彩色电视制式与彩色电视信号

合集下载

中国电视制式标准

中国电视制式标准

中国电视制式标准中国电视制式标准是指在电视信号的传输、接收和处理过程中所采用的一系列规范和标准。

以下是关于中国电视制式标准的详细介绍:1. 视频信号标准:中国电视采用PAL制式,这是一种使用较广泛的一种彩色电视制式。

PAL制式的视频信号标准如下:* 图像水平清晰度:不小于300线。

* 图像垂直清晰度:不小于250线。

* 宽高比:4:3。

* 场频:50Hz或60Hz。

* 行频:15.625kHz或15.750kHz。

2. 音频信号标准:中国电视采用伴音调频(FM)或伴音调幅(AM)方式,音频信号标准如下:* 频率范围:FM方式的频率范围为87-108MHz,AM方式的频率范围为535-1605kHz。

* 调制方式:FM方式采用调频调制,AM方式采用调幅调制。

* 音频采样率:44.1kHz或48kHz。

* 比特率:16bit或24bit。

3. 彩色电视制式:中国电视采用PAL制式,其基本原理是采用彩色副载波对亮度信号和色度信号同时进行调制,以实现彩色显示。

PAL制式的彩色副载波频率为 4.43MHz,偏置为6.5MHz。

4. 图像和伴音信号调制方式:中国电视采用调幅调制方式对图像信号进行调制,同时采用调频调制方式对伴音信号进行调制。

调幅调制具有较好的抗干扰性能,但会引入一些图像失真。

调频调制具有较好的音频质量,但抗干扰性能稍差。

5. 图像分辨率和扫描行数:中国电视的图像分辨率为720×576像素,扫描行数为625行。

这些参数与PAL 制式标准一致。

6. 色彩空间:中国电视采用RGB色彩空间,这是一种常用的色彩空间之一。

RGB色彩空间通过红、绿、蓝三种基本颜色的组合来生成各种颜色,具有较高的颜色表现能力。

7. 视频压缩格式:中国电视采用MPEG-2视频压缩格式,这是一种广泛使用的视频压缩格式之一。

MPEG-2具有较好的压缩性能和图像质量,适用于各种电视节目的制作和传输。

8. 音频压缩格式:中国电视采用MPEG-1音频压缩格式,这是一种常用的音频压缩格式之一。

彩色电视制式和数字电视标准

彩色电视制式和数字电视标准

H.264 和MPEG4AVC
• ITU-T针对网络传输的需要设计的H.264采用了很多新技术用来提高压 缩比降低码流,主要是采用了高精度、多模式预测技术。 • MPEG系列的标准归属于ISO/IEC,但另一方面以制订国际通讯标准 为主的机构:ITU-T,在完成H.263(针对视频会议之用的串流视频标 准)后展开了更先进的H.264制订,且新制订是与ISO/IEC机构连手 合作,由两机构共同成立一个名为JVT(Joint Video Team)的联合 工作小组,以MPEG-4技术为基础进行更适于视频会议(Video Conference)运用的衍生发展,也因为是联合制订,因此在ITU-T方 面称为H.264,在ISO/IEC的MPEG方面就称为MPEG-4 Part 10(第 10部分,也叫ISO/IEC 14496-10),MPEG-4 Part 10的另一个代称 是MPEG-4 AVC(Advanced Video Coding,先进视频编码),多个 名称其实是一个意思,即H.264=MPEG-4 Part 10=ISO/IEC 1449610=MPEG-4 AVC。
• •

黑白电视N制信道带宽是6MHz,伴音载频与图像载频间距4.5MHz,主要 是阿根廷、乌拉圭等国家使用。
彩色电视制式
• 彩色NTSC制式是1952年由美国国家电视标准委员会指定的彩色电视 广播标准,它采用正交平衡调幅的技术方式,将两路色差信号是通过 正交调制在一个彩色副载波上,故也称为正交平衡调幅制。NTSC是 最先在美国研制成功的,美国一直沿用这种制式到现在,但是PAL制 式是后来经过改进的,它采用逐行倒相正交平衡调幅的技术方法,克 服了NTSC制相位敏感造成色彩失真的缺点,是前西德在1962年制定 的彩色电视广播标准,得到更广泛的认可。 • 除了美国,加拿大,墨西哥,韩国和台湾。世界大多数国家都是用 的PAL制式。

PAL制彩色全电视信号和彩色电视机的基本原理

PAL制彩色全电视信号和彩色电视机的基本原理

图 5-2 彩条信号的两种表示法
应当注意: (1) 同样的彩条, γ校正前后三基色电平波 形不同。 (2) 图 5-1 所 示 的 彩 条 信 号 也 可 用 100/0/100/0四位数码来表示, 如果该彩条是经过γ 校正的话。 由于这种彩条波形简单, 便于使用, 一般在彩色电视设备生产和科研中用。 我们在 后面研究色差、色度信号时就用这种规格的彩 条信号作为标准。 (3) 彩条信号的主要参数。 彩条信号 的主要参数有相对幅度、 饱和度和频带宽度。 其相对幅度、 饱和度的计算公式如下:
2. 四数码命名法的彩条信号 四数码命名法的彩条信号, 常用在电 视信号的发射、 传送和磁带录像中。 第一个 数码表示白条中三基色信号的最大值, 第二个 数码表示黑条中三基色信号的最小值, 第三个 数码表示各彩条中三基色信号的最大值, 第四 个数码表示各彩条中三基色信号的最小值。 例如: 100/0/75/0, 此彩条三基色信号 波形如图5-2(b)所示。对应的白条有最大值1, 对应的黑条有最小值0, 而6种彩条的三基色信 号最大值均为0.75, 最小值均为0。 这种四位数 码命名的彩条信号是指已经过γ校正的。
同理, 我们将表5-1中各色度信号 的幅值与初相数值列在表5-3中。
表 5-3 未压缩100/0/100/0彩条信号的合成矢量及相位角
根据上表数据, 可以画出标准彩条色 度信号的矢量图如图5-4所示。 由图可以得出以下结论: (1) 不同色调的矢量处在平面不同位 置上。 正如时钟用不同方位代表不同时刻一样, 在彩色电视中也仿此法, 用不同方位来表示不 同色调。 因此, 我们常称色度信号矢量图为 “彩色钟”。 (2) 虽然被传送的彩色都是100%饱和 度, 但色度信号的长度不尽相同,只有互补的 两个彩色矢量长度是相同的, 因为互补的二色 相加应为白色, 即此二色的色度信号矢量之和 应为零。

彩色电视机的制式与色度解码器

彩色电视机的制式与色度解码器
彩色电视机的制式与色度解 码器
汇报人: 2023-12-24
目录
• 彩色电视制式简介 • 彩色电视制式原理 • 色度解码器工作原理 • 色度解码器与彩色电视制式的
关联 • 色度解码器的发展趋势与展望
01
彩色电视制式简介
彩色电视制式的定义
彩色电视制式:指在电视广播中,为了实现彩色电视信号的传输和接收所规定的 彩色电视信号的编码和解码方式。
NTSC(National Television System Committee)制式是 一种广泛应用于美国的彩色电视制式,也用于加拿大、墨西 哥等国家。
它采用逐行倒相正交平衡调幅的技术方式,传输信号使用调 频载波,采用30帧/秒的帧率,色度信号采用补码编码方式, 并采用副载波抑制的色度副载波。
PAL制式原理
广应用。
1970年代
彩色电视逐渐普及,成为家庭 娱乐的主要方式之一。
1980年代至今
数字技术不断发展,彩色电视 制式逐渐数字化,向着高清晰
度、高画质的方向发展。
彩色电视制式的分类
NTSC(National Television System Committee):美国、加拿大等国家采用的 彩色电视制式,采用逐行倒相正交平衡调幅的技术方式。
色度解码器与SECAM制式的关联
01
SECAM制式:即Sequential Color with Memory,法国等国家采用的一种电 视制式。
02
在SECAM制式中,色度解码器的主要功能是将顺序传送的色差信号转换为同时 传送的色差信号,再还原为RGB色彩信号。
03ห้องสมุดไป่ตู้
SECAM制式的色度解码器需具备处理顺序传送信号的特殊功能,以确保色彩的 准确还原。

彩色电视制式

彩色电视制式

彩色电视制式彩色电视制式的发展历程可以追溯到20世纪40年代,当时电视还是黑白的。

彩色电视制式的引入为人们的视觉体验提供了革命性的突破。

彩色电视制式最先在美国得到应用,并于1954年在美国首次正式播出彩色电视节目。

此后,世界各国开始致力于彩色电视的研发与推广。

彩色电视制式的一个重要里程碑是NTSC制式的诞生。

NTSC 是National Television System Committee(美国国家电视制式委员会)的缩写。

它采用了60赫兹的帧频,525行的可见图像和60Hz的横向扫描频率。

NTSC制式于1953年开始制订,历经了多次修改和改进,最终在1954年投入使用。

欧洲地区则采用了PAL制式。

PAL是Phase Alternating Line (相位交替线)的缩写。

该制式于1960年代开始在欧洲国家应用,并成为欧洲电视广播标准。

PAL制式采用625行的可见图像和50赫兹的帧频。

除了NTSC和PAL以外,还有SECAM制式。

SECAM是Sequential Couleur avec Mémoire的缩写,意为“彩色顺序与存储”。

SECAM首次在法国于1967年实验性地播出,然后于1970年成为法国的正式电视制式。

SECAM制式采用625行的可见图像和50赫兹的帧频。

这些彩色电视制式的发展与应用,为观众提供了更真实,更丰富多彩的视觉体验。

随着技术的不断进步,高清彩色电视制式也相继诞生,如今人们能够欣赏到更高质量的彩色电视节目。

总的来说,彩色电视制式的发展为电视行业带来了革命性的进步,使得观众能够享受到更加生动、逼真的视觉体验。

无论是NTSC、PAL还是SECAM,它们都在不同的地区为人们提供了丰富多样的电视节目选择,成为现代社会中不可或缺的一部分。

彩色电视制式的发展始于黑白电视技术的改进。

在过去,人们只能通过黑白电视观看节目,而彩色电视的问世彻底改变了人们的观看体验。

彩色电视使得画面更加真实、生动,让观众能够更好地感受到节目所传达的情感和细节。

彩色电视制式

彩色电视制式

彩色电视制式彩色电视制式,是在满足黑白电视技术标准的前提下研制的。

为了实现黑白和彩色信号的兼容,色度编码对副载波的调制有三种不同方法,形成了三种彩色电视制式;即NTSC制、SECAM制和P AL制(对于NTSC制,由于选用的色副载波的频率不同,还可分为NTSC4.43和3.58两种),以上是从技术的角度对制式的概括介绍。

彩色电视机的制式种类严格来说,彩色电视机的制式有很多种,例如我们经常听到国际线路彩色电视机,一般都有21种彩色电视制式,但把彩色电视制式分得很详细来学习和讨论,并没有实际意义。

在人们的一般印象中,彩色电视机的制式一般只有三种,即NTSC、PAL、SECAM等三种彩色电视机的制式。

1.正交平衡调幅制——National Television Systems Committee,简称NTSC制。

采用这种制式的主要国家有美国、加拿大和日本等。

这种制式的帧速率为29.97fps(帧/秒),每帧525行262线,标准分辨率为720×480。

2.正交平衡调幅逐行倒相制——Phase-Alternative Line,简称PAL制。

中国、德国、英国和其它一些西北欧国家采用这种制式。

这种制式帧速率为25fps,每帧625行312线,标准分辨率为72 0×576。

3.行轮换调频制——Sequential Coleur Avec Memoire,简称SECAM制。

采用这种制式的有法国、前苏联和东欧一些国家。

这种制式帧速率为25fps,每帧625行312线,标准分辨率为720×576。

NTSC制式优缺点NTSC(National Television System Committee 美国电视系统委员会)制一般被称为正交调制式(对两个色副载波信号进行正交调幅)彩色电视制式;PAL(Phase Alternating Line逐行倒相)制一般被称逐行倒相式(对两个色副载波信号轮流倒相,但调制方式仍是正交调幅)彩色电视制式;SECAM(Systeme Electronique Pour Couleur Avec Memoire顺序传送彩色与记忆制)一般被称为轮流传送式(对两个色副载波调制信号轮流传送,彩色信号是采用调频调制方式传送)彩色电视制式。

彩色电视制式

彩色电视制式
对于525行/帧、60场频的NTSC制,fac-fvc=4.5MHz,其副 载频的选取原则是:
fs=(2n+1)×fH/2 综合考虑,可取fs =(2n+1)× fH/2 = 455× fH/2 =3583125Hz.
为防止伴音差拍干扰,要求f s距fac也是半行频的奇数倍,这 时取fac - fVc =(455+117) ×fH/2=4504500Hz,则正好与4.5 MHz相 差4.5kHz,这给兼容带来不良影响,为此其fH =15734.264Hz,这时 有:
二、 Q、I色差信号选取. 对人眼的视觉特性研究表明,人眼分辨红黄之间颜色变化的能
力最强,而分辨兰紫之间颜色变化的能力最弱,因此在色度图中把处 于红黄之间相角为123º的色度信号表示人眼最敏感的色轴,称为I轴; 而与之相垂直的轴表示最不敏感的轴,称为Q轴,其相角为33º,如下 图示。
由坐标转换关系得: Q=V sin33º+ U cos33º
5.相位敏感性.色度信号的相位失真对重现彩色的色调有明显 的影响,当系统存在非线性失真时,色度信号产生的相移与所叠加 的亮度电平有关,这种现象称为微分相位.由前述,确定fs相位的色同 步信号恒处于零电平上,而色度信号却迭加在Y(t)上,因而解调时因 色同步信号与色度信号迭加在不同的电平上而出现与亮度电平有 关的相位误差.
f s = 455 × fH/2=3.5795406MHz f ac - fVc= (455+117) ×fH/2=4.4999995MHz 频差fac - fVc与4.5 MHz仅相差0.5Hz,可忽略其差别. 但这时场频改为:
fv=2 fH /525=59.94Hz 对625行/帧、50 Hz、带宽为6MHz的NTSC制,其fH =15625Hz, 这时有:

彩色电视的基础知识

彩色电视的基础知识

彩色电视的基础知识彩色电视的理论基础是建立在色度学与视觉生理学基础上的.因此要了解彩色电视应该首先了解色度学方面的有关基础知识.一, 彩色的三要素人眼对任何一种颜色的光引起的视觉反应,都可用亮度,色调和色饱和度三个参量来描述,通常把颜色的亮度,色调和色饱和度称为彩色的三要素.1.亮度:是指彩色光对人眼作用后,人眼所能感觉到的明暗程度.2.色调:表示颜色的种类,如红,绿,黄等的区别,取决于该种颜色的主要波长.3.色饱和度:表示颜色的深浅程度,是按该种颜色混入白光的比例来表示.没有掺入白色光的单色光的色饱和度是100%.在彩色电视技术中,色调和色饱和度常常被用来组成色度的概念.也就是说,在彩色电视中所说的色度就是色调和色饱和度的合称,它即表明了彩色光的颜色种类,又表明了颜色的深浅程度.二, 三基色原理与混色方法1.三基色原理在自然界中,绝大多数的彩色光都可以分解为红(Red),绿(Green),篮(Blue)三种基色光;相反,利用红,绿,篮三种基色光按不同比例混合,又可以模拟出自然界的绝大多数的彩色.这个规律称为三基色原理.特点:三基色的选择不是唯一的.在彩色电视中选择红,绿,篮作为三基色是因为人眼对这三种基色的光最敏感.三基色必须是相互独立的,即其中任一种基色不能由另两种基色混合产生.合成后的彩色的色调和饱和度由三基色的比例决定;它的亮度等于三基色亮度的总和.2.混色法在彩色电视中采用相加混色法.相加混色法有直接混色法和间接混色法两种.直接混色法——是把三种等量的基色光同时投射到一个白屏幕上,会得到不同的颜色.让我们做一个试验吧,请从三基色中选择步步不同的颜色组合,注意摄像机屏幕有什么变化.利用这种方法,我们调节三种基色的不同比例,可以混合出自然界绝大多数色彩.间接混色法——是利用人眼视觉的特性进行混色的.通常可分为时间混色法和空间混色法.1)时间混色法:将三种基色的光轮交替的投射到白屏幕上,只要色轮的转速够快,利用人眼视觉暂留特性,可得到与直接混色法相同的效果.2)空间混色法:将三种基色光点同时投射到白屏幕上的三个相邻点上,当三个点足够近时,利用人眼的分辨力有一定限度的特性,就能产生与直接混色法相同的效果.空间混色法是目前各种同时兼容制彩色电视的基础.彩色显像管就是根据这个原理实现的. 以上我们对三基色的原理和混色法进行了介绍.为了更直观,方便的表示三基色(红,绿,蓝)与它们混色后所得道的各种色彩之间的关系,通常采用图6所示的色度三角形(也称麦克斯三角形)给出三基色混合所得到色彩的大致范围.那么这个色度三角形的意义是什么三,实现彩色电视的基本过程我们知道,在黑白电视中只是重视景物的亮度,它只传送一个反映景物亮度的电信号.而彩色电视要传送的却是亮度不同,色度千差万别的彩色,如果每一种彩色都使用一个与它对应的电信号,就需要同时传送许许多多的电信号,这显然是不可能的.根据三基色原理,使我们有可能利用有限的三基色(红,绿,蓝)来传送和复现自然界的各种景物的彩色.具体说,彩色电视并不是把客观世界千差万别的景物颜色一种一种如实的传送,而是把足以能反映各种自然景色的三种基色的组合方式(强弱比例)告诉接收端;在接收端,利用能产生三基色的装置(显像管),使其严格按照接收到的电信息(三基色组合情况)来重新进行三色混合,就可以等效的模拟出发送端的彩色.尽管这是一种等效模拟,但是这个等效彩色对人眼引起的色感来说与实际彩色引起的色感是相同的.图8就是根据这个设想来实现彩色电视的基本装置示意图.在发送端必须把要传送的景物的彩色用分光系统(滤色片)分解为红,绿,蓝三种基色画面,再经过三个摄像管的光电转换,把它们转换为三种基色信号(ER,EG,EB). 然后把三种基色信号无失真的传送至接收端.在接收端,把三种基色信号放大后分别控制三个基色显像管阴极,经过电光的转换,把三种基色信号变为三种基色的画面,然后通过光学透镜系统投射到屏幕上,并重叠在一起就能混合成原来的景物,这就是实现彩色电视传送的基本过程.需要指出的是,实际彩色电视机是用彩色显像管代替三个基色显像管,使结构简单化.兼容性彩色电视的传送制式我们已经了解到,产生三基色信号并不困难,用分光系统和三只摄像管组成的摄像系统就能办到.但是,怎样才能把三基色信号传送到接收端呢这是这里要讨论的问题.一,彩色电视信号传送的基本制式1.顺序制——是把将要传送的彩色图像分解为红,绿,蓝三个基色光像然后进行光电转换后按照一定的时间顺序,在一个信道分别传送;在接收端以相同的顺序轮流把三个基色信号加于彩色显像管的三个阴极,轮流显示出三个基色图像.利用人眼的视觉暂留特性进行混色,最后得到一副完美的彩色图像.图9 顺序制传送示意图需要指出的是,实际彩色电视机是用彩色显像管代替三个基色显像管,使结构简单话.2.简单同时制——是把三个基色信号用三个信道同时传送.在接收端同时将三个基色信号作用于彩色显像管的三个阴极,利用空间混色法在荧光屏上显示一副完美的彩色图像.图10简单同时制传送示意图所谓兼容性,就是使黑白电视机能接收彩色电视节目,而彩色电视机也能收看黑白电视节目. 当然,在这两种情况下收看到的电视图像都是黑白图像.图11 兼容同时制彩色电视机基本原理图如图11所示:发送端先用分光系统把要传送的彩条画面分为三幅基色画面.根据混色原理得到三基色画面.当三基色画面同时投射到三个摄像管的靶面上,经过光电转换成ER,EG,EB 信号.它们在编码器中以一定方式编成一个带宽为6MHZ的彩色电视信号,经过发射机调制成高频彩色电视信号发射出去. 接收端接收信号后经过接收机放大,解调为彩色全电视信号,再经解码器还原ER,EG,EB 三基色信号去调制彩色显像管三个阴极,在荧光屏上呈现三幅基色画面,利用空间混色法重现彩条画面.彩色电视信号的组成1 实现兼容性彩色电视的必要条件为了实现兼容性,彩色电视机信号必须满足下列条件:彩色电视信号既要使彩色电视机呈现彩色图像,又要使黑白电视机呈现黑白图像.所以必须要求彩色电视信号是由亮度信号和色度信号两部分组成.彩色电视信号应具有黑白电视信号相同的频带宽度.彩色电视必须采用与黑白电视相同的图像载波,伴音载波及图像和伴音的调制方式,以及采用同样的行,场扫描方式,扫描频率和复合同步,复合消隐信号.2 亮度信号和色度信号(1)亮度信号:从色度学讲,人眼对等强度的三基色光的亮度反应是不同的,对绿光最敏感,对红光次之,对蓝光最不敏感.因此,三基色光的亮度为1时,其组成的白光对人眼作用的亮度也为1,若亮度用Y表示,它与R,G,B三基色光之间的关系为:公式为亮度方程式.由于亮度方程式中三个系数之和等于1,如果R,G,B光的亮度都是1,则Y=1,即由它们给出的亮度总和为白色;如果R,G,B光的亮度相等,但相对值小于1而大于零,则0<Y当R,G,B光的亮度均为零时则Y=0为黑色.在彩色电视传送过程中,三基色电信号ER,EG,EB合成的亮度信号EY的方程式为:(2)色差信号:兼容性彩色电视信号中,除了亮度信号外,还需要一个仅包含色调和饱和度的色度信号.由于三基色信号中既包含了亮度信号也包含了色度信号.为了得到仅包含色度信息的信号,可从三个基色信号中减去亮度信号就得三个仅含色度的信号,我们通常称之为色差信号.根据亮度方程式可以导出色差信号与三基色信号之间的关系:实际在三个色差信号中,只需选取其中两个色差信号就能达到传送色度信息的目的.因此为了减小传送信号的频带和提高其信噪比,通常都选用幅度较大的ER-Y,EB-Y色差信号传送色度信息.(3)彩条的亮度信号与色差信号彩条信号是彩色电视机经常使用的一种测试信号,它在彩色电视机的荧光屏上显示出八条等宽色调为白,黄,青,绿,紫,红,蓝,黑的竖条,它的亮度递减顺序自左至右排列,如图12(a)所示;它在黑白电视机荧光屏上显示出八条灰度等级不同的竖条.图12 彩条的亮度信号和色差信号波形图由于彩条有正确的色调和饱和度,所以常作为检查和测试彩色电视机的一种信号.图12(b)是三基色的信号波形,其中包含了亮度信号.图12(c)是彩条信号的亮度波形图,它是一个高度不等的阶梯电压,幅度从零到一共八个阶梯,所以它是一个含有直流分量的正极性信号.图12(d)是彩条的色差信号波形,是一个交流信号,由于EG-Y信号的幅度较小,在传输中易受干扰.所以,为了提高传送信号的信噪比,现行的兼容性彩色电视制式都采用两个幅度较大的ER-Y和EB-Y传送色度信息.最后应该指出,上面讨论的亮度信号和色度信号,对所有的兼容性三大彩色电视制式均适用.请大家记住这些波形图,今后在维修中会有很大的帮助.3. 压缩彩色电视信号频带宽度的方法为了使彩色电视信号的频带与黑白电视信号的频带相同,所以三大彩电制式均对色差信号的频带进行压缩,即采用大面积着色原理,限制色度信号的频带.亮度信号采用宽带传送,色度信号采用窄带传送(约为亮度信号频带的10%~20%),所得到的彩色图像已经令人满意.我们国家电视制度规定,亮度信号的频带为6MHz(为保证黑白图像的清晰度);而色差信号的频带为1.3MHz.此外,色度信号的频带虽然已经压缩在很窄的频带内,但由于亮度信号本身已经占用了与黑白电视信号相同的频带,所以为了使彩色电视信号的频带与黑白电视信号的频带相同,必须进一步设法节省频带.NTSC制和PAL制色度信号都采用了"正交平衡调幅制"并采用频谱交错技术,把色度信号的频谱安插到亮度信号的频谱间隙中,使色度信号不占用额外的频带.而SECAM制色度信号采用"行轮换调频制",来进一步压缩频带,两个色差信号不是在每一行传送,而是顺序轮换交替传送.也就是亮度信号在每一行都传送,色差信号是一行传送ER-Y 信号,另一行传送EB-Y信号,逐行顺序轮换传送.所以SECAM制又称为"顺序同时制".兼容性彩色电视制式的原理目前,世界上现存三大彩色电视编码制式,它们是NTSC制,PAL制,SECAM制.三种制式的彩色电视机的解码电路有明显的不同.这一节我们把三种制式的编码和解码原理用框图的形式给大家介绍一下.1. NTSC制的编码器和其编码过程为满足兼容性彩色电视的基本条件和色差信号实现正交平衡调幅的要求,NTSC制编码器的基本组成如图13所示.其编码过程如下:图13 NTSC制编码器框图首先把彩色摄像机送来的ER,EG,EB三基色信号,经编码器矩阵编成亮度信号EY和色差信号ER-Y,EB-Y. 色差信号经低通滤波器将其压缩到1.3MHz范围内后,分别送入平衡调幅器对色负载波(由彩色同步机提供)进行平衡调幅,输出为已调色差信号,它们在加法器叠加成色度信号F. 亮度信号EY经放大后通过加法器与彩色同步机送来的复合消隐,复合同步信号叠加,再经均衡延时线,使亮度和色度信号同时到达加法器叠加成彩色全电视信号.解码是编码的逆过程.所以解码器的任务是:从彩色全电视信号中把亮度信号和色度信号分离开来,各自进入相应的通道;然后将色度信号中的两个色度分量分离开并分别进行同步检波,解调出色差信号;最后把亮度信号及色差信号送入解码矩阵电路,变换为三基色信号. 2. 使用V,U色差信号的解码器及解码过程图14是NTSC制使用V,U色差信号的解码器方框图.它由亮度通道,色度解码电路和解码矩阵电路等组成.其过程如下:图14 NTSC制解码器框图彩色全电视信号送入解码器后,一路进入亮度通道,经过色负载波陷波器吸收掉色度信号,而取出亮度信号,再经过亮度延时放大电路对亮度信号进行加工处理另一路进入色度通道,首先利用色带通放大器的带通特性,选出色度信号,而滤除亮度信号.而色带通放大器分三路输出:一路经色同步选通放大器把色度与色同步信号分离开,选出色同步信号,送入本机色负载波恢复电路,提供本机产生的色负载波的基准相位;另外两路色度信号送至(R-Y),(B-Y)同步检波器.相位相差90度的色负载波经过V,U放大器放大和去压缩后,恢复原来的色差信号.最后将两个色差信号与亮度信号同时送入解码矩阵电路,就可变为三个基色信号.我们已经知道,NTSC制彩色电视采用正交平衡调幅的方式,很好的解决了用一个色负载波同时传送色度信号的问题.但是这种方式最大的缺点是相位失真引起色调失真.所以对整个电视系统要求非常高.为了克服NTSC制中的缺点,PAL制彩色电视在NTSC制的正交平衡调幅的基础上,采用了把色度信号的Fv分量逐行倒相的措施,使相邻两行的色度信号产生的相位失真正好相反,可以利用人眼的视觉平均和用特殊的解调电路加以平均,相互抵消,以得到正确的色调.PAL是英文(逐行倒相)Phase Alternation Line 的缩写.PAL制于60年代初期联邦德国研制成功,1967年联邦德国和英国首先正是采用,以后许多国家相继采用,我国也采用PAL制.所以按照其特点PAL制又可称之为"逐行倒相正交平衡调幅"制.3. PAL制编码器及其编码过程PAL制编码器的组成如图15,基本上与NTSC制编码器相同,只是多了一个PAL开关,它把加于V平衡调幅器的色负载波逐行倒相.由摄像机送来的三基色信号经编码矩阵电路变换成亮度信号和色差信号.亮度信号经过放大并加入复合消隐和复合同步信号后,再经过延时均衡后送入相加器.色差信号经过低通滤波器限制频带后,再分别加入-K和+K脉冲,送入各自的U,V平衡调幅器进行平衡调幅.U平衡调幅器送入0度相位的色负载波,而V平衡调幅器送入正负90度逐行倒相的色负载波.正负90度色负载波的产生是先将0度色负载波经90度移相器移相90度后,再经过PAL 开关逐行倒相成正负90度色负载波,控制PAL开关工作的是行频P脉冲.U,V平衡调幅器输出的已调波在相加器中相加形成包括色同步信号的色度信号,它和包含复合消隐,同步信号的亮度信号在相加器中混合,就形成了彩色全电视信号.4. PAL制解码原理及其解码过程PAL制解码器的组成方框图如图16所示.除虚线部分外,电路于NTSC制基本相同.图16 PAL制解码器框图彩色全电视信号送入解码器后,一路送至亮度通道,将色度信号滤除掉,让亮度信号通过延时放大后送入解码矩阵电路.另一路送入色度通道,利用色带通选出色度信号分成两路,一路进入色同步选通放大器,选出三同步信号送入鉴相器及识别检波电路;另一路输出送至延时分离电路,把两个色度分量分离处理,分别送入U,V同步检波器.在鉴相器中,色同步信号与色负载波压控振荡器送来的色负载波信号进行比较,鉴相器输出一个与两信号相位差成正比的控制电压,经过低通滤波器后变成直流控制电压去控制色负载波压控振荡器的频率和相位,使它与发送端同步.一路0度的色负载波进入U同步检波器,对Fu分量进行解调;另一路先经过90度的移相,再经过PAL识别与倒相开关电路逐行倒相后,得到正负90度的色负载波送入V同步检波器对Fv分量进行解调.U,V同步检波器输出的色差信号经放大器放大和去压缩后恢复了色差信号,送入解码矩阵电路.与亮度信号一起在解码矩阵电路变换为三基色信号完成解码.5. SECAM制的编码和解码原理SECAM制是"轮换传送彩色与存储"的法文缩写.是60年代初期由法国研制成功,1966年法国首先使用,随后前苏联,东欧等国相继使用.从两个色差信号传送的方式上看,是先后顺序轮换传送的,而亮度信号与色信号又是同时传送的,所以,通常这种制式又称为"顺序-同时"制. SECAM制的编码和解码原理我们就不做详细的介绍了,下面是它们的方框图,请大家参考. 彩色电视机概述首先讨论彩色电视机的主要特点,具体介绍典型的PAL制集成电路彩色电视机的电路组成和方框图.(一)每种彩色电视制式的电视机,只能接收相应于该制式的彩色电视节目由于目前现形的三大彩色电视制式对色度信号的处理方法不同,相应于不同制式的彩色电视机的解码电路也有明显不同,因而各种彩色电视制式不能兼容.那么让我们来看看三大彩色制式有什么不同吧. 现形三大彩色电视机制式中彩色电视机信号的主要特征(二)彩色电视机必须包含有黑白电视机的基本组成部分目前世界各国彩色电视制式都能与该国黑白电视相兼容.因此彩色电视机必须包含黑白电视机的基本部分,即公共通道,伴音通道,以及行,场扫描系统.与黑白电视机不同的地方是用解码器代替了图像通道,以及彩色显像管所必须的附属电路.(三)目前生产的彩色电视机向遥控,多制式,大屏幕的方向发展.随着科学技术的发展,特别是大规模集成电路和微电脑技术的发展,促进了电视机遥控技术的发展.所谓多制式,大屏幕就是指能够收看两种以上彩色电视制式和多种黑白电视标准的节目,且显像管的屏幕在64cm(25英寸)以上的彩色电视机.集成电路彩色电视机的电路组成彩色电视机主要由五部分组成:公共通道伴音通道解码电路同步扫描系统(包括显像管及其附属电路)开关式稳压电源电路.不同制式的彩色电视机不同之处主要是解码电路不同.我们以PAL制为例,看看典型的PAL制集成电路彩电的组成原理框图.公共通道公共通道是由高频调谐器(高频头),图像中放,视频检波和预视放,另外还有消噪,AGC和AFT等电路组成.工作过程如下:电视天线接收到高频电视信号后,首先通过高频头选出欲接收频道信号送入高放级进行放大,然后在混频级和本振信号进行混频,转换为中频电视信号送到声表面波滤波器(SAWF),利用它的幅-频特性,获得需要的图像中放电路的振幅传输特性,从而获得所需的中频信号的频带特性.随后再送入中放进行放大,由视频检波器进行检波,输出视频彩色全电视机信号.AGC是自动增益控制电路,控制高放和中放级的电压增益,保证信号幅度的稳定.为了防止本振频率漂移,设置AFT(自动频率跟踪微调)使本振频率更加稳定.伴音通道伴音通道的电路组成基本上与黑白电视机相同,也是由伴音中放,鉴频器,和音频放大器等电路组成.输入的是第二伴音中频信号,输出音频信号送至扬声器.ATT是直流音量控制电路,可以对伴音的音量进行控制调节.解码电路-亮度通道亮度通道是用于处理亮度信号,相当于黑白电视的图像通道.主要是由色负载波陷波器,亮度延时放大器,亮度放大及轮廓校正电路,对比度调节电路,黑电平钳位及亮度调节电路等组成.输入彩色全电视信号,输出为经过处理的亮度信号.首先彩色全电视信号经过4.43MHz陷波器及亮度延迟放大级,滤除色度信号并把亮度信号延迟约0.4us~0.8us,使亮度和色度信号能同时到达解码矩阵电路,避免发生彩色镶边现象.轮廓校正电路多采用微分电路来增强图像轮廓.黑电平钳位电路可以恢复亮度信号的直流平均分量,提高彩色图像质量;还为设置自动亮度限制电路(ABL)提供了电路基础.此外,在亮度通道末端,还要设置行, 场消隐电路,将消隐脉冲叠加到亮度信号电平上.最后亮度信号送至基色矩阵与视放输出电路.解码电路-色度解码电路色度解码电路主要任务是从预视放送来的彩色全电视信号中选出色度信号,恢复出三色差信号.它主要是由色度信号预处理电路,色度信号解调电路(通常这两部分称为色度通道)和本机色副载波恢复电路等三部分组成.1.色度信号预处理电路包括色带通滤波器,ACC(自动色度控制)色度放大电路,色同步与色度分离电路.色饱和度及消色控制电路.2.色度信号解调电路包括延时分离电路(又称梳状滤波器)和同步检波器两部分.3.基准色副载波恢复电路主要用来恢复提供色差同步检波器所需的0度和正负90度本机色副载波信号.主要是由APC型锁相环路色副载波恢复电路,PAL识别与消色检波电路双稳态与PAL倒相开关等电路组成.基色矩阵与视放输出电路通常彩色电视机中的基色矩阵电路和视放输出电路是合为一体的.不仅把色差信号与亮度信号叠加得出三基色信号,而且还对三基色进行放大.所以一般基色矩阵是三个并列的视放输出电路.从色度信号解调电路送来的三个色差信号被分别送入相应的视放管的基极,而亮度信号分别加至各视放管的发射极,进行矩阵转换叠加成三基色信号,并进行放大由集电极输出百余伏的三基色信号加到显像管的三个阴极,重现彩色图像.同步扫描系统同步扫描系统是由同步分离电路,积分与行AFC电路,场扫描和行扫描电路,以及高压变换电路等组成.扫描系统的主要任务是向偏转线圈提供幅度足够的行,场锯齿扫描电流,以便形成电子束扫描光栅;同时还向其他部分提供行,场逆程脉冲.此外,行扫描电路为电视机提供高压和部分直流电压.从预视放输出的彩色全电视信号送至同步分离电路,输出的复合同步信号,分别通过行AFC 和场积分电路去控制行,场扫描电路中的行,场振荡器使行,场扫描同步.行,场脉冲信号再经过行,场扫描电路中的推动级和输出级进行放大后,向偏转线圈提供幅度足够的行,场扫描锯齿波电流,使显像管电子束扫描形成同步的扫描光栅.。

数字彩色电视制式

数字彩色电视制式

数字彩色电视制式数字彩色电视制式是指电视信号的编码和传输方式,使其能够在彩色电视机上显示出多种颜色。

目前,世界上主要采用的数字彩色电视制式有NTSC、PAL和SECAM三种。

NTSC(National Television System Committee)是美国制定的一种数字彩色电视制式。

NTSC制式的电视信号采用525行、每秒30帧的帧率,以60Hz的交流电源为基准。

NTSC制式的彩色电视信号采用YUV的编码方式,其中Y代表亮度信号,U和V代表色度信号。

NTSC制式相较于PAL和SECAM制式,在美国及北美洲广泛使用。

PAL(Phase Alternating Line)是欧洲广播联盟制定的一种数字彩色电视制式。

PAL制式的电视信号采用625行、每秒25帧的帧率,以50Hz的交流电源为基准。

PAL制式的彩色电视信号采用YUV的编码方式,与NTSC制式相比,PAL制式的主要优势是色彩鲜艳、稳定性好。

PAL制式在欧洲及其他地区广泛使用。

SECAM(Sequential Color with Memory)是法国制定的一种数字彩色电视制式。

SECAM制式的电视信号采用625行、每秒25帧的帧率,以50Hz的交流电源为基准。

SECAM制式的彩色电视信号采用YDbDr的编码方式,其中Y代表亮度信号,Db和Dr代表差别信号。

SECAM制式主要在法国及一些东欧国家使用。

三种数字彩色电视制式之间存在一定差异,主要体现在信号编码方式、行数、帧数和颜色还原等方面。

而国际上的电视节目和电影制作都要求能够在不同的制式下播放,因此很多电视机在出厂时都支持多种制式切换。

总的来说,数字彩色电视制式是为了提供更高质量的彩色电视画面而发展起来的。

不同的国家和地区采用不同的制式,但都致力于提供更真实、清晰、鲜艳的彩色电视画面,让观众能够更好地享受电视节目和电影的视觉盛宴。

数字彩色电视制式是电视技术的重要组成部分,它直接关系到观众能否享受到优质的视听体验。

1 彩色电视的基础知识

1 彩色电视的基础知识

1 彩色电视的基础知识
1.5 人眼的视觉特性与电视的基本参数
1.5.1 人眼视力范围与电视机屏幕形状 人眼的视觉最清楚的范围大约是垂直方向15°夹角、水
平方向20°夹角的一个矩形,如图1-14所示,因此电视机屏 幕多设计为宽高比4∶3的矩形。
为配合高清晰度要求增强现 场感与真实感,高清晰度电视 屏幕的宽高比一般为16∶9。
则屏幕上扫描光栅不均匀,会降低图像清晰度,甚至出现并 行现象。要保证隔行扫描准确,选取每帧扫描行数为奇数,
每场均有一个半行。
为了节约电视的传输带宽,我国电视采用隔行扫描。
1 彩色电视的基础知识
(a)隔行扫描光栅
(b)扫描电流波形
图1-6 隔行扫描光栅及 电流波形
1 彩色电视的基础知识
1.3 色度学基础知识
1.3.1 光与彩色 1.光与色
光是一种具有能量的物质,它可以电磁波的形式进行传 播,它是电磁辐射中的一小部分。电磁波的频率范围很宽, 其范围为105~1025Hz。
人眼可以看见的光叫可见光,可见光谱的波长范围在 380~780nm(毫微米)之间。如图1-7所示。
彩色是光作用于人眼而引起的一种视觉反映。不同波长
的光称为复合光。 太阳光可以分解为红、橙、黄、绿、青、蓝、紫的彩色
光带,见图1-9所示。 白色光是由七种单色光复合而成的复合光。 某种颜色的光,可以是单色光,也可以是由几种单色光 混合而成的复合光。 彩色光的混合遵循相 加混色规律。
图1-9 阳光的波谱
1 彩色电视的基础知识
1.3.5 人眼的彩色视觉特性 在可见光的光谱范围内,人眼对不同波长光的敏感程度
通常把色调和色饱和度统称为色度。来自1 彩色电视的基础知识
1.3.3 三基色原理与混色 1.三基色原理

视频制式现行的三种彩色电视制式简介

视频制式现行的三种彩色电视制式简介

视频制式现行的三种彩色电视制式简介视频标准和规范是非常多的,随着现在高清视频的普及,各种视频格式,视频标准也不断的涌现,如目前世界上现行的彩色电视制式有三种:ntsc制、pal制和secam制。

这里不包括高清晰度彩色电视hdtv (high-definition television)。

针对目前电脑和电视之间的应用,同三维也推出了专业级视频转换器,如VGA 转HDMI转换器,其可以将电脑信号传输到高清液晶电视机中,实现电脑转电视。

另外还推出了T700外置USB转VGA/HDMI/DVI转换器,其可以通过电脑USB接口输出传输到其他显示设备中,实现高清视频实时显示。

除包括相同于黑白电视的扫描、信道等以拉丁字母来区别的制式内容外,还根据发、收端对三基色信号的不同编码、解码方式构成不同的彩色电视制式。

广播彩色电视制式要求和黑白电视兼容,也就是黑白电视机能收彩色电视广播,彩色电视机也能收黑白电视广播,但收到的都是黑白图像和伴音。

为此,彩色电视根据相加混色法中一定比例的三基色光能混合成包括白光在内的各种色光的原理,同时为了兼容和压缩传输频带,一般将红(R)、绿(G)、蓝(B)三个基色信号组成亮度信号(Y)和蓝、红两个色差信号(B-Y)、(R-Y),其中亮度信号可用来传送黑白图像,色差信号和亮度信号相组合可还原出红、绿、蓝三个基色信号。

因此,兼容制彩色电视除传送相同于黑白电视的亮度信号和伴音信号外,还在同一视频频带内同时传送色度信号。

色度信号是由两个色差信号对视频频带高频端的色副载波进行调制而成的。

为防止色差信号的调制过载,将蓝、红色差信号(B-Y)、(R-Y)进行压缩,经压缩后的蓝、红色差信号用U、V表示下面我们再来全面介绍下电视制式知识。

NTSC1954年美国正式广播的一种兼容彩色电视制式,也用于加拿大、日本等国。

NTSC是美国国家电视制式委员会(National Television System Committee)的缩写。

彩色电视基本常识

彩色电视基本常识
4、 屏显文字选择:可在菜单中选择英文或中文的屏幕文字显示方式。
5、 超强接收功能:城市郊区、农村和边远地区普遍存在电视信号较弱的现象,具有超强接收功能的彩电设有弱信号放大电路,当把电视机设置在“超强接收”状态时,即可使弱信号电视节目也能够接收良好。
6、 防雷功能:在高频头接地处和电源开关处设置锯齿形防雷间隙和连接地线,使彩电具有防止雷击感应功能,起到一定的防雷作用。
彩色电视的基本结构
1、彩色电视接收机的内部电路主要由使显象管产生正常光栅的扫描系统和信号系统两大部分组成。
2、信号系统:高频调谐器(俗称“高频头” )将接收的高频彩色全电视信号进行放大、混频,输出中频彩电全电视信号(包括视频信号和音频信号)其中的音频信号经过中频放大、鉴频、低频放大,通过扬声器放声。而视频信号则分两路输出,其中亮度信号Y通过视频放大器;另一部分的色度信号F通往色度信号解调器,解调出色差信号R-Y、G-Y和B-Y。Y、R-Y、G-Y、B-Y这四个信号通过矩阵电路,还原为三基色信号R、G、B,去调解彩色显象管的三个电子枪发出的电子束。
② 用户操作功能,用户调节电视机的音量、对比度等都是通过I2C来实现的。
③ 调试、维修功能,调整工厂菜单下的参数来调试整机各种图象参数,显得非常方便。
④ 生产自动化调整功能,有些专用的仪器利用I2C总线来自动调整白平衡和其它存贮的数据。
7、电视信号的制式及接收:电视接收机主要是用来接收电视台发射的全电视信号的,所谓全电视信号,是由视频信号(包括图象亮度信息的亮度信号和彩色信息的色度信号和色同步信号)、音频信号和行场扫描的同步信号通过处理后用不同的方式组合而成的综合信号。制式就是全电视信号的组成方式,不同国家和地区,全电视信号的组成方式不同,即电视制式不同。目前国际上彩色图象制式主要有三种,即PAL制(西欧、中国大陆、中国香港等使用)、NTSC制(美国、日本、中国台湾等使用)和SECAM制(俄罗斯和东欧等国使用);国际上伴音制式主要有4种,即D/K制(6.5MHz,中国大陆等使用)、I制(6.0MHz,中国香港等使用)、B/G制(5.5MHz,东欧等使用)和M制(4.5MHz,美国、中国台湾等使用);由这些不同的彩色图象制式和伴音制式进行组合,使目前国际上的电视制式约共有28种之多,但最常用的有17种。多制式彩电是指可以接收两种以上制式的彩电,而能接收任何国家制式(28种制式)的彩电,就称全制式彩电。我国大陆通常只需PAL-D/K接收功能及NTSC-M(AV)播放功能就能满足基本需求,而广东、福建等地则需要增加PAL-I或NTSC-M制的接收功能。

彩色数字电视基础

彩色数字电视基础

13
SECAM彩色电视制
• SECAM (法文:Sequential Coleur Avec Memoire) 彩色电视制 • 法国制定了SECAM 彩色电视广播标准,称 为顺序传送彩色与存储制。法国、苏联及东 欧国家采用这种制式。世界上约有65个地区 和国家试验这种制式。
14
彩色电视制式
NTSC彩色电视制的主要特性是: (1) 525行/帧, 30帧/秒 (2) 高宽比:电视画面的长宽比为4:3 (3) 隔行扫描,一帧分成2场(field),262.5线/场 (4) 在每场的开始部分保留20扫描线作为控制信 息,因此只有485条线的可视数据。 (5) 每行63.5微秒,水平回扫时间10微秒(包含5微 秒的水平同步脉冲),所以显示时间是53.5微秒 (6) 颜色模型:YIQ (7)美国、加拿大等大部分西半球国家,及日本、 韩国、菲律宾和中国的台湾采用这种制式。
10.3 电视图像数字化 10.3.1 数字化的方法 10.3.2 数字化标准 10.4 图像子采样 10.4.1 图像子采样概要 10.4.2 4:4:4 YCbCr格式 10.4.3 4:2:2 YCbCr格式 10.4.4 4:1:1 YCbCr格式 10.4.5 4:2:0 YCbCr格式
3
12
PAL彩色电视制
• PAL(Phase-Alternative Line) 彩色电视制 • 由于NTSC制存在相位敏感造成彩色失真的 缺点,因此德国(当时的西德)于1962年制定 了PAL(Phase-Alternative Line)制彩色电视广 播标准,称为逐行倒相正交平衡调幅制。德 国、英国等一些西欧国家,以及中国、朝鲜 等国家采用这种制式。
15
彩色电视制式
倒相正交平衡调幅制PAL制式电视信号的特性: (1) 625行(扫描线)/帧,25帧/秒(40 ms/帧) (2) 每场中有25行作为场回扫,所以每帧中只有 575行是有效行。 (3) 高宽比(aspect ratio):4:3 (4) 隔行扫描,2场/帧,312.5行/场 (5) 颜色模型:YUV (6) 西欧、中国和朝鲜等国家采用这种制式。

第四章 彩色电视制式

第四章  彩色电视制式

第四章彩色电视制式第一节彩色图像的摄取与重现•从前面所讲的章节的内容可知,人眼的彩色视觉具有同色异谱特性,即主观感觉的颜色与实际的光谱分布之间并不是一一对应的关系。

另外,根据三基色原理,自然界中的大部分彩色都可以分解成三种基色光,而这三种基色光又可以按一定比例混配出自然界中的大部分彩色。

于是,彩色电视系统在传送彩色图像时,不需要传送彩色的所有光谱信息,只要传送三个基色信号即可。

在接收端再对三个基色信号进行复合,便能重现彩色图像。

一、彩色图像的摄取彩色图像的摄取包括两个过程,首先是利用分光系统将一幅彩色图像分解成红、绿、蓝三基色图像,然后利用光电转换器件和扫描将三基色图像分别转换成相应的三基色电信号。

其中,常用的分光系统有双向分色镜系统和分色棱镜系统两种,而光电转换器件和扫描的原理则与黑白电视完全相同。

彩条图像:由白、黄、青、绿、紫、红、蓝、黑八个竖条组通过光学透镜投射到分光系统。

分光系统:使用的是双向分色镜系统,它由D1、D2、R1、R2以及Fr、Fg、Fb组成。

其中,R1、R2为全反射镜,D1、D2为双向分色镜,Fr、Fg、Fb为滤色片。

双向分色镜上涂有透明的多层非金属材料薄膜(称为干涉膜),适当选取薄膜厚度及折射率可使某些波长的光反射或投射。

图中D1反射红光而透过其它波长的光,D2则反射蓝光而透过其它波长的光,这样,通过D1、D2后,红、绿、蓝三色光被分开,一幅彩条图像变成红条、绿条、蓝条三个基色图像。

•光电转换:分解之后的三基色图像同时投射到三个光电转换器件(如CCD)的感光面上,三个光电转换器件同步进行扫描和光电转换,把各基色图像上的亮度变化转换成相应的随时间变化的电信号,转换原理与黑白电视的光电转换原理相同。

三个光电转换器件的输出信号分别是反映红基色图像亮度变化的电信号ER、反映绿基色图像亮度变化的电信号EG 以及反映蓝基色图像亮度变化的电信号EB。

ER、EG、EB称为三基色电信号,它们分别送往各自的通道进行处理。

彩色电视制式名词解释

彩色电视制式名词解释

彩色电视制式名词解释英文回答:Color television standards.Color television standards are a set of technical specifications that define the characteristics of a color television signal. These standards include the number of lines per frame, the number of fields per frame, the frame rate, the color space, the color bandwidth, and the modulation method.The most common color television standards are NTSC, PAL, and SECAM. NTSC is used in North America, Japan, and South Korea. PAL is used in Europe, Australia, and Africa. SECAM is used in France, Russia, and Eastern Europe.NTSC uses a 525-line, 60-field per second frame rate. PAL uses a 625-line, 50-field per second frame rate. SECAM uses a 625-line, 50-field per second frame rate, but ituses a different color subcarrier frequency than PAL.NTSC uses a YIQ color space, while PAL and SECAM use a YUV color space. YIQ is a linear color space, while YUV is a non-linear color space.NTSC has a color bandwidth of 3.58 MHz, while PAL and SECAM have a color bandwidth of 2.0 MHz.NTSC uses a vestigial sideband amplitude modulation (VSB-AM) method, while PAL and SECAM use a quadrature amplitude modulation (QAM) method.中文回答:彩色电视制式。

电视信号制式的种类

电视信号制式的种类

电视信号制式的种类电视节目的视频信号是一种模拟信号,由视频模拟数据和视频同步数据构成,用于接收端正确地显示图像。

信号的细节取决于应用的视频标准或者“制式”--NTSC(美国全国电视标准委员会,National Television Standards Committee)、PAL(逐行倒相,Phase A LTE rnate Line)以及SECAM(顺序传送与存储彩色电视系统,法国采用的一种电视制式,(SEquential Couleur Avec Memoire)。

PAL,NTSC,还有SECAMPAL,NTSC,还有SECAM,这是全球现行的三种模拟技术彩色电视的制式。

所谓制式,就是电视台和电视机共同实行的一种处理视频和音频信号的技术标准,只有技术标准一样,才能够实现电视机的信号正常接受。

犹如家里的电源插座和插头,规格一样才能插在一起,中国的插头就不能插在英国规格的电源插座里,只有制式一样,才能顺利对接。

彩色电视机的图像显示是由红绿蓝三基色信号混合而成,三种颜色信号不同的亮度构成了缤纷的彩色画面。

而如何处理三基色信号,并实现广播和接收,需要一定的技术标准,这就形成了彩色电视的制式。

目前,全球范围内存在有三种模拟技术的彩色电视制式,即NTSC 制(又称N制,或美国制式)、PAL制(又称帕尔制或西德制式、英国制式)、SECAM制(又称塞康制或法国制式)。

制式的区分主要在于其帧频(场频)的不同、分解率的不同、信号带宽以及载频的不同、色彩空间的转换关系不同等等。

NTSCNTSC(National Television System Committee)制是最早的彩电制式,1952年由美国国家电视标准委员会制订。

它采用正交平衡调幅的技术方式,故也称为正交平衡调幅制。

美国、加拿大等大部分西半球国家以及中国的台湾、日本、韩国、菲律宾等均采用这种制式。

其优点是解码线路简单、成本低。

SECAMSECAM制,SECAM是法文的缩写,意为顺序传送彩色信号与存储恢复彩色信号制,是由法国在1956年提出、1966年制订的一种彩电制式。

彩色电视的制式

彩色电视的制式

彩色电视的基础知识
6.NTSC制解码原理 NTSC制解码主要是
正交解调,其原理方框 图如图1-29所示,其中 的两个同步解调器是乘 法器。解调器用的副载 波与调制器中的副载波 同频、同相。
彩色电视的基础知识
7.NTSC制的主要特点 (1)NTSC制解调解码电路简单,易于集成化。 (2)采用1/2行频间置,亮度和色度串色小,故兼容性 好。 (3)色度信号每行都以同一方式传送,不存在影响图像质 量的行顺序效应。 (4)传输系统引起的微分相位失真很敏感,存在着色度信 号的相位失真对重现彩色图像的色调的影响。NTSC制相位 失真容限必须在±12°以内。
彩色电视的基础知识
色差信号是指基色信号与亮度信号之差,即红色差信号 R-Y、绿色差信号G-Y、蓝色差信号B-Y。兼容制彩色电视系 统都选用R-Y和B-Y两个色差信号进行传输。
采用色差信号传送色度信号具有以下优点: (1)兼容效果好。 (2)传送黑白图像时,因R=G=B,则R-Y=0、B-Y=0, 个色差信号均为零,不会对亮度信号产生干扰。
彩色电视的基础知识
1.3 PAL制彩色电视 PAL制又称逐行倒相正交平衡调幅制,克服了NTSC制
相位失真敏感的缺点。我国采用PAL制。 1.逐行倒相克服相位敏感性
在正交平衡调幅制的基础上,发端把红色度分量FV逐行 倒相传送,这样,PAL制色度信号的表达式为
F=FU±FV=UsinωSCt±VcosωSCt =0.493(B-Y)sinωSCt±0.877( R-Y)VcosωSCt 不倒相的一行称为NTSC行,倒相的一行称为PAL行。对 FV的逐行倒相改善了相位失真,其改善过程用图1-30所示的 矢量表示。

arctg R Y
B Y
|F|——彩色的饱和度, φ——色调的大小,两者 合成色度信号F,矢量图 如图1-26(b)所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

式中U/2是解调出的色差信号,频带为
01.3MHz。同样利用cossct可解调出V信号。
同步检波原理框图
乘法器
V 低通滤波
cosωsct
F


90度移相

恢 复
sinωsct
乘点: 由于抑制了载波,可使传送同样信息能量所需 功率大为减少; 减少副载波对亮度过信号的干扰。
2 正交调幅
将两个调制信号分别对频率相等、相位相差90 度的两个正交载波进行调幅,然后再将着两个调幅 信号进行矢量相加,即可得到正交调幅信号:
u (U s U1 cos 1t) cosst (U s U2 cos 2t) sin st
U sc
cos sct
1 2
U
cos(sc
)t
1 2
U
cos(sc
)t
平衡调幅
u1 U cos tU s cosst
1 2
U U s
cos(s
)t
1 2
U
U
s
cos(s
)t
平衡调幅的过程就是将调制信号与被调制信号相 乘。
平衡调幅的特点:
1. 平衡调幅波的幅度与调制信号幅度的绝对 值成正比。
2. 调幅信号为正值时,平横调幅波与载波同 相;调幅信号为负值时,平横调幅波与载波反相。
F FU FV U sin sct V cos sct FU U sin sct, FV V cos sct
色度信号的振幅和相角分别为:
Fm
U 2 V 2 , a tan U
V
正交平衡调幅色地信号形成框图
sinωsct
副载波发大
sinωsct
90度移相 cosωsct
Fu U平衡调幅
如果两个调制信号分别对正交的两个载波进行 平衡调幅,其合成信号即为正交平衡调幅信号:
u U1 cos 1t U s cosst U2 cos 2t U s sin st
3 色度信号的形成
将两个色差信号分别对两个正交的副载波进行 平衡调幅之前,先要进行压缩:
U=0.493(B-Y) V=0.877(R-Y) 然后U、V分别对两个正交副载波进行调制:
4 应尽可能减小黑白电视收看彩色节目时的彩色 干扰,以及彩色电视中色度信号对亮度信号的 干扰。
2.1.2 大面积着色原理
当重现彩色图像时,对面积较大的各种颜色较为 敏感,而对彩色的细节部分辨识能力较差。
因此,彩色图像的细节部分在一定距离上观看, 所表现为亮度上的差别,而无颜色的差别。
那么在传送彩色图像时r ,只有大面积部分需要在 传送其亮度信息的同时还必须传送其色度信息。而彩 色的细节部分,则可以用亮度信息来取代,例如红色:
U
Fv V平衡调幅
V
2.3.2 同步检波原理
同步检波是利用两个色度分量FU和FV的相位 差来解调出色差信号的,也称为同步解调。
22
2
U U cos 2 sct V sin 2 sct
U sin sct V cos sct sin sct 2
F sin sct (U sin sct V cos sct) sin sct
第二章 彩色电视制式 与彩色电视信号
彩色制式: 指对彩色电视信号加工处理和传输的特定 方式,即NTSC、PAL、SECAM。
2.1 兼容制传送方式 2.1.1 兼容的必要条件 1 所传送的电视信号中应有亮度信号和色 度信号两部分。 2 彩色电视信号通道的频率特性应与黑白 电视通道频率特性基本一致。
3 彩色电视与黑白电视应有相同的扫描方式及扫 描频率。
2.3 色度信号与色同步信号
2.3.1 色度信号形成
色度信号:将两个色差信号分别对正交的两个 副载波进行平衡调幅而得到的信号。
1. 平衡调幅:即抑制载波的一种调制方式,
调制信号为: u U cos t 载波信号为:usc U sc cossct
所以:
u1 (U sc u ) cossct
(U sc U cos t) cossct
所以显示的亮度为Yd为: Yd=0.3Rd+0.59Gd+0.11Bd=Yt
对于黑白电视机而言,接收彩色信号时会产生亮 度误差,只有接收黑白图像时,亮度误差才为零。
2.2.2 标准彩条亮度与色 差信号的波形与特点
100%幅度,100%饱 和度彩条信号。
三基色电压 亮度信号:含直流、单 极性。 色差信号:奇对称、交 流、不含直流成分。
注意:色差信号并不对应某一个颜色,即红色 差信号并不表示红色;蓝色差信号并不表示蓝色。
恒定亮度原理
在不计γ失真及传输系统非线性的条件下,色差 信号受到干扰时,将不会影响亮度信号。传送后的电 视信号:Yt、(R-Y)t、(B-Y)t,
显示端的信号为:Rd=(R-Y)t +Yt Bd=(B-Y)t+Yt Gd=[-0.5(R-Y)t -0.19(B-Y)t ]+Yt
2.2.1 亮度、色差与RGB关系
亮度关系式:Y=0.3R+0.59G+0.11B
色差关系式:
(R-Y)=0.7R-0.59G-0.11B
(B-Y)=-0.3R-0.59G+0.89B
(G-Y)=-0.3R+0.41G-0.11B
通常选取(R-Y)与(B-Y)作为传送对象。那么(G-
Y)为:
记住
(G-Y)=-0.51(R-Y)-0.19(B-Y)
(R Y )0~1.3MHz Y0~6MYz R0~1.3MHz Y0~6MHz
彩色图像细节部分用亮度信息表示
1.0mm
2.5mm
5mm
2.1.3 频谱交错原理
将色度信号通过一副载波的调制,使 谱线搬移,并交错地安插在黑白信号的频 谱中去。
2.2 亮度信号与色差信号
Y=0.3R+0.59G+0.11B 在Y、R、G、B共4个变量中,只有3 个变量时独立的。因此,只要传送Y与三个 基色中的任意两个,既满足兼容需要,又 可以满足传送亮度与色度信息的需要。 在色度信息时,通常选择传送不反映 亮度信息色度信息,即色差信息: (R-Y)、(G-Y)、(B-Y) 红色差 绿色差 蓝色差
将色差信号与Y信号相减即为三基色信号。
彩色图像摄取
在传送黑白电视信号时,其色度信号为零,此 时R=G=B=E,
Y=0.3E+0.59E+0.11E=E R-Y=E-E=0 B-Y=E-E=0
若R、G、B不相等,且不为零,此时被传送的 彩色为非饱和色。只有其中一个或两个为零,则所 传送色彩色为饱和色。
相关文档
最新文档