是自适应码本,最终的激励信号是三个激励矢量的和。
VSELP语音编码器可以利用合理的计算复杂性达到最高的可能的语音质量,同时提供给信道误差韧性,这些目标对于远程通信应用中的公认的低数据率(4.8 --- 8kpbs)语音编码至关重要。
图2是VSELP语音的解码器的方框图。
VSELP codec总共利用三个激励源,其一来自长项(节距)预测状态或适应性码本;其余的源来自VSELP激励码本之一或之二。
对于8kbps编码器采用两个VSELP码本,每个码本包含的信息量相当于128个矢量;而4.8kbps的编码器仅利用一个VSELP码本,包含相当于2048个矢量的信息量。
这两个或三个激励源与它们相应的增益相乘,并求和以出组合的激励序列ex(n),处理完每一子帧后,ex(n)用于更新长项滤波器状态,合成滤波器是直接十阶全极点滤波器,LPC系数每20ms帧编码一次,通过内插(对8kbps系统)每5ms子帧更新一次,激励参数每子帧内也更新。
4.8kbps系统利用帧长为30ms,子帧长为7.5ms,子帧内一采样数分别为:8kpbs为40,4.8kpbs为60,采样率为8kHz。
节距(pitch)前置滤波器和频谱后置滤波器用于提高重建的语音质量。
图2 VSELP语音解码器二、CDMA中的信道编码技术信道编码技术是第三代移动通信的一项核心技术。
在第三代移动通信系统主要提案中(包括W-CDMA和cdma2000等),除采用与IS-95CDMA系统相类似的卷积编码技术和交织技术之外,还建议采用Turbo编码技术机RS-卷积码级联技术。
(一)CDMA2000中的信道编码技术Turbo码为了适应高速数据业务的需求,CDMA2000中采用Turbo编码技术(编码速率可以是1/2、1/3或1/4)。
Turbo编码器由两个递归系统卷积码(RSC)成员编码器、交织器和删除器构成,每个RSC有两路校验位输出,两上RSC的输出经删除复用后形成Turbo码。
编码器一次输入Nturbobit,包括信息数据、帧校验(CRC)和保留bit,输出(Nburbo+6)/R 符号。
Turbo译码器由两个软输入软输出的译码器、交织器和去交织器构成,两个成员译码器对两个成员编码器分别交替译码,并通过软输出相互传递信息,进行多轮译码后,通过对软信息作过零判决得到译码输出。
Turbo码具有优异的纠错性能,但译码复杂度高,时延大,因此主要用于高速率,对译码时延要求不高的数据传输业务。
与传统的卷积码相比,Turbo码可降低对发射功率的要求,增加系统容量。
在CDMA2000中,Turbo码仅用于前向补充信道和反向补充信道中。
Turbo编码器采用两个并行相连的系统递归卷积编码器,并辅之以一个交织器。
两个卷积编码器的输出经并串转换以及凿孔(Puncture)操作后输出。