《连续小波变换》PPT课件
一看就懂的小波变换ppt
8
8
[32.5,0, 0.5,0.5,31,-29,27,-25]
Haar小波反变换:
1 1 1 0 1 0 0 0 32.5 64
1
1
1
0 -1
0
0
0
0
2
1 1 -1 0 0 1 0 0 0.5 3
1 1 -1 1 -1 0
0 1
0 -1 00
0 1
0 0
0.5
31
61 60
傅立叶变换: Of M log2 M
小波变换:
Ow M
设有信号f(t):
其傅里叶变
换为F(jΩ):
即:
f (t) 1 F ( j)e jtd
2
பைடு நூலகம் =
1
0. 8
0. 6
0. 4
0. 2
0 -0. 2 -0. 4 -0. 6
Ψ(t)
-0. 8
-1 0
2
4
6
8
10
12
14
16
18
+
1
0. 8
0. 6
二维金字塔分解算法
令I(x,y)表达大小为M N旳原始图像,l(i)表达相对于分析
小波旳低通滤波器系数,i=0,1,2,…,Nl-1, Nl表达滤波器L旳 支撑长度; h(i)表达相对于分析小波旳高通滤波器系数,
i=0,1,2,…,Nh-1, Nh表达滤波器H旳支撑长度,则
IL x,
y
1 Nl
1.2 二维小波变换(二维多尺度分析)
二维小波变换是由一维小波变换扩展而来旳,二维尺度 函数和二维小波函数可由一维尺度函数和小波函数张量 积得到,即:
第二章 时频分析与连续小波变换 ppt课件
定理及傅里叶变换的性
质)
再根据 Schwarz 不等式,有:
2 t
2
1 * (t ) dt ]2
1 f4
t [ f '(t) f *(t) 2
f
'*
(t)
f
(t )]dt
2
4
1 f
4
t(
f
(t
)
2
)
'
dt
2
1 / 4( 考虑到
lim
t
t f (t ) 0 , 再由分部积分
x(n)X(ej)
离散、非连 周续 期、周
信号时域和频域特性之间关系:
本课程中傅里叶变换的记号:
fˆ()
f
(t)eit dt
f (t) 1 fˆ()eitd
2
连续时间傅里叶变换性质
f ( t ) F fˆ
f 1 * f 2 ( t ) F fˆ1 fˆ 2
kN
kN
ak
1 x[n]ejk0n1 x[n]ejk(2/N)n
NnN
NnN
四种傅里叶变换的关系:
连 续 时 间 傅 立 叶 级 数 C F S
x(t) Ak
连续、周 离期 散、非周期
离 散 时 间 傅 立 叶 级 数 D F S
x(n) Ak
An
1 N
x(k)
离 散 、 周 期 离 散 、 周 期
Heisenberg测不准原理结论
t22
1 4
当且仅f当 (t) aeb(tu)2eit时等号成立
证明( Weyl ):假定 lim t f (t ) 0 , 不失一般性,只证明该
t
定理对 u 0时成立。
小波变换课件
消失矩性质
消失矩定义:小波变换在高频部分具有快速衰减的特性
消失矩性质与信号处理:在信号处理中,消失矩性质使得小波变换能够有效地提取信号的 高频成分
消失矩与多分辨率分析:消失矩性质是实现多分辨率分析的关键,能够同时获得信号在不 同尺度上的信息
消失矩的应用:在图像处理、语音识别、信号去噪等领域,消失矩性质都有着广泛的应用
图像去噪:小波变换能够将噪声与 图像信号进行分离,从而去除噪声
语音处理
小波变换在语音 信号处理中的应 用
小波变换在语音 识别和合成中的 应用
小波变换在语音 增强和去噪中的 应用
小波变换在语音 编码和压缩中的 应用
其他应用领域
信号处理 图像处理 语音处理 模式识别
小波变换的优缺点分析
小波变换的优点
用的特征信息
图像处理:小波变换在图像 处理中也有广泛的应用,如
图像压缩、去噪、增强等
图像处理
图像压缩:小波变换能够去除图像 中的冗余信息,实现高效的图像压 缩
图像融合:将多个图像的小波系数 进行融合,可以得到一个新的、包 含多个图像信息的图像
添加标题
添加标题
添加标题
添加标题
图像增强:通过调整小波系数,可 以突出图像的某些特征,提高图像 的视觉效果
多维小波变换算法:介绍多维小波变换的基本原理和算法实现,包括多维小波变换 的定义、性质、算法流程等。
多维小波变换在图像处理中的应用:介绍多维小波变换在图像处理中的应用,包括 图像压缩、图像去噪、图像增强等。
多维小波变换的优缺点:介绍多维小波变换的优缺点,包括优点如多尺度分析、方 向性、时频局部化等,以及缺点如计算量大、需要选择合适的小波基等。
数学表达式:对于任意实数a,如果f(t)的小波变换为Wf(s,a),则f(t-a)的小波变换仍为 Wf(s,a)
连续小波变换和离散小波变换.ppt
和 WFT 在所有时间和频率都有相同的分辨率不一 样, 小波变换在高频段有好的时间分辨率和差的频率分 辨率,而在低频段有差的时间分辨率和好的频率分辨 率。 即小尺度因子 (对应高频段) 有更好的尺度分辨率 (即能更精确地确定尺度因子的值) ,大尺度因子对应 于更差的尺度分辨率。
例 已知一信号f(t)=3sin(100πt)+2sin(68πt)+ 5cos(72πt),且该信号混有白噪声,对该信号进行连续 小波变换。小波函数取db3,尺度为1、1.2、1.4、 1.6、…、3。其MATLAB程序如下:
3.2 连续小波变换的计算
设 f(t)是一个信号,我们选好了一个母小波函数 。 一旦选好了母小波,则从 a=1 开始计算 CWT。一般 而言,由于所研究的实用信号是带限的,因此只需要计算 对应于有限区间内的尺度的 CWT。 为方便起见,计算从 a=1 开始,a 将不断增大。即计 算将从高频算到低频。 a 的第一个值对应最紧缩的小波。 当 a 的值增大时,小波将逐渐膨胀。
但是 WFT 和小波变换之间有两个不同之处。 1. 加窗信号不做 Fourier 变换; 2. 小波变换的最重要特点是在计算每个频率成分时可 改变窗口的形状。
ˆ ( ) 定义 3.1 设 ψ L2(R) L1(R)。若它的 Fourier 变换
满足
ˆ ( ) | 2 | 0 C d | |
程序输出结果如下图所示。灰度颜色越深,表示系数的值 越大。
图1.11
3.3 几种常用的连续小波基函数
Harr 小波(1910 年由数学家 A. Harr 提出)
1 0 t 1 2 1 t 1 1 2 0 else
2
h(t)=
《小波变换》课件
离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,即将时间和频率轴进 行离散化,使小波变换能够应用 于数字信号处理。
原理
离散小波变换通过将信号进行离 散化,将连续的小波变换转换为 离散的运算,从而能够方便地应 用于数字信号处理系统。
应用
离散小波变换在图像压缩、数字 水印、音频处理等领域有广泛应 用,能够提供较好的压缩效果和 数据隐藏能力。
小波变换的应用拓展
图像处理
研究小波变换在图像压缩、去噪、增强等方面的应用,提高图像 处理的效果和效率。
语音信号处理
将小波变换应用于语音信号的降噪、特征提取等方面,提高语音 识别的准确率。
医学成像
利用小波变换对医学成像数据进行处理,提高医学影像的质量和 诊断准确率。
小波变换的算法优化
快速小波变换算法
《小波变换》ppt课 件 (2)
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
小波变换是一种数学分析方法,它通 过小波基函数的平移和伸缩,将信号 分解成不同频率和时间尺度的分量。
提供较好的特征提取和分类能力。
01
小波变换的算法实 现
常用的小波基函数
Haar小波
Daubechies小波
是最简单的小波,具有快速变换的特性, 但缺乏连续性和平滑性。
具有紧支撑性和良好的数学特性,广泛应 用于信号处理和图像处理。
Morlet小波
具有振荡性,适用于分析非平稳信号。
小波变换理论与方法ppt课件
其中 g,t (t) g(t )eit g(t )eit ,窗口函数g(t)起着时
限作用,eit 起着频限作用。该变化具有不变化宽度(由时间 宽度决定)和不变的窗口面积4g∆g∆
10
短时傅里叶变换示意图
11
cos(440 t) x(t) cos(660 t)
傅里叶变换傅里叶变换小波变换小波变换小波变换的一些应用小波变换的一些应用1822年法国数学家傅里叶jfourier发表的研究热传导理论的热的力学分析提出每一个周期函数都可以表示成三角函数之和奠定了傅里叶级数的理论基础
1
主要内容
1. 傅里叶变换 2. 小波变换 3. 小波变换的一些应用
2
一 傅里叶变换
E(|Wn(j,t)|2)=0
D(|Wn(j,t)|2)= Ψ t 2
j
26
3.1.1小波包去噪步骤
① 选择小波基并确定最佳分解的层次,对信号 进行小波包分解; ② 对步骤(1)获得的小波包树,选择一定的嫡标准,计算最优树; ③ 估计阈值,并应用该阈值对最优树的小波包系数进行阈值量化; ④ 将经量化处理的小波包系数,重构回原始信号。
Gabor变换的基本思想为:取时间函数 g(t) 1/ e4 t2/2 作为窗口函 数,然后用 g(t ) 通待分析函数相乘,τ是时间延迟,是窗函数 g(t)的中心,窗函数根据τ进行时移,然后再进行傅里叶变换:
Gf (, ) f (t)g(t )eitdt f (t), g,t (t)
小波包阈值消噪有两个关键点:1、如何估计阈值;2 如何利用阈值量 化小波包系数。
27
熵的确定
熵:用来确定最优树的标准,熵值越小,对应的小波包基越好。
1)香农熵:约定0log(0)=0,则香农熵定义为: Es si2 logsi2
小波变换ppt课件
自适应压缩
在此添加您的文本16字
小波变换的自适应性质使得它在压缩过程中能够根据信号 的特性进行动态调整,进一步提高压缩效率。
信号去噪
有效去噪 多尺度分析 自适应去噪
小波变换能够检测到信号中的突变点,从而在去噪过程 中保留这些重要特征,同时去除噪声。
小波变换的多尺度分析能力使其在去噪过程中能够同时 考虑信号的全局和局部特性,实现更准确的去噪效果。
小波变换的算法优化
1 2
小波变换算法的分类
介绍不同类型的小波变换算法,如连续小波变换、 离散小波变换等。
算法优化策略
探讨如何优化小波变换算法,以提高计算效率和 精度。
3
算法实现技巧
介绍实现小波变换算法的技巧和注意事项。
小波变换在实际应用中的挑战与解决方案
01
小波变换在信号处理中的应用
介绍小波变换在信号处理领域的应用,如信号去噪、特征提取等。
小波变换ppt课件
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
01
小波变换是一种信号处理方法, 它通过将信号分解成小波函数的 叠加,实现了信号的多尺度分析 。
02
小波变换在图像处理中的应用
探讨小波变换在图像处理领域的应用,如图像压缩、图像增强等。
03
实际应用中的挑战与解决方案
分析小波变换在实际应用中面临的挑战,并提出相应的解决方案。
THANKS
感谢观看
离散小波变换具有多尺度、多方向和自适应的特点,能够提供信号或图像在不同尺 度上的细节信息,广泛应用于信号降噪、图像压缩和特征提取等领域。
第2讲 连续小波变换
现在用连续小波变换来处理同样的信号。 % 连续小波变换 figure % 用 db3 小波作母小波函数(如下图形) ,尺度 a 分别为 1, 1.2, 1.4, 1.6, …, 3. coefs=cwt(f,[1:0.01:10],'db3','plot'); title('f 对不同的尺度的 db3 小波连续变换的系数值'); Ylabel('尺度'); Xlabel('时间'); figure % 连续小波变换的三维图形 coefs=cwt(f,[1:0.01:10],'db3','3Dplot'); title('f 对不同的尺度的 db3 小波连续变换的系数值'); Ylabel('尺度'); Xlabel('时间'); 下方左图是右图的俯视图。
Ylabel('幅值'); Xlabel('时间'); title('原始信号'); y=fft(f,1024); % DFT 有 1024 个采样点 p=y.*conj(y)/1024; % 计算功率谱密度'); ff=1000*(0:511)/1024; % 计算各点对应的频率值 subplot(322);plot(ff,p(1:512)); Ylabel('功率谱密度'); Xlabel('频率'); title('信号功率谱图');
* *
是 的 Fourier 变换的模平方的一阶矩和二阶中心矩。
2.1.5 定理 乘积 2t 2 是一个不依赖于 a 和 b 的常数。 证明:事实上, a , b 与 有相同的 L2 范数:
连续小波变换定义与特性PPT课件讲义
“容许性”条件:
若: L2,且满足条件:
ˆ ( ) 2
c :
d
则称为基小波, c为小波常数。
对“容许性”条件的分析:
1.
"容许性”条件隐含着:
ˆ(0)=0
即: (t)dt 0 (振荡性)
对“容许性”条件的分析:
2.
为了“基小波”能提供一个局部的时频窗口, 我们还得要求满足:
t (t) L2,ˆ () L2
c1 2 1 ˆ 1() ˆ 2 () d
则:
-
[
-
f
,
1 b,a
2 b,a
,
g
da a2
db
c
1
,
21
f,g
对所有的f , g L2成立,并且对于f L2和f的连续点x R,有
f (x)
1 c 1 , 21
-
-
f
,
1 b,a
2 b,a
da a2 db
常见的基小波
Haar小波
t
小波变换的重构定理:
令是一个基小波,它定义了一个连续小波变换W ( f )(b, a),则:
-
[W
-
(
f
)(b,
a)
________________
W (g)(b, a)
da a2
db
c
f,g
对所有的f , g L2成立,并且对于f L2和f的连续点x R,有
f
(x)
1 c
-
[W
-
c f , g
小波重构定理的证明:
对
-
[W
-
(
f
)(b,
小波变换原理与应用ppt课件
信号的时域表示和频域表示只适用于平稳信号,对于
非平稳信号而言,在时间域各种时间统计量会随着时 间的变化而变化,失去统计意义;而在频率域,由于 非平稳信号频谱结构随时间的变化而变化导致谱值失 去意义
幅度 A |Y(f)|
信 号 x(t)的 时 域 波 形 1
0.5
0
-0.5
2
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1.小波的发展历史——工程到数学
小波变换的概念是由法国从事石油信号处理的工程 师J.Morlet在1974年首先提出的,通过物理的直观和信 号处理的实际需要经验的建立了反演公式,当时未能 得到数学家的认可。幸运的是,1986年著名数学家 Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat 合作建立了构造小波基的同一方法枣多尺度分析之后 ,小波分析才开始蓬勃发展起来。
1.小波的发展历史——工程到数学
1909: Alfred Haar——发现了Haar小波 1980:Morlet——Morlet小波,并分别与20世纪70年代提
出了小波变换的概念,20世纪80年代开发出了连续小 波变换CWT( continuous wavelet transform ) 1986:Y.Meyer——提出了第一个正交小波Meyer小波 1988: Stephane Mallat——Mallat快速算法(塔式分解和 重构算法)
Rx(t1,t2)ExE(t)x(t1)x ( tx2)f(x)dRxx()m,x t2 t1
Ex2(t)
非平稳信号 不满足平稳性条件至少是宽平稳条件的信号
第十一章--连续小波变换
尺度小时,可以观察被分析信号的细节或局部
11.2连续小波变换
连续小波变换的定义
信号 x(t ) L (R)
2
时域和频域局域化特性的分析窗(小波)函数 ( t ) 小波函数尺度伸缩与平移 CWT变换
* C W T a , ) xt () , t xt () td t x( a , () a ()
2 0
正则性 小波函数的阶原点距
CWTx (a, ) 1 1
k M * ( t)d t k t
a
x(t ) * (
t )dt a
(k ) (t )k * t )dt x ( ) ( k ! a a k 0 1 x(k ) ( ) t (t )k * ( )dt a a k 0 k !
t
a
) d t
1
t * xt ()* ( ) a a
1 * t ˆ I F T x ( ) F T ( ) a a * t * t e j t * j a u * F T ( ) ( ) d t a ( u ) ed u a () a a t a u a
常见小波函数
Morlet小波
() t e e
2 t t 0 T j
5 0
2 ˆ ( ) T e ( ) 0
T 4
1 () t Haar小波 1
2
c x ( t ) , x ( t ) W T ( a ,) , W T ( a ,) 1 2 x x 1 2
现代信号处理第6章连续小波变换
小波
小波分形技术原理与离散信号盒维数的计算
设离散信号 是n维欧氏空间Rn上的闭集。将Rn划分成尽可能细的Δ网格,若是网格宽度N Δ为Δ的离散空间上集合X的网格计数。盒维数定义为 :
由于离散信号的最高分辩率为采样间隔Δ t,所以上式的极限是无法按其定义Δ→0求出。实际计算时一般采用近似方法,即将Δ网格视为最小网格,然后逐步放大为kΔ网格,k∈Z+,令
6.1.5 谐波小波应用
小波分形技术原理与离散信号盒维数的计算
分形的自相似仿射算子r与小波变换的伸缩因子a是作用相同,小波变换从低分辨到高分辨的过渡原则与分形过程的从总体向局部、从宏观向微观深化分析原则是一致的,小波和分形都具有自相似性,两者结合是可行的。 小波分形技术原理是应用小波包变换将机械振动信号分解到正交的、独立的频带内,然后分别计算出每个频带信号的盒维数, 用盒维数衡量小波包分解每个频带信号的复杂程度 由于一维离散信号的盒维数是介于1和2之间的一个实数,信号越复杂维数越大
谐波小波滤波能够在低频频带和高频频带内都具有足够的数据点数。
6.1.4 谐波小波滤波
6.1.4 谐波小波滤波
谐波小波实际上是一个完全理想的带通滤波器 ,可以用下面的方法定义谐波小波
其中m, n决定了谐波小波变换的尺度(j),且n = 2m,当m = 0时,n = 1。
谐波小波的光滑性,“盒形”谱特性,零相移特性以及明显的数学表达式,使得我们可构造出不同尺度下各频段序列数据点数不变、采样频率不变的算法,最终成功应用于转子轴心轨迹分析
谐波小波的定义及正交性
谐波小波的定义及正交性
实偶函数we(t)和实奇函数wo(t) , 它们的傅里叶变换分别为
谐波小波的定义及正交性
小波变换课件 第6章 连续小波变换
第6章 连续小波变换6.1 小波及连续小波变换● 定义6.1 设函数12()()()t L R L R ψ∈ ,并且ˆ(0)0ψ=,既()0t dtψ+∞-∞=⎰,则称为一个基本小波或母小波。
对母小波()t ψ做伸缩平移得,()a b t b t a ψ-⎛⎫=⎪⎝⎭(6-1) 称为,()a b t ψ小波函数,简称小波。
其中0a ≠,b 、t 均为连续变量:1) a 为尺度因子,b 为平移因子。
变量a 反映了函数的宽度,b 反映了小波在t 轴上的平移位置,小波函数,()a b t ψ是基本小波函数()t ψ先b 做移位再由a 做伸缩,,a b 不断变化产生的一组函数,又称作小波基函数,或小波基。
2) 母小波的能量集中在原点,小波函数,()a b t ψ的能量集中在b 点。
3)一般,尺度因子0a >,作用是使小波()t ψ做伸缩,a 越大,()t aψ越宽,既小波的持续时间随aa 变化时保持小波,()ab t ψ的能量相等,既2,()a b t ψ2()t ψ=(保范性质)。
● 定义 6.2 设12()()()t L R L R ψ∈ ,且满足条件2ˆ()c d ψψωωω+∞-∞=<∞⎰(6-2) 则称()t ψ为允许小波,上式为允许条件。
由c ψ<+∞知,ˆ(0)0ψ=,既()0t dt ψ+∞-∞=⎰,因此允许小波一定是基本小波;反之,若()t ψ满足1()(1)(0)t c t εψε--≤+>,且ˆ(0)0ψ=,其中c 是一个常数,则式(6-2)成立。
这表明允许条件与()0t dt ψ+∞-∞=⎰几乎是等价的。
从小波的定义知,小波要求由振荡性,既包含着某些频率特征,还要求具有一定的局部性,既它在一定的区间上恒等于零或很快收敛到零。
● 设()t ψ是一个基本小波,,()b a t ψ是连续小波函数,对于()f t 2()L R ∈,其连续小波变换定义为(,)f WT ab ()*t b f t dt a ψ+∞-∞-⎛⎫=⎪⎝⎭,,a b f ψ= (6-3)其中,0a ≠,b 、t 均为连续变量,*()t ψ表示()t ψ的共轭。
第7章-小波变换ppt课件
第七章 频域处理
波和小波-波与小波之间的差异
上部两条曲线是频率不 同的余弦波,持续宽度 相同。底下的两条是沿 着轴向频率和位置都不 相同的小波。最古老又 最简单的小波 -Haar小 波 ,它的基向量都是由 一个函数通过平移和伸 缩来产生的。
.
第七章 频域处理
生动的例子:小波和音乐
乐谱可以看作描绘了一个二维的时频空间。频率(音高)从层次的底部向上 增加,而时间(以节拍来测度)则向右发展。乐章中每一个音符都对应于一 个将出现在这首歌的演出记录中的小波分量(音调猝发)。每一个小波持续 宽度都由音符(为四分之一音符、半音符等)的类型来编码。
该式表示小波变换是信号f(x)与被缩放和平移的小波函数ψ() 之积在信号存在的整个期间里求和的结果。CWT的变换结果是许 多小波系数C,这些系数是缩放因子(scale)和平移(positon) 的函数。
.
第七章 频域处理
基本小波函数ψ()的缩放和平移操作含义如下:
(1) 缩放——压缩或伸展基本小波, 缩放系数越小, 则小 波越窄,如图所示。
.
第七章 频域处理
2. 离散小波变换 ( Discrete Wavelet Transform ,DWT)
如果缩放因子和平移参数都选择为2j(j>0且为整数)的倍 数, 即只选择部分缩放因子和平移参数来进行计算,会使分析 的数据量大大减少。使用这样的缩放因子和平移参数的小波变 换称为双尺度小波变换(Dyadic Wavelet Transform),它是离 散小波变换(Discrete Wavelet Transform, DWT)的一种形式。 通常离散小波变换就是指双尺度小波变换。
.
第七章 频域处理
离散小波变换的有效方法是使用滤波器, 该方法是Mallat 于1988年提出的,称为Mallat算法。
专题讲座——小波变换PPT课件
第10页/共79页
部分小波波形
第11页/共79页
小波基函数
将小波母函数(t)进行伸缩和平移,
令伸缩因子(称尺度因子)为a,平移因子为,则:
a( , t)
a12(t
),a0,R
a
则称a( , t)是依赖参数a,的小波基函数。
将信号在这个函数系上分解,就得到连续小波变换
第12页/共79页
小波分析
• 小波变换通过平移母小波(mother wavelet) 可获得信号的时间信息,而通过缩放小波的 宽度(或者叫做尺度)可获得信号的频率特性。 对母小波的缩放和平移操作是为了计算小波 的系数,这些系数代表小波和局部信号之间 的相互关系。
第15页/共79页
CWT的变换过程图示
第16页/共79页
CWT小结
• 小波的缩放因子与信号频率之间的关系可以 这样来理解。缩放因子小,表示小波比较窄,
度量的是信号细节,表示频率w 比较高;相
反,缩放因子大,表示小波比较宽,度量的
是信号的粗糙程度,表示频率w 比较低。
第17页/共79页
离散小波变换
第18页/共79页
离散小波变换定义
任意L2(R)空间中的x(t)的DWT为:
__________
Wx ( j, k) R x(t) j,k (t) dt其中Biblioteka j( ,k t) 1 2j
(
t 2
j
k)
需要强调指出的是,这一离散化都是针对连续 的尺度参数和连续平移参数的,而不是针对时 间变量t的。
第4页/共79页
短时傅里叶变换STFT
确定信号局部频率特性的比较简单的方法是 在时刻ґ附近对信号加窗,然后计算傅里叶变 换。
第十一章连续小波变换剖析精品PPT课件
3
Digital Signal Processing
✓Meyer小波
0 8 / 3 or 0 2 / 3
ˆ ()
e j / 2
1
exp
32 3
(
2
1/ 2
8 / 3 )2 ( 4 / 3 )2
e j / 2
4 / 3
e j / 2
1
exp
4 3
▪时频堆砌 “变焦”功能示意图
宽分析窗
窄分析窗
Digital Signal Processing
▪小波变换的发展 •地质物理学家J.Morlet提出了分析窗的尺度伸缩和平移概念 •数学家Y.Meyer构造了近似光滑的正交小波基
•S.Mallat提出了多分辨率概念,引出构造正交小波基的一般方法 •I.Daubeices在此基础上构造了著名的Daubeices正交小波基
Digital Signal Processing
✓Matlab工具箱中常用小波及其特性比较
Digital Signal Processing
11.3连续小波变换的性质
▪线性性
y(t) x1(t) x2 (t)
▪时移不变性
WTy (a, ) WTx1 (a, ) WTx2 (a, )
✓尺度伸缩平移窗函数的特性 ▪尺度a增加,分析窗时域伸展,带宽变小 ▪尺度a减小,分析窗时域收缩,带宽变大 ▪分析窗的时间——带宽乘积等于常数 ˆa, 常数
Digital Signal Processing
例, (t) (1 t 2 )et2 / 2
a ,
(t)
1
(t
a
)2
( t
ea
Digital Signal Processing
连续小波变换
mk t (t )dt
k
d
k
0
(重新审视)
连续小波变换
小波及连续小波变换 常用的基本小波 时频分析 连续小波变换的计算 小波变换的分类
小波及连续小波变换
设函数 ,则称
ˆ (0) 0 ,即 (t )dt 0 t L1 (R) L2 (R) ,并且
(5)(奇偶性) WP [ Pf ](a, b) (W f )(a,b) 其中P是反射算子(奇偶算子) ( Pf )(t ) f (t ) (6)(反线性性)
(7)(小波平移) (8)(小波伸缩)
(W f )(a, b) (W f )(a, b) (W f )(a, b)
1
2
3
D6尺度函数与小波
常用的基本小波
3、双正交小波 双正交B样条小波(5-3)、 (9-7)小波滤波器 (7-5)小波滤波器:
4 q2 3 p 0 8 q2 2 2 4 q2 5 q2 1 p1 8 q2 2 4 q2 1 p2 16q2 4 2 4 q q2 2 p 3 2 8 q2 q0 1 2q2 1 q1 2
bior2.2, bior4.4
h
1 1 1 3 1 1 , , , , 2 8 2 4 2 8
1 3 3 5 5 5 3 3 , , , , , , 2 16 4 16 2 16 4 16
h
常用于图形学中。其中尺度函数是一 个三次B样条。
pn 2 hn , qn 2hn
ˆ (0) 0 几乎是等价条件. 允许条件与
1 f (t ) c
最新第六章连续小波和二进制小波PPT课件
7. Meyer小波 [PHI,PSI,T]=meyer(LOWB,UPPB,N)
小波函数与尺度函数都是在频域中进行定义的。具体定义如下:
sin2
v32源自1243
3
ˆ
212
i
e2
cos2
v
3
4
1
4 8
3
3
0
23
,
8
3
v t t 4 3 5 8 4 t 7 0 t 2 2 0 t 3 t 0 , 1 辅助函数
3、双正交小波 双正交B样条小波(5-3)、 (9-7)小波滤波器 bior2.2, bior4.4 (7-5)小波滤波器:
p0
4q2 8q2
3 2
p1
4
q
2 2
5q2
1
8q2 2
p2
4q2 1 16q2 4
p3
4
q
2 2
q2
2 8q2
q0 1 2q2
q1
重构问题: ( t ) 在满足什么条件下,可以由二进小波变换
W T f2 j,b |j Z ,b R重构原信号?
重要性质: 二进小波变换仍具有连续小波变换的平移不变性 .
Remark: 二进小波处在连续小波和离散小波之间,只对尺度参量进行了离散化, 而在时间域的平移量仍然保持连续变换,因此具有时移共变性---比离散小 波的优越性---奇异性检测、图像处理
小波及连续小波变换小波及连续小波变换常用的基本小波常用的基本小波连续二进小波变换连续二进小波变换二进小波的构造及一些常用的二进小波二进小波的构造及一些常用的二进小波小波及连续小波变换设函数并且连续小波函数a和b的意义性质
第六章连续小波和二进制 小波
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)在任何尺度a,时间点τ上,窗口面积
保持不变,也可以说时间、尺度分辨率是
相互制约的,不可能同时得到提高。
(4)品质因素 Q
0
不随尺度变化而变化。
2.1.2 连续小波变换的定义和性质
1.连续小波变换的定义
将任意L2(R)空间中的函数f(t)在小波基下 展开,称这种展开为函数f(t)的连续小波变 换(CWT)。其表达式为:
2
)
N
P(sin2
2
)
式中,m0 ()
1 2
2 N 1
hk e jk
k 0
3.Mexican Hat(mexh)小波
其函数为Gauss函数的二阶导数:
(t
)
(1
t
2
)e
t2 2
2
() 2 2e 2
4.Morlet小波
它是高斯包络下的单频率复正弦函数
第二章 连续小波变换
2.1连续小波变换及其性质
2.1.1 连续小波基函数
小波,即小区域的波,是一种特殊的长度 有限、平均值为零的波形。
小波的可容许条件:
^
C
| () |2 R | |
小波特点:
(一)“小”。即在时域都具有紧 支集或近似紧支集。
(二)正负交替的“波动性”。即 直流分量为零。
伸缩和平移的含义
1.尺度伸缩 2. 时间平移
由于小波基函数在时间、频率域都具有有 限或近似有限的定义域,显然,经过伸缩 平移后的函数在时、频域仍是局部性的。
小波基函数的窗口随尺度因子的不同而伸 缩,当a逐渐增大时,基函数的时间窗口也 逐渐增大,而其对应的频域窗口逐渐减小; 反之亦然。
定量分析-时域
t2
(t) Ce 2 cos(5x)
C是重构时的归一化常数。
2.3 连续小波变换的步骤
(1)选择小波函数及其尺度a值。 (2)从信号的起始位置开始,将小波函数和
信号进行比较,即计算小波系数。 (3)沿时间轴移动小波函数,即改变参数b,
逆变换
若小波满足容许条件,则连续小波变换存
在着逆变换。
容许条件:
C
| () |2
R
| |
d
逆变换公式:f (t) 1
C
da 0 a2
WTf (a, ) a, (t)d
1
C
da 0 a2
WT
f
(a,
)
1 (t )d
aБайду номын сангаас
()
a
1 2
e
j
(a)
其频域窗口中心为: a, 窗口宽度为: 1
1 a
0
a
信号在频域窗内:[
1 a
0
1 2a
,
1 a
0
1 2a
]
从上面的时频域的讨论可见,连续小波的 时频域窗口中心及其宽度都随a的变化而伸 缩 面,积如,果则我:们称△ta,t· △aω, 为 a窗 口t a1函 数 的窗口
即当时间或频率趋向于无穷大时,它们从一 个有限值收敛到0。 (2)对称性。它在图像处理中可以有效的 避免移相。
(3) (t)和(t) 的消失矩阵数。这对于压缩 非常有用。
(4)正则性。它在对信号或图像的重构获 得较好的平滑效果作用上是非常有用的。
具有对称性的小波不易产生相位畸变;具 有好的正则性的小波,易于获得光滑的重 构曲线和图像,从而减小误差。
可见:连续小波基函数的窗口面积不随参 数的变化而变化。
几点结论:
(1)尺度的倒数1/a在一定意义上对应于频 率ω。即尺度越小,对应的频率越高。如果 我们将尺度理解为时间窗口的话,则小尺度 信号为短时间信号,大尺度信号为长时间信 号。
(2)在任何τ值上,小波的时频窗口大小△t 和△ ω都随频率ω(或a)的变化而变化。 与短时傅立叶变换中的基 g, (t) g(t )e jt 不同。
信号可分解为一系列由同一个母小 波函数经平移与尺度伸缩得到的小 波函数的叠加。
优点:
将小波母函数 (t) 进行伸缩和平移,就可 以得到函数:
a, (t)
1 (t ), a, R; a 0
aa
小波函数基,它们是由同一母函数 (t) 经伸
缩和平移后得到的一组函数序列。
WT f (a, ) f (t), a, (t)
1 f (t) (t )dt
aR
a
其中:
a,
(t)
|
a
1
|2
(t
a
),
b
R,
a
R
{0}
从定义可以看出:小波变换和傅立叶变换 一样,也是一种变换,WT f (a, ) 为小波变换 系数。
也可见其与傅立叶变换的区别。
常用的小波
1.Haar小波。
(t)
1,0 t 0,1其, 12他 t
1 2
1
2.Daubechies(dbN)小波
N 1
令P( y) C N 1k yk,其中,C N 1k为二项式的系数,
k
k
k 0
则有:
|
m0
()
|2
(c
os2
且n值越 t p高 (越t)d好t 。0, p 1 ~ n,且n值越大越好。
即:
2.连续小波变换的性质
(1)线性 (2)时移共变性 (3)时标定理。
性质
(4)微分运算 (5)能量守恒 (6)冗余度
2.2 几种常用的小波
小波分类的标准 (1) (t)、 ()、(t)、() 的支撑长度,
aa
说明:
(1)必须满足“容许条件”,反变换才存 在。
(2)在实际应用中,对基本小 (波t) 的要求往 往不局限于满足容许条件(),对 还要施加 所谓“正则性条件”,使 在频域上表现 出较好的局域性|WT能f (。a,为) | 了在频域上有较好 的局域性,要求 (t) 随a的减小而迅速 减小,所以这就要求 的前n阶原点距为0,
假定小波母函数窗口宽度为△t,窗
口中心为t0,则相应可求出连续小波
a, (t)
1 (t )
aa
的窗口中心为at0+τ,窗
口宽度为a·△t。
即信号限制在时间窗内:[at0+τ△t ·a/2, at0+τ+△t ·a/2]
定量分析-频域
同样,对于小波母函数的频域变换,其频域 窗口中心为ω0,窗口宽度为△ ω,则相应的 连续小波的傅立叶变换为: