2015届高三数学一轮复习教案:1正弦定理和余弦定理 必修五

合集下载

正弦定理教学设计(精选5篇)

正弦定理教学设计(精选5篇)

正弦定理教学设计正弦定理教学设计什么是教学设计教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。

正弦定理教学设计(精选5篇)作为一名专为他人授业解惑的人民教师,通常会被要求编写教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。

那么教学设计应该怎么写才合适呢?下面是小编精心整理的正弦定理教学设计(精选5篇),仅供参考,大家一起来看看吧。

正弦定理教学设计1一、教学内容分析本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。

本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。

因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。

二、学情分析对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。

根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。

三、设计思想:培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。

如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。

高中数学必修5《正弦定理和余弦定理》教案

高中数学必修5《正弦定理和余弦定理》教案

高中数学必修5《正弦定理和余弦定理》教案高中数学必修5《正弦定理和余弦定理》教案【一】教学准备教学目标进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.教学重难点教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程一、复习准备:1. 写出正弦定理、余弦定理及推论等公式.2. 讨论各公式所求解的三角形类型.二、讲授新课:1. 教学三角形的解的讨论:① 出示例1:在△ABC中,已知下列条件,解三角形.分两组练习→ 讨论:解的个数情况为何会发生变化?②用如下图示分析解的情况. (A为锐角时)② 练习:在△ABC中,已知下列条件,判断三角形的解的情况.2. 教学正弦定理与余弦定理的活用:① 出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦.分析:已知条件可以如何转化?→ 引入参数k,设三边后利用余弦定理求角.② 出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.分析:由三角形的什么知识可以判别? → 求最大角余弦,由符号进行判断③ 出示例4:已知△ABC中,,试判断△ABC的形状.分析:如何将边角关系中的边化为角? →再思考:又如何将角化为边?3. 小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:3. 作业:教材P11 B组1、2题.高中数学必修5《正弦定理和余弦定理》教案【二】一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。

(2)重点、难点。

重点:正余弦定理的证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。

高中数学正弦定理教案5篇

高中数学正弦定理教案5篇

高中数学正弦定理教案5篇高中数学正弦定理教案篇1一、教材分析《正弦定理》是人教版教材必修五第一章《解三角形》的第一节内容,也是三角形理论中的一个重要内容,与初中学习的三角形的边和角的基本关系有密切的联系。

在此之前,学生已经学习过了正弦函数和余弦函数,知识储备已足够。

它是后续课程中解三角形的理论依据,也是解决实际生活中许多测量问题的工具。

因此熟练掌握正弦定理能为接下来学习解三角形打下坚实基础,并能在实际应用中灵活变通。

二、教学目标根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。

能力目标:探索正弦定理的证明过程,用归纳法得出结论,并能掌握多种证明方法。

情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。

三、教学重难点教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

四、教法分析依据本节课内容的特点,学生的认识规律,本节知识遵循以教师为主导,以学生为主体的指导思想,采用与学生共同探索的教学方法,命题教学的发生型模式,以问题实际为参照对象,激发学生学习数学的好奇心和求知欲,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化,并且运用例题和习题来强化内容的掌握,突破重难点。

即指导学生掌握“观察——猜想——证明——应用”这一思维方法。

学生采用自主式、合作式、探讨式的学习方法,这样能使学生积极参与数学学习活动,培养学生的合作意识和探究精神。

五、教学过程本节知识教学采用发生型模式:1、问题情境有一个旅游景点,为了吸引更多的游客,想在风景区两座相邻的山之间搭建一条观光索道。

已知一座山A到山脚C的上面斜距离是1500米,在山脚测得两座山顶之间的夹角是450,在另一座山顶B测得山脚与A山顶之间的夹角是300。

人教版高考总复习一轮数学精品课件 主题二 函数 第五章三角函数、解三角形-第七节 正弦定理和余弦定理

人教版高考总复习一轮数学精品课件 主题二 函数 第五章三角函数、解三角形-第七节 正弦定理和余弦定理
1
4
π
2
π
2
15
,
8
解因为cos = − ,所以 < < π,故0 < < ,又sin =
sin 2 = 2sin cos =
cos 2 =
2cos2
−1=
15

×
4
1
2× −1
16
1

4
=
=−
7
− .而sin
8
=
故sin 2 − = sin 2cos − cos 2 ⋅ sin = −
=− −




,
,
移项得 + = ,
所以△ 一定为直角三角形.


.又因为A, ∈ , ,
[对点训练2](1)在△ 中,内角,,所对的边分别是,,,若
− cos = 2 − cos ,则△ 的形状为() D
A.等腰三角形
B.直角三角形

=

+


− ⋅ = + − × × × = ,得 = .故选D.
(2)在△ 中,角,,的对边分别为,,.若 = 2, = 30∘ , = 105∘ ,则 =()
A.1B. 2C.2 2D.2 3
[解析]∵ = ∘ , = ∘ , + + = ∘ ,∴ = ∘ ,∴由正弦定理可知
6 = 4 2 + 2 + 2 ,解得 = 1(负值舍).
②求sin 的值;
解由①可求出 = 2,而0 < < π,所以sin = 1 − cos 2 =

高三数学一轮复习精品教案1:正弦定理和余弦定理教学设计

高三数学一轮复习精品教案1:正弦定理和余弦定理教学设计

4.6正弦定理和余弦定理1.正弦定理a sin A =b sin B =c sin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形: (1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C . 2.余弦定理a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin B =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).1.由正弦定理解已知三角形的两边和其中一边的对角求另一边的对角时易忽视解的判断.2.在判断三角形形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.『试一试』1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.『解析』设BD =1,则AB =AD =32,BC =2.在△ABD 中,解得sin A =223,在△ABC 中,由正弦定理AB sin C =BC sin A ,得sin C =66.『答案』662.(2013·扬州三模)如果满足∠ABC =60°,AB =8,AC =k 的△ABC 有两个,那么实数k 的取值范围是________.『解析』由条件得8sin 60°<k <8,从而k 的取值范围是(43,8). 『答案』(43,8)1.把握三角形中的边角关系在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .2.选用正弦定理或余弦定理的原则如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.『练一练』1.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为________.『答案』432.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a ,3sin A =5sin B ,则角C =________.『解析』由3sin A =5sin B 可得3a =5b ,又b +c =2a ,所以可令a =5t (t >0),则b =3t ,c =7t ,可得cos C =a 2+b 2-c 22ab=5t2+3t 2-7t 22×5t ×3t=-12,故C =2π3.『答案』2π3考点一利用正弦、余弦定理解三角形『典例』 (2013·徐州摸底)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a cos C -b cos C =c cos B -c cos A ,且C =120°.(1)求角A ; (2)若a =2,求c .『解析』 (1)由正弦定理及a cos C -b cos C =c cos B -c cos A 得sin A cos C -sin B cos C =sin C cos B -sin C cos A .所以sin(A +C )=sin(B +C ).因为A ,B ,C 是三角形的内角,所以A +C =B +C ,所以A =B . 又因为C =120°,所以A =30°.(2)由(1)知a =b =2,所以c 2=a 2+b 2-2ab cos C =4+4-2×2×2cos 120°=12,所以c =2 3.『备课札记』 『类题通法』1.应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.『针对训练』(2013·南京、盐城一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若cos ⎝⎛⎭⎫A +π6 =sin A ,求A 的值; (2)若cos A =14,4b =c ,求sin B 的值.『解析』(1)因为cos ⎝⎛⎭⎫A +π6=sin A , 即cos A cos π6-sin A sin π6=sin A ,所以32cos A =32sin A . 显然cos A ≠0,否则由cos A =0得sin A =0,与sin 2 A +cos 2 A =1矛盾,所以tan A =33. 因为0<A <π,所以A =π6.(2)因为cos A =14,4b =c ,根据余弦定理得a 2=b 2+c 2-2bc cos A =15b 2,所以a =15b .因为cos A =14,所以sin A =1-cos 2 A =154.由正弦定理得15b sin A =b sin B ,所以sin B =14. 考点二利用正弦、余弦定理判定三角形的形状『典例』 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状. 『解析』 (1)∵2a sin A =(2b -c )sin B +(2c -b )sin C ,得2a 2=(2b -c )b +(2c -b )c , 即bc =b 2+c 2-a 2, ∴cos A =b 2+c 2-a 22bc =12,∴A =60°.(2)∵A +B +C =180°, ∴B +C =180°-60°=120°. 由sin B +sin C =3, 得sin B +sin(120°-B )=3,∴sin B +sin 120°cos B -cos 120°sin B = 3. ∴32sin B +32cos B =3, 即sin(B +30°)=1.又∵0°<B <120°,30°<B +30°<150°, ∴B +30°=90°, 即B =60°. ∴A =B =C =60°, ∴△ABC 为正三角形.『备课札记』在本例条件下,若sin B ·sin C =sin 2A ,试判断△ABC 的形状. 『解析』由正弦定理,得bc =a 2, 又b 2+c 2=a 2+bc , ∴b 2+c 2=2bc .∴(b -c )2=0.即b =c ,又A =60°, ∴△ABC 是等边三角形. 『类题通法』判定三角形形状的两种常用途径(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断.(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断.提醒:在判断三角形形状时一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.『针对训练』(2014·镇江期末)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足b cos C +12c =a .(1)求角B ;(2)若a ,b ,c 成等比数列,判断△ABC 的形状.『解析』(1)法一:由正弦定理得sin B cos C +12sin C =sin A .而sin A =sin(B +C )=sin B cos C +cos B sin C . 故cos B sin C =12sin C .在△ABC 中,sin C ≠0,故cos B =12.因为0<B <π,所以B =π3.法二:由余弦定理得b ·a 2+b 2-c 22ab +12c =a .化简得a 2+b 2-c 2+ac =2a 2,即b 2-c 2+ac =a 2, 所以cos B =a 2+c 2-b 22ac =12.因为0<B <π,所以B =π3.(2)由题知b 2=ac .由(1)知b 2=a 2+c 2-ac ,所以a 2+c 2-2ac =0,即a =c , 所以a =b =c ,所以△ABC 是等边三角形.考点三与三角形面积有关的问题『典例』 (2013·苏州暑假调查)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =60°且cos(B +C )=-1114.(1)求cos C 的值;(2)若a =5,求△ABC 的面积.『解析』 (1)在△ABC 中,由cos(B +C )=-1114.得sin(B +C )=1-cos 2B +C =1-⎝⎛⎭⎫-11142=5314.又B =60°,所以cos C =cos 『(B +C )-B 』=cos(B +C )cos B +sin(B +C )sin B =-1114×12+5314×32=17.(2)因为cos C =17,C 为△ABC 的内角,sin(B +C )=5314,所以sin C =1-cos 2C = 1-⎝⎛⎭⎫172=437,sin A =sin(B +C )=5314.在△ABC 中,由正弦定理a sin A =c sin C 得55314=c 437, 所以c =8.又a =5,sin B =32, 所以△ABC 的面积为S =12ac sin B =12 ×5×8×32=10 3. 『备课札记』 『类题通法』三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 『针对训练』(2013·南通一调)在△ABC 中,A ,B ,C 所对的边分别是a ,b ,c ,且b cos B 是a cos C ,c cos A 的等差中项.(1)求B 的大小;(2)若a +c =10,b =2,求△ABC 的面积. 『解析』(1)由题意得a cos C +c cos A =2b cos B .由正弦定理得sin A cos C +sin C cos A =2sin B cos B ,即sin(A +C )=2sin B cos B . 因为A +C =π-B,0<B <π,所以sin(A +C )=sin B ≠0,所以cos B =12,所以B =π3.(2)由B =π3得a 2+c 2-b 22ac =12,即a +c2-2ac -b 22ac=12, 所以ac =2.所以S △ABC =12ac sin B =32.『课堂练通考点』1.在△ABC 中,a =1,c =2,B =60°,则b =________. 『解析』由余弦定理得b =12+22-2×1×2cos 60°= 3. 『答案』32.(2014·无锡调研)在△ABC 中,A =45°,C =105°,BC =2,则AC 的长度为________. 『解析』在△ABC 中,由A =45°,C =105°得B =30°.由正弦定理AC sin B =BC sin A 得AC 12=222,所以AC =1.『答案』13.(2014·镇江质检)在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos C =________. 『解析』由正弦定理a sin A =b sin B =csin C, 得sin A ∶sin B ∶sin C =a ∶b ∶c ,令a =2,b =3,c =4, 再利用余弦定理得cos C =-14.『答案』-144.(2013·山东高考改编)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若B =2A ,a =1,b =3,则c =________.『解析』由已知及正弦定理得1sin A =3sin B =3sin 2A =32sin A cos A ,所以cos A =32,A =30°.结合余弦定理得12=(3)2+c 2-2c ×3×32,整理得c 2-3c +2=0,解得c =1或c =2. 当c =1时,△ABC 为等腰三角形,A =C =30°,B =2A =60°,不满足内角和定理,故c =2.『答案』25.(2013·南通一调)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,tan C =sin A +sin Bcos A +cos B .(1)求角C 的大小;(2)若△ABC 的外接圆直径为1,求a 2+b 2的取值范围. 『解析』(1)因为tan C =sin A +sin Bcos A +cos B ,即sin C cos C =sin A +sin Bcos A +cos B. 所以sin C cos A +sin C cos B =cos C sin A +cos C sin B , 即sin C cos A -cos C sin A =cos C sin B -sin C cos B , 所以sin(C -A )=sin(B -C ).所以C -A =B -C 或C -A =π-(B -C )(不成立), 即2C =A +B ,所以C =π3.(2)由C =π3,设A =π3+α,B =π3-α,0<A <2π3,0<B <2π3,知-π3<α<π3.因为a =2R sin A =sin A ,b =2R sin B =sin B , 所以a 2+b 2=sin 2A +sin 2 B =1-cos 2A 2+1-cos 2B2=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2π3+2α+cos ⎝⎛⎭⎫2π3-2α =1+12cos 2α.由-π3<α<π3知-2π3<2α<2π3,-12<cos 2α≤1,故34<a 2+b 2≤32.。

正弦定理和余弦定理教学设计

正弦定理和余弦定理教学设计

《正弦定理和余弦定理》复习课教学设计二、实施教学过程∠=,请你帮忙计算出BAC45,75∠=,如果需要在以45,75BAC圆的区域内规划观光区,请求解出这个外接圆区域的面积。

变∠=,如果需要对三角形BAC45,75区域的面积.3. 三角形常用675°45°由acos A =bcos B =ccos C ,利用正弦定理可得sin A cos A =sin B cos B =sin Ccos C ,即tan A =tan B =tan C ,A =B =C ,△ABC 是等边三角形,A 正确;由正弦定理可得sin A cos A =sin B cos B ⇒sin 2A =sin 2B ,2A 2B 或2A +2B =π, △ABC 是等腰或直角三角形,B 不正确;由正弦定理可得sin B cos C +sin C cos B =sin B ,即sin (B +C )=sin B ,sin A =sin B , 则A =B,ΔABC 等腰三角形,C 正确;由正弦定理可得cos C =a 2+b 2−c 22ab >0,角C 为锐角,角,A B 不一定是锐角,D 不正确,故选AC.【设计意图】通过这道题,归纳判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.分析新高考的变化,提出应对的策略。

多选题,重基础,公式的多方向,多角度的变形使用。

【例2】在○1√3cos C (a cos B +b cos A )=c sin C ,○2a sin A+B2=c sin A ,○3(sin B −sin A )2=sin 2C −sin B sin A 这三个条件中任选一个,补充在下面问 题中已知ΔABC 的内角,,A B C 所对的边分别为,,a b c ,当 时,求sin A ⋅sin B 的最大值.【解析】【分析】根据正弦定理或余弦定理计算得到3C π=,再计算11sin sin 2s 264in A B A π⎛⎫=-+ ⎪⎝⎭⋅,得到最值.【详解】若选①,则由正弦定理()3cos sin cos sin cos sin sin C A B B A C C +=,20,A ⎛∈ ⎝法二:设∆22b a ∴+-ABC的周长为设计意图:通过此题,让学生体验:三角函数式的化简要遵循“三看”原则重要一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式函数名称,看函数名称之间的差异,从而确定使用的公式,常见的有切化弦;三看结构特征,分析结构特征,可以帮助我们找到变形的方向,如遇到分式要通分等。

高考数学一轮复习教学案正弦定理和余弦定理的应用

高考数学一轮复习教学案正弦定理和余弦定理的应用

第八节正弦定理和余弦定理的应用[知识能否忆起]1.实际问题中的有关概念(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).(2)方位角:从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图2).(3)方向角:相对于某一正方向的水平角(如图3)①北偏东α°即由指北方向顺时针旋转α°到达目标方向.②北偏西α°即由指北方向逆时针旋转α°到达目标方向.③南偏西等其他方向角类似.(4)坡度:①定义:坡面与水平面所成的二面角的度数(如图4,角θ为坡角).②坡比:坡面的铅直高度与水平长度之比(如图4,i为坡比).2.解三角形应用题的一般步骤(1)审题,理解问题的实际背景,明确已知和所求,理清量与量之间的关系;(2)根据题意画出示意图,将实际问题抽象成解三角形模型;(3)选择正弦定理或余弦定理求解;(4)将三角形的解还原为实际问题,注意实际问题中的单位、近似计算要求.[小题能否全取]1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β之间的关系是( ) A .α>β B .α=β C .α+β=90°D .α+β=180°答案:B2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析:选B 如图所示, ∠ACB =90°, 又AC =BC , ∴∠CBA =45°, 而β=30°,∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°.3.(教材习题改编)如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 mD.2522m解析:选A 由正弦定理得AB =AC ·sin ∠ACB sin B =50×2212=502(m).4.(·上海高考)在相距2千米的A 、B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A 、C 两点之间的距离为________千米.解析:如图所示,由题意知∠C =45°,由正弦定理得AC sin 60°=2sin 45°,∴AC =222·32= 6. 答案: 65.(·泰州模拟)一船向正北航行,看见正东方向有相距8海里的两个灯塔恰好在一条直线上.继续航行半小时后,看见一灯塔在船的南偏东60°,另一灯塔在船的南偏东75°,则这艘船每小时航行________海里.解析:如图,由题意知在△ABC 中,∠ACB =75°-60°=15°,B =15°,∴AC =AB =8.在Rt △AOC 中,OC =AC ·sin 30°=4. ∴这艘船每小时航行412=8海里.答案:8解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.测量距离问题典题导入[例1] 郑州市某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC 、△ABD ,经测量AD =BD =7米,BC =5米,AC =8米,∠C =∠D .(1)求AB 的长度;(2)若不考虑其他因素,小李、小王谁的设计使建造费用最低(请说明理由). [自主解答] (1)在△ABC 中,由余弦定理得 cos C =AC 2+BC 2-AB 22AC ·BC =82+52-AB 22×8×5,①在△ABD 中,由余弦定理得cos D =AD 2+BD 2-AB 22AD ·BD =72+72-AB 22×7×7,②由∠C =∠D 得cos C =cos D .解得AB =7,所以AB 的长度为7米. (2)小李的设计使建造费用最低. 理由如下:易知S △ABD =12AD ·BD sin D ,S △ABC =12AC ·BC sin C ,因为AD ·BD >AC ·BC ,且∠C =∠D , 所以S △ABD >S △ABC .故选择△ABC 的形状建造环境标志费用较低.若环境标志的底座每平方米造价为5 000元,试求最低造价为多少? 解:因为AD =BD =AB =7,所以△ABD 是等边三角形, ∠D =60°,∠C =60°.故S △ABC =12AC ·BC sin C =103,所以所求的最低造价为5 000×103=50 000 3≈86 600元.由题悟法求距离问题要注意:(1)选定或确定要求解的三角形,即所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.以题试法1.如图所示,某河段的两岸可视为平行,为了测量该河段的宽度,在河段的一岸边选取两点A 、B ,观察对岸的点C ,测得∠CAB =105°,∠CBA =45°,且AB =100 m.(1)求sin ∠CAB 的值; (2)求该河段的宽度. 解:(1)sin ∠CAB =sin 105° =sin(60°+45°)=sin 60°cos 45°+cos 60°sin 45° =32×22+12×22=6+24. (2)因为∠CAB =105°,∠CBA =45°, 所以∠ACB =180°-∠CAB -∠CBA =30°. 由正弦定理,得AB sin ∠ACB =BC sin ∠CAB ,则BC =AB ·sin 105°sin 30°=50(6+2)(m).如图所示,过点C 作CD ⊥AB ,垂足为D ,则CD 的长就是该河段的宽度.在Rt △BDC 中,CD =BC ·sin 45°=50(6+2)×22=50(3+1)(m). 所以该河段的宽度为50(3+1)m.测量高度问题典题导入[例2] (·九江模拟)如图,在坡度一定的山坡A 处测得山顶上一建筑物CD (CD 所在的直线与地平面垂直)对于山坡的斜度为α,从A 处向山顶前进l 米到达B 后,又测得CD 对于山坡的斜度为β,山坡对于地平面的坡角为θ.(1)求BC 的长;(2)若l =24,α=15°,β=45°,θ=30°,求建筑物CD 的高度.[自主解答] (1)在△ABC 中,∠ACB =β-α, 根据正弦定理得BC sin ∠BAC =ABsin ∠ACB ,所以BC =l sin αsin (β-α).(2)由(1)知BC =l sin αsin (β-α)=24×sin 15°sin 30°=12(6-2)米.在△BCD 中,∠BDC =π2+π6=2π3,sin ∠BDC =32,根据正弦定理得BC sin ∠BDC =CDsin ∠CBD ,所以CD =24-83米.由题悟法求解高度问题应注意:(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.以题试法2.(·西宁模拟)要测量底部不能到达的电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,求电视塔的高度.解:如图,设电视塔AB 高为x m ,则在Rt △ABC 中,由∠ACB =45°得BC =x .在Rt △ADB 中,∠ADB =30°,则BD =3x .在△BDC 中,由余弦定理得, BD 2=BC 2+CD 2-2BC ·CD ·cos 120°, 即(3x )2=x 2+402-2·x ·40·cos 120°,解得x =40,所以电视塔高为40米.测量角度问题典题导入[例3] (·太原模拟)在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,若侦察艇以每小时14 n mile 的速度,沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.[自主解答] 如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x ,∠ABC =120°.根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2.故AC =28,BC =20.根据正弦定理得BC sin α=AC sin 120°,解得sin α=20sin 120°28=5314.所以红方侦察艇所需要的时间为2小时,角α的正弦值为5314.由题悟法1.测量角度,首先应明确方位角,方向角的含义.2.在解应用题时,分析题意,分清已知与所求,再根据题意正确画出示意图,通过这一步可将实际问题转化为可用数学方法解决的问题,解题中也要注意体会正、余弦定理综合使用的特点.以题试法3.(·无锡模拟)如图,两座相距60 m 的建筑物AB 、CD 的高度分别为20 m 、50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角∠CAD 的大小是________.解析:∵AD 2=602+202=4 000,AC 2=602+302=4 500. 在△CAD 中,由余弦定理得cos ∠CAD =AD 2+AC 2-CD 22AD ·AC =22,∴∠CAD =45°.答案:45°1.在同一平面内中,在A 处测得的B 点的仰角是50°,且到A 的距离为2,C 点的俯角为70°,且到A 的距离为3,则B 、C 间的距离为( )A.16B.17C.18D.19解析:选D ∵∠BAC =120°,AB =2,AC =3. ∴BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC =4+9-2×2×3×cos 120°=19. ∴BC =19.2.一个大型喷水池的有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m解析:选A 设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2·h ·100·cos 60°,即h 2+50h -5 000=0,即(h -50)(h +100)=0,即h =50,故水柱的高度是50 m.3.(·天津高考) 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知8b =5c ,C =2B ,则cos C =( )A.725B .-725C .±725D.2425解析:选A 由C =2B 得sin C =sin 2B =2sin B cos B ,由正弦定理及8b =5c 得cos B =sin C 2 sin B =c 2b =45,所以cos C =cos 2B =2cos 2 B -1=2×⎝⎛⎭⎫452-1=725. 4.(·厦门模拟)在不等边三角形ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,其中a 为最大边,如果sin 2(B +C )<sin 2B +sin 2C ,则角A 的取值范围为( )A.⎝⎛⎭⎫0,π2 B.⎝⎛⎭⎫π4,π2 C.⎝⎛⎭⎫π6,π3D.⎝⎛⎭⎫π3,π2解析:选D 由题意得sin 2A <sin 2B +sin 2C , 再由正弦定理得a 2<b 2+c 2,即b 2+c 2-a 2>0. 则cos A =b 2+c 2-a 22bc >0,∵0<A <π,∴0<A <π2.又a 为最大边,∴A >π3.因此得角A 的取值范围是⎝⎛⎭⎫π3,π2.5.一艘海轮从A 处出发,以每小时40海里的速度沿东偏南50°方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是东偏南20°,在B 处观察灯塔,其方向是北偏东65°,那么B 、C 两点间的距离是( )A .10 2 海里B .10 3 海里C .20 2 海里D .20 3 海里解析:选A 如图所示,由已知条件可得,∠CAB =30°,∠ABC =105°, ∴∠BCA =45°.又AB =40×12=20(海里),∴由正弦定理可得20sin 45°=BCsin 30°.∴BC =20×1222=102(海里).6.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18 km ,速度为1 000 km/h ,飞行员先看到山顶的俯角为30°,经过1 min 后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1 km)( )A .11.4B .6.6C .6.5D .5.6解析:选B ∵AB =1 000×1 000×160=50 0003 m ,∴BC =AB sin 45°·sin 30°=50 00032m.∴航线离山顶h =50 00032×sin 75°≈11.4 km.∴山高为18-11.4=6.6 km.7.(·南通调研)“温馨花园”为了美化小区,给居民提供更好的生活环境,在小区内的一块三角形空地上(如图,单位:m)种植草皮,已知这种草皮的价格是120元/m 2,则购买这种草皮需要________元.解析:三角形空地的面积S =12×123×25×sin 120°=225,故共需225×120=27 000元.答案:27 0008.(·潍坊模拟)如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°的方向,且与它相距8 2 n mile.此船的航速是________n mile/h.解析:设航速为v n mile/h ,在△ABS 中AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,则v =32.答案:329.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析:如图,OM =AO tan 45°=30(m),ON =AO tan 30°=33×30=103(m), 在△MON 中,由余弦定理得, MN = 900+300-2×30×103×32=300=103(m).答案:10 310.如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解:在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°, ∴∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =AD sin B, ∴AB =AD ·sin ∠ADB sin B=10sin 60°sin 45°=10×3222=5 6. 11.某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A 、B 、C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A 、B 两地相距100米,∠BAC =60°,在A 地听到弹射声音的时间比B 地晚217秒.在A 地测得该仪器至最高点H 时的仰角为30°,求该仪器的垂直弹射高度CH .(声音的传播速度为340米/秒)解:由题意,设AC =x ,则BC =x -217×340=x -40, 在△ABC 中,由余弦定理得BC 2=BA 2+CA 2-2BA ·CA ·cos ∠BAC ,即(x -40)2=x 2+10 000-100x ,解得x =420.在△ACH 中,AC =420,∠CAH =30°,∠ACH =90°,所以CH =AC ·tan ∠CAH =140 3.答:该仪器的垂直弹射高度CH 为1403米.12.(·兰州模拟)某单位在抗雪救灾中,需要在A ,B 两地之间架设高压电线,测量人员在相距6 km 的C ,D 两地测得∠ACD =45°,∠ADC =75°,∠BDC =15°,∠BCD =30°(如图,其中A ,B ,C ,D 在同一平面上),假如考虑到电线的自然下垂和施工损耗等原因,实际所需电线长度大约应该是A ,B 之间距离的1.2倍,问施工单位至少应该准备多长的电线?解:在△ACD 中,∠ACD =45°,CD =6,∠ADC =75°,所以∠CAD =60°.因为CD sin ∠CAD =AD sin ∠ACD, 所以AD =CD ×sin ∠ACD sin ∠CAD=6×2232=2 6. 在△BCD 中,∠BCD =30°,CD =6,∠BDC =15°,所以∠CBD =135°.因为CD sin ∠CBD =BD sin ∠BCD, 所以BD =CD ×sin ∠BCD sin ∠CBD=6×1222=3 2. 又因为在△ABD 中,∠BDA =∠BDC +∠ADC =90°,所以△ABD 是直角三角形.所以AB =AD 2+BD 2=(26)2+(32)2=42.所以电线长度至少为l =1.2×AB =6425(单位:km) 答:施工单位至少应该准备长度为6425km 的电线.1.某城市的电视发射塔CD 建在市郊的小山上,小山的高BC 为35 m ,在地面上有一点A ,测得A ,C 间的距离为91 m ,从A 观测电视发射塔CD 的视角(∠CAD )为45°,则这座电视发射塔的高度CD 为________米.解析:AB =912-352=84,tan ∠CAB =BC AB =3584=512.由CD +3584=tan(45°+∠CAB )=1+5121-512=177,得CD =169. 答案:1692.10月29日,超级风暴“桑迪”袭击美国东部,如图,在灾区的搜救现场,一条搜救狗从A 处沿正北方向行进x m 到达B 处发现一个生命迹象,然后向右转105°,行进10 m 到达C 处发现另一生命迹象,这时它向右转135°后继续前行回到出发点,那么x =________.解析:∵由题知,∠CBA =75°,∠BCA =45°,∴∠BAC =180°-75°-45°=60°,∴x sin 45°=10sin 60°.∴x =1063m. 答案:1063m 3.(·泉州模拟)如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里的C 处的乙船.(1)求处于C 处的乙船和遇险渔船间的距离;(2)设乙船沿直线CB 方向前往B 处救援,其方向与CA ―→成θ角,求f (x )=sin 2θsin x +34cos 2θcos x (x ∈R )的值域.解:(1)连接BC ,由余弦定理得BC 2=202+102-2×20×10cos 120°=700.∴BC =107,即所求距离为107海里. (2)∵sin θ20=sin 120°107, ∴sin θ= 37. ∵θ是锐角,∴cos θ=47. f (x )=sin 2θsin x +34cos 2θcos x =37sin x +37cos x =237sin ⎝⎛⎭⎫x +π6, ∴f (x )的值域为⎣⎡⎦⎤-237,237.1.如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问:乙船每小时航行多少海里?解:如图,连接A 1B 2由已知A 2B 2=102,A 1A 2=302×2060=102, ∴A 1A 2=A 2B 2.又∠A 1A 2B 2=180°-120°=60°,∴△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∴∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45° =202+(102)2-2×20×102×22=200, ∴B 1B 2=10 2. 因此,乙船的速度为10220×60=30 2(海里/时). 2.如图,扇形AOB 是一个观光区的平面示意图,其中圆心角∠AOB 为2π3,半径OA 为1 km.为了便于游客观光休闲,拟在观光区内铺设一条从入口A 到出口B 的观光道路,道路由弧AC 、线段CD 及线段DB 组成,其中D 在线段OB 上,且CD ∥AO .设∠AOC =θ.(1)用θ表示CD 的长度,并写出θ的取值范围;(2)当θ为何值时,观光道路最长?解:(1)在△OCD 中,由正弦定理,得CD sin ∠COD =OD sin ∠DCO =CO sin ∠CDO=23, 所以CD =23sin ⎝⎛⎭⎫2π3-θ=cos θ+13sin θ,OD =23sin θ, 因为OD <OB ,即23sin θ<1, 所以sin θ<32,所以0<θ<π3, 所以CD =cos θ+33sin θ,θ的取值范围为⎝⎛⎭⎫0,π3. (2)设观光道路长度为L (θ),则L (θ)=BD +CD +弧CA 的长=1-23sin θ+cos θ+13sin θ+θ =cos θ-13sin θ+θ+1,θ∈⎝⎛⎭⎫0,π3, L ′(θ)=-sin θ-33cos θ+1, 由L ′(θ)=0,得sin ⎝⎛⎭⎫θ+π6=32, 又θ∈⎝⎛⎭⎫0,π3,所以θ=π6,列表: θ⎝⎛⎭⎫0,π6 π6 ⎝⎛⎭⎫π6,π3 L ′(θ)+ 0 - L (θ)增函数 极大值 减函数所以当θ=π6时,L (θ)达到最大值,即当θ=π6时,观光道路最长.。

高中数学余弦定理教案(优秀5篇)

高中数学余弦定理教案(优秀5篇)

高中数学余弦定理教案(优秀5篇)高中数学余弦定理教案篇一一、说教材(一)教材地位与作用《余弦定理》是必修5第一章《解三角形》的第一节内容,前面已经学习了正弦定理以及必修4中的任意角、诱导公式以及恒等变换,为后面学习三角函数奠定了基础,因此本节课有承上启下的作用。

本节课是解决有关斜三角形问题以及应用问题的一个重要定理,它将三角形的边和角有机地联系起来,实现了边与角的互化,从而使三角与几何产生联系,为求与三角形有关的量提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据。

(二)教学目标根据上述教材内容分析以及新课程标准,考虑到学生已有的认知结构,心理特征及原有知识水平,我将本课的教学目标定为:⒈知识与技能:掌握余弦定理的内容及公式;能初步运用余弦定理解决一些斜三角形⒈过程与方法:在探究学习的过程中,认识到余弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。

⒈情感、态度与价值观:培养学生的探索精神和创新意识;在运用余弦定理的过程中,让学生逐步养成实事求是,扎实严谨的科学态度,学习用数学的思维方式解决问题,认识世界;通过本节的运用实践,体会数学的科学价值,应用价值;(三)本节课的重难点教学重点是:运用余弦定理探求任意三角形的边角关系,解决与之有关的计算问题,运用余弦定理解决一些与测量以及几何计算有关的实际问题。

教学难点是:灵活运用余弦定理解决相关的实际问题。

教学关键是:熟练掌握并灵活应用余弦定理解决相关的实际问题。

下面为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:二、说学情从知识层面上看,高中学生通过前一节课的学习已经掌握了余弦定理及其推导过程;从能力层面上看,学生初步掌握运用余弦定理解决一些简单的斜三角形问题的技能;从情感层面上看,学生对教学新内容的学习有相当的兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不够均衡。

高考总复习一轮数学精品课件 第五章 三角函数 第七节 正弦定理和余弦定理及其应用

高考总复习一轮数学精品课件 第五章 三角函数 第七节 正弦定理和余弦定理及其应用
(1)在△ABC中,一定有a+b+c=sin A+sin B+sin C.( × )
(2)在△ABC中,若sin 2A=sin 2B,则必有A=B.( × )
(3)在△ABC中,若a2+b2<c2,则△ABC是钝角三角形.(

)
2.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,面积为
3.(2023 全国乙,文 4)记△ABC 的内角 A,B,C 的对边分别为 a,b,c,若 acos Bbcos A=c,且
π
C= ,则
5
B=(
π
A.
10
π
B.
5

C.
10

D.
5
答案 C
)
解析由acos B-bcos A=c及正弦定理,得sin Acos B-sin Bcos A=sin C,
(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;
(2)若式子中含有a,b,c的齐次式,优先考虑正弦定理“边化角”;
(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;
(4)含有面积公式的问题,要考虑结合余弦定理求解;
(5)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.
又因为sin A=sin(B+C)=sin Bcos C+cos Bsin C,
sin B=sin(A+C)=sin Acos C+cos Asin C,
所以sin Bcos C+cos Bsin C-sin Acos C-cos Asin C=sin Ccos B-sin Ccos A,整
理得sin Bcos C-sin Acos C=0,因此(sin B-sin A)cos C=0,所以sin B=sin A或

正弦定理与余弦定理(高三一轮复习)

正弦定理与余弦定理(高三一轮复习)

150°不符合题意,舍去.可得B=30°.
数学 N 必备知识 自主学习 关键能力 互动探究
— 12 —
5.(易错题)在△ABC中,若ab=ccooss AB,则△ABC的形状为( D )
A.等边三角形
B.直角三角形
C.等腰三角形
D.等腰或直角三角形
解析 因为ab=ccooss BA,所以由正弦定理可得ssiinn AB=ccooss AB,即sin Acos A=sin Bcos
— 10 —
3.(2023·江门检测)在△ABC中,已知a= 13,b=4,c=3,则cos A=( A )
12 A.2 B. 2
3 C. 2
D.-
2 2
解析 在△ABC中,已知a= 13,b=4,c=3,由余弦定理得cos A= 422+×342×-313=16+294-13=12.
数学 N 必备知识 自主学习 关键能力 互动探究
数学 N 必备知识 自主学习 关键能力 互动探究
— 16 —
针对训练 1.(2023·陕西渭南月考)在△ABC中,若AB=7,AC=5,∠ACB=120°,则BC =( B ) A.2 2 B.3 C.6 D. 6 解析 在△ABC中,由余弦定理得AB2=AC2+BC2-2AC×BC×cos∠ACB,故 49=25+BC2-2×5×BC× -12 ,即BC2+5BC-24=0,解得BC=3或BC=-8(舍 去).
数学 N 必备知识 自主学习 关键能力 互动探究
— 9—
2.在△ABC中,若AB=3,BC=3 2,∠B=45°,则△ABC的面积为( D )
A.2 2 B.4
7 C.2
9 D.2
解析 由题意,S△ABC=12AB·BC·sin∠B=12×3×3 2× 22=92.

人教A版高中数学必修5第一章 解三角形1.1 正弦定理和余弦定理教案

人教A版高中数学必修5第一章 解三角形1.1 正弦定理和余弦定理教案

专题22正弦定理和余弦定理1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理内容a sin A =b sin B =csin C=2R a 2=b 2+c 22bc cos__A ;b 2=c 2+a 22ca cos__B ; c 2=a 2+b 2-2ab cos__C常见变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin_C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C ;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .高频考点一 利用正弦定理、余弦定理解三角形例1、(1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个D .无法确定(2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A ,B ,C 的度数依次是________.(3)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.答案 (1)B (2)45°,30°,105° (3)1 解析 (1)∵b sin A =6×22=3,∴b sin A <a <b .解得b =1.【感悟提升】(1)判断三角形解的个数的两种方法①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断. ②几何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数. 【变式探究】(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <2 2D .2<x <2 3(2)在△ABC 中,A =60°,AC =2,BC =3,则AB =________. 答案 (1)C (2)1解析 (1)若三角形有两解,则必有a >b ,∴x >2,又由sin A =a b sin B =x 2×22<1,可得x <22,∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB cos A ,化简得x 2-2x +1=0, ∴x =1,即AB =1.高频考点二 利用正弦、余弦定理判定三角形的形状例2、(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b 2-a2=12c 2. (1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2=12c 2及正弦定理得(2)由tan C =2,C ∈(0,π)得 sin C =255,cos C =55,因为sin B =sin(A +C )=sin ⎝ ⎛⎭⎪⎫π4+C ,所以sin B =31010,由正弦定理得c =223b ,又因为A =π4,12bc sin A =3,所以bc =62,故b =3. 【感悟提升】(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 【变式探究】四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2. (1)求C 和BD ;(2)求四边形ABCD 的面积.解 (1)由题设A 与C 互补及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,BD =7,因为C 为三角形内角,故C =60°. (2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C=⎝ ⎛⎭⎪⎫12×1×2+12×3×2sin60° =2 3.高频考点三 正弦、余弦定理的简单应用例3、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案 B【感悟提升】(1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.【变式探究】(1)在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin∠BAC =223,AB =32,AD =3,则BD 的长为______.答案 (1)D (2) 3∴△ABC 为等腰或直角三角形.(2)sin∠BAC =sin(π2+∠BAD )=cos∠BAD ,∴cos∠BAD =223.BD 2=AB 2+AD 2-2AB ·AD cos∠BAD=(32)2+32-2×32×3×223,即BD 2=3,BD = 3.高频考点三 和三角形面积有关的问题【例3】 (2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cosB +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B ·cos A )=sin C ,2cos C sin(A +B )=sinC ,故2sin C cos C =sin C . 由C ∈(0,π)知sin C ≠0, 可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cos C =7,故a 2+b 2=13, 从而(a +b )2=25.所以△ABC 的周长为5+7. 【方法规律】三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【变式探究】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2a -b )cos C -c cos B =0.(1)求角C 的值;(2)若三边a ,b ,c 满足a +b =13,c =7,求△ABC 的面积.1.【2016高考新课标3理数】在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( ) (A )310 (B )10 (C )10- (D )310-【答案】C【解析】设BC 边上的高为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD=.由余弦定理,知22222210cos 210225AB AC BC A AB AC AD AD+-===-⋅⨯⨯,故选C . 2.【2016高考新课标2理数】ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b = . 【答案】21133.【2016高考天津理数】在△ABC 中,若AB ,120C ∠=o ,则AC = ( ) (A )1(B )2(C )3(D )4【答案】A【解析】由余弦定理得213931AC AC AC =++⇒=,选A.4.【2016高考江苏卷】在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 ▲ . 【答案】8. 【解析】sin sin()2sin sin tan tan 2tan tan A B+C B C B C B C==⇒+=,又tan tan tan tan tan 1B+CA=B C -,因tan tan tan tan tan tan tan 2tan tan tan tan tan 8,A B C A B C A B C A B C =++=+≥≥即最小值为8.5.(2016·山东卷)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sinA ),则A =( )A.3π4 B.π3 C.π4 D.π6解析 在△ABC 中,由b =c ,得cos A =b 2+c 2-a 22bc =2b 2-a 22b 2,又a 2=2b 2(1-sin A ),所以cos A =sin A ,即tan A =1,又知A ∈(0,π),所以A =π4,故选C.答案 C【2015高考天津,理13】在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为 ,12,cos ,4b c A -==- 则a 的值为 . 【答案】【解析】因为0A π<<,所以sin 4A ==,又1sin 242ABC S bc A bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.【2015高考北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】1【解析】222sin 22sin cos 2sin sin 2A A A a b c a C C c bc +-==⋅2425361616256⨯+-=⋅=⨯⨯【2015高考新课标1,理16】在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 【答案】(62-,6+2)AB 的取值范围为(62-,6+2).【2015江苏高考,15】(本小题满分14分) 在ABC ∆中,已知ο60,3,2===A AC AB . (1)求BC 的长; (2)求C 2sin 的值 【答案】(17(243【2015高考湖南,理17】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,,tan a b A =,且B 为钝角. (1)证明:2B A π-=;(2)求sin sin A C +的取值范围. 【答案】(1)详见解析;(2)29,]28. 【解析】(1)由tan a b A =及正弦定理,得sin sin cos sin A a AA bB ==,∴sin cos B A =,即sin sin()2B A π=+,又B 为钝角,因此(,)22A πππ+∈,故2B A π=+,即2B A π-=; (2)由(1)知,()C A B π=-+(2)2022A A πππ-+=->,∴(0,)4A π∈,于是sin sin sin sin(2)2A C A A π+=+-2219sin cos 22sin sin 12(sin )48A A A A A =+=-++=--+,∵04A π<<,∴20sin A <<221992(sin )488A <--+≤,由此可知sin sin A C +的取值范围是29]28.(2014·湖北卷)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?即sin ⎝⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温.(2014·江西卷)已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R,θ∈⎝ ⎛⎭⎪⎫-π2,π2.(1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,求a ,θ的值.【解析】(1)f (x )=sin ⎝ ⎛⎭⎪⎫x +π4+2cos ⎝⎛⎭⎪⎫x +π2=22(sin x +cos x )-2sin x =22cos x -22sin x =sin ⎝ ⎛⎭⎪⎫π4-x .因为x ∈[0,π],所以π4-x ∈⎣⎢⎡⎦⎥⎤-3π4,π4,故f (x )在区间[0,π]上的最大值为22,最小值为-1. (2)由⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,得⎩⎪⎨⎪⎧cos θ(1-2a sin θ)=0,2a sin 2θ-sin θ-a =1. 又θ∈⎝ ⎛⎭⎪⎫-π2,π2,知cos θ≠0, 所以⎩⎪⎨⎪⎧1-2a sin θ=0,(2a sin θ-1)sin θ-a =1,解得⎩⎪⎨⎪⎧a =-1,θ=-π6.(2014·四川卷)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值.当sin α+cos α=0时,由α是第二象限角,得α=3π4+2k π,k ∈Z,此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. (2013·北京卷)在△ABC 中,a =3,b =2 6,∠B=2∠A. (1)求cos A 的值; (2)求c 的值.【解析】(1)因为a =3,b =2 6,∠B=2∠A, 所以在△ABC 中,由正弦定理得3sin A =2 6sin 2A .所以2sin Acos A sin A =2 63.故cos A =63. (2)由(1)知cos A =63,所以sin A =1-cos 2A =33. 又因为∠B=2∠A,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =2 23.在△ABC 中,sin C =sin(A +B) =sin AcosB +cos Asin B =5 39. 所以c =a sin Csin A=5.(2013·全国卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c)(a -b +c)=ac. (1)求B ; (2)若sin Asin C =3-14,求C.=32, 故A -C =30°或A -C =-30°,因此C =15°或C =45°. (2013·浙江卷)已知α∈R,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34 D .-43 【答案】C【解析】由(sin α+2cos α)2=1022'得sin 2α+4sin αcos α+4cos 2α=104=52,4sin αcos α+1+3cos 2α=52,2sin 2α+1+3×1+cos 2α2=52,故2sin 2α=-3cos 2α2,所以tan2α=-34,选择C.(2013·重庆卷)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .2 2-1 【答案】C1.在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为32,则C =( ) A.30° B.45°C.60°D.75°解析 法一 ∵S △ABC =12·AB ·AC ·sin A =32,即12×3×1×sin A =32,∴sin A =1, 由A ∈(0°,180°),∴A =90°,∴C =60°.故选C. 法二 由正弦定理,得sin B AC =sin C AB ,即12=sin C 3,sin C =32,又C ∈(0°,180°),∴C =60°或C =120°. 当C =120°时,A =30°,S △ABC =34≠32(舍去).而当C =60°时,A =90°, S △ABC =32,符合条件,故C =60°.故选C. 答案 C2.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =2π3,a =2,b =233,则B 等于( )A.π3B.5π6C.π6或5π6D.π6解析∵A=2π3,a=2,b=233,∴由正弦定理asin A=bsin B可得,sin B=basin A=2332×32=12.∵A=2π3,∴B=π6.答案 D3.在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为( ) A.等边三角形 B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形答案 B4.△ABC的内角A,B,C的对边分别为a,b,c,则“a>b”是“cos 2A<cos 2B”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析因为在△ABC中,a>b⇔sin A>sin B⇔sin2A>sin2B⇔2sin2A>2sin2B⇔1-2sin2A<1-2sin2B⇔cos 2A<cos 2B.所以“a>b”是“cos 2A<cos 2B”的充分必要条件.答案 C5.已知△ABC的内角A,B,C的对边分别为a,b,c,且c-bc-a=sin Asin C+sin B,则B等于( ) A.π6B.π4C.π3D.3π4答案 C解析 根据正弦定理a sin A =b sin B =csin C =2R ,得c -b c -a =sin A sin C +sin B =ac +b, 即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________. 答案π3或2π3解析 由余弦定理,得a 2+c 2-b 22ac=cos B ,结合已知等式得cos B ·tan B =32, ∴sin B =32,∴B =π3或2π3. 7.在△ABC 中,若b =5,B =π4,tan A =2,则a =______.答案 2108.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________. 答案3解析 由正弦定理,可得(2+b )(a -b )=(c -b )·c . ∵a =2,∴a 2-b 2=c 2-bc ,即b 2+c 2-a 2=bc .由余弦定理,得cos A =b 2+c 2-a 22bc =12.∴sin A =32. 由b 2+c 2-bc =4,得b 2+c 2=4+bc . ∵b 2+c 2≥2bc ,即4+bc ≥2bc ,∴bc ≤4. ∴S △ABC =12bc ·sin A ≤3,即(S △ABC )max = 3.9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B . (1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C=4+3310, 所以,△ABC 的面积为S =12ac sin B =83+1825.10.如图,在△ABC 中,B =π3,AB =8,点D 在BC 边上,且CD =2,cos∠ADC =17.(1)求sin∠BAD ; (2)求BD 、AC 的长.在△ABD 中,由正弦定理得 BD =AB ·sin∠BADsin∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+(2+3)2-2×8×5×12=49.所以AC =7.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2-(b -c )2=(2-3)bc ,sin A sin B =cos 2C2,BC 边上的中线AM 的长为7.(1)求角A 和角B 的大小; (2)求△ABC 的面积.解 (1)由a 2-(b -c )2=(2-3)bc , 得a 2-b 2-c 2=-3bc ,∴cos A =b 2+c 2-a 22bc =32,(2)由(1)知,a =b ,由余弦定理得AM 2=b 2+(a2)2-2b ·a2·cos C =b 2+b 24+b 22=(7)2,解得b=2,故S △ABC =12ab sin C =12×2×2×32= 3.12.设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;精品文档. (2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.解 (1)由题意知f (x )=sin 2x 2-1+cos ⎝ ⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z, 可得-π4+k π≤x ≤π4+k π,k ∈Z ; 由π2+2k π≤2x ≤3π2+2k π,k ∈Z, 可得π4+k π≤x ≤3π4+k π,k ∈Z . 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z ); 单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ). (2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12, 由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A ,可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,且当b =c 时等号成立. 因此12bc sin A ≤2+34.所以△ABC 面积的最大值为2+34.。

高考数学一轮总复习教学课件第四章 三角函数、解三角形第一课时 余弦定理和正弦定理

高考数学一轮总复习教学课件第四章 三角函数、解三角形第一课时 余弦定理和正弦定理



,

= =c=csin C,
判断三角形形状的两种途径
[针对训练] (2020·全国Ⅱ卷)△ABC的内角A,B,C的对边分别为
2


a,b,c,已知 cos (+A)+cos A=.
(1)求A;

2
(1)解:由已知得 sin A+cos A=,

2
即 cos A-cos A+=0,





sin B=2× = ,


2
由余弦定理 a =b +c -2bccos A,


2

2
得 2= +c -2× c· ,即 2c -2c-3=0,解得 c=
+




综上,b= ,c=
+

.

或 c=
-

(舍去).
(1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下
所以 sin B=
×

=



=


.


- = ,
(3)求sin(2A-B)的值.








解:(3)因为 cos A=- ,所以 <A<π,故 0<B< ,又 sin A=

2sin Acos A=2×


(-
,所以 c;
2.在△ABC中,已知a,b和A时,解的情况
项目
A为锐角
A为钝角或直角
图形

正弦定理和余弦定理 学案-高三数学一轮复习

正弦定理和余弦定理 学案-高三数学一轮复习

正弦定理和余弦定理【考情分析】以利用正弦、余弦定理解三角形为主,常与三角函数的图象和性质、三角恒等变换、三角形中的几何计算交汇考查,加强数形结合思想的应用意识.题型多样,中档难度.【复习目标】1、能准确表达并会证明正弦定理、余弦定理.2、能正确选择正弦定理或余弦定理,求有关三角形的边和角的问题.3、能够应用定理及定理的变形,解决一些与三角形的计算有关的度量问题.【再现型题组】1、表达并证明正弦定理(可采用多种方法)2、表达并证明余弦定理(可采用多种方法)3、在△ABC 中. 3,4,2ππ===B A a ,那么b=________. 4、在△ABC 中. 10,2,3===BC AC AB 那么A cos =_______,=S 面积 . 【总结归纳】【稳固型题组】()角形唯一确定下列那些条件能使的三中,在变式,30,2: ==∆A b ABC (多项选择) 2.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,假设cos cos a A b B =,请判断△ABC 的形状.4.如图,设B C 、两点在河的两岸,一测量者在B 所在的同侧河岸边选定一点A ,测出AB 的距离为100m ,105ABC ∠=︒,45CAB ∠=︒后,就可以计算出B C 、两点的距离为( )A. m C. m D. m【总结归纳】【提高型题组】例.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B .〔1〕求角B 的大小;〔2〕假设b =3,sin C =2sin A ,求a ,c 的值.【总结归纳】【反应型题组】1.在ABC ∆中,假设2sin sin cos a A B b A +=,那么b a= 2.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,ABC ∆的面积为4222c b a -+,那么c =〔〕3.在ABC ∆中,12,cos ,3sin 2sin 4a c A B ==-=,那么c =4.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,cos 2cos 2cos A C c a B b--=, 〔1〕求sin sin C A 的值; 〔2〕假设1cos ,24B b ==,求ABC ∆的面积S .5.在∆ABC 中,222+=a c b .〔1〕求B ∠ 的大小;〔2〕cos cos A C + 的最大值. 【课堂小结。

2015高考数学(理)一轮复习考点突破课件:3.7正弦定理和余弦定理

2015高考数学(理)一轮复习考点突破课件:3.7正弦定理和余弦定理

1 3 (2)由 S=2bcsin A= 4 bc=5 3得 bc=20, 又 b=5 得 c=4. 由余弦定理得 a2=b2+c2-2bccos A=21.所以 a= 21. bc 2 20 3 5 由正弦定理得 sin Bsin C= 2 sin A= × = . a 21 4 7
• 【归纳提升】 在已知关系式中,若既含有边又含有角,通常的思 路是将角都化成边或将边都化成角,再结合正、余弦定理即可求 角.
解析: 在△ABC 中, 由余弦定理得 AC2=BA2+BC2-2BA· BC· cos B 2 =( 2) +3 -2× 2×3× =5,解得 AC= 5.再由正弦定理得 2
2 2
2 3× 2 3 10 BC· sin B sin A= AC = = 10 .故选 C. 5 答案:C
题型二 余弦定理的应用 cos B 在△ABC 中,a、b、c 分别是角 A、B、C 的对边,且 cos C b =- . 2a+c (1)求角 B 的大小; (2)若 b= 13,a+c=4,求△ABC 的面积.
∴B=30°,∴C=180°-A-B=90°. 答案:C

• •
1.在三角形中,大角对大边,大边对大角;大角的正弦值也较 大,正弦值较大的角也较大,即在△ABC中,A>B⇔a> b⇔ . 2.根据所给条件确定三角形的形状,主要有两种途径: Sin A>sin B (1)化边为角;(2) ,并常用正弦(余弦)定理实施边、角 转换.
• 解析:∵acos A=bsin B,∴sin Acos A=sin Bsin B, • 即sin Acos A-sin2B=0, • ∴sin Acos A-(1-cos2B)=0, • ∴sin Acos A+cos2B=1. • 答案:D

2015届高三数学一轮教学资料 正弦定理和余弦定理活动导学案

2015届高三数学一轮教学资料 正弦定理和余弦定理活动导学案

《正弦定理与余弦定理》活动导学案【学习目标】1.掌握正弦定理,余弦定理,并能运用正弦定理,余弦定理解斜三角形;2.解三角形的基本途径:根据所给条件灵活运用正弦定理或余弦定理,然后通过化边为角或化角为边,实施边和角互化.【重难点】选择适当的定理解决三角形的角、边问题。

【课时安排】1-2课时【活动过程】一.自学质疑:1.在△ABC 中,边,,a b c 所对角为,,A B C ,且sin cos cos A B C a b c ==,则A ∠=____. 2、在△ABC 中,已知BC =12,A =60°,B =45°,则AC = .3.在ABC ∆中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是____________.4.△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边.如果a ,b ,c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = _____. 5.在△ABC 中,若22tan tan ba B A =,则△ABC 的形状是 . 6.(2013·南京、盐城一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若cos ⎝⎛⎭⎪⎫A +π6 =sin A ,求A 的值;(2)若c os A =14,4b =c ,求sin B 的值.探究一1.在ABC ∆中,若︒===30,1,3A AC AB ,则ABC ∆的面积为 .2.在ABC ∆中,若︒===60,3,2B b a ,则=A .3.在ABC ∆中,若︒===30,15,5A b a ,则=c .4.若cC b B a A cos cos sin ==,则ABC ∆为 三角形.5.已知ABC ∆中,C B A ∠∠∠、、的对边分别为c b a ,,.若26+==c a ,且︒=∠75A ,求b .6.在ABC ∆中,c b a ,,分别为内角C B A ,,的对边,C b c B c b A a sin )2(sin )2(sin 2+++=.(1)求A 的大小;(2)若1sin sin =+C B ,试判断ABC ∆的形状..探究二1.在ABC ∆中,若,31sin ,4,5===A B b π则=a .2.已知锐角三角形ABC 的面积为33,3,4==AC BC ,则角=C .3.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状为 . 4.在ABC ∆中,已知31tan ,21tan ==B A ,则其最长边与最短边的比值为 . 5在ABC ∆中,c b a ,,分别为内角C B A ,,的对边,已B b a C A sin )()sin (sin 2222-=-,ABC ∆的外接圆半径为2.(1) 求角C ;(2)求ABC ∆的面积的最大值探究三1.在ABC ∆中,c b a ,,分别是角C B A ,,,且2223a bc c b =++,则=A .2.在ABC ∆中,已知4:3:2sin :sin :sin =C B A ,则=C cos .3.在ABC ∆中,4,13,3===AC BC AB ,则边AC 上的高为 .4.在ABC ∆中,角C B A ,,的对边分别为c b a ,,.当c b a ,,成等比数列时,且a c 2=,则=B cos . 5在ABC ∆中,角C B A ,,的对边分别为c b a ,,.已知c b a ,,成等比数列,且bc ac c a -=-22,(1)求角A ;(2)求cB b sin 的值.6.在ABC ∆中,角C B A ,,的对边分别为c b a ,,,且c a b C B +-=2cos cos (1)求角B 的大小;(2)若4,13=+=c a b ,求三角形的面积.探究四1.在ABC ∆中,若B C bc b a sin 32sin ,322==-,则角=A .2.在△ABC 中,a =1,c =2,B =60°,则b =________.3.在ABC ∆中,若面积)(41222c b a S -+=,则角=C . 4.设12,,12-+a a a 为钝角三角形的三条边,则实数a 的取值范围是 .5.在锐角三角形ABC 中,若C b a a b cos 6=+,则=+B C A C tan tan tan tan .6.(2014·无锡调研)在△ABC 中,A =45°,C =105°,BC =2,则AC 的长度为________.7.(2014·镇江质检)在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos C =________.8.(2013·山东高考改编)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若B =2A ,a =1,b =3,则c =________.9.在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,已知20a c +=,2C A =,3cos 4A =. (1)求c a 的值; (2)求b 的值.10.设ABC ∆的三个内角,,A B C 所对的边分别为,,a b c ,且满足(2)0a c BC BA cCA CB +⋅+⋅=u u u r u u u r u u u r u u u r . (Ⅰ)求角B 的大小; (Ⅱ)若23b =AB CB ⋅u u u r u u u r 的最小值.11.(2013·南通一调)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,tan C =sin A +sin B cos A +cos B.(1)求角C的大小; (2)若△ABC的外接圆直径为1,求a2+b2的取值范围.。

高中数学高考一轮复习:《正弦定理和余弦定理》复习课教学设计(精编文档).doc

高中数学高考一轮复习:《正弦定理和余弦定理》复习课教学设计(精编文档).doc

【最新整理,下载后即可编辑】《正弦定理和余弦定理》复习课教学设计学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。

作为复习课一方面要将本章知识作一个梳理,另一方面要通过整理归纳帮助学生学会分析问题,合理选用并熟练运用正弦定理、余弦定理等知识和方法解决三角形综合问题和实际应用问题。

数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。

虽然是复习课,但我们不能一味的讲题,在教学中应体现以下教学思想:⑴重视教学各环节的合理安排:设疑探究拓展实践循环此流程在生活实践中提出问题,再引导学生带着问题对新知进行探究,然后引导学生回顾旧知识与方法,引出课题。

激发学生继续学习新知的欲望,使学生的知识结构呈一个螺旋上升的状态,符合学生的认知规律。

⑵重视多种教学方法有效整合,以讲练结合法、分析引导法、变式训练法等多种方法贯穿整个教学过程。

⑶重视提出问题、解决问题策略的指导。

⑷重视加强前后知识的密切联系。

对于新知识的探究,必须增加足够的预备知识,做好衔接。

要对学生已有的知识进行分析、整理和筛选,把对学生后继学习中有需要的知识选择出来,在新知识介绍之前进行复习。

⑸注意避免过于繁琐的形式化训练。

从数学教学的传统上看解三角形内容有不少高度技巧化、形式化的问题,我们在教学过程中应该注意尽量避免这一类问题的出现。

二、实施教学过程剖析:研究三角形问题一般有两种思路.一是边化角,二是角化边.证明:用正弦定理,a=2R sin A,b=2R sin B,c=2R sin C,代入a2=b(b+c)中,得sin2A=sin B(sin B+sin C)sin2A-sin2B=sin B sin C 因为A、B、C为三角形的三内角,所以sin(A+B)≠0.所以sin(A-B)=sin B.所以只能有A-B=B,即A=2B.评述:利用正弦定理,将命题中边的关系转化为角间关系,从而全部利用三角公式变换求解.思考讨论:该题若用余弦定理如何解决?【例2】已知a、b、c分别是△ABC的三个内角A、B、C所对的边,(1)若△ABC的面积为,c=2,A=600,求边a,b的值;(2)若a=ccosB,且b=csinA,试判断△ABC的形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档