串联迟后-超前校正,PID校正

合集下载

滞后校正、滞后超前校正以及PID简介

滞后校正、滞后超前校正以及PID简介
校正前系统开环滞后l校正后系统开环校滞后校正装置正20所引40相起角的裕系60度统b明o显de增图90大的180变化?通常使滞后装置的交接频率1远小于已校正bt系统开环截止频率?c1?cbt510?滞后校正装置在?处所提供的相角为c???arctg01b?1约5?12?cc例
第六章 第三讲
6.3.3串联滞后校正的综合
Ti
20
0
-90。
11 Td Td
20

如果将滞后校正装置的零极点zi和pi设置为一对靠近 坐标原点的偶极子,即: Ti 1,β 1,α 1,Ti Td。
滞后超前网络的传递函数可改写为
Gc(s)≈βTTiiss 1( αTds 1)
(βαTd Ti
)
1 Tis
计算此时的幅穿频率:
20lgK 20(lg5 lg1) 40(lg10 lg5) 60(lgωco lg10)
解上式可得:ωco 3 50K 11.45 rad / s
校正前的相角裕度γ(o ωco):(o co) 25.28。
-20
ωco
-40
-60
5
1012
11.45
-20
-90 -180
校正前系统开环 校正后系统开环 滞后校正装置
-40
ω
-60
ω
在原系统的开环频率特性上寻找满足暂态指标 要求且具有下列相角裕度的频率点ωc。
γγ(o ωc) (i ωc)
γγ(o ωc) (i ωc)
γ(o ωc):校正前系统在ωc处所对应的相角裕量;
γ:指标所要求的相角裕度; (i ωc):滞后校正在ωc处造成的相角滞后量。
0.024
0.27
2.7 5

串联滞后超前校正

串联滞后超前校正

6-4 串联迟后-超前校正一、迟后-超前校正网络串联迟后-超前校正,可以通过单独的迟后网络和超前网络来实现,如图6-12(a )。

也可以通过相位迟后-超前网络来实现,如图6-12(b )所示。

图6-12(b )所示网络传递函数为1)()1)(1()(212211*********++++++=s C R C R C R s C C R R s C R s C R s G c 11112211++++=s aT s T s a T s T (6-9) 式中 111T C R = ;222T C R =21212211aT aT C R C R C R +=++, (1>a ) 式中迟后校正部分为)1()1(22++s aT s T ;超前校正部分为)1()1(11++s aT s T 。

其对数频率特性曲线如图6-13所示。

由图可见,在频率ω由零增加到1ω的频段内,该网络呈现积分性质,具有迟后相角。

也就是说,在0~1ω频段里,相角迟后-超前网络具有单独的迟后校正特性;而在1ω~∞频段内,呈现微分性质,具有超前相角。

所以它将起单独的超前校正作用。

不难计算,对应相角等于零处的频率1ω为 2111T T =ω (6-10)二、串联迟后-超前校正应用串联迟后-超前校正设计,实际上是综合地应用串联迟后校正与串联超前校正的设计方法。

当未校正系统不稳定,且校正后系统对响应速度、相角裕量和稳态精度的要求均较高时,以采用串联迟后-超前校正为宜。

利用迟后-超前网络的超前部分来增大系统的相角裕量,同时利用迟后部分来改善系统的稳态性能或动态性能。

下面举例说明串联迟后-超前校正设计的一般步骤。

【例6-4】 设单位反馈系统,其开环传递函数为)15.0)(1()(++=s s s K s G 要求:(1)开环放大系数110-=s K ;(2)相角裕量︒=50γ;(3)幅值裕量dB h 10=;试确定串联迟后-超前校正网络的传递函数)(s G c 。

自动控制原理--滞后超前校正与PID校正

自动控制原理--滞后超前校正与PID校正

G s 1 T1s 1 aT2s
1 T1s 1 T2s
°
其中:
E1
1,a 1且.a 1 °
C1
R1
°
R2
E2
C2
°
Phase (deg); Magnitude (dB)
To: Y(1)
Bode Diagrams
From: U(1) 0
-5
-10
-15
-20 50
0
-50
ቤተ መጻሕፍቲ ባይዱ
10-4
10-3
10-2
应 50o 处的g 0.082 rad s,相应幅频特性为Lg 45.5db
据此,由20log KP Lg 45db 求得:KP 0.0053 。
为减少对相角裕量校正效果影响,PI控制器转折 频率 1 KI KP 选择远离g 处,取1 g 10 0.0082 rad s 求得:KI 0.000044 。于是,PI控制器传递函数
• PID调节器是一种有源校正网络,它获得了 广泛的应用,其整定方法要有所了解。
系统校正的设计方法
分析法
综合法
分析法:
选择一种校正装置
设计装置的参数
校验
综合法: 设计希望特性曲线 校验
确定校正装置的参数
期望特性综合设计方法:
1、先满足精度要求,并画出原系统Bode图; 2、根据Bode定理,系统有较大的相位裕量,幅频特性在剪切频
G( j)
1
j2T( jT 1)
63.5
0.707
二阶最佳指标:
L() -20dB/dB
1/2T
()
p % 4.3%
180°
ts (6 ~ 8)T
1/T

串联超前校正和滞后校正的不同之处

串联超前校正和滞后校正的不同之处

串联超前校正和滞后校正的不同之处在控制系统中,超前校正和滞后校正是两种常见的校正方法。

它们都是为了提高系统的稳定性和性能而采取的措施。

然而,它们的实现方式和效果却有很大的不同。

本文将从理论和实践两个方面,分别探讨串联超前校正和滞后校正的不同之处。

一、理论分析1. 超前校正超前校正是指在控制系统中,通过提前控制信号的相位,使得系统的相位裕度增加,从而提高系统的稳定性和响应速度。

具体来说,超前校正是通过在控制信号中加入一个比例项和一个积分项,来提高系统的相位裕度。

这样,系统就能更快地响应外部干扰和变化,从而提高系统的性能。

2. 滞后校正滞后校正是指在控制系统中,通过延迟控制信号的相位,使得系统的相位裕度减小,从而提高系统的稳定性和抗干扰能力。

具体来说,滞后校正是通过在控制信号中加入一个比例项和一个微分项,来减小系统的相位裕度。

这样,系统就能更好地抵抗外部干扰和变化,从而提高系统的性能。

二、实践应用1. 超前校正超前校正在实践中的应用非常广泛。

例如,在电力系统中,超前校正可以用来提高电力系统的稳定性和响应速度。

在机械控制系统中,超前校正可以用来提高机械系统的精度和响应速度。

在化工生产中,超前校正可以用来提高化工生产的稳定性和生产效率。

2. 滞后校正滞后校正在实践中的应用也非常广泛。

例如,在飞行控制系统中,滞后校正可以用来提高飞行器的稳定性和抗干扰能力。

在汽车控制系统中,滞后校正可以用来提高汽车的稳定性和安全性。

在医疗设备中,滞后校正可以用来提高医疗设备的精度和稳定性。

总之,串联超前校正和滞后校正是两种常见的校正方法,它们都是为了提高系统的稳定性和性能而采取的措施。

然而,它们的实现方式和效果却有很大的不同。

在实践中,我们需要根据具体的应用场景和需求,选择合适的校正方法,以达到最佳的控制效果。

串联迟后-超前校正,PID校正

串联迟后-超前校正,PID校正

§5.9.4
串联PID校正(2) 举例3
§5.9.4
频率法串联校正小结(1)
频率法串联校正小结
(1) 频率法串联校正适用的范围 — 单位反馈的最小相角系统
L( )
最小相角系统
G( s)
单位反馈系统
( s )
非单位反馈系统:
非最小相角系统: 需将L()曲线和()曲线同时绘出, 在考虑稳定性的基础上进行校正
④ 作图设计 A B C D E F

G( s) Gc ( s) G0 ( s)
c 验算 是否满足要求
Gc ( s)
§5.9.3
串联迟后 - 超前校正(4) 举例1
§5.9.4
(1) PID电路特性
串联PID校正(1)
§5.9.3 串联PID校正
K I (T1 s 1)(T2 s 1) s KI Gc ( s ) K P K D s s K D s2 K P s K I s KD 2 KP KI ( s s1) KI KI s K (T s 1)(T2 s 1) Gc ( s ) I 1 s Gc ( s )
自动控制原理
自动控制原理
本次课程作业(28)
5 — 41, 42, 45(用坐标纸) 5 — 43, 44, 46(选作)
自动控制原理
(第 28 讲)
§5. 线性系统的频域分析与校正
§5.1 §5.2 §5.3 §5.4 §5.5 §5.6 §5.7 §5.8 §5.9 频率特性的基本概念 幅相频率特性(Nyquist图) 对数频率特性(Bode图) 频域稳定判据 稳定裕度 利用开环频率特性分析系统的性能 闭环频率特性曲线的绘制 利用闭环频率特性分析系统的性能 频率法串联校正

串联超前校正装置的课程设计

串联超前校正装置的课程设计

目录一、绪论 (1)二、原系统分析 (1)2.1原系统的单位阶跃响应曲线 (1)2.2原系统的Bode图 (2)2.3原系统的Nyquist曲线 (4)2.4原系统根轨迹 (5)三、校正装置设计 (6)3.1校正装置参数的确定 (6)3.2校正装置的波特图 (7)四、校正后系统的分析 (8)4.1校正后系统的单位阶跃响应曲线 (8)4.2校正后系统的波特图 (9)4.3校正后系统的Nyquist曲线 (10)4.4校正后系统的根轨迹 (11)五、总结 (13)六、参考文献 (13)一、绪论在系统中,往往需要加入一些校正装置来增加系统的灵活性,使系统发生变化,从而满足给定的各项性能指标。

按照校正装置的特性不同,可分为PID 校正、超前校正、滞后校正和滞后-超前校正。

我们在这里讨论串联超前校正。

在直流控制系统中,由于传递直流电压信号,适于采用串联校正。

串联超前校正的基本原理:利用超前网络的相角超前特性。

只要正确的将超前网络的交接频率1/aT 和1/T 选择在带校正系统截止频率的两旁,并适当选取参数a 和T ,就可以校正系统的截止频率和相角裕度满足性能指标的要求,从而改善系统的动态性能。

串联超前校正的优点:保证低频段满足稳态误差,改善中频段,使截止频率增大,相角裕度变大,动态性能提高,高频段提高使其抗噪声干扰能力降低。

有些情况下采用串联超前校正是无效的,它受到以下两个因素的限制: 1.闭环宽带要求。

若待校正系统不稳定的话,为了得到规定的相角裕度,需要超前网络提供很大的相角超前量。

这样的话,超前网络的a 值必须选取的很大,从而造成已校正系统带宽过大,使得通过系统的高频噪声电平很高,很可能使系统失控。

2.在截至频率附近相角迅速减小的待校正系统,一般不宜采用串联超前校J 卜。

因为随着截止频率的增大,待校正系统相角迅速减小,使已校正系统的相角裕度改善不大,很难得到足够的相角超前量,在一般情况下,产生这种相角迅速减小的原因是,在待校正系统的截止频率附近,或有交接频率彼此靠近的惯性环节;或由两个交接频率彼此相等的惯性环节;或有一个震荡环节。

自动控制原理02常用串联校正装置及其特性

自动控制原理02常用串联校正装置及其特性

串联超前校正装置
R1
U A R2
C
(3)串联超前校正装置的有源网络实现
i1 i3
R3
i2
R0 R1 R3 R2 R3 R1 R2 R3 _ Cs 1 U U o ( s) R1 R2 R1 R2 i i 0 Uo U i ( s) R0 R3Cs 1 图6-10 有源超前网络
PI控制器--工程设计常用

1/T
_
( )
Ui
R0

Uo
图6-16 PI控制器
0 -450 -900
U o (s) Ts 1 传递函数: K U i ( s) Ts
R1 K R0
图6-17 PI控制器频率特性
说明:PI控制器给系统增加了一个积分 环节,改善了系统的稳态性能
T R1C
,R1、R2远远大于R3、R4, 式(6-31)可转化为(6-27)。
Tb

R4C2
6.2.3
串联滞后超前校正装置
C0
R1
PID控制器--工程设计常用
传递函数:
1 U o (s) C1s 1 U i (s) R0 C0 s 1 R0 C0 s R1 R1 ( R1C1s 1)(R0C0 s 1) R0 R1C1s
对数频率特性
L ( )
0 1/T
m
1/bT

20lgb
特点: 用其高频幅值衰减特
-20dB/dec
( )
0 -900

m
性,降低系统的开环
截止频率,提高系统 的相位裕度。
图6-13 串联滞后校正频率特性
6.2.2

自动控制原理课程设计--串联超前—滞后校正装置

自动控制原理课程设计--串联超前—滞后校正装置

目录一、设计目的-------------------------------------------------------------1二、设计要求-------------------------------------------------------------1三、实现过程-------------------------------------------------------------33.1系统概述-------------------------------------------------------- 33.1.1设计原理------------------------------------------------- 33.1.2设计步骤------------------------------------------------- 43.2设计与分析----------------------------------------------------- 53.2.1校正前参数确定--------------------------------------- 53.2.2确定校正网络的传递函数--------------------------- 53.2.3 理论系统校正后系统的传递函数和BODE 图-- 73.2.4系统软件仿真------------------------------------------ 8四、总结------------------------------------------------------------------15五、参考文献-------------------------------------------------------------16自动控制原理课程设计报告一、设计目的(1)掌握控制系统设计与校正的步骤和方法。

串联超前校正的计算方法

串联超前校正的计算方法

完成一个控制系统的设计任务,往往需要经过理论和实践的反复比较才可以得到比较合理的结构形式和满意的性能,在用分析法进行串联校正时,校正环节的结构通常采用超前校正、滞后校正、超前滞后校正这三种类型,也就是工程上常用的PID 调节器。

本次课设采用的超前超前校正的基本原理是利用超前相角补偿系统的滞后相角,改善系统的动态性能,如增加相角裕度,提高系统稳定性能等,而由于计算机技术的发展,matlab 在控制器设计,仿真和分析方面得到广泛应用。

本次课设采用用Matlab 软件对系统进行了计算机仿真,分析未校正系统的动态性能和超前校正后系统是否满足相应动态性能要求。

超前校正就是在前向通道中串联传递函数为:()()()111G c ++⋅==Ts aTs a s R s C s 其中:C R R R R T 2121+= 1221>+=R R R a 通常 a 为分度系数,T 叫时间常数,由式(2-1)可知,采用无源超前网络进行串联校正 时,整个系统的开环增益要下降 a 倍,因此需要提高放大器增益交易补偿. 如果对无源超前网络传递函数的衰减由放大器增 益所补偿,则()11++=Ts aTs s aG c 上式称为超前校正装置的传递函数。

无源超前校正网络的对数频率特性如图6-4。

图6-4无源超前校正网络的对数频率特性显然,超前校正对频率在1/aT 和1/T 之间的输入信号有微分作用,在该频率范围内,输出信号相角比输入信号相角超前,超前网络的名称由此而得。

因此超前校正的基本原理就是利用超前相角补偿系统的滞后相角,改善系统的动态性能,如增加相位裕度,提高系统的稳定性等。

下面先求取超前校正的最大超前相角m ϕ及取得最大超前相角的频率mω,则像频特性: ()ωϕc =arctanaT ω-arctanT ω()()()221T 1d ωωωϕωT T a aT d c +-+= 当(),0=ωϕωd d e 则有: T a m 1=ω 从而有:aa T a T T a aT 1arctan arctan 1arctan 1arctan m -=-=ϕ =11arcsin 21arctan 111arctan +-=-=+-a a a a aa a a 既当T a m 1=ω时,超前相角最大为11arcsin m +-=a a ϕ,可以看出mϕ只与a 有关这一点对于超前校正是相当重要的超前校正RC 网络图如图2。

串联超前校正.

串联超前校正.

16 16
1 1
2.如果通过串联超前网络对系统进行校正,则最 可能利用其那种特点?可改善系统的哪方面性能?
(2)用频域法设计无源超前校正网络
设计步骤
(1) 根据稳态误差要求,确定开环增益K。 (2) 利用已确定的开环增益,计算待校正系 统的相角裕度。
设计步骤
(3) 根据截止频率 c 要求,计算超前网T
d.无源滞后网络的对数频率特性
aGc
(s)

1 bTs(b 1 Ts

1)
的对数频率特性 L(ω)
10log b
曲线图如图所示
结论:在 m 处具
有最大超前相
1
m 1
T
bT
0
20log b

角 m ,且正好处
于 频 率 1/bT 和 1/T
的几何中心线。
φ(ω) 90O

m
(
1
1)Tω α T2ω2
将上式求导并令其为零,得最大超前角频率:
ω
m

T
1

设ω1为频率1/aT和1/T的几何中心,则有:
lgω1

1 (lg 2
1 aT
lg 1 ) T

1 lg 2
1 aT 2
lg
1
T
ωm ω1
代入相角计算公式得最大超前相角 :
m

arctg
a 2
1 a
串联超前校正的应用条件
超前校正一般应用于系统原来稳定但相角裕度不 满足要求且快速性不满足要求的系统。
在截止频率附近相角迅速减小的系统不宜采用串 联超前校正。产生的原因有两种:①有两个交接 频率彼此靠近的惯性环节;②有两个交接频率彼 此相等的惯性环节;③有一个震荡环节。

第六章_线性系统的校正方法

第六章_线性系统的校正方法
若输入信号的带宽:
中频区
0 ~ M
噪声信号主要作用的频带为:
1 ~ n
而且使
1 ~ n
b (5 ~ 10) M
处于
0 ~ b 之外。
0
M
1
n

b
第一节 系统的设计与校正问题 三、 校正方式 串联校正、反馈校正、前馈校正、复合校正 1、串联校正与反馈校正
R( s )
N (s)
(Ta s 1)( T20 1)a b s log Gc ( s) , (T1s 1 Ts ()( Ta 1)1) 2s 网络的滞后 T1T2 TaTb , ( aTa s 1) 部分: T1 T2 Ta Tb Tab
a
T2 1 T1 Ta , , T1 Tb a Tb T1 aTa , T2 a (Ta s 1) (Tb s 1) Gc ( s) , (aTa s 1) Tb ( s 1) a
1 4 2
4
2
第一节 系统的设计与校正问题 相角裕度
arctg
2 1 4 4 2 2
1 2
超调量
% e
ts
100%
调节时间
3.5
n
7 c t s tg
第一节 系统的设计与校正问题 二、 系统带宽的确定
一般要求系统的稳定裕度在45o左右 的斜率为-20dB/dec
2
第三节 串联校正
2.超前校正装置的设计
超前校正是利用相位超前特性来增加系 统的相角稳定裕量,利用幅频特性曲线的正斜 率段增加系统的穿越频率。从而改善系统的平 稳性和快速性。为此,要求校正装臵的最大超 前角出现在系统校正后的穿越频率处。

自控课设串联滞后超前校正

自控课设串联滞后超前校正

目录绪论 (2)一课程设计的目的及题目 (3)1.1课程设计的目的 (3)1.2课程设计的题目 (3)二课程设计的任务及要求 (4)2.1课程设计的任务 (4)2.2课程设计的要求 (4)三校正函数的设计 (5)3.1理论知识 (5)3.2设计部分 (6)四传递函数特征根的计算 (10)4.1校正前系统的传递函数的特征根 .................. 错误!未定义书签。

4.2校正后系统的传递函数的特征根 .................. 错误!未定义书签。

五系统动态性能的分析.. (11)5.1校正前系统的动态性能分析 (12)5.2校正后系统的动态性能分析 (15)六系统的根轨迹分析............................... 错误!未定义书签。

6.1校正前系统的根轨迹分析 ........................ 错误!未定义书签。

6.2校正后系统的根轨迹分析 (20)七系统的奈奎斯特曲线图 (20)7.1校正前系统的奈奎斯特曲线图 (20)7.2校正后系统的奈奎斯特曲线图 ................... 错误!未定义书签。

2 八系统的对数幅频特性及对数相频特性 ............... 错误!未定义书签。

8.1校正前系统的对数幅频特性及对数相频特性 (22)8.2校正后系统的对数幅频特性及对数相频特性 ........ 错误!未定义书签。

总结............................................. 错误!未定义书签。

6参考文献.......................................... 错误!未定义书签。

绪论在控制工程中用得最广的是电气校正装置,它不但可应用于电的控制系统,而且通过将非电量信号转换成电量信号,还可应用于非电的控制系统。

控制系统的设计问题常常可以归结为设计适当类型和适当参数值的校正装置。

串联超前校正

串联超前校正


'' c

4.4
L(
'' c
)

6
N(s)
R(s) 串联 校正
前置放大、 被控 C(s)
功率放大
对象
反馈 校正
R(s) 前馈
前馈校正
校正
前置放大、 被控 C(s)
功率放大
对象
反馈 校正
Gn(s) N(s)
R(s)
C(s)
G1(s)
G2(s)
复合校正
R(s)
Gr(s) G1(s)
C(s)
G2(s)
二、基本控制规律
(1)比例(P)控制
第6章 线性系统的校正方法
本章主要内容与重点 系统的设计与校正概念 常用的校正装置及其特性 串联校正 局部反馈校正
本章主要内容
本章介绍了控 制系统校正的基本 概念、常用校正方 法和常见校正装置 的特性,主要阐述 了利用频率特性和 根轨迹进行串联超 前、滞后以及超 前—滞后校正的原 理和基本方法,同 时简要介绍了局部 反馈校正的原理。
)

arctg[0.1(b
1)]
b 1
b 1
无源迟后-超前网络
网络传递函数
R1
U1
C1
R2 U 2
C2
Gc
(s)

TaTb
(Ta s2
s 1)(Tb s 1) (Ta Tb Tab
)s
1
Ta R1C1, Tb R2C2 , Tab R1C2
Gc
(s)

(Ta s 1)(Tb s 1) (T1s 1)(T2 s 1)
j( j 1)
L() 20 log10 20 log 20 log 2 1

自动控制原理第六章线性系统的校正方法

自动控制原理第六章线性系统的校正方法

5 • 20 •c • 6 •c 1 c •1• • 200 •cc
c 3rad s
230
验算指标(相角裕度) c 2.1rad s
(20j 1)(6j 1) • 5
1
(200j 1)(0.3j 1)j(j 1)(0.25j 1)
180 0+(c)
(2)画出未校正系统的伯德图,计算未校正系统的
相角裕度和截止频率。
(3)根据设计要求,确定期望相角裕度和截止频率。
Mr
1
sin
,
350 900
超调量 0.16 0.4(Mr 1), 1 Mr 1.8
调节时间
ts
K c
K 2 1.5(M r 1) 2.5(M r 1)2
超调量 0.3 0.16 0.4( 1 1) , 1 1.35 460
装置:
(1)
Kv
70
1 s
(2)
ts 0.1S
(3) % 30%
解(1) 根据I型系统和速度误差系统要求取:K=70
G( j)
70
j(0.12 j 1)(0.02 j 1)
70
exp j 90 tg-10.12 tg-10.02
(0.12)2 1 (0.02)2 1
(2)绘制未校正系统的伯德图,如图红线所示。由图可知
1
2
1 10
1.35 1.35
= 1
1 2.6

2=2
rad s
1 1 1.35 = 1 ,
3 10 1.35 1 17.4
3
20
ra
d s
L( )dB
60
40 20 0 0.1 -20
-20
LLc () -40

机械控制_滞后校正及PID

机械控制_滞后校正及PID

6、进行验算
滞后校正的特点
1、滞后校正是利用校正装置在高频段的 衰减特性,使幅值穿越频率向低频点 移动,而使相位裕量满足要求。 2、采用滞后校正将降低系统的带宽,导 致响应变得缓慢。 3、采用滞后校正一般不需要补偿增益。
2 滞后-超前校正
C1
G(s)
R2 C2 uo
R1
ui
T1s 1 T2 s 1 ( )( ) T1 T2 s 1 s 1
第14节 滞后校正&PID
1.滞后校正 2.滞后-超前校正
3.PID校正
回顾:超前校正
超前校正原理
超前校正的实质是对于相 角裕量小的系统,引入超前校 正网络,利用其产生的最大相 角来增加系统的相角裕量.
超前校正的特点
1、利用超前网络的相角超前量提供裕量。
2、校正后使系统的闭环带宽增加。
3、需要放大器补偿增益的衰减。
e(t)
+_ Kp
u(t)
控制器的输出u(t)成比例地反映输入信号e(t)
u(t ) K Pe(t )
(1)时域角度分析比例控制器的作用
KP

1 Ts 1
闭环传递函数
稳态位置误差
K p /(1 K p ) G (s) T s 1 1 K p
1 ess 1 K p
加大比例系数Kp 1)提高系统的响应速度 2)减小系统的稳态误差
PI
PID
P
Ziegler-Nichols(Z-N)参数调整方法
1、置系统于比例控制方式,比例系 数取很小的值。 2、增加增益直到系统开始发生振荡。 3、记下系统发生临界振荡时的增益 值,并记为Kc,系统振荡的周期记 为Tc.
参数调整则

自动控制原理(黄家英)第二版课后答案-6

自动控制原理(黄家英)第二版课后答案-6

10 s
Gk
10 s( 0.02 s 1 )
22
仿真结果
10 Gk s
10 Gk s( 0.02 s 1 )2 10 Gk s( 0.02 s 1 )
23
4、尽可能利用受控系统原有的零极点使所得校正 装置较为简单实用
R(s) E(s)
-
G c (s)
G(s)
Y(s)
希望开环传函 G d (s) 校正装置传函 G c (s) 原系统开环传函 G(s)
1 0.019 s 取 h 7 52 . 5 rad / s , T 3 3 3
2
3
h
1 0.13 s 7.5 rad / s , T2 2
原系统小时间常数环节(T4=0.007,ω4=142.9)对 相角裕量有影响,为了补偿,将ω3适当增大
L(ω)
-20dB/dec
h
-20dB/dec
-40dB/dec
ω2 ωc
ω3
-40dB/dec
高频段
高频段衰减越快,抑噪能力越强;但会影响暂态 性能,平稳性会下降。
例见后
19
例:高频段不同幅频特性抑制高频噪声的效果
检测噪声 0.5 sin( 200 t )
Gk
10 , s
10 , s( 0.02 s 1 )
基于状态空间模型的时域法
状态空间综合法
13
6.1.3 频域综合的基本思路
引入校正装置来调整开环频率特性转折频 率的分布和开环增益的大小,
从而
改变开环频率特性曲线的形状(整形), 使校正后的系统具有满意的性能。 综合的核心:设计校正装置
14
6.2

ch3(校正)_1

ch3(校正)_1

二、串联超前校正
※ 两类超前校正装置 ·无源超前网络
输出信号 输入信号
它的传递函数可以写为
1 αTs + 1 α Gc ( s ) = × = α Ts + 1 Ts + 1
16
Ts +
1
二、串联超前校正
其中,
R1 + R2 α= >1 R2 R1 R2 T= C R1 + R2
17
二、串联超前校正
11
2.并联校正
并联校正的基本原理
如果被校正环节对整个系统性能的影响较大, 就考虑用一个校正装置包围该被校正环节,形成一 个内环,如果能通过并联校正装置传递函数的倒数 的特性来代替被校正环节的不希望特性,就可以改 善控制系统的性能,同时还可以减小被包围的被校 正环节特性参数对系统性能的影响。
12
并联校正对被校正环节要求不高,它可 以减小系统非线性的影响,提高抗干扰能力 和响应速度,降低对参数的敏感性。 采用并联校正的成本高。
二、串联超前校正
[例] 已知一个控制系统的结构如图所示:
K 其中, G ( s ) = s(0.1s + 1)(0.001s + 1)
' o γ ≥ 45 要求该系统的相角裕度
;静态 −1 K = 1000 s 速度误差系数 v 。求串联超前校 正装置的传递函数 Gc ( s ) 。
34
二、串联超前校正
From: U(1) 0
T
-5
P has e (deg); M agnitude (dB )
-10
-15
-20 60
40 To: Y (1)
20
0 10 -3
10 -2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
* * * e , , 迟后-超前校正步骤 (设给定标 ss ) c * ① 由 ess K 超前校正 均无效时 ② 由 G0 ( s) L0 ( ) c 0 0 用
③ 确定
* m * 0 (c ) 6
迟后校正 1 sin m a , a 1 sin m
保持低频段 效果: 降低中频段 压低高频段
满足稳态精度 ess c , 损失快速性,改善均匀性 抗高频干扰能力提高
自动控制原理
(第 28 讲)
§5.9 频率法串联校正
§5.9.1 §5.9.2 §5.9.3 §5.9.4 串联超前校正 串联迟后校正 串联迟后-超前校正 串联PID校正
§5.9.3
§5.9.4
频率法串联校正小结(2)
(2)串联校正方法的比较
校正方法 ① 超前校正
校正网络特点 幅值增加 相角超前
幅值衰减 相角迟后 幅值衰减 相角超前
应用场合
* c0 c * 0 * c 0 c * 0
效果
c , 高频段 c , 高频段
c ~, 高频段 ~
② 迟后校正
③ 迟后超前
迟后超前 均不奏效
线性系统的频域分析与校正
第五章小结
自动控制原理课程的任务与体系结构
自动控制原理
本次课程作业(28)
5 — 41, 42, 45(用坐标纸) 5 — 43, 44, 46(选作)
串联迟后 - 超前校正(1)
§5.9.3 串联迟后-超前校正
(1) 迟后-超前网络特性 (Ta s 1)(Tb s 1) Gc ( s ) TaTb s 2 (Ta Tb Tab ) s 1
T1T2 TaTb T1 T2 Ta Tb Tab
T1 Ta T1 Ta Tb T2 a 1
课程回顾:串联校正
§5.9.1 串联超前校正
实质:利用超前网络相角超前特性提高系统的相角裕度 * * , 适用: c 0 c 0
保持低频段 效果: 改善中频段 抬高高频段 满足稳态精度 ess c , 动态性能提高 抗高频干扰能力降低
§5.9.2 串联迟后校正
实质:利用迟后网络幅值衰减特性挖掘系统自身的相角储备 * * 适用: c 0 c , 0
§5.9.4
串联PID校正(2) 举例3
§5.9.4
频率法串联校正小结(1)
频率法串联校正小结
(1) 频率法串联校正适用的范围 — 单位反馈的最小相角系统
L( )
最小相角系统
G( s)
单位反L()曲线和()曲线同时绘出, 在考虑稳定性的基础上进行校正
④ 作图设计 A B C D E F

G( s) Gc ( s) G0 ( s)
c 验算 是否满足要求
Gc ( s)
§5.9.3
串联迟后 - 超前校正(4) 举例1
§5.9.4
(1) PID电路特性
串联PID校正(1)
§5.9.3 串联PID校正
K I (T1 s 1)(T2 s 1) s KI Gc ( s ) K P K D s s K D s2 K P s K I s KD 2 KP KI ( s s1) KI KI s K (T s 1)(T2 s 1) Gc ( s ) I 1 s Gc ( s )
自动控制原理
自动控制原理
本次课程作业(28)
5 — 41, 42, 45(用坐标纸) 5 — 43, 44, 46(选作)
自动控制原理
(第 28 讲)
§5. 线性系统的频域分析与校正
§5.1 §5.2 §5.3 §5.4 §5.5 §5.6 §5.7 §5.8 §5.9 频率特性的基本概念 幅相频率特性(Nyquist图) 对数频率特性(Bode图) 频域稳定判据 稳定裕度 利用开环频率特性分析系统的性能 闭环频率特性曲线的绘制 利用闭环频率特性分析系统的性能 频率法串联校正
1 1 (s ) (s ) Ta Tb Gc ( s ) 1 a (s ) (s ) aTa Tb
迟后部分 超前部分
(a 1)
迟后-超前网络特点: 幅值衰减,相角超前
§5.9.3
串联迟后 - 超前校正(3)
(2) 迟后-超前校正 实质 — 综合利用迟后网络幅值衰减、超前网络相角超前 的特性,改造开环频率特性,提高系统性能
Ta R1C1 Tb R2C 2 Tab R1C 2
(Ta s 1) (Tb s 1) Gc ( s ) (aTa s 1) Tb ( s 1) a
aTa T1 Ta Tb T2
Tb a
§5.9.3
串联迟后 - 超前校正(2)
(1)迟后-超前网络特性
相关文档
最新文档