函数的极大值与极小值

合集下载

高等数学《函数的极值与最大、最小值》课件

高等数学《函数的极值与最大、最小值》课件

3) 若 f ( x)在开区间内定义,这时最值不一定存 在 ,有些实际应用问题根据实际可确定问题一 定有解 .
设 f ( x)在开区间内定义且可导, f ( x)在开区间内 有唯一驻点 x0 ,若 f ( x0 )是 f ( x)的极小值(极大值) , 则 f ( x0 )是 f ( x)的最小值 (最大值) .
f (0) 1为极大值 , 即为最大值 .
x 1时, f ( x) f (0) 1 , 即当 x 1时, 有 e x 1 . 1 x
小结
注意最值与极值的区别. 最值是整体概念而极值是局部概念. 实际问题求最值的步骤. 利用最大、小值证明不等式
思考题
若 f (a) 是 f ( x) 在[a, b] 上的最大值或最 小值,且 f (a)存在,是否一定有 f (a) 0 ?
当x 2时,f ( x) 0;
M
当x 2时,f ( x) 0.
f (2) 1为f ( x)的极大值.
定理2(第二充分条件)
设 f ( x) 在 x0处具有二阶导数,且 f ( x0 ) 0 , f ( x0 ) 0 ,则 (1) 若 f ( x0 ) 0 ,则 f ( x0 )为 f ( x)的极大值 .
f
( xk ),
f
(a),
f
(b)
}.
min
x[ a ,b ]
f (x)
min{
f ( x1) ,,
f ( xk ),
f (a),
f (b) }.
例1 求函数 y 2x3 3x2 12x 14 的在[3,4] 上的最大值与最小值.
解 f ( x) 6( x 2)(x 1)
解方程 f ( x) 0,得 x1 2, x2 1.

高等数学-第七版-课件-3-6 函数的极值与最大值最小值

高等数学-第七版-课件-3-6 函数的极值与最大值最小值

o
x
定义 设函数f(x)在点x0的某邻域U(x0)内有定义, 如果对于去心邻域U0(x0)内的任一x,有 y f(x)<f(x0)(或f(x)>f(x0)) 称f(x0)为函数f(x)的一个极大值(极小值) 函数的极大值与极小值统称为函数的极值, 使函数取得极值的点称为极值点 注 极值是一个局部的概念
海岸位于A点南侧40km,是一条东西走向的笔直长堤. 演习中部队先从A出发陆上行军到达海堤,再从海堤处乘舰艇 到达海岛B. 已知陆上行军速度为每小时36km,舰艇速度为
每小时12km.问演习部队在海堤的何处乘舰艇才能使登岛用 y 时最少? 分析 陆上行军耗时 o 海上行军耗时 A
(0,40)
? R(x,0) B
x
(140,-60)
三、最大值最小值问题
(一)最大值最小值求法
(二)最值应用问题
三、最大值最小值问题
(一)最大值最小值求法
(二)最值应用问题
例4 从边长为a的一张正方形薄铁皮的四角切去 边长为x的四个小正方形,折转四边,作一 个盒子,问x为何值时盒子的容积最大?
例5 某企业以钢材为主要生产材料。设该厂每天的钢材需求量为 R吨,每次订货费为C1元,每天每吨钢材的存贮费为C2元 (其中R、 C1、 C2为常数),并设当存贮量降为零时,能 立即得到补充(在一个订货周期内每天的平均存贮量为订货 量的二分之一)求一个最佳的订货周期,使每天的平均费用 最小? q(t) Q o T C C0
o
x
定义 设函数f(x)在区间I上有定义,如果存在x0∈I,使得对于区间I内 的任一x,有 f(x)≤f(x0)(或f(x)≥f(x0)),则称f(x0)为函数f(x) 在区间I上的最大值(或最小值).

极大值与极小值

极大值与极小值

4.(2006年北京卷)已知函数 f ( x) ax bx cx 在点 x0 处取得极大值5,其导函数 y f '( x) 的图像 (如图)过点(1,0),(2,0), 求: (1) x0 的值;(2)a,b,c的值; 略解: (1)由图像可知:x0 1
3 2
(2)
f / ( x)=3ax 2 2bx c (a 0) f (1) a b c 5
0

1 1 9 因此,当x 时, f(x)有极小值f( ) . 2 2 4
1 3 1 例2 求函数 y x 4x 的极值。 3 3 解:定义域为R,y′=x2-4 由y′=0可得x=-2或 x=2
当x变化时,y′, y的变化情况如下表:
x y′ y
(-∞,-2)
-2
0 极大值 17/3
练习:
1、函数y=f(x)的导数y/与函数值和极值之间的关系为 ( D)
A、导数y/由负变正,则函数y由减变为增,且有极大值 B、导数y/由负变正,则函数y由增变为减,且有极大值 C、导数y/由正变负,则函数y由增变为减,且有极小值
D、导数y/由正变负,则函数y由增变为减,且有极大值
2( 、2006年天津卷)函数 f ( x) 的定义域为开区间( a, b) 导函数 f ( x)在 ( a, b) 内的图像如图所示,则函数f ( x) 在开区间 ( a, b) 内有( A )个极小值点。
再根据解集写出单调递增区间
(4)求解不等式f ′(x)<0,求得其解集,
再根据解集写出单调递减区间
(5)确定f(x)的单调区间
观察图像:函数 y=f (x)在点x1 、x2 、x3 、x4处的
函数值f (x1)、 f (x2)、 f (x3)、 f (x4),与它们左右 近旁各点处的函数值,相比有什么特点?

高数函数的极值与最大最小值课件

高数函数的极值与最大最小值课件

(不是极值点情形)
注意:函数的不可导点,也可能是函数的极值点.
例 y=|x|
极小值点x=0
但x=0是y=|x|的不可导点.
驻点和不可导点统称为可疑极值点
01
03
02
04
05
06
求极值的步骤:
以及不可导点;
(4) 求出各极值点的函数值, 就得函数 f (x)的全部极值.
01

02

*
用开始移动,
例7. 设有质量为 5 kg 的物体置于水平面上 , 受力 作
解: 克服摩擦的水平分力
正压力


则问题转化为求
的最大值问题 .
为多少时才可使力
设摩擦系数
问力与水平面夹角的大 Nhomakorabea最小?*

解得

因而 F 取最小值 .
解:


则问题转化为求
的最大值问题 .
清楚(视角 最大) ?
当 在 上单调时,
最值必在端点处达到.
若在此点取极大 值 , 则也是最大 值 .
(小)
对应用问题 , 有时可根据实际意义判别求出的
可疑点是否为最大值点或最小值点 .
(小)
在闭区间[0,3]上的


求函数
最大值与最小值.
先求出驻点与不可导点
如,
在x=0处分别属于上述三种情况.
3) 判别
例2. 求函数
的极值 .
解: 1) 求导数
2) 求驻点

得驻点

故 为极小值 ;

故需用第一判别法判别.
*
定理4 (判别法的推广)

3.5 函数的极值与最大值最小值

3.5 函数的极值与最大值最小值

因为在1的左右邻域内f (x)0
所以f(x)在1处没有极值 同理 f(x)在1处也没有极值
首页
上页
返回
下页
结束

例4已知f(x)x3+ax2bx在x=1处有极值-12,试确定常系数a与b 解 因为f(x)x3+ax2bx,所以 f (x)3x2+2ax+b 因为f(1)=-12为极值点,所以,令f (1)0
下页 结束 铃 首页 上页 返回
三、数学建模——最优化问题
1.数学建模 数学模型是用数学符号、数学公式、程序、图、表 刻画客观事物的本质的属性、结构与联系。创建一个 数学模型的全过程称为数学建模。为解决一个实际问 题,建立数学模型是一种有效的重要方法.
2.最优化模型 给定一个函数(称为目标函数),寻找自变量的一个取值使得 对于定义域中所有的情况中,目标函数取得最小值或者最大 值.
f (x)
f(x)


不可导
极大值0


0
极小值
1 2


(4)函数f(x)在区间( 0)和(1 )单调增加, 在区间 (0 1)单调减少. 在点x0处有极大值0,在点x1处有极小值-1/2
首页 上页 返回 下页 结束 铃
定理3(第二充分条件)
设函数f(x)在点x0处具有二阶导数且f (x0)0 f (x0)0 那么 >>>证明 (2)当f (x0)0时 函数f(x)在x0处取得极小值
M
注意:极值在哪些点处取得?
m
驻点 + 奇点
x1 x2
首页
x3 x4 x5
上页 返回 下页 结束 铃
最大值和最小值的求法 (1)求出函数f(x)在(a b)内的驻点和不可导点 设这此点

函数的极值与最大值最小值

函数的极值与最大值最小值

lim
x x0
f (x) f (x0 ) (x x0 )n
2
(n为正整数)
试讨论 f (x)在 x x0 点的极值问题.
解:由于 lim f (x) f (x0 ) 2 0, xx0 (x x0 )n

0,当x U (x0, ) 时,有
f
(x) f (x0 ) (x x0 )n
a 1 当a 1时,则1 e1a 0,a 1 0,于是,f (a) 0; 当a 1时,则1 e1a 0,a 1 0,于是,f (a) 0; 因此,当a 1时,f (a) 0,由第二充分条件可知: f (a) 为极小值.
-11-
例 4 设 f (x)在 x0 的某个邻域内连续,且
切线与直线 y 0 及 x 8所围成的三角形面积最大.
解 如图,设所求切点为 P(x0, y0 ), y
T
则切线PT为:y y0 2x0 (x x0 ),
B
P
y0 x02 ,
oA
Cx
A(
1 2
x0
,
0),
C(8, 0),
B(8, 16x0 x02 )
SABC
1(8 2
1 2 x0 )(16 x0
由极值定义可知:f (x)在 x0 不取得极值.
-13-
二、最大值最小值问题
假定:f (x)在[a,b]上连续,在(a,b)内除有限个点外可导, 且至多有有限个驻点.
讨论:f (x) 在[a,b]上的最大值与最小值的问题.
★ 最值的存在性:
若 f (x)在[a,b] 上连续,则 f (x) 在[a,b]上的最值必定存在.
如:y x3,y x0 0, 但 x 0 不是极值点.
【注 2】函数的极值点只可能是驻点或导数不存在的点.

函数的极值与最大值最小值

函数的极值与最大值最小值
极值点是否一定是驻点? 驻点是否一定是极值点? 考察x=0是否是函数y=x3的 驻点, 是否是函数的极值点.
x1 x2 x3 x4 x5
定理1(必要条件) 设函数f(x)在点x0处可导, 且在x0处取得极值, 那么f ′(x0)=0. •驻点 使导数f ′(x)为零的点(方程f ′(x)=0的实根)称为函数 f(x)的驻点. 观察与思考: (1) 观察曲线的升降与极值
x1 x2
x3 x4 x5
定理2(第一充分条件)
设函数f(x)在x0处连续, 且在(a, x0)∪(x0, b)内可导. (1)如果在(a, x0)内f ′(x)>0, 在(x0, b)内f ′(x)<0, 那么函数f(x) 在x0处取得极大值; (2)如果在(a, x0)内f ′(x)<0, 在(x0, b)内f ′(x)>0, 那么函数f(x) 在x0处取得极小值; (3)如果在(a, x0)及(x0, b)内 f ′(x)的符号相同, 那么函数f(x) 在x0处没有极值.
1 2 所以当b= d 时, 抗弯截面模量 W 最大, 这时 h = d . 3 3
讨论:
函数f(x)=x4, g(x)=x3在点x=0是否有极值? >>>
例2 求函数f(x)=(x2−1)3+1的极值. 解 f ′(x)=6x(x2−1)2. 令f ′(x)=0, 求得驻点x1=−1, x2=0, x3=1. f ′′(x)=6(x2−1)(5x2−1). 因为f ′′(0)=6>0, 所以f (x)在x=0处取得极小值, 极小值为f(0)=0. 因为f ′′(−1)=f ′′(1)=0, 所以用定理3无法判别. 因为在−1的左右邻域内f ′(x)<0, 所以f(x)在−1处没有极值. 同理, f(x)在1处也没有极值.

4.3.2函数的极大值和极小值

4.3.2函数的极大值和极小值

6
6
即y=f′(x)关于直线x=- a 对称.
6
从而由题设条件知- a =- 1 ,即a=3.
62
又由于f′(1)=0,即6+2a+b=0,
得b=-12.
②由①知f(x)=2x3+3x2-12x+1, 所以f′(x)=6x2+6x-12=6(x-1)(x+2), 令f′(x)=0,即6(x-1)(x+2)=0,解得x=-2或x=1. 当x∈(-∞,-2)时,f′(x)>0, 即f(x)在(-∞,-2)上单调递增;
因为ex>0,所以y=f′(x)的零点就是g(x)=-ax2+
(2a-b)x+b-c的零点,且f′(x)与g(x)符号相同.
又因为a>0,所以-3<x<0时, g(x)>0,即f′(x)>0, 当x<-3或x>0时,g(x)<0,即f′(x)<0, 所以f(x)的单调增区间是(-3,0), 单调减区间是(-∞,-3),(0,+∞).
2.(2017·全国卷Ⅱ)若x=-2是函数f(x)=(x2+ax-1)ex-1
的极值点,则f(x)的极小值为 ( )
A.-1
B.-2e-3 C.5e-3
D.1
【解析】选A.由题可得f′(x)=(2x+a)ex-1+(x2+ax1)ex-1=[x2+(a+2)x+a-1]ex-1,因为f′(-2)=0,所以a= -1,f(x)=(x2-x-1)ex-1,故f′(x)=(x2+x-2)ex-1,令 f′(x)>0,解得x<-2或x>1,所以f(x)在(-∞,-2)和 (1,+∞)上单调递增,在(-2,1)上单调递减,所以f(x) 的极小值=f(1)=(1-1-1)e1-1=-1.

函数的极值与最大值最小值

函数的极值与最大值最小值
第五节 函数的极值与最大值最小值
一、函数的极值及其求法 二、最大值与最小值问题
一、函数的极值及其求法
极值定义 设函数 f ( x)在 x0 的某邻域U ( x0 )内有定义,
如果对 x U ( x0 ) ,有 f ( x ) f ( x0 ) ( 或 f ( x ) f ( x0 ) ),
求函数 f ( x ) x 2 3 x 2 在 [3,4] 上的 例3 最大值与最小值 .
解: 显然
一定取得最大值与最小值.
f ( x) ( x 2)( x 1)

x 1, x 2为不可导点
x [3,1] [2,4] x (1,2).
x 2 3 x 2, f ( x) 2 x 3 x 2,

2 5
0 0.33
2 ( 5 , )
其极大值为 是极大点,
是极小点, 其极小值为
确定函数极值点和极值的步骤
(1) 确定函数定义域 , 并求导数 f ( x );
(2) 求出 f ( x ) 的全部驻点与不可导点;
(3)驻点和不可导点将定义域区间分成若干个区间, 列表考察导函数在各个区间内的符号,以便确定该点
x 最大(小)值若在区间内部取得,则它一定是极大(小)值. o a x1 x2 x3x4 b x 2 , x4 为极小值点
费马( Fermat )引理
设函数 f ( x)在 x0 的某邻域U ( x0 )内有定义,
若 (1) f ( x)在 x0 点可导
则 f ( x0 ) 0.
(2) f ( x)在 x0 点取得极大值或极小值
点处的切线与直线 y 0 及 x 8 所围成的三角形

函数的极值

函数的极值

3 的极值. 自我挑战 求函数 f(x)=x+3lnx 的极值. = 练习一 3 的定义域为(0,+ , ,+∞ 解:函数 f(x)= + 3lnx 的定义域为 ,+∞ ), = x ( - ) 3 3 3( x- 1) f′(x)=- 2 + = ′ =- , 2 x x x 令 f′ (x)=0 得 x= 1. ′ = = 的符号、 的单调性和 根据 x=1 列表分析 f′(x)的符号、f(x)的单调性和 = ′ 的符号 极值点: 极值点:
2.极小值点与极小值 . 如果x= 是函数 是函数y= 在某个开区间(u, 上的 如果 = c是函数 = f(x)在某个开区间 , v)上的 在某个开区间 最小值点,即不等式f(c)≤ 对一切x∈ , 成 最小值点,即不等式 ≤f(x)对一切 ∈(u,v)成 对一切 就说函数f(x)在x=c处取到极小值 处取到_________f(c),并 立,就说函数 在 = 处取到 , 的一个极小值点, 称 c为 f(x)的一个极小值点, f(c)为f(x)的一个极小 为 的一个极小值点 为 的一个极小 值. 极大值 和 极小值 统称极值 极大值点 _________和________统称极值,____________和 统称极值, 和 极小值点 ____________统称极值点. 统称极值点. 统称极值点
【点评】 点评】 (1)函数的极值是对函数在某一点附近的小区间而 函数的极值是对函数在某一点附近的小区间而 言, 在函数的定义域区间内可能有多个极大值或 极小值,且极大值不一定比极小值大。 极小值,且极大值不一定比极小值大。 (2)连续函数的某点是极值点的充分条件是在这点 连续函数的某点是极值点的充分条件是在这点 两侧的导数异号. 两侧的导数异号 . 可导函数的某点是极值点的必 要条件是在这点的导数为0. 要条件是在这点的导数为

4函数的极值与最大小值

4函数的极值与最大小值

解 由于 f (x) = x3(x - 1)2(7x - 4) , 因此 x 0,1, 4 是函数
的三个稳定点. f 的二阶导数为
7
f (x) = 6x2 (x - 1)(7x2 - 8x + 2)
由此得 f (0) f (1) 0及f ( 4) 0,所以 f ( x)在x 4 时取得极小
有 f (4)(0) 0. 因为n = 4 为偶数,故 f 在 x 0 取得极大值.
综上所述, f (0) 0 为极大值,
f( 4 ) = -( 4 )4 ( 3 )3 = - 6912
7
77
823543
为极小值.
注 定理6.12仍是判定极值的充分条件而非必要条件.
考察函数
f(x)
=
e -
f n x0 0, 则
(ⅰ)当n为偶数时, f 在 x0处取得极值,且当 f (n)( x0 ) 0 时 取极大值,f (n) ( x0 ) 0 时取极小值.
(ⅱ)当n为奇数时, f 在 x0 处不取极值.
该定理的证明类似于定理6.11,我们将它留给读者.
例3 试求函数 x4( x 1)3的极值.
(析) 由条件及 f 在 x0 处的二阶泰勒公式
f (x)
f ( x0 )
f
( x0 )( x
x0 )
1 2!
f x0 x
x0 2

x x0 2

f
( x)
f
( x0 )


f
x0
2

1 x


x0 2
0,
a 2
内解得稳定点

函数的极大(小)值和最大(小)值

函数的极大(小)值和最大(小)值

§2-6 函数的极大(小)值和最大(小)值1.函数的极大(小)值 一个函数在它有定义的区间上可能没有最大(小)值,但它在某个部分区间上可能会有最大(小)值,即局部最大值或局部最小值.函数的局部最大值或局部最小值,又称为函数的极大值或极小值.具体地说,设函数)(x f 在点),(0b a x ∈连续.若有足够小的正数δ,使)||0()()(00δ<-<<x x x f x f (图2-21) 则称函数)(x f 在点0x 取到极大值)(0x f ,并称点0x 为函数)(x f 的极大值点.同理,使 )||0()()(11δ<-<>x x x f x f (图2-21) 则称函数)(x f 在点1x 取到极小值)(1x f ,并称点1x 为函数)(x f 的极小值点.函数的极大值和极小值统称为函数的极值,而函数的极大值点和极小值点统称为函数的极值点. 因为函数的极值是函数在小范围内的最大值或最小值,根据定理2-1,我们就有下面的结论:若函数()f x 在某区间内的点0x 处取到极值且有导数'0()f x ,则'=0()0f x .因此,0()0f x '=是可微函数....在点0x 取到极值的必要条件,但它不是可微函数取到极值的充分条................件.! 例如函数3)(x x f =,尽管有0)0(='f ,但0不是它的极值点(图2-22).以后,就把使0()0f x '=的点0x 称为函数)(x f 的驻点(可能不是极值点.......).需要指出,不能把上面的结论简单说成“函数取到极值的必要条件”.例如,函数()f x x =(图2-23),它在点0有极小值(也是最小值),可是它在点0没有导数.因此,函数在区间内部的极值点只可能是它的驻点或没有导数的点.它们合在一起称为函数的临界点.一般情形下,求连续函数)(x f 在开区间),(b a 内的极值时,一般步骤是:第一步,求出)(x f 在区间),(b a 内的所有临界点(即驻点或没有导数的点);第二步,对于每一个临界点,再用下面的判别法验证它是否为极值点;第三步,求出函数在极值点处的函数值(即函数的极大值或极小值).判别法Ⅰ 设0x 为连续函数)(x f 在区间),(b a 内的临界点(驻点或没有导数的点).若有足够小的正数δ,使(见图2-24)⑴)(x f 在),(00x x δ-内是增大的且在),(00δ+x x 内又是减小的,则)(0x f 是极大值; 图2-23x图2-21[或] [或]⑵)(x f 在),(00x x δ-内是减小的且在),(00δ+x x 内又是增大的,则)(0x f 是极小值;[或0)(<'x f ] [或0)(>'x f ]⑶)(x f 在),(00δδ+-x x 内是增大的或是减小的,则)(0x f 不是极值.当0x 为函数)(x f 的驻点且0)(0≠''x f 时,就用下面的判别法Ⅱ.判别法Ⅱ 设0x 为函数)(x f 在区间),(b a 内的驻点[即0)(0='x f ].若有二阶导数0)(0≠''x f ,则⑴ 当0)(0<''x f 时,)(0x f 是极大值; ⑵ 当0)(0>''x f 时,)(0x f 是极小值.[当0)(0=''x f 时,函数)(x f 在点0x 是否取到极值,需要做进一步的讨论]证 根据例22(§2-5),则有222200000011()()()()()()()()22f x h f x f x h f x h o h f x f x h o h '''''+=+++=++于是得 20001()()[()(1)]2f x h f x f x o h ''+-=+ 因为0)(0≠''x f ,所以当||h 足够小时,)]1()([0o x f +''与)(0x f ''同符号.因此,有正数δ,使当0||h δ<≤时,0()f x h +0()f x -=000,()00,()0f x f x ''<<⎧⎨''>>⎩ 这就是要证的结论.例23 求函数1323-+=x x y 的极值.解 2363(2)y x x x x '=+=+,666(1)y x x ''=+=+由0='y 得驻点122,0x x =-=.因为2060,60x x y y =-=''''=-<=>,所以31)2(3)2(232=--+-=-=x y 是极大值; 01x y ==-是极小值.【注】若函数()f x 在点0x 没有导数或二阶导数0()0f x ''=,就去用上面的判别法Ⅰ.2.函数的最大(小)值(又称为绝对极值) 函数的最大(小)值是指函数在定义域或定义域中某个区间上的最大(小)值.求连续函数)(x f 在闭区间],[b a 上的最大值和最小值时,方法更简单:第一步,先求出)(x f 在开区间),(b a 内的临界点;并求出)(x f 在所有临界点上的函数值.(1) 0图2-24 (2)(3)第二步,把以上函数值与区间端点上的函数值)(a f 和)(b f 放在一起做比较,其中最大者就是函数)(x f 在闭区间],[b a 上的最大值,最小者就是函数)(x f 在闭区间],[b a 上的最小值.非闭区间上的连续函数可能没有最大值或最小值.在这种情形下,就要根据具体问题,经过分析后才能确定某个函数值是最大值或最小值.例如,⑴ 函数)(x f 在区间),[b a 上增大(减小)时,)(a f 就是最小值(最大值);⑵ 函数)(x f 在区间],(b a 上增大(减小)时,)(b f 就是最大值(最小值);⑶ 设有点),(b a c ∈. 若函数)(x f 在区间],(c a 上增大且又在区间),[b c 上减小,则)(c f 就是最大值;若函数)(x f 在区间],(c a 上减小且又在区间),[b c 上增大,则)(c f 就是最小值.例24 证明不等式:)0(1e >+>x x x .证 令)0()1(e )(≥+-=x x x f x ,则)(x f 在),0[+∞上是连续函数.因为)0(01e )(>>-='x x f x [即函数()f x 是增函数]所以(0)0f =是最小值.因此,()0(0)f x x >>,即)0(1e >+>x x x .例25 证明:函数)10()(<<-=αααx x x f 在区间),0(+∞内有最大值α-=1)1(f . 由此再证明近代数学中著名的赫尔窦(H ölder)不等式:11110,0,0,0;1p q ab a b a b p q p qp q ⎛⎫≤+>>>>+= ⎪⎝⎭ 证 由0)1()(11=-=-='--αααααx x x f 得驻点1=x . 因为 当10<<x 时, 0)1()(1>-='-ααx x f [即)(x f 增大],当+∞<<x 1时, 0)1()(1<-='-ααx x f [即)(x f 减小],所以α-=1)1(f 是最大值.其次,令q p b a x p ==-,1α,则111qp p p p p q p q q q a a a f ab a b b b p b p --⎛⎫⎛⎫=-⋅=- ⎪ ⎪⎝⎭⎝⎭ 而根据上述结论,即α-≤1)(x f ,则得不等式111(1)11q p q p aba b f p p q α---≤=-=-= 两端同乘q b ,并注意1=-p q q ,则得要证的不等式q p b qa p ab 11+≤. 在非闭区间上求一个函数的最大(小)值问题,常常出现在实际应用问题中.解这类问题时,首先需要根据问题本身,运用几何学或物理学或其他有关科学中的知识,列出“目标函数”(即要求它的最大值或最小值的函数)的函数式.这样,问题就变成求目标函数的最大值或最小值.例如, “当矩形周长l 为定值时,它的长和宽为何值时面积最大?”或“当矩形面积S 为定值时,它的长和宽为何值时周长最小?”设矩形的一边长为x ,则前一个问题的目标函数就是(矩形面积)()2l S x x x ⎛⎫=- ⎪⎝⎭ 02l x ⎛⎫<< ⎪⎝⎭ 而后一个问题的目标函数就是(矩形周长)()2S l x x x ⎛⎫=+ ⎪⎝⎭ )0(+∞<<x 这样,问题就变成求函数)(x S 的最大值或求函数)(x l 的最小值.例26 设有闭合电路如图2-25. 它由电动势E 、内阻r 和纯电阻负载E 所构成.若E 和r 是已知常数,问负载R 为何值时,电流的电功率最大?解 根据电学的知识,闭合电路中电流的电功率为R I P 2=(I 为电流强度)而根据闭合电路的欧姆定律,电流强度R r E I +=. 因此,电功率为 22)(R r R E P += (自变量为R ) 由0='P ,即由0)()()()(2)(324222=+-=++⋅-+⋅='R r R r E R r R r R E R r E P 得r R =. 因此,当负载r R =(内阻)时,电功率取到最大值r E P 4/2=.例27 由材料力学的知识,横截面为矩形的横梁的强度是2h x k =ε(k 为比例系数,x 为矩形的宽,h 为矩形的高)今要将一根横截面直径为d 的圆木,切成横截面为矩形且有最大强度的横梁,那么矩形的高与宽之比应该是多少?解 如图2-26,因为222x d h -=,所以22()(0)kx d x x d ε=-<<.令0='x ε,即22222()2(3)0x k d x x k d x ε'=--=-=⎡⎤⎣⎦ 则得驻点x d=根据实际问题的提法,当矩形的宽/x d =强度ε取到最大值.此时,因为d dd x d h 32)3(2222=-=-= 所以2/=x h .图2-26在实际工作中,技术人员是按下面的几何方法设计的:把圆木的横截面(圆)的直径AB 分成三等份(如图2-27),再分别自分点C 和D 向相反方向作直径AB 的垂线,交圆周后做成图中那样的矩形.这个矩形的长边与短边的比值就是2.例28 已知某工厂生产x 件产品的成本为21()2500020040C x x x =++(元) 问:⑴ 要使平均成本最小,应生产多少件产品? ⑵ 若产品以每件500元售出,要获得最大利润,应生产多少件产品?最大利润是多少? 解 ⑴ 平均成本为x x x x C x C 40120025000)()(++==(元/件) 让040125000)(2=+-='x x C ,则得1000=x (件).因此,生产1000件产品时平均成本最小. ⑵ 售出x 件产品时,收入为x 500(元),而利润为=)(x L (收入)x 500-(成本))40120025000(500)(2x x x x C ++-= 212500030040x x =-+- 让020300)(=-='x x L ,则得6000=x (件).因此,生产6000件产品并全部售出时,获得的利润最大.最大利润为900000)6000(=L (元). 习 题1.求下列函数的极值(极大值或极小值):求连续函数在定义区间内的极值时,应先找出导数等于零的点(驻点)和没有导数的点,然后按上面指出的判别法,去判别函数在这些点上是否取到极大值或极小值.⑴x x x f -=3)(; ⑵242)(x x x f -=; ⑶122)(2-+-=x x x x f ;⑷()f x x = ⑸x x x f -=e )(; ⑹x x x f ln )(=; ⑺x x x f -+=e )1()(3; ⑻3231)1()(x x x f -=.答案:⑴max minf f ⎛= ⎝;⑵1)1(,0)0(m in m ax -=±=f f ; ⑶2)2(,2)0(m in m ax =-=f f ;⑷min 34f ⎛⎫= ⎪⎝⎭;⑸1m ax e )1(-=f ;⑹12m in e 2)e (---=f ;⑺2m ax e 27)2(-=f ;⑻max min 1(1)03f f ⎛⎫= ⎪⎝⎭. 2.求下列函数在指出区间上的最大值和最小值:⑴];2,2[,1823-+--=x x x y ⑵];1,1[,15-++=x x y⑶];2,1[,13--=x x y ⑷511,,1;12y x x ⎡⎤=-⎢⎥++⎣⎦ ⑸211,1,12x y x +⎡⎤=-⎢⎥+⎣⎦. 答案:⑴;11,27203-⑵;1,3-⑶;443,23-⑷;31,1532⑸0,2242-. 3.设n a a a <<< 21. 当x 为何值时,函数∑=-=ni i a x x f 12)()(取最小值?答案:n a a a x n +++=21(算术平均值). 4.设.0>a 求函数||11||11)(a x x x f -+++=的最大值. 提示:把区间),(+∞-∞分成三个区间(,0),(0,),(,)a a -∞+∞. 答案:21a a++. 5.证明下面的不等式: ⑴ );01(2)1ln(2<<--<+x x x x ⑵ 12ln 1(0);21x x x ⎛⎫+>> ⎪+⎝⎭ ⑶ );0(arctan 33><<-x x x x x ⑷ 1e 1(0)x x x -≥>. 6.设有方程033=+-c x x (c 为常数).问:当c满足什么条件时,方程有:⑴三个实根,⑵两个实根,⑶一个实根? [提示:分别研究下图⑴,⑵,⑶]答案:⑴22<<-c ;⑵2±=c ;⑶2-<c 或2>c .7.在什么条件下,方程()300x px q pq ++=≠有:⑴一个实根,⑵三个实根?提示:参考上一题的做法. 答案:⑴042723>+q p ;⑵042723<+q p . 8.确定下列各方程实根的个数,并指出只含有一个实根的区间:⑵ 第6题图⑴ 0109623=-+-x x x ; ⑵ 020********=-+--x x x x ;⑶ )0(ln ≠=k kx x ; ⑷2e (0)x ax a =>.答案:⑴一个实根,在)5,4(内;⑵两个实根,32,1221<<-<<-x x ;⑶当0<k 时有一个实根,在)1,0(内;当1e0-<<k 时有两个实根,+∞<<<<21e ,e 1x x ; 当1e -=k 时有一个实根e =x ;当1e ->k 时没有实根.⑷当4e 02<<a 时有一个实根,在)0,(-∞内;当4e 2>a 时有三个实根, 1230,02,2x x x -∞<<<<<<+∞.9.设有二阶导数)(a f ''. 证明:⑴ 若函数)(x f 在点a 取到极大值,则0)(≤''a f ;⑵ 若函数)(x f 在点a 取到极小值,则0)(≥''a f .10.设函数21()22sin (0),(0)2f x x x f x ⎛⎫=-+≠= ⎪⎝⎭. 证明:)(x f 有最大值2)0(=f ,但)(x f 在点0的左旁附近不是增大的,而且在点0的右旁附近不是减小的(这说明判别法Ⅰ中的条件不是必要的).11.应用题 ⑴设两正数x 与y 的和等于常数a (a y x =+).求)0,0(>>n m y x n m 的最大值.⑵设两正数x 与y 的乘积等于常数a (a xy =).求)0,0(>>+n m y x n m 的最小值.⑶在有一定体积的所有正圆柱体中,当底圆半径与高之比为何值时,它有最小的表面积?⑷用薄钢板做一个容积为定值v 的无盖圆柱形桶.假若不计钢板厚度和剪裁时的损耗,问桶底半径r 与高h 各为多少时,用料最省?⑸从半径为R 的圆上切掉一个扇形后,把余下部分卷成一个漏斗.问余下部分扇形的圆心角θ为何值时,卷成漏斗的容积最大?第11⑸题图⑵ ⑴ 第11⑹题图x⑹(反射定律) 如图示,由点A 经点B ,再到点C . 证明:当入射角α等于反射角β时,折线ABC 的长度最短.⑺一商家销售某种商品的价格为x p 2.07-=(万元/T),其中x 为销售量(单位:T);商品的成本为13+=x C (万元).(i )若每销售一吨商品,政府要征税t 万元,求商家获最大利润时的销售量;(ii )t 为何值时,政府税收的总额最大?答案:⑴n m n m n m n m n m a +++)(;⑵n m n m mn n m a n m +⎪⎪⎭⎫ ⎝⎛+1)(;⑶1∶2;⑷r h ==⑸2θ=弧度);⑺(i )t x 5.210-=;(ii )2=t .。

函数的极值与最大值最小值

函数的极值与最大值最小值

∴ f (x) 在 x = ±1处没有极值. 说明 极值的判别法 (定理2 ~ 定理4) 都是充分的. 当这些充分条件不满足时,不能说明极值不存在. 无极值的判断 ① 无可疑极值点的函数必无极值;
② 单调函数无极值; ③ 无定义的点一定不是极值点.
2 x2 的极值. 例5 求函数 f ( x) 2 (1 x)
① 求出 f (x) 在 (a , b) 内的驻点 x1 , x2 , 及不可导点 xm1 , xm2 ,
, xn ;
, xm
② 计算 f ( xi ) (i 1,2, , n) 及 f (a) , f (b) ; ③ 比较大小.
最大值:
M max f ( x1 ), f ( x2 ), , f ( xn ), f (a), f (b) , f ( xn ), f (a), f (b)
所以,极大值为 f (1) 10 , 极小值为 f (3) 22 .
例4 求函数 f ( x) ( x 2 1)3 1 的极值. 解
f ( x) 6 x ( x 2 1) 2 , f ( x) 6( x 2 1)(5 x 2 1)
令 f ( x) 0, 得驻点 x1 0, x2 1, x3 1
L( x ) R ( x ) C ( x ) ,
ቤተ መጻሕፍቲ ባይዱ
那么生产多少件产品时,利润函数 L(x) 最大? 解题思路
① 根据题意建立数学模型,即写出利润函数;
② 对利润函数求最值.
例7 已知某厂生产 x 件产品的成本为 1 2 C ( x) 25000 200 x x (元). 40 若产品以每件 500 元售出,要使利润最大,应生产 多少件产品?
1 2 解 利润函数为 L( x) 25000 300 x x 40

求函数的极大值和极小值

求函数的极大值和极小值

多重性:有时候 函数可能在同一 位置取得极大值 和极小值,需要 注意这种情况的 发生。
注意函数的单调性和凹凸性
单调性:在求极大值和极小值时,需要注意函数的单调性,以确定函数的极值点。
凹凸性:在求极大值和极小值时,需要注意函数的凹凸性,以确定函数的极值点是否存在。
判断方法:可以通过求导数或观察函数图像来判断函数的单调性和凹凸性。
极小值:在某点 的一阶导数由负 变为正
极值的判定条件
极值的第一、二阶导数测试
极值的一阶导数 测试:判断一阶 导数的正负性, 确定函数的单调 性,进而确定极 值点
极值的二阶导数 测试:判断二阶 导数的正负性, 确定函数的凹凸 性,进而确定极 值点
极值的二阶导数 测试的应用:通 过二阶导数测试 判断函数是否存 在拐点或极值点
求函数极大值和极 小值的注意事项
注意函数的定义域和导数的符号变化
定义域:在求极 大值和极小值时, 需要注意函数的 定义域,确保所 求的点在定义域 内。
导数的符号变化: 导数的符号变化 是判断极大值和 极小值的关键, 需要注意导数由 正变负或由负变 正的点。
连续性:函数在 极值点附近的连 续性也是需要注 意的,因为不连 续的点可能是不 可导的。
函添加数副的标极题 大值和极 小值
汇报人:XX
目录
PART One
函数的极值概念
PART Two
求函数极大值和极 小值的方法
PART Three
求函数极大值和极 小值的步骤
PART Four
求函数极大值和极 小值的注意事项
函数的极值概念
极大值和极小值的定义
极大值:在某点 的一阶导数由正 变为负
注意极值的判定条件和计算方法的选择

第3章 3.3.2 函数的极大值和极小值

第3章  3.3.2  函数的极大值和极小值

3.3.2函数的极大值和极小值[读教材·填要点]1.极大值和极小值(1)极大值:设函数y=f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,若点x0附近的函数值都小于f(x0)(即f(x)<f(x0),x∈(a,b)),就说f(x0)是函数y=f(x)的一个极大值,x0称为f(x)的一个极大值点.(2)极小值:设函数y=f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,若点x0附近的函数值都大于f(x0)(即f(x)>f(x0),x∈(a,b)),就说f(x0)是函数y=f(x)的一个极小值,x0称为f(x)的一个极小值点.(3)极值:极大值和极小值统称极值,极大值点和极小值点统称为极值点.2.函数极值的求法(1)求导数f′(x);(2)求f(x)的驻点,即求f′(x)=0的根;(3)检查f′(x)在驻点左右的符号,如果在驻点左侧附近为正,右侧附近为负,那么函数y=f(x)在这个驻点处取得极大值;如果在驻点的左侧附近为负,右侧附近为正,那么函数y=f(x)在这个驻点处取得极小值.[小问题·大思维]1.导数为0的点都是极值点吗?提示:不一定.y=f(x)在x=x0及附近有定义,且f′(x0)=0,y=f(x)是否在x=x0处取得极值,还要看f′(x)在x0两侧的符号是否异号.例如f(x)=x3,由f′(x)=3x2知f′(0)=0,但x=0不是f(x)=x3的极值点.2.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有几个极小值点?提示:由图可知,在区间(a,x1),(x2,0),(0,x3)内f′(x)>0;在区间(x1,x2),(x3,b)内f′(x)<0.即f(x)在(a,x1)内单调递增,在(x1,x2)内单调递减,在(x2,x3)内单调递增,在(x3,b)内单调递减.所以,函数f(x)在开区间(a,b)内只有一个极小值点,极小值点为x=x2.3.函数y=f(x)在给定区间上一定有极值点吗?极大值是否一定比极小值大?提示:(1)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.(2)极大值不一定比极小值大,极小值也不一定比极大值小.求下列函数的极值:(1)f (x )=x 4-2x 2;(2)f (x )=x 2e -x .[自主解答] (1)函数f (x )的定义域为R. f ′(x )=4x 3-4x =4x (x +1)(x -1).令f ′(x )=0,得驻点x =0,或x =-1,或x =1. 列表:当x =0时,函数有极大值,且f (0)=0; 当x =-1,或x =1时,函数有极小值, 且f (-1)=f (1)=-1. (2)函数的定义域为R.f ′(x )=⎝⎛⎭⎫x 2e x ′=(x 2)′e x -(e x )′x 2(e x )2=2x e -x -x 2e -x =x (2-x )e -x =-e -x x (x -2).令f ′(x )=0,得驻点x =0,或x =2. 列表:当x =0时,函数有极小值,且f (0)=0; 当x =2时,函数有极大值,且f (2)=4e2.求可导函数f (x )极值的步骤:①求函数的导数f′(x);②令f′(x)=0,求驻点x0;③列表,方程的根x0将整个定义域分成若干个区间,把x,f′(x),f(x)在每个区间内的变化情况列在这个表格内;④判断得结论,若导数在x0附近左正右负,则在x0处取得极大值;若左负右正,则取得极小值.1.求下列函数的极值.(1)f(x)=ln xx;(2)f(x)=2xx2+1-2.解:(1)函数f(x)=ln xx的定义域为(0,+∞),且f′(x)=1-ln xx2.由f′(x)=0得ln x=1,即x=e.当x变化时,f′(x)与f(x)的变化情况如下表:所以f(x)极大值=f(e)=1e,无极小值.(2)函数f(x)的定义域为R.f′(x)=2(x2+1)-4x2(x2+1)2=-2(x-1)(x+1)(x2+1)2.令f′(x)=0,得x=-1或x=1.当x变化时,f′(x),f(x)的变化情况如下表:且f(x)极小值=f(-1)=-3;当x=1时,函数有极大值,且f(x)极大值=f(1)=-1.已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0.求a ,b 的值.[自主解答] ∵f (x )在x =-1时有极值0且f ′(x )=3x 2+6ax +b .∴⎩⎪⎨⎪⎧ f ′(-1)=0,f (-1)=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0, 解得⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0, 所以f (x )在R 上为增函数,无极值,故舍去. 当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3). 当x ∈(-∞,-3)时,f (x )为增函数; 当x ∈(-3,-1)时,f (x )为减函数; 当x ∈(-1,+∞)时,f (x )为增函数.所以f (x )在x =-1时取得极小值,因此a =2,b =9.若将“在x =-1时有极值0”改为“在x =-1和x =3处有极值”,如何求解? 解:f ′(x )=3x 2+6ax +b , ∵-1,3是f (x )的极值点, ∴-1,3是f ′(x )=0的两个根, 即-1,3是3x 2+6ax +b =0的两根,由根与系数的关系知⎩⎨⎧-6a3=-1+3,b3=(-1)×3,解得a =-1,b =-9.解决此类问题通常是利用函数的导数在极值点处的取值等于零来建立关于参数的方程,从而求出参数的值.需注意的是,可导函数在某点处的导数值等于零只是函数在该点处取得极值的必要条件,所以必须对求出的参数值进行检验,看是否符合函数取得极值的条件.2.已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.(1)试求常数a,b,c的值;(2)试判断x=±1是函数的极小值还是极大值,并说明理由.解:(1)f′(x)=3ax2+2bx+c,由f′(-1)=f′(1)=0,得:3a+2b+c=0, 3a-2b+c=0.又f(1)=-1,∴a+b+c=-1.∴a=12,b=0,c=-32.(2)由(1)可得f(x)=12x3-32x,∴f′(x)=32x2-32=32(x-1)(x+1).当x<-1或x>1时,f′(x)>0;当-1<x<1时,f′(x)<0,∴函数f(x)在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上为减函数.∴当x=-1时,函数取得极大值f(-1)=1;当x=1时,函数取得极小值f(1)=-1.已知函数f(x)=x3-3ax-1(a≠0).若函数f(x)在x=-1处取得极值,直线y =m与y=f(x)的图象有三个不同的交点,求m的取值范围.[自主解答]因为f(x)在x=-1处取得极值且f′(x)=3x2-3a,所以f′(-1)=3×(-1)2-3a=0,所以a=1.所以f(x)=x3-3x-1,f′(x)=3x2-3,由f′(x)=0,解得x1=-1,x2=1.当x<-1时,f′(x)>0;当-1<x<1时,f′(x)<0;当x>1时,f′(x)>0.所以由f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.作出f(x)的大致图象如图所示:因为直线y=m与函数y=f(x)的图象有三个不同的交点,结合f(x)的图象可知,m的取值范围是(-3,1).若本例中条件改为“已知函数f (x )=-x 3+ax 2-4”在x =43处取得极值,其他条件不变,求m 的取值范围.解:由题意可得f ′(x )=-3x 2+2ax ,由f ′⎝⎛⎭⎫43=0, 可得a =2,所以f (x )=-x 3+2x 2-4, 则f ′(x )=-3x 2+4x .令f ′(x )=0,得x =0或x =43,当x 变化时,f ′(x ),f (x )的变化情况如下表:作出函数f (x )的大致图象如图所示:因为直线y =m 与函数y =f (x )的图象有三个不同的交点,所以m 的取值范围是⎝⎛⎭⎫-4,-7627.利用导数求极值,要先讨论函数的单调性,涉及参数时,必须对参数的取值情况进行讨论,在存在极值的情况下,求出极值.3.设a 为实数,函数f (x )=x 3-x 2-x +a . (1)求f (x )的极值;(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点. 解:(1)f ′(x )=3x 2-2x -1. 令f ′(x )=0,则x =-13或x =1.当x 变化时,f ′(x ),f (x )变化情况如下表:所以f (x )的极大值是f ⎝⎛⎭⎫-13=527+a , 极小值是f (1)=a -1.(2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1.由此可知x 取足够大的正数时有f (x )>0,x 取足够小的负数时有f (x )<0,所以曲线y =f (x )与x 轴至少有一个交点.结合f (x )的单调性可知,当f (x )的极大值527+a <0,即a ∈⎝⎛⎭⎫-∞,-527时它的极小值也小于0,因此曲线y =f (x )与x 轴仅有一个交点,它在(1,+∞)上;当f (x )的极小值a -1>0,即a ∈(1,+∞)时它的极大值也大于0,因此曲线y =f (x )与x 轴仅有一个交点,它在⎝⎛⎭⎫-∞,-13上.所以当a ∈⎝⎛⎭⎫-∞,-527∪(1,+∞)时,曲线y =f (x )与x 轴仅有一个交点.a 为何值时,方程x 3-3x 2-a =0恰有一个实根、两个不等实根、三个不等实根,有没有可能无实根?[巧思] 方程x 3-3x 2-a =0根的个数,即为直线y =a 和函数f (x )=x 3-3x 2图象交点的个数,因此可借助函数的单调性和极值画出函数f (x )=x 3-3x 2的图象,然后借助图象判断根的个数.[妙解] 令f (x )=x 3-3x 2, 则f (x )的定义域为R ,由f ′(x )=3x 2-6x =0, 得x =0或x =2,所以当x <0或x >2时,f ′(x )>0; 当0<x <2时,f ′(x )<0.函数f (x )在x =0处有极大值0,在x =2处有极小值-4,如图所示,故当a ∈(-∞, -4)∪(0,+∞)时,原方程有一个根; 当a =0或a =-4时,原方程有两个不等实根;当a ∈(-4,0)时,原方程有三个不等实根;由图象可知,原方程不可能无实根.1.下列结论中,正确的是( ) A .导数为零的点一定是极值点B .如果f ′(x 0)=0且在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值C .如果f ′(x 0)=0且在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极小值D .如果f ′(x 0)=0且在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极大值 解析:根据极值的概念,左侧f ′(x )>0,单调递增;右侧f ′(x )<0,单调递减,f (x 0)为极大值.答案:B2.函数f (x )=32x 2-ln x 的极值点为( )A .0,1,-1 B.33C .-33 D.33,-33解析:由已知,得f (x )的定义域为(0,+∞),f ′(x )=3x -1x =3x 2-1x ,令f ′(x )=0,得x =33⎝⎛⎭⎫x =-33舍去. 当x >33时,f ′(x )>0;当0<x <33时,f ′(x )<0. 所以当x =33时,f (x )取得极小值.从而f (x )的极小值点为33,无极大值点,选B. 答案:B3.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a 的值为( ) A .2 B .3 C .4D .5解析:f ′(x )=3x 2+2ax +3, 则f ′(-3)=27-6a +3=0. ∴a =5. 答案:D4.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中正确的是________.①当x =32时函数取得极小值;②f (x )有两个极值点;③当x =2时函数取得极小值; ④当x =1时函数取得极大值.解析:由图象可知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0.∴f (x )有两个极值点1和2,且当x =2时函数取得极小值,当x =1时,函数取得极大值,故②③④正确.答案:②③④5.函数f (x )=ax 2+bx 在x =1a 处有极值,则b 的值为________.解析:f ′(x )=2ax +b ,∵函数f (x )在x =1a 处有极值, ∴f ′⎝⎛⎭⎫1a =2a ·1a +b =0,即b =-2. 答案:-2 6.求函数f (x )=2xx 2+1-2的极值. 解:函数的定义域为R.f ′(x )=2(x 2+1)-4x 2(x 2+1)2=-2(x -1)(x +1)(x 2+1)2. 令f ′(x )=0,得x =-1,或x =1. 列表:由上表可以看出:当x =-1时,函数有极小值,且f (-1)=-22-2=-3;当x =1时,函数有极大值,且f (1)=22-2=-1.一、选择题1.函数f (x )=-13x 3+12x 2+2x 取极小值时,x 的值是( )A .2B .2,-1C .-1D .-3解析:f ′(x )=-x 2+x +2=-(x -2)(x +1), ∵在x =-1的附近左侧f ′(x )<0,右侧f ′(x )>0,∴x =-1时取极小值. 同理可知x =2时取极大值. 答案:C2.如图是函数y =f (x )的导函数y =f ′(x )的图象,下列说法错误的是( )A .-2是函数y =f (x )的极小值点B .1是函数y =f (x )的极值点C .y =f (x )在x =0处切线的斜率大于零D .y =f (x )在区间(-2,2)上单调递增解析:由图象可知f ′(1)=0,但是当-2<x <1时,f ′(x )>0,且当1<x <2时,f ′(x )>0.故1不是函数f (x )的极值点.答案:B3.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于点(1,0),则f (x )的极值情况为( ) A .极大值为427,极小值为0B .极大值为0,极小值为427C .极小值为-427,极大值为0D .极大值为-427,极小值为0解析:f ′(x )=3x 2-2px -q ,根据题意,x =1是函数的一个极值点,则⎩⎪⎨⎪⎧f ′(1)=0,f (1)=0,解得⎩⎪⎨⎪⎧p =2,q =-1,所以f ′(x )=3x 2-4x +1.令f ′(x )=0,得x =1或x =13.易判断当x =13时,f (x )有极大值为427,当x =1时,f (x )有极小值为0.答案:A4.设函数f (x )=e x sin x ,x ∈[0,π],则( ) A.π2为f (x )的极小值点 B.π2为f (x )的极大值点 C.3π4为f (x )的极小值点 D.3π4为f (x )的极大值点 解析:∵f (x )=e x sin x ,∴f ′(x )=e x (sin x +cos x )=2e x sin ⎝⎛⎭⎫x +π4,由f ′(x )≤0,得sin ⎝⎛⎭⎫x +π4≤0, ∴2k π+π≤x +π4≤2k π+2π,k ∈Z ,即2k π+3π4≤x ≤2k π+7π4,k ∈Z.∵x ∈[0,π],∴f (x )在⎣⎡⎦⎤0,3π4上单调递增, f (x )在⎣⎡⎦⎤3π4,π上单调递减,∴x =3π4为f (x )的极大值点.答案:D 二、填空题5.已知函数f (x )=ax 3+bx 2+c ,其导数f ′(x )的图象如图所示,则函数的极小值是________.解析:由图象可知,当x <0时, f ′(x )<0,当0<x <2时,f ′(x )>0, 故x =0时函数f (x )取极小值f (0)=c . 答案:c6.已知实数a ,b ,c ,d 成等比数列,且曲线y =3x -x 3的极大值点坐标为(b ,c ),则ad =________.解析:∵y ′=3-3x 2,令y ′=0得x =±1, 且当x >1时,y ′<0, 当-1≤x ≤1时,y ′≥0, 当x <-1时,y ′<0,故x =1为y =3x -x 3的极大值点,即b =1, 又c =3b -b 3=3×1-1=2,∴bc =2. 又∵a ,b ,c ,d 成等比数列, ∴ad =bc =2. 答案:27.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则a 的取值范围为________. 解析:y ′=e x +a ,由y ′=0,得x =ln(-a ), 由题意知ln(-a )>0,∴a <-1. 答案:(-∞,-1)8.若函数y =-x 3+3x 2+m 的极大值等于2,则实数m 等于________.解析:y ′=-3x 2+6x ,由y ′=0,得x =0或x =2,容易得出当x =2时函数取得极大值,所以-23+3·22+m =2,解得m =-2.答案:-2 三、解答题9.已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 解:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4,故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x (x +2)-2x -4=4(x +2)⎝⎛⎭⎫e x -12. 令f ′(x )=0得,x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0; 当x ∈(-2,-ln 2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).10.已知函数f (x )=ax -ae x(a ∈R ,a ≠0). (1)当a =-1时,求函数f (x )的极值;(2)若函数F (x )=f (x )+1没有零点,求实数a 的取值范围. 解:(1)当a =-1时,f (x )=-x +1e x ,f ′(x )=x -2ex . 由f ′(x )=0,得x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的极小值为f (2)=-1e 2,函数f (x )无极大值.(2)F ′(x )=f ′(x )=a e x -(ax -a )e x e 2x =-a (x -2)e x .①当a <0时,F (x ),F ′(x )的变化情况如下表:若使函数F(x)没有零点,当且仅当F(2)=ae2+1>0,解得a>-e2,所以此时-e2<a<0;②当a>0时,F(x),F′(x)的变化情况如下表:当x>2时,F(x)=a(x-1)e x+1>1,当x<2时,令F(x)=a(x-1)e x+1<0,即a(x-1)+e x<0,由于a(x-1)+e x<a(x-1)+e2,令a(x-1)+e2≤0,得x≤1-e2a,即x≤1-e2a时,F(x)<0,所以F(x)总存在零点,综上所述,所求实数a的取值范围是(-e2,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.D
【解析】
【分析】
根据题意,求出函数 的导数,令 可得 ,再令 ,原问题可以转化为 有两个零点,求出 的导数,分析 的单调性,分析可得答案.
【详解】
, ,
令 ,得 ,再令 ,
函数 在 上恰有两个极值点,
有两个零点,
又 ,令 ,得 ,且 ;
令 ,得 , 函数 在 上单调递增,
在 上单调递减,由于 ,
专项训练:导数的极大值与极小值
一、单选题
1.已知函数f(x)=xlnx-aex(e为自然对数的底数)有两个极值点,则实数a的取值范围是( )
A. B.(0,e)
C. D.(-∞,e)
2.函数y=xex的最小值是( )
A.-1B.-e
C.- D.不存在
3.当函数y=x·2x取极小值时,x=( )
A. B.-
31.设函数 ,且 为 的极值点.
(1)若 为 的极大值点,求 的单调区间(用 表示);
(2)若 恰有两解,求实数 的取值范围.
32.已知函数 .
(1)讨论函数 的单调性;
(2)若函数 有两个零点 , ,且 ,证明: .
参考答案
1.A
【解析】
【分析】
先求函数导数,再根据题意将导函数为零转化为两个函数 有两个不同的交点,然后求 的导函数零点,列表分析导函数符号变化规律,确定单调性,进而确定 图象,最后根据图象确定实数a的取值范围.
10.B
【解析】
【分析】
任意的 、总有 即是 ,再由函数的单调性可以得出结果。
【详解】
由题意 在 上递减得 ,由对任意的 ,总有 ,得 ,即 ,因此 , 选B.
【点睛】
本题是对二次函数的综合应用,通过单调性得出t的最小值,再通过取值范围得出t的最大值。
11.C
【解析】
【分析】
由题意,代入 ,求得 ,由 ,得到方程的两根,即可判定函数的单调性和函数的极小值,得到答案.
23.求下列函数的极值:
(1)f(x)=x2-2x-4lnx;
(2)f(x)=ax3-3x2+1- (a∈R且a≠0).
24.已知三次函数 的图象如图所示,则 __________.
25.设函数f(x)=ax3-2x2+x+c.若f(x)在R上无极值点,则实数a的取值范围为________.
26.己知函数 .若函数 在定义域内不是单调函数,则实数 的取值范围是__________.
C.-ln 2D.ln 2
4.已知函数 ,则( )
A. 有 个零点B. 在 上为减函数
C. 的图象关于 点对称D. 有 个极值点
5.设a∈R,若函数y=eax+3x,x∈R有大于零的极值点,则( )
A.a>-3B.a<-3
C.a>- D.a<-
6.当函数y=x·2x取极小值时,x=( )
A. B.-
【详解】
因此 ,故 ,所以 ,故判断 无零点判断,A错.
又 ,
当 时 ,故 在 为减函数,所以B正确.
,因 ,故函数的图像不关于 对称,所以C错误.
考虑 及 的图像(如图所示),
它们在 上有且仅有一个交点,
故 在 上有且仅有一个实数根,且在其左右两侧,导数的符号发生了变化,故 有一个极值点,所以D错.综上,选B.
6.B
【解析】
【分析】
对函数求导,由y′=2x+x•2xln2=(1+xln2)•2x=0,即可得出结论.
【详解】
y′=2x+x•2xln2=(1+xln2)•2x=0,
即1+xln2=0,x=﹣ .
函数在 上单调递减,在 上单调递增,
∴函数的极小值点为
故选:B.
【点睛】
本题考查利用导数研究函数的极值问题,属于基础题.
20.已知a R,函数 在区间[1,4]上的最大值是5,则 的取值范围是___________.
21.某品牌电动汽车的耗电量y与速度x之间有关系y= x3- x2-40x(x>0),为使耗电量最小,则速度应定为________.
22.若函数 在 内有且只有一个零点,则 在 上的最大值与最小值的和为________.
【详解】
f(x)=xlnx-aex(x>0),∴f′(x)=lnx+1-aex(x>0),由已知函数f(x)有两个极值点可得y=a和g(x)= 在(0,+∞)上有两个交点,
g′(x)= (x>0),令h(x)= -lnx-1,
则h′(x)=- - <0,
∴h(x)在(0,+∞)上单调递减且h(1)=0,
7.C
【解析】
【分析】
利用导数的运算法则得出f′(x),分△>0与△≤0讨论,列出表格,即可得出.
【详解】
f′(x)=3x2+2ax+b.
(1)当△=4a2﹣12b>0时,f′(x)=0有两解,不妨设为x1<x2,列表如下
x
(﹣∞,x1)
x1
(x1,x2)
x2
(x2,+∞)
f′(x)
+
0

0
+
f(x)
【详解】
设f(x)=eax+3x,则f′(x)=3+aeax.
若函数在x∈R上有大于零的极值点.
即f′(x)=3+aeax=0有正根.
当有f′(x)=3+aeax=0成立时,显然有a<0,
此时x= ln(﹣ ).
由x>0,得参数a的范围为a<﹣3.
故选:B.
【点睛】
本题考查了导数的意义,利用导数求闭区间上函数的极值点,恒成立问题的处理方法.
x=- 时函数取极小值,所以x=- .选B.
【点睛】
已知函数求极值.求 →求方程 的根→列表检验 在 的根的附近两侧的符号→下结论.
4.B
【解析】
【分析】
因为 ,故可判断 无零点,而 ,
当 ,可通过 的符号确定其单调性,通过考虑 与 可得 极值点的个数.最后通过取特殊值去判断函数的图像是否关于 对称.
【点睛】
利用导数解答函数最值的一般步骤:第一步:利用 得可疑最值点,如导函数不变号,则根据函数单调性确定最值点在对应区间端点取得;第二步:比较极值同端点值的大小.在应用题中若极值点唯一,则极值点为开区间的最值点.
3.B
【解析】
【分析】
先求导数,再求导函数零点,最后验证.
【详解】
y′=2x+x·2xln 2=0,∴x=- .经检验,
A. , B. , C. , D. ,
9.若函数 在 上有最小值,则实数 的取值范围是( )
A. B. C. D.
10.已知在 上递减的函数 ,且对任意的 ,总有 ,则实数 的取值范围为( )
A. B. C. D.
11.若函数 ,当 时,函数 的单调减区间和极小值分别为()
A. B. C. D.
12.若函数 在 上恰有两个极值点,则 的取值范围为()
∴当x∈(0,1]时,h(x)≥0,即g′(x)≥0,g(x)在(0,1]上单调递增,g(x)≤g(1)= ,
当x∈(1,+∞)时,h(x)<0,即g′(x)<0,g(x)在(1,+∞)上单调递减,
故g(x)max=g(1)= ,
而x→0时,g(x)→-∞,x→+∞时,g(x)→0;
若y=a和g(x)在(0,+∞)上有两个交点,只需0<a< .
【详解】
的定义域为( ),
当 时, ,
由 得 ,
由 得 ,或 ,由 得 ,
∴ 的单调递增区间为 , ;单调递减区间为 ;
∴ 极大值为 ;极小值为 ,选C.
【点睛】
本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.
单调递增
极大值
单调递减
极小值
单调递增
由表格Байду номын сангаас知:
①x2是函数f(x)的极小值点,但是f(x)在区间(﹣∞,x2)不具有单调性,故C不正确.
②∵ +f(x)= +x3+ax2+bx+c= ﹣ +2c,
= ,
∵ +f(x)= ,
∴点P 为对称中心,故B正确.
③由表格可知x1,x2分别为极值点,则 ,故D正确.
三、解答题
27.已知函数 ,且 为常数)
(Ⅰ)若函数 的极值点只有一个,求实数 的取值范围;
(Ⅱ)当 时,若 (其中 )恒成立,求 的最小值 的最大值.
28.已知函数f(x)=ex- ,a为实常数.
(1)当a>0时,求函数f(x)的单调区间;
(2)若f(x)在(0,+∞)上存在极值点,且极值大于ln 4+2,求a的取值范围.
9.C
【解析】
【分析】
先利用导数求出函数的单调区间,函数 在 , 上单调递增,在 上单调递减,数形结合得到 ,即得a的取值范围.
【详解】
因为 ,令 ,所以 ,所以函数 在 , 上单调递增;在 上单调递减,要函数 在 上有最小值,所以 ,解得 ,故实数 的取值范围是 .
故答案为:C
【点睛】
(1)本题主要考查利用导数求函数的单调区间,意在考查学生对该知识的掌握水平和数形结合分析推理能力.(2)解答本题的关键是数形结合得到 .
C.-ln 2D.ln 2
7.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( )
相关文档
最新文档