基本不等式的证明
不等式证明的基本方法
4. 放缩法是在证明不等式或变形中, 将条件或结论或变换中的 式子放大或缩小进行求证的方法.放缩时要看准目标,做到 有的放矢, 注意放缩适度. 放缩法是证明不等式的常用技巧, 有些不等式若恰当地运用放缩法可以很快得证,要控制难 度.
比较法
(2010 年高考江苏卷试题)设 a、b 是非负实数,求证:a3 +b3≥ ab(a2+b2). 【思路分析】 先作差,再用不等式的基本性质解答.
不等式证明的基本方法
1.比较法是证明不等式最常用最基本的方法,有两种: (1)求差法:a>b⇔a-b>0; a (2)求商法:a>b>0⇔b>1,(b>0).
2.分析法、综合法是证明数学问题的两大最基本的方法. 综合法是以已知的定义、公理、定理为依据,逐步下推,直 到推出问题的结论为止,简而言之,就是“由因导果”. 分析法是从问题的结论出发,追溯导致结论成立的条件,逐 步上溯,直到使结论成立的条件与已知条件或已知事实吻合 为止,简而言之,就是“执果索因”.
分析法与综合法
如果 a>0,b>0,求证:a3+b3≥a2b+ab2. 【证法一】 (用分析法) 要证 a3+b3≥a2b+ab2, 只需证(a+b)(a2-ab+b2)≥ab(a+b) ∵a>0,b>0,有 a+b>0,故只需证 a2-ab+b2≥ab, 只需证(a-b)2≥0 显然(a-b)2≥0 成立,以上各步均可逆, ∴a3+b3≥a2b+ab2
1.设 a>0,a≠1,0<x<1.求证:|loga(1-x)|>|loga(1+x)|.
证明:方法一:(平方后作差)
2 log2 (1 - x ) - log a a(1+x)
=[loga(1-x)+loga(1+x)]· [loga(1-x)-loga(1+x)]= 1-x loga(1-x )· loga . 1+x
证明基本不等式的方法
证明基本不等式的方法基本不等式是解决数学不等式问题中常用的方法,其核心思想是将一个不等式转化为另一个更简单的不等式,从而得到所需的解集。
在证明基本不等式的方法上,可以分为以下几种常见的方式:1.数学归纳法:数学归纳法是证明基本不等式的一种常用方法。
首先,我们需要证明当不等式成立时,对于一些特定的值$n$,不等式也成立。
接着,我们假设当$n=k$时不等式成立,可以通过这个假设证明当$n=k+1$时不等式成立。
最后,根据归纳法的原理,我们可以得出不等式对于所有自然数$n$成立。
2.递推法:递推法是证明基本不等式的另一种常用方法。
我们首先找到一个较小的数$k$,证明不等式对于这个特定的数成立。
然后,我们假设当$n=k$时不等式成立,接着通过这个假设证明当$n=k+1$时不等式也成立。
最后,根据递推法的原理,我们可以得出不等式对于所有自然数$n$成立。
3.反证法:反证法是证明基本不等式的另一种有效方法。
我们首先假设不等式不成立,即假设存在一些数使得不等式不成立。
接着,我们通过一系列的推导和推理,得出矛盾的结论。
这表明我们的假设是错误的,即不等式是成立的。
4.变量替换法:变量替换法是证明基本不等式的一种常用方法。
我们首先对不等式进行变量替换,将其转化为一个使用其他变量的等价不等式。
然后,通过对这个等价不等式进行一系列的变换和推导,我们可以得出所需的结论。
5.辅助不等式法:辅助不等式法是证明基本不等式的一种有效方法。
我们首先找到一个与原不等式相关的不等式,这个不等式往往更容易证明。
然后,我们通过对这个辅助不等式的推导和推理,结合原不等式的特点,得出所需的结论。
无论采用哪种方法,证明基本不等式的关键在于用恰当的方法将其转化为另一个更简单或更容易证明的不等式。
此外,在证明过程中需要注意推导的合理性和严密性,关注每一步的符号变化和不等式的严格性,避免出现错误的结论。
在证明过程中,也可以适当地运用数学知识和技巧,如代数运算、函数性质和数列性质等,使证明更加简洁和高效。
基本不等式证明
所以,ab a b 成立 2
当且仅当a b时取“”
分析法——执果索因
证法3:
对于正数 a,b,有
( a b)2 0 a b 2 ab 0
a b 2 ab
a b ab 2
综合法——由因索果
如果 a,b 是正数,那么 ab a b
2
当且仅当a b时取" " 号
问题 3、当a 0, b 0时 ,这个不等式仍然成立吗?
把不等式 ab a b (a 0,b 0) 称为基本不等式。 2
注意 (1)不等式成立条件(2)等号成立条件
问题4: 你能给出基本不等式几何解释吗?
ab
a
b
“半径不小于半弦”
回顾反思
1、今天这节课学了哪些主要知识? 2、在解决问题时用了哪些方法?
问题1、如何合理的表示物体的质量?Βιβλιοθήκη b两个正数a、b ,我们把
称为a、b
2
的算术平均数, ab 称为几何平均数。
问题2、两个正数a、b的算术平均数与几何平均数 之间具有怎样的大小关系呢?
猜想:ab a b(a 0,b 0) 2
问题3:如何证明 ab a b(a 0,b 0) 2
不等式证明的基本方法 比较法(作差、作商法)
基本不等式的证明(一)
一、创设问题情景:
❖ 把一个物体放在天平的一个盘子上,在另一个盘子 上放砝码使天平平衡,称得物体的质量为a。如果 天平制造得不精确,天平的两臂长略有不同(其他 因素不计),那么a并非物体的实际质量。不过, 我们可以作第二次测量:把物体调换到天平的另一 个盘上,此时称得物体的质量为b。
拓展延伸
这个基本不等式可否推广到“n个非负数”的情 形,有兴趣的同学可作进一步的研究,也可 查阅有关资料。
不等式的证明
不等式的证明最新考纲 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知 识 梳 理1.基本不等式定理1:如果a ,b ∈R,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b 2≥a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥a =b =c 时,等号成立.2.不等式的证明方法(1)比较法①作差法(a ,b ∈R):a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b . ②作商法(a >0,b >0):a b >1⇔a >b ;a b <1⇔a <b ;a b=1⇔a =b .(2)综合法与分析法①综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.综合法又叫顺推证法或由因导果法.②分析法:从要证的结论出发,逐步寻求使它成立的充分条件,所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证法称为分析法,即“执果索因”的证明方法.[微点提醒]1.作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“就要证……”等分析到一个明显成立的结论,再说明所要证明的数学问题成立.3.利用基本不等式证明不等式或求最值时,要注意变形配凑常数.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.( )(4)使用反证法时,“反设”不能作为推理的条件应用.( )解析(1)作商比较法是商与1的大小比较.(3)分析法是从结论出发,寻找结论成立的充分条件.(4)应用反证法时,“反设”可以作为推理的条件应用.答案(1)×(2)√(3)×(4)×2.(选修4-5P23习题2.1T1改编)已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为________.解析2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从而(a-b)(a+b)(2a+b)≥0,故2a3-b3≥2ab2-a2b.答案M≥N3.(选修4-5P25T3改编)已知a,b,c∈(0,+∞),且a+b+c=1,则1a +1b+1c的最小值为________.解析把a+b+c=1代入1a +1b+1c得a+b+ca+a+b+cb+a+b+cc=3+⎝⎛⎭⎪⎫ba+ab+⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9, 当且仅当a =b =c =13时等号成立. 答案 94.(2019·聊城模拟)下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( )A.1B.2C.3D.4解析 log x 10+lg x =1lg x+lg x ≥2(x >1),①正确; ab ≤0时,|a -b |=|a |+|b |,②不正确;因为ab ≠0,b a 与a b同号,所以⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确; 由|x -1|+|x -2|的几何意义知,|x -1|+|x -2|≥1恒成立,④也正确,综上①③④正确.答案 C5.(2017·全国Ⅱ卷)已知a >0,b >0,且a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)(a+b)3=a3+3a2b+3ab2+b3=2+3ab(a+b)≤2+3(a+b)24(a+b)=2+3(a+b)34,所以(a+b)3≤8,因此a+b≤2.考点一比较法证明不等式【例1】设a,b是非负实数,求证:a2+b2≥ab(a+b). 证明因为a2+b2-ab(a+b)=(a2-a ab)+(b2-b ab)=a a(a-b)+b b(b-a)=(a-b)(a a-b b)=(a 12-b12)(a32-b32).因为a≥0,b≥0,所以不论a≥b≥0,还是0≤a≤b,都有a 12-b12与a32-b32同号,所以(a 12-b12)(a32-b32)≥0,所以a2+b2≥ab(a+b).规律方法比较法证明不等式的方法与步骤1.作差比较法:作差、变形、判号、下结论.2.作商比较法:作商、变形、判断、下结论.提醒(1)当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法.(2)当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.【训练1】(1)(2019·锦州模拟)设不等式|2x-1|<1的解集为M.①求集合M;②若a,b∈M,试比较ab+1与a+b的大小.(2)若a >b >1,证明:a +1a >b +1b. (1)解 ①由|2x -1|<1得-1<2x -1<1,解得0<x <1.所以M ={x |0<x <1}.②由①和a ,b ∈M 可知0<a <1,0<b <1,所以(ab +1)-(a +b )=(a -1)(b -1)>0.故ab +1>a +b .(2)证明 a +1a -⎝ ⎛⎭⎪⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0. 即a +1a -⎝ ⎛⎭⎪⎫b +1b >0, 所以a +1a >b +1b. 考点二 综合法证明不等式【例2】 (1)已知a ,b ,c ∈R,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2;(2)已知x ,y ,z 均为正数,求证:x yz +y zx +z xy ≥1x +1y +1z. 证明 (1)∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2),即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又∵a ,b ,c 互不相等,∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.(2)因为x ,y ,z 都为正数,所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z①,同理可得yxz+zyx≥2x②,z xy +xyz≥2y③,当且仅当x=y=z时,以上三式等号都成立. 将上述三个不等式两边分别相加,并除以2,得xyz +yzx+zxy≥1x+1y+1z.规律方法 1.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.【训练2】已知实数a,b,c满足a>0,b>0,c>0,且abc=1.(1)证明:(1+a)(1+b)(1+c)≥8;(2)证明:a+b+c≤1a+1b+1c.证明(1)1+a≥2a,1+b≥2b,1+c≥2c,相乘得:(1+a)(1+b)(1+c)≥8abc=8.(2)1a +1b+1c=ab+bc+ac,ab+bc≥2ab2c=2b,ab+ac≥2a2bc=2a,bc+ac≥2abc2=2c,相加得a+b+c≤1a +1b+1c.考点三分析法证明不等式【例3】已知函数f(x)=|x-1|.(1)解不等式f (x -1)+f (x +3)≥6;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a . (1)解 由题意,知原不等式等价为|x -2|+|x +2|≥6,令g (x )=|x -2|+|x +2|,则g (x )=⎩⎨⎧-2x ,x ≤-2,4,-2<x <2,2x ,x ≥2.当x ≤-2时,由-2x ≥6,得x ≤-3;当-2<x <2时,4≥6不成立,此时无解;当x ≥2时,由2x ≥6,得x ≥3.综上,不等式的解集是(-∞,-3]∪[3,+∞).(2)证明 要证f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a , 只需证|ab -1|>|b -a |,只需证(ab -1)2>(b -a )2.而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1)>0,从而原不等式成立. 规律方法 1.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.分析法证明的思路是“执果索因”,其框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件【训练3】 已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a .证明 由a >b >c 且a +b +c =0,知a >0,c <0. 要证b 2-ac <3a ,只需证b 2-ac <3a 2.∵a +b +c =0,只需证b 2+a (a +b )<3a 2,只需证2a 2-ab -b 2>0,只需证(a -b )(2a +b )>0,只需证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0,∴(a -b )(a -c )>0显然成立,故原不等式成立.[思维升华]证明不等式的方法和技巧:(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的根本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.[易错防范]在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要求分析每次使用时等号是否成立.基础巩固题组(建议用时:60分钟)1.设a ,b >0且a +b =1,求证:⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252. 证明 因为(12+12)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b 2=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a +1b 2=⎝ ⎛⎭⎪⎫1+1ab 2≥25⎝⎛⎭⎪⎫因为ab ≤14. 所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.2.设a >0,b >0,a +b =1,求证1a +1b +1ab≥8. 证明 ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab , 即ab ≤12,∴1ab≥4, ∴1a +1b +1ab =(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab ≥2ab ·21ab +1ab ≥4+4=8. 当且仅当a =b =12时等号成立, ∴1a +1b +1ab≥8. 3.(2019·大理一模)已知函数f (x )=|x |+|x -3|.(1)解关于x 的不等式f (x )-5≥x .(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解 (1)f (x )=|x |+|x -3|=⎩⎨⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎨⎧x <0,3-2x ≥x +5或⎩⎨⎧0≤x ≤3,3≥x +5或⎩⎨⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8. 所以不等式的解集为⎝⎛⎦⎥⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ).且m ≥3,n ≥3,所以m -2>0,2-n <0,即(m -2)(2-n )<0,所以2(m +n )<mn +4.4.(2019·郴州质量检测)已知a ,b ,c 为正数,函数f (x )=|x +1|+|x -5|.(1)求不等式f (x )≤10的解集;(2)若f (x )的最小值为m ,且a +b +c =m ,求证:a 2+b 2+c 2≥12.(1)解 f (x )=|x +1|+|x -5|≤10等价于⎩⎨⎧x ≤-1,-(x +1)-(x -5)≤10或⎩⎨⎧-1<x <5,(x +1)-(x -5)≤10或⎩⎨⎧x ≥5,(x +1)+(x -5)≤10,解得-3≤x ≤-1或-1<x <5或5≤x ≤7,∴不等式f (x )≤10的解集为{x |-3≤x ≤7}.(2)证明 ∵f (x )=|x +1|+|x -5|≥|(x +1)-(x -5)|=6,∴m =6,即a +b +c =6.∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,c 2+b 2≥2cb ,∴2(a 2+b 2+c 2)≥2(ab +ac +bc ),∴3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2ac +2bc =(a +b +c )2,∴a 2+b 2+c 2≥12.当且仅当a =b =c =2时等号成立.5.(2019·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3; (2)a bc +b ac +c ab ≥3(a +b +c ). 证明 (1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c时等号成立)证得.所以原不等式成立. (2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac2, b ac ≤ab +bc2,c ab ≤bc +ac2,所以a bc +b ac +c ab ≤ab +bc +ca⎝ ⎛⎭⎪⎫当且仅当a =b =c =33时等号成立. 所以原不等式成立.6.(2019·百校联盟联考)已知函数f (x )=|2x -3|+|2x -1|的最小值为M .(1)若m ,n ∈[-M ,M ],求证:2|m +n |≤|4+mn |;(2)若a ,b ∈(0,+∞),a +2b =M ,求2a +1b的最小值. (1)证明 ∵f (x )=|2x -3|+|2x -1|≥|2x -3-(2x -1)|=2,∴M =2. 要证明2|m +n |≤|4+mn |,只需证明4(m +n )2≤(4+mn )2,∵4(m +n )2-(4+mn )2=4(m 2+2mn +n 2)-(16+8mn +m 2n 2)=(m 2-4)(4-n 2), ∵m ,n ∈[-2,2],∴m 2,n 2∈[0,4],∴(m 2-4)(4-n 2)≤0,∴4(m +n )2-(4+mn )2≤0,∴4(m +n )2≤(4+mn )2,可得2|m +n |≤|4+mn |.(2)解 由(1)得,a +2b =2,因为a ,b ∈(0,+∞),所以2a +1b =12⎝ ⎛⎭⎪⎫2a +1b (a +2b ) =12⎝ ⎛⎭⎪⎫2+2+a b +4b a ≥12⎝ ⎛⎭⎪⎫4+2a b ·4b a =4, 当且仅当a =1,b =12时,等号成立. 所以2a +1b的最小值为4. 能力提升题组(建议用时:20分钟)7.已知函数f (x )=x +1+|3-x |,x ≥-1.(1)求不等式f (x )≤6的解集;(2)若f (x )的最小值为n ,正数a ,b 满足2nab =a +2b ,求证:2a +b ≥98. (1)解 根据题意,若f (x )≤6,则有⎩⎨⎧x +1+3-x ≤6,-1≤x <3或⎩⎨⎧x +1+(x -3)≤6,x ≥3, 解得-1≤x ≤4,故原不等式的解集为{x |-1≤x ≤4}.(2)证明 函数f (x )=x +1+|3-x |=⎩⎨⎧4,-1≤x <3,2x -2,x ≥3,分析可得f (x )的最小值为4,即n =4, 则正数a ,b 满足8ab =a +2b ,即1b +2a=8, 又a >0,b >0,∴2a +b =18⎝ ⎛⎭⎪⎫1b +2a (2a +b )=18⎝ ⎛⎭⎪⎫2a b +2b a +5≥18⎝ ⎛⎭⎪⎫5+22a b ·2b a =98,当且仅当a =b =38时取等号. 原不等式得证.8.(2015·全国Ⅱ卷)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)∵a ,b ,c ,d 为正数,且a +b =c +d ,欲证a +b >c +d ,只需证明(a +b )2>(c +d )2, 也就是证明a +b +2ab >c +d +2cd ,只需证明ab >cd ,即证ab >cd .由于ab >cd ,因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .∵a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2, ∴a +b +2ab >c +d +2cd .∵a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.。
不等式的常见证明方法
不等式常见的三种证明方法渠县中学 刘业毅一用基本不等式证明设c b a ,,都是正数。
求证:.c b a cab b ac a bc ++≥++ 证明:.22c bac a bc b ac a bc =•≥+ .22b cab a bc c ab a bc =•≥+ .22a cab b ac c ab b ac =•≥+ ).(2)(2c b a cab b ac a bc ++≥++ .c b a cab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。
思维训练:设c b a ,,都是正数。
求证:.222c b a c b a a c b ++≥++ 二 放缩法证明不等式已知,对于任意的n 为正整数,求证: 1+221+321+ +n 21<47 分析:通过变形将数列{n 21}放缩为可求数列。
解: n 21=n n •1<)1(1-n n =11-n —n1(n ≥2) ∴1+221+321+ +n 21<1+221+231⨯+341⨯+ +)1(1-n n =1+41+(21—31+31—41+ +11-n —n1) =45+21—n1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。
思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>cc +1三 构造函数法证明 证明不等式3ln 3121112ln <+++++<nn n (n 为正整数) 分析:显然要构造一个含n 的不等式,然后用叠加法证明。
我们构造一个函数,1)(',ln 1)(2xx x f x x x x f -=+-=可得这个函数在x=1时取得最小值0.及对x>0有不等式x x 11ln -≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则kk k ->+11ln ,即kk k k 1ln )1ln(11<-+<+,然后叠加不等式即可。
不等式证明基本方法
不等式证明基本方法一、数学归纳法数学归纳法是证明自然数性质的一种基本方法,对于与整数有关的不等式,我们也可以利用数学归纳法进行证明。
其基本思路是先证明当n=1时不等式成立,再假设当n=k时不等式成立,然后通过数学推理证明当n=k+1时不等式也成立。
二、反证法当我们尝试利用数学归纳法证明不等式时,有时可能会遇到困难,这时我们可以尝试使用反证法。
反证法的证明过程是:先假设不等式不成立,然后推导出与已知条件或已证明的定理矛盾的结论,从而证明原不等式的正确性。
三、插值法插值法也是一种常见的不等式证明方法。
其基本思路是在待证不等式的两边加入适当的不等式,并利用不等式的传递性和可加减性进行推导,最终得到待证不等式的真假结论。
四、绝对值法对于涉及绝对值的不等式,我们可以利用绝对值的性质进行证明。
例如,对于,a-b,>c这样的绝对值不等式,我们可以根据绝对值的定义将其拆分为两个不等式,再分别进行证明。
另外,利用绝对值不等式的性质,我们还可以进行变量替换等操作,将原不等式化简为更简单的形式进行证明。
五、特殊化方法特殊化方法是指将不等式中的一些变量或参数取特殊值,从而达到简化不等式的目的。
例如,对于含有幂函数的不等式,我们可以通过取特殊值使得幂函数变为常数或者线性函数,从而将原不等式化简为更简单的形式。
综上所述,不等式证明的基本方法包括数学归纳法、反证法、插值法、绝对值法和特殊化方法等。
在具体的证明过程中,我们需要根据待证不等式的特点选择合适的方法,并灵活运用各种数学工具和技巧,从而得到准确的证明结论。
基本不等式的20种证明方法
基本不等式的20种证明方法
基本不等式“基本”在哪里?你认为怎样得引入最能体现他的本质?
(1)做差证明
(2)分析法证明
(3)综合法证明
(4)排序不等式
根据排序不等式所说的逆序和小于等于顺序和,便能得到
化简得
(5)函数证明
我们对原函数求导,并令导数等于零。
求的最小值
得出
(5)指数证明
首先这里要用到两个梯形的面积公式。
一个是大家小学都学过的
易得
进而有
进一步有
指取对有
(6)琴生不等式证明
取 y=lnx
由琴生不等式得到
进而有
(7)无字证明(Charles D. Gallant)
(8)无字证明(Doris Schattschneider)
(9)无字证明(Roland H. Eddy)
(10)无字证明(Ayoub B. Ayoub)
(11)无字证明(Sidney H. Kung)
(12)无字证明(Michael K. Brozinsky)
(13)无字证明(Edwin Beckenbach & RichardBellman)
(14)无字证明
(15)无字证明(RBN)
(16)无字证明
进而有
(17)无字证明
进而有
(18)无字证明
有
(19)构造函数证明
由
得
(20)构造期望方差证明
由
得
另外还有向量法,复数法,积分法等,均值定理在数学内外有广泛得运用,不仅可以推广,还可以联系多个领域,一个简单结论证明的背后往往可展示引人人胜的各种思路!。
基本不等式的证明
基本不等式的证明1.代数法定理1:如果,a b R ∈,那么222a b ab +≥,当且仅当a b =时,等号成立。
证明: ()2222a b ab a b +-=- 当a b ≠时()2a b ->0当a b =时()2a b -=0,所以 ()2a b -≥0,即 22a b +≥2ab.定理2:如果,0a b >,那么2a b +≥a b =时,等号成立。
证明: 22+≥∴ a b +≥即2a b +≥显然,当且仅当a b =时,2a b +这里,a b 均为正数,我们就称2a b +为,a b ,a b 的几何平均数,因而,这一定理又可叙述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数。
2.几何面积法如图,在正方形中有四个全等的直角三角形。
设直角三角形的两条直角边长为、,那么正方形的边长为。
这样,4个直角三角形的面积的和是,正方形的面积为。
由于4个直角三角形的面积小于正方形的面积,所以:。
当直角三角形变为等腰直角三角形,即时,正方形缩为一个点,这时有。
得到结论:如果,那么(当且仅当a b =时,等号成立) 特别的,如果,,我们用、分别代替、,可得: 如果,,则,(当且仅当a b =时,等号成立).通常我们把上式写作:如果,,,(当且仅当a b =时,等号成立)最值定理:当两个正数的和一定时,其乘积有最大值;当两个正数的乘积一定时。
其和有最 小值。
现给出这一定理的一种几何解释(图1).以a b +长的线段为直径作圆,在直径AB 上取点C ,使AC=a ,CB=b .过点C 作垂直于直径AB 的弦'DD ,连接AD 、DB ,易证,那么即CD =这个圆的半径为2a b +,显然,它大于或等于CD ,即 2a b +≥ 其中当且仅当点C 与圆心重合,即a b =时,等号成立. 如果把2a b +看作是正数,a b,a b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.例1. 如果,a b R +∈,试比较2a b +211a b +的大小 解: ,a b R +∈, ∴b a 11+≥ab 12即211a b+≤又22⎪⎭⎫ ⎝⎛+b a =4222ab b a ++≤42222b a b a +++=222b a + ∴2a b +≤a b =时,等号成立而由定理2≤2a b +≥2a b +≥≥211a b+(当且仅当a b =时,等号成立)。
不等式证明的基本方法
绝对值的三角不等式;不等式证明的基本方法一、教学目的1、掌握绝对值的三角不等式;2、掌握不等式证明的基本方法二、知识分析定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立;几何说明:1当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和;2如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释;|a-b|表示a-b与原点的距离,也表示a到b之间的距离;定理2 设a,b,c为实数,则,等号成立,即b落在a,c之间;推论1推论2不等式证明的基本方法1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的;比较法有差值、比值两种形式,但比值法必须考虑正负;比较法证不等式有作差商、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述;如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证;2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用;所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述;综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用;3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法;4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法;典型例题例1、已知函数,设a、b∈R,且a≠b,求证:思路:本题证法较多,下面用分析法和放缩法给出两个证明:证明:证法一:①当ab≤-1时,式①显然成立;当ab>-1时,式①②∵a≠b,∴式②成立;故原不等式成立;证法二:当a=-b时,原不等式显然成立;当a≠-b时,∴原不等式成立;点评:此题还可以用三角代换法,复数代换法、数形结合等证明,留给读者去思考;例2、设m等于|a|、|b|和1中最大的一个,当|x|>m时,求证:;思路:本题的关键是对题设条件的理解和运用,|a|、|b|和1这三个数中哪一个最大如果两两比较大小,将十分复杂,但我们可以得到一个重要的信息:m≥|a|、m≥|b|、m≥1;证明:故原不等式成立;点评:将题设条件中的文字语言“m等于|a|、|b|、1中最大的一个”转化为符号的语言“m≥|a|、m≥|b|、m≥1”是证明本题的关键;例3、函数的定义域为0,1且;当∈0,1,时都有,求证:;证明:不妨设,以下分两种情形讨论;若则,若则综上所述点评:对于绝对值符号内的式子,采用加减某个式子后,重新组合,运用绝对值不等式的性质变形,是证明绝对值不等式的典型方法;例4、已知a>0,b>0,求证:;思路:如果用差值比较法,下一步将是变形,显然需要通分,是统一通分,还是局部通分从题目结构特点看,应采取局部通分的方法;证明:①②∴原不等式成立;点评:在上面得到①式后,其分子的符号可由题设条件作出判断,但它没有②明显,所以,变形越彻底,越有利于最后的判断,本题还可以用比值比较法证明,留给读者去完成;例5、设x>0,y>0,且x≠y,求证:思路:注意到x、y的对称性,可能会想到重要不等式,但后续思路不好展开,故我们可采用分析法,从消去分数指数幂入手;证明:∵x>0,y>0,且x≠y,点评:在不便运用比较法或综合法时,应考虑用分析法;应注意分析法表述方法,其中寻求充分条件的语句常用符号“”表述;本题应用了分析法,既找到了解题思路,又使问题完满地得到了解决,可谓一举两得;例6、已知a、b、c∈R+,求证:;思路:因不等式的左边的两个因式都可以进行因式分解;结合a、b、c∈R+的条件,运用重要不等式,采用综合法进行证明;解析:即点评:用重要不等式证明不等式,一要注意重要不等式适用的条件,二要为运用重要不等式创造条件;另外,同向不等式相加或相乘,在综合法中常用到;例7、证明:对于任意实数x、y,有思路:采取分析法和比较法二者并用的方法来处理;证明:用分析法不等式②显然成立,下面证明不等式①同号,即点评:上述证明中,前半部分用的是分析法,后半部分用的是比较法,两种方法结合使用,使问题较容易解决,这一点应加以注意;例8、1用反证法证明以下不等式:已知,求证p+q≤2;2试证:n≥2;思路:运用放缩法进行证明;证明:1设p+q>2,则p>2-q,这与=2矛盾,2,又;将上述各式两边分别相加得点评:用放缩法证明不等式过程中,往往采用添项或减项的“添舍”放缩,拆项对比的分项放缩,函数的单调性放缩,重要不等式放缩等;放缩时要注意适度,否则不能同向传递;模拟试题1、设a、b是满足ab<0的实数,那么A、B、C、D、2、设ab>0,下面四个不等式①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|中,正确的是A、①和②B、①和③C、①和④D、②和④3、下面四个式子①;②;③;④中,成立的有A、1个B、2个C、3个D、4个4、若a、b、c∈R,且,则下列不等式成立的是A、B、C、D、5、设a、b、c∈R,且a、b、c不全相等,则不等式成立的一个充要条件是A、a、b、c全为正数B、a、b、c全为非负实数C、D、6、已知a<0,-1<b<0则A、B、C、D、7、设实数x、y满足,若对满足条件的x、y,x+y+c≥0恒成立,c 的取值范围是A、B、C、D、8、对于任意的实数x,不等式恒成立,则实数a的取值范围是_________;9、若a>c>b>0,则的值的符号为__________;10、设a、b、c∈R+,若,则__________;11、已知x,y∈R,且,则z的取值范围是__________;12、设,求证:;13、已知a、b是不等正数,且,求证:;14、已知,求证:中至少有一个不小于;15、设a、b为正数,求证:不等式①成立的充要条件是:对于任意实数x>1,有②试题答案1、B2、C3、C4、B5、C6、D7、A8、-∞,39、负10、911、12、证明:13、证明:a、b是不等正数,且而一定成立,故成立;14、证明:用反证法;假设都小于,则,而,相互矛盾,中至少有一个不小于;15、证明:设,那么不等式②对恒成立的充要条件是函数的最小值大于b;当且仅当,时,上式等号成立;故的最小值是;因此,不等式②对x>1恒成立的充要条件是>b;。
证明不等式的基本方法
证明不等式的基本方法现实世界中的量,相等是局部的、相对的,而不等则是普遍的、绝对的,不等式的本质是研究“数量关系”中的“不等关系”.对于两个量,我们常常要比较它们之间的大小,或者证明一个量大于另一个量,这就是不等式的证明.不等式的证明因题而异,灵活多变,常常要用到一些基本的不等式,如平均不等式,柯西不等式等,其中还需用到一些技巧性高的代数变形.本节将介绍证明不等式的一些最基本的方法.比较法比较法一般有两种形式;(1)差值比较欲证A ≥B .只需证A —B ≥0; (2)商值比较若B>0,欲证A ≥B ,只需证BA≥1. 在用比较法时,常常需要对式子进行适当变形,如因式分解、拆项、合并项等. 例l 实数x 、y 、z 满足1-=++zx yz xy ,求证:485222≥++z y x .例2 设+∈R c b a ,,,试证:对任意实数x 、y 、z ,有:)())()((2222zx bac yz a c b xy c b a a c c b b a abc z y x ++++++++≥++,并指出等号成立的充要条件.例3 设+∈R c b a ,,,试证: b a a c c b cb ac b a c b a +++≥222.例4 设+∈R c b a ,,,1222=++c b a ,求abc c b a cb a S )(2111333222++-++=的最小值.说明先猜后证是处理许多极值问题的有效手段.猜,一猜答案,二猜等号成立的条件;证明的时候要注意等号是否能取到.有时我们直接证明不等式A ≤B 比较困难,可以试着去找一个中间量C ,如果有A ≤C 及C ≤B 同时成立,自然就有A ≤B 成立.所谓“放缩”即将A 放大到C ,再把C 放大到B 或者反过来把B 缩小到C 再缩小到A .不等式证明的技巧,常体现在对放缩尺度的把握上.例5 证明:对任意+∈R c b a ,,,均有abc abca c abc cb abc b a 1111333333≤++++++++.例6 设),,2,1(1n i a i =≥,求证:)1(12)1()1)(1(2121n nn a a a n a a a +++++≥+++ .所谓分析法就是先假定要证的不等式成立,然后由它出发推出一系列与之等价的不等式(即要求推理过程的每一步都可逆),直到得到一个较容易证明的不等式或者一个明显成立的不等式.分析法是一种执果索因的证明方法,在寻求证明思路时尤为有效.例7 若0,,≥∈y R y x ,且2)1()1(+≤+x y y .求证;2)1(x y y ≤-.例8 设+∈R c b a ,,,求证:ab b a abc c b a 233-+≥-++.引入参数法引入适当的参数,根据题中式子的特点,将参数确定,从而使不等式获得证明. 例12 设+∈R q p ,,且233=+q p ,求证:2≤+q p .例13 设+∈R c b a ,,,且12222=++c b a ,求证:24333≥++c b a .例14 设z y x ,,是3个不全为零的实数,求2222z y x yzxy +++的最大值.标准化(归一化)当不等式为齐次式的时候,常可设变量之和为k (某个常数),这样不仅简化了式子,而且增加了条件,有助于我们解决问题.例15 设c b a ,,是正实数,求证:8)(2)2()(2)2()(2)2(222222222≤++++++++++++++b a c b a c a c b a c b c b a c b a .例16 已知0,02=++>++c bx ax c b a 有实根,求证:{}{}c b a c b a c b a ,,max 49,,min 4≤++≤.习题1.设R z y x ∈,,,求证:[][]2222222222222)()()()()()(zx yz xy z y x z y x zx yz xy z y x z y x ++-++++≥++-++++.2.设+∈R c b a ,,,求证:333888111c b a c b a c b a ++≤++.3.设实数10021,,,a a a 满足: (1)010021≥≥≥≥a a a ; (2)10021≤+a a ;(3)10010043≤+++a a a . 求21002221a a a +++ 的最大值.4.如果+∈R c b a ,,,求证:2222222)())()((ca bc ab a ca c c bc b b ab a ++≥++++++.5.设0,,≥z y x ,求证:xyz z y x z y x z y x z y x 3)()()(222≥-++-++-+.并确定等号成立的条件.6.设+∈R c b a ,,,求证:49)(1)(1)(1)(222≥⎥⎦⎤⎢⎣⎡+++++++x z z y y x zx yz xy .7.求证:161cos sin 1010≥+αα.变量代换法变量代换是数学中常用的解题方法之一.将一个较复杂的式子视为一个整体,用一个字母去代换它,从而使复杂问题简单化.有时候.有些式子可以用三角换元,从而使问题简化.当问题的条件或结论中出现“222r y x =+”,“222r y x ≤+”,“22x r -”或“1≤x ”等形式时,可以考虑用“sin α”与“cos α”代换;问题的条件或结论中出现“22x r +”.“22r x -”形式时,可作“αtan r x =”或“αsec r x =”代换等.在作代换时,要特别注意α的取值范围是由原变量x 的取值范围决定.例l 已知00≤α≤900,求证:49sin sin 452≤+-≤αα.例2 已知实数y x ,满足096422=+--+y x y x ,求证:996121922≤+++≤y x y x .例3 设c b a ,,是三角形的三边长,求证:0)()()(222≥-+-+-a c a c c b c b b a b a .已知。
证明不等式的基本方法
恒成立,求实数a的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”; 乙说:“把不等式变形为左边含变量x的函数,右边仅含常 数,求函数的最值”; 丙说:“把不等式两边看成关于x的函数,作出函数图象”;
参考上述解题思路,你认为他们所讨论的问题的正确结论,
即a的取值范围是________. [答案] a≤10
[点评与警示] 论证过程中,执果索因与由因导果总是不
断变化,交替出现.尤其综合题推理较盲目时,利用分析法从
要证的问题入手,逐步推求,再用综合法逐步完善,最后找到 起始条件为止.
(人教版选修 4—5 第 30 页第 1 题)已知 a, b, c∈(0,1), 1 求证:(1-a)b,(1-b)c,(1-c)a 不同时大于4.
[证明]
(反证法)假设(1-a)b,(1-b)c,(1-c)a 都大于 ①
1 1 (1-b)c· (1-c)a>64 4,则(1-a)b· 1 即[a(1-a)· b(1-b)· c(1-c)]>64
a+1-a 2 1 而 0<a(1-a)≤[ ]= , 2 4
1 1 0<b(1-b)≤ ,0<c(1-c)≤ 4 4 1 ∴[a(1-a)][b(1-b)][c(1-c)]≤ 与①矛盾 64 1 ∴(1-a)b,(1-b)c,(1-c)a 不同时大于 . 4
) B.a2>b2 1a 1b D.(2) <(2)
1 2 .若 a > b > 1 , P = lga· lgb , Q = (lga + lgb) , R = 2 a+b lg( ),则( 2 A.R<P<Q C.Q<P<R
[解析]
) B.P<Q<R
D.P<R<Q 1 ∵lga>lgb>0,∴ (lga+lgb)> lga· lgb,即 Q 2
高一数学不等式证明的基本方法
不等式证明的基本方法一、基本不等式定理1 如果a, b ∈R, 那么 a 2+b 2≥2ab. 当且仅当a=b 时等号成立。
定理2(基本不等式) 如果a ,b>0,那么 当且仅当a=b 时,等号成立。
即两个正数的算术平均不小于它们的几何平均。
结论:已知x, y 都是正数, (1)如果积xy 是定值p ,那么当x=y 时,和x+y2; (2)如果和x+y 是定值s ,那么当x=y 时,积xy 有最大值小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时, 一 定要满足“一正二定三相等”的条件。
二、三个正数的算术-几何平均不等式三、不等式证明的基本方法知识点一:比较法比较法是证明不等式的最基本最常用的方法,可分为作差比较法和作商比较法。
1、作差比较法:常用于多项式大小的比较,通过作差变形(分解因式、配方、拆、拼项等)判断符号(判断差与0的大小关系)得结论(确定被减式与减式的大小. 理论依据: ①;②;③。
一般步骤如下:第一步:作差;第二步:变形;常采用配方、因式分解等恒等变形手段;第三步:判断差的符号;就是确定差是大于零,还是等于零,小于零. 如果差的符号无法确定,应根据题目的要求分类讨论. 第四步:得出结论。
注意:其中判断差的符号是目的,变形是关键。
2、作商比较法常用于单项式大小的比较,当两式同为正时,通过作商变形(约分、化简)判断商与1的大小得结论(确定被除式与除式的大小). 理论依据:若、,则有①;② ;③ .基本步骤:第一步:判定要比较两式子的符号 第二步:作商第三步:变形;常采用约分、化简等变形手段;第四步:判定商式大于1或等于1或小于1。
如果商与1的大小关系无法确定,应根据题目的要求分类讨论.2a b+≥214s 3 ,,3a b c a b c R a b c +++∈≥==定理如果,那么时,等号成立。
即:三个正数的算术平均不小于它们的几何平均。
21212,,,,n n nn a a a a a a a a n++≥===11把基本不等式推广到一般情形:对于n 个正数a 它们的算术平均不小于它们的几何平均,即: 当且仅当a 时,等号成立。
2 第2讲 不等式的证明
第2讲 不等式的证明1.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a 、b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a 、b 、c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.2.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等.若a >b >1,证明:a +1a >b +1b.证明:a +1a -⎝⎛⎭⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0, 所以(a -b )(ab -1)ab >0.即a +1a -⎝⎛⎭⎫b +1b >0, 所以a +1a >b +1b.已知a >0,b >0,c >0,且a ,b ,c 不全相等,求证:bc a +ac b +abc >a +b +c .证明:因为a ,b ,c ∈(0,+∞),所以bc a +acb≥2bc a ·acb=2c . 同理ac b +ab c ≥2a ,ab c +bca≥2b .因为a ,b ,c 不全相等,所以上述三个不等式中至少有一个等号不成立,三式相加,得2⎝⎛⎭⎫bc a +ac b +ab c >2(a +b +c ),即bc a +ac b +abc>a +b +c .用综合法、分析法证明不等式(师生共研)(一题多解)(2017·高考全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.【证明】 法一(综合法):(1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3(a +b )24·(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2.法二(分析法):(1)因为a >0,b >0,a 3+b 3=2. 要证(a +b )(a 5+b 5)≥4,只需证(a +b )(a 5+b 5)≥(a 3+b 3)2, 再证a 6+ab 5+a 5b +b 6≥a 6+2a 3b 3+b 6, 再证a 4+b 4≥2a 2b 2,因为(a 2-b 2)2≥0,即a 4+b 4≥2a 2b 2成立. 故原不等式成立.(2)要证a +b ≤2成立,只需证(a +b )3≤8, 再证a 3+3a 2b +3ab 2+b 3≤8, 再证ab (a +b )≤2, 再证ab (a +b )≤a 3+b 3,再证ab (a +b )≤(a +b )(a 2-ab +b 2),即证ab ≤a 2-ab +b 2显然成立. 故原不等式成立.用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野.1.(2019·湖北八校联考)已知不等式|x |+|x -3|<x +6的解集为(m ,n ). (1)求m ,n 的值;(2)若x >0,y >0,nx +y +m =0,求证:x +y ≥16xy . 解:(1)由|x |+|x -3|<x +6,得⎩⎪⎨⎪⎧x ≥3,x +x -3<x +6或⎩⎪⎨⎪⎧0<x <3,3<x +6或⎩⎪⎨⎪⎧x ≤0,-x +3-x <x +6,解得-1<x <9,所以m =-1,n =9. (2)证明:由(1)知9x +y =1,又x >0,y >0, 所以⎝⎛⎭⎫1x +1y (9x +y )=10+y x +9xy≥10+2y x ×9xy=16, 当且仅当y x =9x y ,即x =112,y =14时取等号,所以1x +1y≥16,即x +y ≥16xy .2.(2019·长春市质量检测(一))设不等式||x +1|-|x -1||<2的解集为A . (1)求集合A ;(2)若a ,b ,c ∈A ,求证:⎪⎪⎪⎪⎪⎪1-abc ab -c >1.解:(1)由已知,令f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1<x <1,-2,x ≤-1,由|f (x )|<2得-1<x <1,即A ={x |-1<x <1}.(2)证明:要证⎪⎪⎪⎪⎪⎪1-abc ab -c >1,只需证|1-abc |>|ab -c |,只需证1+a 2b 2c 2>a 2b 2+c 2,只需证1-a 2b 2>c 2(1-a 2b 2), 只需证(1-a 2b 2)(1-c 2)>0,由a ,b ,c ∈A ,得-1<ab <1,c 2<1,所以(1-a 2b 2)(1-c 2)>0恒成立.综上,⎪⎪⎪⎪⎪⎪1-abc ab -c>1.放缩法证明不等式(师生共研)若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.【证明】 当|a +b |=0时,不等式显然成立. 当|a +b |≠0时, 由0<|a +b |≤|a |+|b |⇒1|a +b |≥1|a |+|b |, 所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |=|a |1+|a |+|b |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |.在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有: (1)变换分式的分子和分母,如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1.上面不等式中k ∈N *,k >1. (2)利用函数的单调性.(3)真分数性质“若0<a <b ,m >0,则a b <a +mb +m”.[注意] 在用放缩法证明不等式时,“放”和“缩”均需把握一个度.设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明: 由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…当k =n 时,12n ≤1n +n <1n,所以12=n 2n ≤1n +1+1n +2+…+12n <n n =1.所以原不等式成立.反证法证明不等式(师生共研)设0<a ,b ,c <1,求证:(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.【证明】 设(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘得(1-a )b ·(1-b )c ·(1-c )a >164,①又因为0<a ,b ,c <1,所以0<(1-a )a ≤⎣⎢⎡⎦⎥⎤(1-a )+a 22=14.同理:(1-b )b ≤14,(1-c )c ≤14,以上三式相乘得(1-a )a ·(1-b )b ·(1-c )c ≤164,与①矛盾.所以(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.利用反证法证明问题的一般步骤(1)否定原结论.(2)从假设出发,导出矛盾. (3)证明原命题正确.已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a ,b ,c >0. 证明:①设a <0,因为abc >0, 所以bc <0.又由a +b +c >0,则b +c >-a >0,所以ab +bc +ca =a (b +c )+bc <0,与题设矛盾. ②若a =0,则与abc >0矛盾, 所以必有a >0. 同理可证:b >0,c >0. 综上可证a ,b ,c >0.[基础题组练]1.设a >0,b >0,若3是3a 与3b 的等比中项,求证:1a +1b ≥4.证明:由3是3a 与3b 的等比中项得 3a ·3b =3,即a +b =1,要证原不等式成立,只需证a +b a +a +b b ≥4成立,即证b a +a b ≥2成立,因为a >0,b >0,所以b a +ab≥2b a ·ab=2, (当且仅当b a =a b ,即a =b =12时,“=”成立),所以1a +1b≥4.2.求证:112+122+132+…+1n 2<2.证明:因为1n 2<1n (n -1)=1n -1-1n,所以112+122+132+…+1n 2<1+11×2+12×3+13×4+…+1(n -1)×n=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =2-1n <2. 3.(2019·长春市质量检测(二))已知函数f (x )=|2x -3|+|3x -6|. (1)求f (x )<2的解集;(2)若f (x )的最小值为T ,正数a ,b 满足a +b =12,求证:a +b ≤T .解:(1)f (x )=|2x -3|+|3x -6|=⎩⎨⎧3-2x +6-3x ⎝⎛⎭⎫x <322x -3+6-3x ⎝⎛⎭⎫32≤x ≤22x -3+3x -6(x >2)=⎩⎨⎧-5x +9⎝⎛⎭⎫x <32-x +3⎝⎛⎭⎫32≤x ≤25x -9(x >2),其图象如图,由图象可知:f (x )<2的解集为⎝⎛⎭⎫75,115.(2)证明:由图象可知f (x )的最小值为1,由基本不等式可知a +b2≤a +b2=14=12, 当且仅当a =b 时,“=”成立,即a +b ≤1=T . 4.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪13a +16b <14; (2)比较|1-4ab |与2|a -b |的大小.解:(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x ≤1,-3,x >1,由-2<-2x -1<0解得-12<x <12,即M =⎝⎛⎭⎫-12,12,所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14,因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2) =(4a 2-1)(4b 2-1)>0,故|1-4ab |2>4|a -b |2,即|1-4ab |>2|a -b |.[综合题组练]1.设a ,b ,c ∈(0,+∞),且a +b +c =1. (1)求证:2ab +bc +ca +c 22≤12;(2)求证:a 2+c 2b +b 2+a 2c +c 2+b 2a≥2.证明:(1)要证2ab +bc +ca +c 22≤12,只需证1≥4ab +2bc +2ca +c 2,即证1-(4ab +2bc+2ca +c 2)≥0,而1-(4ab +2bc +2ca +c 2)=(a +b +c )2-(4ab +2bc +2ca +c 2)=a 2+b 2-2ab =(a -b )2≥0成立,所以2ab +bc +ca +c 22≤12.(2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bca,所以a 2+c 2b +b 2+a 2c +c 2+b 2a ≥⎝⎛⎭⎫ac b +ab c +⎝⎛⎭⎫ab c +bc a +⎝⎛⎭⎫ac b +bc a =a ⎝⎛⎭⎫c b +b c +b ⎝⎛⎭⎫a c +ca +c ⎝⎛⎭⎫ab +b a ≥2a +2b +2c =2(当且仅当a =b =c =13时,等号成立). 2.(2019·新疆自治区适应性检测)设函数f (x )=|2x +1|-|2x -4|,g (x )=9+2x -x 2. (1)解不等式f (x )>1;(2)证明:|8x -16|≥g (x )-2f (x ).解:(1)当x ≥2时,f (x )=2x +1-(2x -4)=5>1恒成立,所以x ≥2. 当-12≤x <2时,f (x )=2x +1-(4-2x )=4x -3>1,得x >1,所以1<x <2.当x <-12时,f (x )=-2x -1-(4-2x )=-5>1不成立.综上,原不等式的解集为(1,+∞).(2)证明:|8x -16|≥g (x )-2f (x )⇔|8x -16|+2f (x )≥g (x ),因为2f (x )+|8x -16|=|4x +2|+|4x -8|≥|(4x +2)-(4x -8)|=10,当且仅当-12≤x ≤2时等号成立,所以2f (x )+|8x -16|的最小值是10,又g (x )=-(x -1)2+10≤10,所以g (x )的最大值是10,当x =1时等号成立. 因为1∈⎣⎡⎦⎤-12,2,所以2f (x )+|8x -16|≥g (x ), 所以|8x -16|≥g (x )-2f (x ).3.(2019·四川成都模拟)已知函数f (x )=m -|x -1|,m ∈R ,且f (x +2)+f (x -2)≥0的解集为[-2,4].(1)求m 的值;(2)若a ,b ,c 为正数,且1a +12b +13c =m ,求证:a +2b +3c ≥3.解:(1)由f (x +2)+f (x -2)≥0得,|x +1|+|x -3|≤2m , 设g (x )=|x +1|+|x -3|,则g (x )=⎩⎪⎨⎪⎧-2x +2,x ≤-1,4,-1<x <3,2x -2,x ≥3,数形结合可得g (-2)=g (4)=6=2m ,得m =3. (2)证明:由(1)得1a +12b +13c=3.由柯西不等式,得(a +2b +3c )⎝⎛⎭⎫1a +12b +13c ≥⎝⎛⎭⎫a ·1a+2b ·12b+3c ·13c 2=32, 所以a +2b +3c ≥3.4.(2019·高考全国卷Ⅲ)设x ,y ,z ∈R ,且x +y +z =1. (1)求(x -1)2+(y +1)2+(z +1)2的最小值.(2)若(x -2)2+(y -1)2+(z -a )2≥13成立,证明:a ≤-3或a ≥-1.解:(1)由于[(x -1)+(y +1)+(z +1)]2=(x -1)2+(y +1)2+(z +1)2+2[(x -1)(y +1)+(y +1)(z +1)+(z +1)(x -1)]≤3[(x -1)2+(y +1)2+(z +1)2],故由已知得(x -1)2+(y +1)2+(z +1)2≥43,当且仅当x =53,y =-13,z =-13时等号成立.所以(x -1)2+(y +1)2+(z +1)2的最小值为43.(2)由于[(x -2)+(y -1)+(z -a )]2=(x -2)2+(y -1)2+(z -a )2+2[(x -2)(y -1)+(y -1)(z -a )+(z -a )(x -2)] ≤3[(x -2)2+(y -1)2+(z -a )2],故由已知得(x -2)2+(y -1)2+(z -a )2≥(2+a )23,当且仅当x =4-a 3,y =1-a 3,z =2a -23时等号成立.因此(x -2)2+(y -1)2+(z -a )2的最小值为(2+a )23.由题设知(2+a )23≥13,解得a ≤-3或a ≥-1.。
基本不等式的证明方法
基本不等式的证明方法简介基本不等式是解决数学问题中经常用到的重要工具。
本文将介绍一些基本不等式的证明方法,帮助读者更好地理解和运用这些不等式。
方法一:数学归纳法证明数学归纳法是证明数学命题的一种常用方法。
在证明基本不等式时,我们可以运用数学归纳法来逐步推导不等式的成立。
首先,我们将基本不等式的初始条件表示为一个式子,通常为n = 1 或 n = 2。
然后,我们假设当 n = k 时不等式成立,即假设我们已经证明了 n = k 的情况。
接下来,我们需要证明当 n = k + 1 时,不等式仍然成立。
我们可以通过运用数学运算、代入等方法来完成这一步骤。
最后,通过证明初始条件成立,我们可以得出结论,即基本不等式对于所有的正整数 n 都成立。
方法二:几何证明法几何证明法是基于几何形状和图形的性质来证明数学命题的一种方法。
在证明基本不等式时,我们可以通过构建合适的几何形状和图形来解释不等式的成立原理。
举个例子,我们来证明三角形的三边关系,即 a + b > c,其中a、b、c 分别为三角形的三条边长。
我们可以通过构建一个合适的三角形,并进一步分析其边长关系来证明这个不等式的成立。
方法三:代数证明法代数证明法是通过代数运算和方程的性质来证明数学命题的一种方法。
在证明基本不等式时,我们可以使用代数法来进行求解和证明。
例如,要证明 (a + b)^2 >= 4ab,我们可以展开左边的平方项,并进行运算和化简,最终得到不等式成立的形式。
通过适当的代数变换和运算,我们可以证明这个基本不等式的成立。
方法四:数学逻辑证明法数学逻辑证明法是运用数学逻辑原理和推理规则来证明数学命题的一种方法。
在证明基本不等式时,我们可以运用逻辑原理和推理规则来推导不等式的成立。
通过运用严谨的数学推理,我们可以将基本不等式分解为一系列等价的数学命题,然后逐步推导得出不等式的成立。
这种证明方法需要严谨的逻辑思维和推理能力,但能够确保证明的准确性和合理性。
基本不等式证明柯西证法
基本不等式证明柯西证法柯西不等式(Cauchy-Schwarz Inequality)是数学中的一个基本不等式,它表述为:对于所有的实数序列(a_1, a_2, \ldots, a_n)和(b_1, b_2, \ldots, b_n),有(\left(\sum_{i=1}^{n} a_i b_i\right)^2 \leq \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n}b_i^2\right))等号成立当且仅当存在常数(k),使得对所有的(i),都有(a_i = k b_i)。
下面我们用柯西证法来证明这个不等式:第一步,考虑两个向量(\mathbf{a} = (a_1, a_2, \ldots, a_n))和(\mathbf{b} = (b_1, b_2, \ldots, b_n))在欧几里得空间中的内积,它定义为(\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i)。
第二步,根据向量的模长定义,向量(\mathbf{a})和(\mathbf{b})的模长分别是(|\mathbf{a}| = \sqrt{\sum_{i=1}^{n}a_i^2})和(|\mathbf{b}| = \sqrt{\sum_{i=1}^{n}b_i^2})。
第三步,根据柯西-施瓦茨不等式(Cauchy-Schwarz Inequality for Vector Inner Products),对于任何两个向量(\mathbf{a})和(\mathbf{b}),有(|\mathbf{a} \cdot \mathbf{b}| \leq |\mathbf{a}| \cdot |\mathbf{b}|)。
第四步,将第二步中模长的定义代入第三步中的不等式,得到(\left|\sum_{i=1}^{n}a_i b_i\right| \leq \sqrt{\sum_{i=1}^{n}a_i^2} \cdot \sqrt{\sum_{i=1}^{n}b_i^2})第五步,对上一步的不等式两边平方,即得柯西不等式(\left(\sum_{i=1}^{n}a_i b_i\right)^2 \leq \left(\sum_{i=1}^{n}a_i^2\right) \left(\sum_{i=1}^{n}b_i^2\right))等号成立的条件是(\mathbf{a})和(\mathbf{b})共线,即存在常数(k),使得对所有的(i),都有(a_i = k b_i)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:基本不等式及其应用
一、教学目的
(1)认知:使学生掌握基本不等式a 2+b 2≥2ab(a 、b ∈R ,当且仅当a=b 时取“=”号)和
ab b a ≥+2
(a 、b ∈R +,当且仅当a=b 时取“=”号),并能应用它们证明一些不等式.
(2)情感:通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力.
二、教学重难点
重点:两个基本不等式的掌握;
难点:基本不等式的应用。
三、教材、学生分析
教材分析:两个基本不等式为以后学习不等式的证明和求函数的最大值或最小值提供了一种
方法,基本不等式的理解和掌握对以后的解题是很有帮助的。
学生分析:学生在上新课之前都预习了本节内容,对上课内容有一定的理解。
所以根据这一
情况多补充了一些内容,增加了课堂容量。
四、教学过程
(一)引入新课
客观世界中,有些不等式关系是永远成立的。
例如,在周长相等时,圆的面积比正方形的面积大,正方形的面积又比非正方形的任意矩形的面积大。
对这些不等关系的证明,常常会归结为一些基本不等式。
今天, 我们学习两个最常用的基本不等式。
(二)推导公式
1.奠基
如果a、b∈R,那么有(a-b)2≥0 ①
把①左边展开,得
a2-2ab+b2≥0,
∴a2+b2≥2ab.
②
②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,也就是基本不等式1,对任何两实数a、b都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢?
学生回答:a=b,因为a=b a2+b2=2ab
充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号).
以公式①为基础,运用不等式的性质推导公式②,这种由已知推出未知(或要求证的不等式)的证明方法通常叫做综合法.以公式②为基础,用综合法可以推出更多的不等式.现在让我们共同来探索.
2.探索
公式②反映了两个实数平方和的性质,下面我们研究两个以上的实数的平方和,探索可能得到的结果.先考查三个实数.设a、b、c∈R,依次对其中的两个运用公式②,有
a2+b2≥2ab;
b 2+
c 2≥2bc ;
c 2+a 2≥2ca .
把以上三式叠加,得
a 2+
b 2+
c 2≥ab +bc +ca
③
(当且仅当a=b=c 时取“=”号).
以此类推:如果a i ∈R ,i=1,2,…,n ,那么有
1322122221a a a a a a a a a n n +++≥+++
④
(当且仅当a 1=a 2=…=a n 时取“=”号).
④式是②式的一种推广式,②式就是④式中n=2时的特殊情况.③和④式不必当作公式去记,但从它们的推导过程中可以学到一种处理两项以上的和式问题的数学思想与方法——迭代与叠加.
3.练习
求证:a 2+b 2+c 2+3≥2(a+b+c )
4.基本不等式2
直接应用基本不等式1可以得到基本不等式2
如果a 、b 、∈R +,那么+∈R b a 、,在公式②中用a 替换a ,用b 替换b ,立即得到
b a b a 222≥+)()( 即ab b a 2≥+ ∴ab b a ≥+2
⑤ (当且仅当a=b 时取“=”号).
这就是课本中基本不等式2 我们把2
b a +和ab 分别叫做正数a 、b 的算术平均数和几何平均数。
5、公式小结
(1)我们从公式①出发,运用综合法,得到许多不等式公式,其中要求同学熟练掌握的是公式①、②、③、⑤.它们之间的关系可图示如下: (2)上述公式的证法不止综合法一种.比如公式②,在课本上是用比较法证明的.但是不论哪种推导系统,其理论基础都是实数的平方是非负数.
(3)四个公式中,②、⑤是基础,最重要.它们还可以用几何法证明.
几何法:构造直角三角形ABC ,使∠C=90°,BC=a ,AC=b(a 、b ∈R +),则a 2+b 2=c 2表
示以斜边c 为边的正方形的面积.而 配方
①
迭代、叠加 ⑤
② ③ 换
元
降次 展开
ABC S ab ab ∆=⨯=42
142
如上左图所示,显然有ab c 2
142⨯≥ ∴a 2+b 2
≥2ab (当且仅当a=b 时取“=”号,这时Rt △ABC 等腰,如上右图).这个图是我国古代数学家赵爽证明勾股定理时所用过的“勾股方圆图”,同学们在初中已经见过. 公式
ab b a ≥+2
也可以用几何法证明,它的几何意义是半径大于等于半弦,如下图所示:
(三)例题
1、已知x ,y ∈R +,证明:2≥+x
y y x ,并指出等号成立的条件。
2、已知a,b ∈R ,并且ab=4,求证:82
2≥+b a ,并指出等号成立的条件。
3、已知x ,y ∈R +,并且x+y=1,求证:xy ≤4
1 (其中一题作为练习)
(四)应用
下面我们来解决开始上课时所提到的:在周长相等时,正方形的面积又比非正方形的任意矩形的面积大。
求证:在周长相等的矩形中,正方形的面积最大。
证明:设矩形的长和宽分别a ,b(a ,b 为正数,且a ≠b), 同样周长的正方形的边长为2
b a +, 可计算得矩形的面积S=ab ,正方形的面积2')2
(b a S +=, 由基本不等式2,得02
>>+ab b a (因为a ≠b 等号不成立)。
又由不等式性质,得22)()2(
ab b a >+,即S ′>S. (五)作业
练习册P10/6。