碳纤维表面处理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学院:材料科学与工程学院
研究方向:炭纤维及复合材料
题目:炭纤维表面处理研究进展
炭纤维表面处理研究进展
摘要:本文简单介绍了炭纤维的表面性质,比如比表面积、粗糙度、表面化学结构、表面的润湿性,并针对国内外对炭纤维进行表面处理的气相氧化法、液相氧化法、电化学氧化法等方法进行论述,以及SEM、TMA、ILSS、XPS等表征手段进行分析,由于界面表征手段的多样性,和界面作为另一新相的特点,对未来研究工作的研究重点进行论述。
关键词:炭纤维;表面处理;表征方法;复合材料
1. 前言
℃)
—1400℃)
—3000℃)上图为制取沥青基炭纤维的整个过程,但是炭纤维一般很少直接
应用,大多是经过深加工制成中间产物或复合材料使用,由于在高温惰性气体中炭化处理,随着非碳元素的逸走和碳的富集,使其表面活性降低,表面张力降低,与基体的润湿性变差。此外,为了提高炭纤维的拉伸强度应尽可能的减少表面缺陷,因此比表面积也较小,一般不超过1㎡/g。这样平滑的表面与基体的锚定效应也较差,导致复合材料的层间剪切强度的降低,达不到实用设计的要求,为使炭纤维表面由增液性变为亲液性,就要对炭纤维表面处理使它的ILSS由55—70MPa提高到90MPa或95MPa,因此对炭纤维进行表面处理是使炭纤维用于实际投入市场的关键步骤,使性能达到实用和设计的要求。石墨纤维更需要表面处理。
2 炭纤维的表面性质
2.1 炭纤维的比表面积和表面粗糙度
对于高性能炭纤维,比表面积一般在1㎡/g以下,活性比表面积更小。经过表面处理后,活性表面积显著提高,炭纤维几乎提高2倍,ILSS也随之提高很多
2.2 炭纤维的表面化学结构
炭纤维表面不仅有焦油污染物而且含活性基团较少,表现出憎液性,表面处理时,不仅氧化刻蚀除去表面沉积物,而且进行表面氧化而引入含氧基团,呈现亲液性,化学反应历程如下:由C-H氧化成羟基进而成羰基最后氧化成羧基。处理后引入含氧官能团,表面含氧量显著增加,对水的润湿性大幅度提高,最终导致复合材料ILSS的显著提高。
2.3 炭纤维表面的润湿性
液体润湿固体表面的基本条件是固体表面张力大于液体,即固体有高的表面能,液体为低的表面能,处理后,改善了表面化学环境,提高了表面能,使润湿性能得到提高,表面引入不同的原子而改善润湿性的顺序为:
N>O>I>Br>Cl>H>F
润湿后接触角越小润湿性越好。
3 炭纤维表面处理
国内外对炭纤维的改性处理非常活跃,主要的改性方法有氧化处理,表面涂层处理和等离子处理。对炭纤维进行表面氧化的方法主要有液相氧化法气相氧化法和电化学氧化法等。其中, 液相氧化法因其设备简单、处理条件容易、处理效果明显, 已被广泛的采用。
3.1 阳极电解氧化法
电化学氧化法是炭纤维作阳极置于电解质溶液中,目前这种方法技术比较成熟,氧化过程缓和,反应易于控制,操作弹性大,适于在线配套,国外的很多公司均采用此法。电解质可以是酸、碱或盐类,其中酸可以是无机酸类有硝酸、硫酸、磷酸和硼酸等;碱类可以是氢氧化钾、氢氧化钠、氢氧化镁等;盐类有硝酸钾、磷酸氢钾、磷酸二氢钾、磷酸铵、磷酸二氢铵、硫酸铵、硝酸铵、碳酸铵、碳酸氢铵等等。其中,硝酸或碳酸铵、碳酸氢铵的表面处理效果最好。目前国内外对电化学氧化法的研究颇多,如山西煤化所的刘鸿鹏等研究了电化学氧化处理对炭纤维表面石墨微晶尺寸的影响,北京化工大学的刘杰
等发现适度的电化学氧化处理不仅可以提高复合材料的力学性能,还可以增加纤维的拉伸强度,并提出“物化双效”机理。但他们的研究主要集中在炭纤维电化学处理前后表面官能团和粗糙度的变化,极少涉及电化学处理对炭纤维表面浸润性的影响,而且目前炭纤维表面浸润性的研究一般通过分析纤维在各种溶液中的接触角来实现,测量精度极难保证。中国科学院炭材料重点实验室的崔荣庆等人以硫酸铵为电解质,对炭纤维进行连续电化学氧化处理,利用反气相色谱研究电化学氧化处理前后的表面能变化,并联系SEM、AFM、XRD、Raman、XPS等测试结果综合分析电化学氧化处理对炭纤维表面性能的影响。研究表明,经电化学氧化处理后,纤维沿轴方向表面沟槽加深加宽,薄弱层被剥除,晶格择优取向遭到破坏;纤维表面活性官能团增多,氧和氮含量分别增加了180%和65%,提高了纤维与树脂的粘结性;纤维表面能提高了3.1倍,与树脂的浸润性得到改善;电化学氧化处理后其复合材料的ILSS达109MPa,已可充分满足实际应用需求。本实验采用反气相色谱直接、准确地测量表面能,并联系表面处理前后纤维表面粗糙度、晶格尺寸和化学组成变化情况,综合考察电化学处理对炭纤维及其复合材料的影响。XPS分析结果表明,电化学氧化在纤维表面引入C-O、O-C-O、C=C和-COOH等活性官能团,使纤维极性表面能增大,采用反气相色谱和TG对纤维表面的浸润性进行测试,发现经电化学氧化处理后纤维表面能由52.61mJ/㎡增加到21722mJ/㎡,色散表面能和极性表面能都有一定程度的增加,而且极性表面能的增长率更大,电化学氧化处理增强了纤维与树脂的
浸润性,有助于提高复合材料的力学性能,以致于最终复合材料的层间剪切强度达109MPa,能充分满足复合材料的实际需要。下图为SEM 和AFM图可以看到:(1)电化学氧化处理前的炭纤维表面较为平整,沿纤维轴向沟槽较浅;(2)经过电化学刻蚀后的纤维表面轴向沟槽变深变宽,并有凹凸不平的颗粒状突起出现,表面粗糙度从7.19nm增大到20.14nm。电化学刻蚀后纤维表面沟槽的变宽和加深提高了纤维表面粗糙度,增大了纤维比表面积,增强了纤维与树脂之间的锚定效应,有利于提高复合材料的界面性能。
3.2 气相氧化法
气相氧化法是在一定的条件下,采用氧化性的气相介质对炭纤维表面进行处理的方法,常用的介质有臭氧、氧气、空气等,在炭纤维表面处理的过程中,一般通过改变氧化时间、氧化温度和氧化介质浓度等工艺参数来控制纤维的氧化程度,以达到最佳的处理效果。采用臭氧氧化的方法对炭纤维的表面处理目前使用比较广泛,但是氧化反应的程度不易控制,容易向纤维纵向氧化,导致纤维强度的严重下降。目前发现使用氧气作为氧化介质也是可以对炭纤维进行表面处理的。
3.3 表面涂层处理
表面涂层处理即炭纤维上浆,炭纤维表面上浆技术是炭纤维/聚合物基复合材料制备中的关键技术,上浆的优劣关系到复合材料中炭纤维与聚合物集体界面结合强度的大小,从而决定复合材料综合性能的高低。优异的上浆工艺能在炭纤维表面形成均匀、稳定的聚合物包裹层,有利于基体聚合物对炭纤维表面的润湿。