标准中值滤波方法

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

标准中值滤波方法

标准中值滤波是把这个窗口内的像素点按灰度值大小进行排列,把灰度值的平均值当作标准值。

我们以一个8位的图像作为例子,因为椒盐噪声会让受影响的像素点灰度值改为亮点,即灰度值为255;或者暗点,即灰度值为0。我们在排序的时候,把收到污染的像素点的灰度值大小排列出来,取中间值为所有噪点值,那么就可以消除噪声污染对这个点的影响。其具体步骤如下:

①把窗口在图像中滑动,然后让窗口中心与某一像素点重合

②记录下窗口中所有像素点的灰度值

③将这些灰度值从小到大排序

④记录下该灰度值序列中间的值

⑤将所记录下的中间值替代窗口中心像素点的灰度值

因为中值滤波的输出灰度值大小是由窗口的中值大小所决定的,所以中值滤波对于窗口内脉冲噪声远远没有均值滤波敏感。因此相对于均值滤波,中值滤波可以在有效去除脉冲噪声的同时,减小更多的模糊图像。由于由于中值滤波所采用的窗口大小会直接决定去噪效果和图像模糊程度,而且图像去噪后的用途也就决定了窗口的形式。以5*5窗口为例,常见的形状如图2.1所示:

图 2.1 常见的尺寸为5*5的中值滤波窗口

尽管标准中值滤波方法称得上是现在市面上的一种最简单有效的去除椒盐噪声的方法。但是它判断像素点是否被噪声影响的机制不明确,尽管采用该方法时已经对所有像素点进行了一次滤波操作,还是会在一定程序上对图像的边缘、细节信息产生破坏。

相关文档
最新文档