循环冷却水结垢原理及处理方法
循环水(冷却水)腐蚀结垢及微生物问题探讨
冷却水问题探讨一般冷却水常引起的危害有三种,即腐蚀( corrosion ) 、水垢(scale)、淤泥之沉积( deposition ) 及微生物 ( slime ),兹将其发生原因及控制方法分述如下: 1、腐蚀!腐蚀发生原因:金属腐蚀是经由化学或电化学反应而导致金属毁坏之现象。
最主要的腐蚀问题是由氧气所引起的,冷却水于冷却水塔中与空气密切接触,水中溶氧高达 8~10 ppm 极易促成腐蚀。
a.铁材质与水中氧气作用而腐蚀,其反应如下:氧气所引起的腐蚀呈点蚀( pitting ) 状态有愈深之倾向(如下图), 若未有效抑止可能穿透管壁而造成穿孔、泄漏。
点蚀是最具腐蚀破坏力之一,并且也是最难在实验室预测得知。
b.当微生物繁殖时,其微生物体的分泌物与冷却水有机物、无机物聚积而形成的黏泥,沉积在系统中时,将造成沉积下腐蚀。
沉积物上下界面因溶存氧浓度不同将会造成氧浓淡电池( Oxygen concentration cell)于沉积物下发生严重之腐蚀现象。
图 : pitting 会导致设备快速破损c.两种不同金属互相接触时,因金属间电位差造成流电腐蚀(galvanic corrosion), 例如热交换器之铜管与碳钢端板,其接触部份的钢铁材质会因此加速腐蚀。
双金属之间的电位差会因金属接触而造成流电腐蚀,但工业上也时常运用此原理来做防蚀方法,此方法称之为牺牲阳极。
双金属腐蚀d.其它影响腐蚀的因素尚有pH、间隙、溶解盐类、温度、流速等。
!腐蚀控制方法:腐蚀之控制不外是改变系统金属材质,就是改变系统环境。
改变系统材质将是一很大成本花费,而且并不是百分之百可以防止腐蚀发生。
然改变系统环境是目前广泛被用到控制腐蚀的方法。
在水系统内,有三种方式改变水中环境来有效抑制腐蚀;用水中自然存在之钙离子及碱度,在金属表面上形成碳酸钙保护膜。
利用化学或机械方法将溶存于水中之氧气去除。
加入腐蚀抑制剂 。
如上所云,加入腐蚀抑制剂亦是一个简便而有效的方式。
循环水中腐蚀和管道结垢原因和处理方法
在现代的工业生产中,循环水含有的物质例如化学物质、金属物资等方面,工业循环水管道受到这些物质的影响,会产生结垢还有腐蚀等影响,如果处理不及时,就是妨碍到循环水管道的使用性能,继而降低工业生产效率,不能得到良好的经济效益。
所以,需要对工业循环水管道结垢产生的原因还有机理明确好,针对性的采取控制和解决措施,目的就是保证循环水管道使用的稳定性,提升工业生产的效率,实现比较好的经济效益。
1.结垢和腐蚀产生的机理和原因结垢和腐蚀可以说是影响工业循环水管道使用性能的重要原因,并且两者有直接的联系,通常情况下腐蚀就会产生结垢,结垢会产生腐蚀,时间长了就会影响管道的相关零件的使用性能,提升机泵运行的负荷,继而对设备、整体系统换热冷却等方面,不仅会影响到工业循环水管道的使用性能,还会使得工业生产效率还有经济效益,有所下降。
接下来就和大家针对于工业循环水管道结垢和腐蚀产生的机理和原因相关内容,展开分析和阐述。
1.1补充水由于在工业生产中,会消耗大量的是,因此为了保证生产的效率还有稳定性,需要定期进行补充,但是补充水在进入工业循环水管道之后,补充水中硬度、碱度还有PH值、浊度等方面,都会导致结垢。
如果补充水中的硬度和碱度越大,意味着结垢离子更多,并且受到温度的影响,补充水容易达到饱和的状态,增加了循环水管道腐蚀现象的产生。
此外,在工业循环水管道使用中,水质中的悬浮物会起到晶核的作用,这样浊度就会产生较多,悬浮物也会变多,这样如果不定期进行处理,也会导致悬浮物长期积累,增加工业循环水管道腐蚀和结垢现象的产生。
1.2温度导致工业循环水管道结垢和腐蚀的重要因素之一就是温度,主要是由于工业循环水管道在运行过程中,循环水中包含的硬度盐类会根据温度的变化,产生溶解的现象。
并且,在溶解的时候,假如溶解度相对较小,温度较高的话,容易导致结垢现象的产生。
此外,由于温度的不断提升,结垢也会有相应的变化,时间一长就会导致腐蚀现象的产生,影响工业循环水管道运行的稳定性,工业生产效率就会下降。
循环冷却水换热器结垢及腐蚀的原因及处理措施
循环冷却水换热器结垢及腐蚀的原因及处理措施1.水中硬度高:水中含有大量以碳酸钙和碳酸镁为主的硬度成分,当水循环过程中温度升高后,硬度成分就会析出形成垢。
处理措施:使用软水,通过水处理设备如软化器或反渗透系统来减少水中的硬度成分。
2.水中含有有机物:循环冷却水中含有有机物,这些有机物在温度变化条件下会发生化学反应,生成沉淀物。
处理措施:使用适当的水处理试剂来稳定有机物,并保持水体的清洁。
3.循环冷却水中含有微生物:水中的微生物如藻类、细菌和真菌会在换热器内壁形成生物膜,进而导致结垢。
处理措施:使用杀菌剂来抑制微生物的生长,定期清洗换热器。
4.放热水性质变化:放热水循环过程中,温度升高,水中盐类溶解度增加,导致结垢。
处理措施:控制水质中的含盐量,定期检测水质。
1.氧腐蚀:水中含有氧气,当水接触金属表面时,氧气可以与金属发生氧化反应,导致金属腐蚀。
处理措施:使用氧化剂来控制水中的氧含量,或者使用缓蚀剂来形成保护膜。
2.酸腐蚀:循环冷却水中可能含有酸性物质,如硫酸、盐酸等,这些酸性物质会导致金属腐蚀。
处理措施:控制水质的酸性物质含量,使用缓蚀剂来形成保护膜。
3.碱腐蚀:循环冷却水中可能含有碱性物质,如氢氧化钠、氢氧化钙等,这些碱性物质会导致金属腐蚀。
处理措施:控制水质的碱性物质含量,使用缓蚀剂来形成保护膜。
4.废气腐蚀:有些工业过程中会产生含有腐蚀性气体的废气,这些废气经过冷却后溶解在水中,导致金属腐蚀。
处理措施:使用除气设备来除去废气中的腐蚀性气体,使用缓蚀剂来形成保护膜。
对于循环冷却水换热器结垢和腐蚀问题的处理措施主要有以下几点:1.定期检测和监测换热器水质,包括PH值、硬度、溶解氧等指标,并根据结果采取相应措施。
2.定期清洗换热器内部,使用适当的清洗剂和工艺来去除结垢和沉积物。
3.定期对换热器进行维护和检修,包括清洗管道、更换损坏的部件等。
4.使用适当的水处理设备,如软化器、反渗透系统等来处理水质。
循环冷却水结垢原理及处理方法
循环冷却水结垢原理及处理方法一、循环冷却水系统为什么会结垢1.一般解释冷却水中溶解有各种盐类,如碳酸盐、碳酸氢盐、硫酸盐、硅酸盐、磷酸盐和氯化物等,它们的一价金属盐的溶解度很大,一般难以从冷却水中结晶析出,但它们的两价金属盐(氯化物除外)的溶解度很小,并且是负的温度系数,随浓度和温度的升高很容易形成难溶性结晶从水中析出,附着在水冷器传热面上成为水垢。
如冷却水中的碳酸氢根离子浓度较高,当冷却水经过水冷器的换热面时,受热发生分解,发生如下反应:Ca(HCO3)2→CaCO3↓+ H2O + CO2↑当冷却水通过冷却塔时,溶解于水中的二氧化碳溢出,水的pH 值升高,碳酸氢钙在碱性条件下发生如下反应:Ca(HCO3)2+ 2OH- →CaCO3↓+ 2H2O + CO32-难溶性碳酸钙可以是无定型碳酸钙、六水碳酸钙、一水碳酸钙、六方碳酸钙、文石和方解石。
方解石属三方晶系,是热力学最稳定的碳酸钙晶型,也是各种碳酸钙晶型在水中转变的终态产物。
2.碳酸钙的溶解沉淀平衡。
碳酸钙的溶解度虽然很小,但还是有少量溶解在水里,而溶解的部分是完全电离的。
所以在溶液里也出现这样的平衡:Ca2++CO3 2-CACO3(固)在一定条件下达到平衡状态时〔Ca2+〕与〔CO32-〕的乘积为碳酸钙在此条件下的溶度积K SP,为一定值。
若此条件下〔Ca2+〕×〔CO32-〕>K SP时,平衡向右移,有晶体析出。
若此条件下〔Ca2+〕×〔CO32-〕<K SP时,平衡向左移,晶体溶解。
注:实际情况下〔Ca2+〕×〔CO32-〕值称为K CP二、抑制为结垢的方法(一)化学方法1.加酸:目的:降低水的PH值,使水的碳酸盐硬度硬度转化重碳酸盐硬度.优点:费用较小,效果比较明显缺点:加酸量不易控制、过量会产生腐蚀的危险、投加过量有产生硫酸钙垢的危险.2.软化目的:降低水中至垢阳离子的含量优点:防止结垢效果好缺点:操作复杂、软化后水腐蚀性增强.3.加阻垢剂:目的:使碳酸钙的过饱和溶液保持稳定。
循环冷却水水质处理
认为:生物膜往往是腐蚀、污垢和结垢出现的原因 利用缓蚀剂,使它在金属表面形成一层薄膜,将金属表面覆盖起来,与腐蚀介质隔绝,防止金属腐蚀。
巯基苯并噻唑与磷酸盐共向使用,对防止金属的点蚀有良好的效果 。
之一,所以,对微生物必须控制。 循环水在运行之初,根据缓蚀原理要在金属表面形成一层保护膜,起抑制腐蚀作用。
此类缓蚀剂与溶解于水中的离子生成难溶盐或溶合物,在金属表面上析出沉淀,形成防腐蚀膜。
循环水中的微生物与污垢的处理及防止方法是 提高循环水的极限碳酸盐硬度的常用方法是向水中投加阻垢剂。
(2)综合处理与复方稳定剂
防以污结垢 垢处为理主及的多微应生选方物用控螯面制合剂的、渗,透剂如、分对散剂补为主充的清水垢剂进; 行处理;冷却构筑物及其 周围环境的保护;循环系统工艺及管道的完善以及 循环水在运行之初,根据缓蚀原理要在金属表面形成一层保护膜,起抑制腐蚀作用。
国家职业教育水环境监测与治理专业教学资源库
循环冷却水水质处理
(4)吸附膜型缓蚀剂
这种有机缓蚀剂的分子具有亲水性基和疏水性基。亲水
基即极性基能有效地吸附在洁净的金属表面上,而将疏水基 团朝向水侧,阻碍水和溶解氧向金属扩散,以抑制腐蚀。防 蚀效果与金属表面的洁净程度有关。这种缓蚀剂主要有胺类 化合物及其它表向活性剂类有机化合物。这种缓蚀剂的缺点 在于分析方法复杂,因而难于控制浓度。价格较贵,在大量 用水的冷却系统中使用还有困难,但有发展前途。
(1)排污法减小浓缩倍数 在循环水系统中,提高排污率可减小浓缩倍数。即
排除部分盐浓度高的循环水,补充含盐量少的新鲜水, 可降低循环水中盐的浓度,使其不超过允许值。
(2)降低补充水碳酸盐硬度 通过水的软化法可使水的硬度降低,从而降低补充
科技成果——电化学法循环冷却水处理技术
科技成果——电化学法循环冷却水处理技术适用范围节水及水资源循环回用成果简介电化学设备主要原理可分为为电解氧化反应、电解还原反应、酸碱中和、离子平衡及极性水分子反应。
电解槽的阴极区内的水会形成一个碱性环境(pH>9.5)。
在强碱性环境中,在这种离子溶液中,Ca2+(aq)\Mg2+(aq)就会形成氢氧化钙Ca(OH)2↓(垢)、碳酸钙:CaCO3↓(垢)、氢氧化镁Mg(OH)2↓(垢);并吸附在阴极上或掉落在反应室底部。
当水垢在阴极上析出到一定厚度时,自动刮垢套件可将吸附在阴极上的水垢刮下来,沉落在电解槽底部。
定时打开排污阀,将存留在电解槽底部的污垢排出到水垢沉淀池。
定期将水垢沉淀池中的上清液排回到系统,下部的固态物人工捞出并收集到水垢存放箱,每年集中无害化处理。
图1 电化学法循环冷却水处理原理图电解槽的阳极区内的水会形成一个酸性环境(pH<3.5),阳极附近反应产生的Cl2、Cl·、O3、HO·、H2O2、活性氧原子等强效杀菌物质,尤其是水和氯气结合后产生大量的次氯酸,可迅速杀灭水中的菌藻(包括军团菌),并有效控制微生物生长。
◆阴极附近的反应:2H2O(l)+2e¯→H2(g)+2OH¯(aq)CO2(g)+OH¯(aq)→HCO3¯(aq)HCO3¯(aq)+OH¯(aq)→CO32-(aq)+H20(l)CO32-(aq)+Ca2+(aq)→CaCO3↓(垢)2OH¯(aq)+Ca2+(aq)→Ca(OH)2↓(垢)2OH¯(aq)+Mg2+(aq)→Mg(OH)2↓(垢)◆阳极的反应:4OH¯(aq)→O2(g)+2H20(l)+4e-2Cl¯(aq)→Cl2(g)+2e¯O2(g)+2OH¯(aq)–2e¯→O3(g)+H2O(l)OH¯(aq)–e¯→HO·(aq)2H2O(l)–2e¯→H2O2(l)+2H+(aq)H2O(l)–2e¯→O(aq)+2H+(aq)工艺流程将电解水处理器连接到主循环冷却水系统,待处理水经水泵加压后通过过滤器并引入布水箱,完成布水后流入电解水处理器,电解过程中在阳极区域发生氧化反应,产生大量的强氧化性和酸性物质并储存在酸性储水箱,在酸性水泵定时启动下冲击式进入循环水,对整个循环系统进行除垢和杀菌灭藻。
循环水结垢原因与防止
循环水结垢原因与防止循环水结垢是指循环水系统中,由于水中存在的溶解性固体物质(如钙、镁等)与水中的碳酸盐反应产生的沉淀物,而形成的一层或多层覆盖在管道壁上的硬垢,会严重影响循环水系统的运行效率与设备的正常运行。
下面将从结垢的原因、结垢对系统的影响以及防止结垢的措施进行阐述。
一、结垢的原因:1.水源因素:循环水系统的水源中常常含有溶解的硬度物质,特别是钙、镁等离子,这些硬度物质容易形成结垢。
2.温度因素:在高温条件下,溶解在水中的碳酸盐溶解度减小,容易形成沉淀物质,所以高温环境下结垢更严重。
3.酸碱度因素:水的酸碱度也会影响结垢的程度,当水的酸度过高时,会加速结垢的形成。
4.水的流速:水的流速与结垢也有一定的关系,当水在管道内的流速过低时,水中的沉淀物质更容易脱离水流而附着在管道壁上。
二、结垢对系统的影响:1.阻塞管道:结垢会附着在管道壁上,形成堆积的硬垢,导致管道内径减小,从而阻塞了管道,降低了水的流速。
2.减低传热效率:结垢会作为一层隔热层,降低了传热效率,导致设备间接散热效果下降,对于循环水冷却系统来说,影响了冷却效果。
3.增加能耗:由于结垢导致了管道的阻塞和传热效率的降低,系统需要消耗更多的能量来保持设计要求的循环水流速和温度,增加了能耗成本。
4.缩短设备寿命:结垢会使得设备内的水流量不均匀,造成一些设备的局部高温或高压区域,加速了设备的磨损和老化。
三、防止结垢的措施:1.水质处理:可以通过酸洗、软化等方法降低水源中的硬度物质含量,减少结垢的生成。
2.温度控制:降低水温可以减少碳酸盐的溶解度,从根源上避免了结垢的产生。
3.水质控制:通过调节循环水的酸碱度,保持在适当的范围内,避免过酸或过碱引起结垢。
4.增加水流速度:增加水流速度可以减少结垢的几率,可以通过增加泵的功率或增加管道的直径实现。
5.进行周期性清洗:定期对循环水系统进行清洗,可以有效去除已生成的结垢。
6.安装防垢装置:在循环水系统中添加防垢剂或防膜剂,可以抑制和阻止结垢的形成。
循环冷却水的结垢控制
12-6 循环冷却水处理字体[大][中][小]冷却水的循环使用过程中,通过冷却设备的传热与传质,循环水中的Ca2+、mg2+、Cl-、SO42-等离子、溶解性固体、悬浮物相应增加,空气中的污染物等可进入循环水中,使微生物繁殖和循环冷却水系统的铜管产生结垢、腐蚀,造成凝汽器传热效果恶化和水流截面减少。
其后果主要表现为:(1) 铜管内水的阻力增加;(2) 在设备扬程相同的情况下,冷却水的流量减少;(3) 使凝汽器进出口的冷却水温差加大;(4) 以上均导致凝汽器凝结水温升高,凝汽器内的真空恶化。
当出现上述现象时,就应对循环冷却水予以判别。
一、水质判断在热电厂凝汽器循环冷却系统中形成的水垢,通常只有碳酸盐类,这是因为Ca(HCO3)2易受热分解生成难溶的CaCO3,反应式如下Ca(HCO3)2→CaCO3↓+CO2+H2O(12-36)尤其在循环冷却系统中,它有蒸发和浓缩的作用,因此也容易生成水垢。
循环水中是否有CaCO3析出,都会从水质表现出来,因此要用水质来判断。
水质判断的主要方法有:1.饱和指数法[又称朗格里尔(Langlier)指数法]它是水的实测pH值减去同一种水的碳酸钙饱和平衡时的pH值之差数。
即IL=pH0-pH s(12-37)式中I L——饱和指数;pH0——水的实测pH值;pH s——水在碳酸钙饱和平衡时的pH值。
当I L>0时,有结垢倾向,当I L=0时,不腐蚀不结垢,当I L<0时,有腐蚀倾向。
pH s可根据水的总碱度、钙硬度和总溶解固体的分析值和温度由表12-31查得相应常数代入下式,即可计算得出:pH s=(9.3+N s+N t)-(N H+N A)(12-38)饱和指数和稳定指数配合应用,将更有助于判断水质的倾向。
运用指数来判断水质问题有很大的局限性,因为它仅依单一碳酸钙的溶解平衡作为判断依据,没有考虑结晶和电化学过程,更未考虑水中胶体的影响,而且把碳酸钙既作为缓蚀剂又作为污垢来考虑。
循环冷却水的腐蚀和结垢及其控制原理
循环冷却水的腐蚀和结垢及其控制原理循环冷却水是用于工业生产中的一种重要的流体介质,用于散热装置中传递热量并保持设备的温度稳定。
然而,长时间运行的循环冷却水系统面临着腐蚀和结垢的问题。
本文将对循环冷却水的腐蚀和结垢原理以及控制措施进行探讨。
首先,循环冷却水腐蚀的原因可以归结为两个方面:化学腐蚀和电化学腐蚀。
化学腐蚀是指水中的氧气和酸性或碱性物质与金属表面产生化学反应,从而导致金属表面的腐蚀。
例如,循环冷却水中的溶解氧会与金属表面发生氧化反应,产生氧化物,从而破坏金属表面并加速腐蚀过程。
此外,循环冷却水中存在的酸性或碱性物质如硫酸、盐酸、氢氧化钠等也会与金属发生反应,导致腐蚀。
另一方面,电化学腐蚀是指水中存在的溶解电解质和金属表面之间的电化学反应。
循环冷却水中的溶解电解质和金属表面形成一个电池系统,其中金属是阳极,而水中的电解质则是阴极。
当水中存在氯离子、硫酸根离子等电解质时,它们可以通过齐物质交换和水解来产生强氧化性反应物,进一步加速金属腐蚀过程。
与腐蚀相对应的是结垢问题。
当循环冷却水中溶解的无机盐超过饱和度,溶解度降低,就会导致盐类沉淀,形成结垢。
结垢主要是由硅酸钙、硅酸镁、硅酸钠等硅酸盐类沉淀所致。
结垢的形成不仅会在水冷器内壁形成厚度不均匀的氧化层,还可能导致水道堵塞,降低散热器的效能。
针对循环冷却水的腐蚀和结垢问题,可以采取以下控制措施:1.控制水质:通过水质处理控制循环冷却水中的溶解氧、酸性或碱性物质的含量。
例如,可以通过气体除氧、化学除氧等方法,降低水中溶解氧的含量;使用缓蚀剂或pH调节剂来控制水中的酸碱度,并保持在适宜的范围内。
2.表面处理:通过对金属表面进行化学处理或物理处理,形成一层保护性的氧化层或膜层,减缓金属腐蚀的速度。
例如,可以通过阳极氧化、镀层、喷涂等方法来处理金属表面。
3.控制水温和水流速度:降低循环冷却水的温度和增加水流速度,可以减少酸碱物质的浓缩和腐蚀的机会,同时也可以减少结垢的发生。
循环冷却水系统结垢问题及控制方法
循环冷却水系统结垢问题及控制方法摘要:本文详细分析了我公司循环冷却水应用中出现的结垢问题及其控制的方法,工业用水采用循环水技术的必要性。
关键词:循环冷却水系统;结垢;控制方法1 工业用水采用循环水技术的必要性我国淡水资源并不丰富且分配很不均衡,北方缺雨少水,更显水源紧张,节约用水日益迫切。
因此,无论从节约水源还是从经济观点和保护环境的观点出发,推广采用循环冷却水系统是大势所趋。
循环用水比起直流水,除节约大量新鲜水、减少排污水量之外,还可以防止热污染。
2 循环冷却水系统结垢问题及控制方法循环冷却水系统常见问题主要分为三类:结垢、腐蚀、淤积。
上述三类问题会导致热交换能力下降;设备寿命缩短;设备运行故障;产能下降;增加维护费用;系统停产。
所以应对循环冷却水日常运行中上述三种情况提高重视。
2.1 补充水水质判断例如补充水水质分析数据为:总硬度(以caco3计)139.94 mg/l;钙硬度(以caco3计)98.78 mg/l;总碱度(以caco3计)187.48mg/l;氯离子(cl-)7.99mg/l;p h值8.07;电导率307μs/cm。
2.1.1 饱和指数(l.s.i)计算:饱和指数是水中可能产生碳酸钙结垢或产生腐蚀倾向的一种计算指数。
l.s.i =ph- phs>0 结垢l.s.i =ph- phs=0 稳定l.s.i =ph- phs0 结垢型2.1.2 结垢指数( p.s.i )的计算:帕科拉兹认为用总碱度测定出平衡ph值(pheq)来判断水质则更接近实际。
p.s.i=2phs-pheq>6 腐蚀p.s.i=2phs-pheq=6 稳定p.s.i=2phs-pheq<6 结垢循环水k=2.0时通过查表pheq=8.3p.s.i=2×6.78-8.3=5.26<6结垢型通过计算说明该补充水浓缩运行后结垢性增强。
综合以上指数计算可以看出,公司各系统补充水浓缩后结垢性增强。
煤气压缩机循环冷却水系统结垢处理
2 系统化学 清洗
根 据制 定 的清洗 方 案 , 照压 缩 机循 环水 系统 按 化学清洗 的操作 规程 , 对该 系统进 行杀菌剥 离 、 化学
行不停 车清洗 。
1 概
况
清洗 、 透侵润 除垢 、 渗 预膜 等工作 。
1清 洗 、 ) 预膜操 作 。首先 按操作 规程 , 补排 检查 水情 况 , 做好分 析 监测 的准 备 。2 杀 菌剥离 。用 清 ) 水泵 将 H 一 6 杀菌剂 注入 循环 冷却 系统 中 , Z 10 经过 1 d 的运行 , 浊度 由65N U上升 至 5 T 冷 却塔 上 . T 0N U, 的藻 类被 剥落 , 却塔 内柱 表 面露 出 白色垢 物 。3 冷 ) 清洗 除垢 。为 了确 保清 洗过 程 中系统 安全 运行 , 将
第3卷 第2 3 期 2 1年 4 01 月
L 舢 — 止 L 舢 — 止 L
山 东 冶 金
S a d n M eal r y hn og tl g u
V0 . 3 1 No2 3 . Apr 2 1 i l 01
}经验 交 流 I
'— 竹 — r f 1 卞1 呻—n — —1
循 环水系统 存在较 重的结垢倾 向。
通 过现 场对 设备 检修 情况 的 了解 , 热 设备 和 换
管 道 内有较 多垢物 , 已严重 影响压缩 机组正 常工作 ,
必须 对该 系统 进行 必要 的清 洗 , 清洗 时必 须要 防止
垢 物堵 塞 管道 , 以免影 响生产 。该 系统 的煤 气压 缩 机组 担负 济钢 各种 混合 煤气 的压 缩工作 , 由于生 产
分散 剂 、 Z 8 2 H 一 0 消泡 剂分 别投 加 3 。清洗运 行期 次 间控 制 p H值 3 60 缓慢 溶解设 备 和管 道上 的垢 . ., 0~ 物 。通 过分 析 , 总硬 度从 最初 5 0mg 逐 步上 升至 0 / L 48 0m / , 8 gL 并趋 于饱 和 , 浊度从 5 T 0N U上 升 至 2 4 6 N U, T 除垢 用 时 4 。4 锈垢 清 洗 。 因除垢 清 洗后 6h ) 系统 内水体 发浑 且呈 乳 白色 , 故置 换部 分水 后要进 行 锈垢 清洗 。在 系 统 中加 入 H 一 0 渗透 除锈 剂 、 Z 79 HZ 3 5 一 1 分散 剂 , 随着循 环 水共 运 行 1 . h p 7 ,H值保 6 持 在 90 00 . ~1 .。水 中总 铁从 3 . / 上 升 至 3 2 6 3mg 9 L 1 m / , 趋 于 稳 定 , 度 从 2 4 N U上 升 至 90 g 并 L 浊 6 T 2 N U。5 置换 。将 系统水 尽可 能排空进 行置换 。直 T )
循环冷却水系统结垢问题及控制方法
2 0 1 3 年 鲔1 期I 科技创新与应用
循 环冷却水系统结垢 问题及控制 方法
王 兆岳
( 唐山佳华煤4 EX - 有 限公 司, 河北 唐 山 0 6 3 6 1 1 )
摘 要: 本文 详 细 分析 了我公 司循 环冷 却 水 应 用 中 出现 的结垢 问题 及其 控 制 的方 法 , 工 业 用水 采 用循 环水 技 术 的必要 性 。 关键词: 循 环 冷 却 水 系统 ; 结垢 ; 控 制方 法 1工业 用 水 采用 循 环水 技 术 的必 要 性 我 国 淡 水 资 源 并 不 丰 富且 分 配 很 不 均 衡 , 北方 缺雨 少 水 , 更 显 水源紧张 , 节约用水 日益迫切 。 因此 , 无论从节约水源还是从经济观 点和保护环境的观点 出发 ,推广采用循环冷却水系统是 大势所趋。 循环用水 比起直流水 , 除节约大量新鲜水 、 减少排污水量 之外 , 还可 以防 止 热 污染 。 2循环冷却水系统结垢 问题及控制方法 循环冷却水系统 常见问题 主要分为三类 : 结垢、 腐蚀 、 淤积。上 述三类问题会导致热交换能力下降 ; 设备寿命缩短 ; 设备运行故障 ;
3 . 1 . 3系 统 中水 的 流速
产能下降 ; 增加维护费用 ; 系统停产。 所 以应对循环冷却水 日常运行
中上 述 三种 情 况 提 高重 视 。 2 . 1补 充水 水 质 判 断 例如补充水水质分析数据 为: 总硬度( 以C a C O 计) 1 3 9 . 9 4 mr , / L ; 钙硬度( 以C a C O 3 计) 9 8 . 7 8 m g / L ; 总碱度( 以C a C O 3 计) 1 8 7 . 4 8 m g / L ; 氯离子( C l 一 ) 7 . 9 9 m g / L ; P H值 8 . 0 7 ; 电导率 3 0 7 t x s / c m。
循环冷却水设备出水水质及处理要求说明
循环冷却水设备出水水质及处理要求说明循环水处理设备由壳体、多元滤芯、反冲洗机构、和差压控制器等部分组成。
壳体内的横隔板将其内腔分为上、下两腔,上腔内配有多个过滤芯,这样充分利用了过滤空间,显着缩小了过滤器的体积,下腔内安装有反冲洗吸盘。
工作时,浊液经入口进入过滤器下腔,又经隔板孔进入滤芯的内腔。
大于过滤芯缝隙的杂质被截留,净液穿过缝隙到达上腔,最后从出口送出。
本文主要介绍的是该水处理设备的水质特点及要求。
循环冷却水水质特点和处理要求结垢:主要由于盐分浓缩和CO2的散失造成水中的碳酸钙沉积结垢。
影响换热器的传热效率,影响循环冷却水系统的运行。
腐蚀:淋水过程造成水中的溶解氧含量增加,加强了水的腐蚀性。
可能对换热器和管道设施产生腐蚀。
污垢:悬浮物、大气中杂质的沉积物、腐蚀剥落物及其它各种杂质在水体中沉积形成污垢。
结垢和污垢统称为沉积物,因此循环冷却水处理的问题大致可以归为对腐蚀和沉积物的控制。
循环冷却水的预处理循环冷却水处理目的是为了防止换热器受循环水损害,应在换热器管壁上预先形成完整的保护膜的基础上,再进行运行过程中腐蚀、沉积物和微生物的控制。
循环冷却系统的预处理方法包括:① 化学清洗剂清洗。
② 冲洗干净。
③ 预膜。
循环冷却系统中所使用的化学清洗剂有很多种,要结合所清除的污垢成分来选用:① 以粘垢为主的污垢应选以杀菌剂为主的清垢剂。
② 以泥垢为主的污垢应选以混凝剂或分散剂为主的清垢剂。
③ 以结垢为主的垢物应选以整合剂、渗透剂、分散剂为主的清垢剂等。
④ 以腐蚀产物为主的垢物.也是采用渗透剂、分散剂这类表面活性剂。
循环水处理设备技术参数工作压力:≤1.0Mpa(如需更高的工作压力,订货时请注明)压力损力:≤0.015Mpa过滤精度: 0.8 mm(0.2~3.5mm精度范围均可制造)最高工作温度:≤100°C工业化进展迅猛工业水污染严重随着中国工业化和城市化的快速推进,工业废水种类和数量增加迅猛,对地表与地下的水体环境污染的压力加重,对生态安全和居民健康构成严重的威胁。
结垢问题
结垢问题一、结垢(一)铜管内的结垢及结垢判断发电厂的循环冷却水,大多采用地表水或地下水,由于水中含有各种盐类,特别是Ca2+、Mg2+的重碳酸盐,冷却水在循环过程当中,由于温度的升高、盐类的浓缩等原因,往往会形成比较坚硬的碳酸盐水垢。
1.碳酸盐水垢的形成(1)循环水的浓缩作用。
循环水在循环冷却过程中,由于不断蒸发而使水中含盐量增大,使得碳酸盐硬度总是大于补充水的碳酸盐硬度。
(2)重碳酸盐的分解。
循环水中钙、镁的重碳酸盐和游离的CO2之间的平衡关系为Ca(HCO3)2CaCO3↓+CO2↑+H2O当循环水在冷却塔中与空气接触时,水中游离的CO2就向空气中大量流失,破坏了上述平衡关系,使反应向生成碳酸钙的方向移动。
因此,重碳酸盐的分解,促使碳酸盐从水中析出,并附着在铜管内壁。
(3)循环水温度的升高。
由于循环水在冷却蒸汽的过程中,水温的升高,导致钙、镁碳酸盐溶解度的降低,使碳酸盐平衡关系进一步向右移动,所以又促使碳酸盐垢从水中析出。
2.析出碳酸盐水垢时的水质判断(1)极限碳酸盐硬度法。
任何一种水质在实际运行中,都有一个不结垢的碳酸盐硬度值,此值称为极限碳酸盐硬度,其数值的大小不仅与水质有关,而且还与运行条件有关。
为了防止循环水系统结垢,控制浓缩倍率是有效的途径之一,控制循环水的碳酸盐硬度低于极限碳酸盐硬度,循环水系统就没有结垢条件。
利用该法判断是否有碳酸盐水垢生成,对大多数电厂比较适合,但对于循环水中碳酸盐较低或碱性较大,则测量误差较大。
(2)碳酸盐饱和指数。
碳酸盐饱和指数是表示碳酸钙析出的倾向性。
其表达式为IB=pHyu—pHB式中IB——碳酸钙饱和指数;pHyu——循环水在运行条件下实测的pH值;pHB——循环水在使用温度下被CaCO3饱和时的pH值。
当IB>0时,水中CaCO3处于过饱和状态,可能有CaCO3析出,称结垢型水。
当IB<0时,水中CaCO3处于未饱和状态,而有过量的CO2存在,可以将原来附着在受热面上的碳酸钙溶解下来,甚至使金属裸露于水中,发生腐蚀,称腐蚀型水。
循环冷却水结垢原理及处理方法
循环冷却水结垢原理及处理方法一、循环冷却水系统为什么会结垢1.一般解释冷却水中溶解有各种盐类,如碳酸盐、碳酸氢盐、硫酸盐、硅酸盐、磷酸盐和氯化物等,它们的一价金属盐的溶解度很大,一般难以从冷却水中结晶析出,但它们的两价金属盐(氯化物除外)的溶解度很小,并且是负的温度系数,随浓度和温度的升高很容易形成难溶性结晶从水中析出,附着在水冷器传热面上成为水垢.如冷却水中的碳酸氢根离子浓度较高,当冷却水经过水冷器的换热面时,受热发生分解,发生如下反应:Ca(HCO3)2→CaCO3↓+ H2O + CO2.当冷却水通过冷却塔时,溶解于水中的二氧化碳溢出,水的pH 值升高,碳酸氢钙在碱性条件下发生如下反应:Ca(HCO3)2+ 2OH—→CaCO3↓+ 2H2O + CO32—难溶性碳酸钙可以是无定型碳酸钙、六水碳酸钙、一水碳酸钙、六方碳酸钙、文石和方解石。
方解石属三方晶系,是热力学最稳定的碳酸钙晶型,也是各种碳酸钙晶型在水中转变的终态产物。
2.碳酸钙的溶解沉淀平衡。
碳酸钙的溶解度虽然很小,但还是有少量溶解在水里,而溶解的部分是完全电离的。
所以在溶液里也出现这样的平衡:Ca2++CO3 2—CACO3(固)在一定条件下达到平衡状态时〔Ca2+〕与〔CO32—〕的乘积为碳酸钙在此条件下的溶度积K SP,为一定值.若此条件下〔Ca2+〕×〔CO32—〕>K SP时,平衡向右移,有晶体析出。
若此条件下〔Ca2+〕×〔CO32—〕<K SP时,平衡向左移,晶体溶解.注:实际情况下〔Ca2+〕×〔CO32—〕值称为K CP二、抑制为结垢的方法(一)化学方法1。
加酸:目的:降低水的PH值,使水的碳酸盐硬度硬度转化重碳酸盐硬度.优点:费用较小,效果比较明显缺点:加酸量不易控制、过量会产生腐蚀的危险、投加过量有产生硫酸钙垢的危险.2.软化目的:降低水中至垢阳离子的含量优点:防止结垢效果好缺点:操作复杂、软化后水腐蚀性增强.3。
密闭式循环冷却水系统的物理处理方法如何
密闭式循环冷却水系统的物理处理方法如何?循环冷却水的物理处理方法国内外都有应用,主要是采用超声波、磁化等方法。
密闭式循环冷却水系统的物理处理方法以磁化为主,按磁场形式可分为永磁式和电磁式;按磁场位置可分为内磁式和外磁式。
磁化技术的作用原理既有阻垢作用又有防腐作用。
水在磁场作用下,水中正负离子按洛伦兹力(Lorentsforce)的作用原理向磁场阴、阳极运动,产生两极间电位差、微小电子流。
O₂因得到电子,产生O-2,反应如下:O2+e→O-2从而减少了水中溶解氧O2,腐蚀性减少了。
在管壁上的腐蚀产物因得到电子,发生以下反应:生成的磁性氧化铁膜Fe₃O₄具有防止腐蚀作用。
在磁场的作用下,水中HCO₃、CO2-3在电极放电,失去电子,使CO₂减少,pH值上升0.1~1.0,使腐蚀减轻。
磁场改变了碳酸钙结晶的结构,使坚硬的方解石向松散的文石(霰石)转化,防止了结垢的趋势。
磁化水改变了微生物的生存环境,抑制了微生物滋长。
密闭式循环冷却水的冷冻水系统一般以腐蚀趋势为主,而采暖水系统中结垢、腐蚀倾向都有。
磁化技术的缓蚀阻垢性能如能发挥出来,对冷冻水和采暖水系统应是很适用的。
但实际情况是:磁化技术在我国应用已有多年,效果有好有坏,总体说效果并不理想。
其原因是磁化技术应用需要一定的条件。
例如:①要有一定流量的水去垂直切割相应磁场强度和密度的磁力线,显示水量与足够磁场强度的关系;②水流在切割磁力线时应有足够速度,无流速、低流速效果不好;③水应有一定的导电性,如果密闭式循环冷却水采用去离子水,则磁化技术无效果。
上述三条件缺一都不行。
由于应用磁力技术的条件不同,处理效果往往相差很大。
虽物理处理总体上不理想,但也有很多成功的范例。
如美格洁管路水处理器在某大型中央空调水处理中,已使用十年,各项指标能达到国家标准。
它是由真空粉末冶炼的特殊钕铁硼永久磁铁,设备尺寸56mm×54mm×62mm。
安装很简单,只需去除管外油漆,涂导电油脂,吸上即可。
冷却循环水处理方案
冷却循环水处理方案1.物理处理方法物理处理方法主要是通过物理手段去除循环冷却水中的颗粒物、悬浮物和悬浮杂质。
常用的物理处理方法有:(1)过滤:采用砂滤器、多介质滤器或超滤器等进行过滤,去除颗粒和悬浮物。
(2)沉淀:通过沉淀池,将悬浮物和悬浮物质沉淀,再通过污泥泵或底泥泵将其排除。
(3)脱气:通过脱气器将系统中的氧气和二氧化碳排除,减少腐蚀和细菌滋生的可能。
2.化学处理方法化学处理方法主要是通过添加化学药剂来调节循环冷却水的pH值、控制水垢和腐蚀,提高循环冷却水的稳定性和耐腐蚀性。
(1)碱性调整:在循环冷却水中加入氢氧化钠或石灰进行碱性调整,以控制水的酸碱度。
(2)阻垢剂:添加阻垢剂可以控制水垢的生成,减少设备的结垢和堵塞。
(3)缓蚀剂:通过添加缓蚀剂来减少金属腐蚀的速度,延长设备使用寿命。
3.生物处理方法生物处理方法主要是利用微生物对冷却循环水中的有机物进行分解和降解,减少水中的污染物。
(1)生物过滤器:利用微生物在过滤介质上生长繁殖,分解有机物和构筑微生物群落,去除COD、BOD等有机物。
(2)生物添加剂:通过添加含有特定细菌或酶的生物添加剂,加速有机物的降解和去除。
二、冷却循环水处理设备1.滤清器滤清器是冷却循环水处理中常用的设备之一,可按照过滤介质的不同分为砂滤器、多介质滤器和超滤器等。
(1)砂滤器:通过对水进行过滤,去除颗粒和悬浮物,常用于冷却塔进水前的预处理。
(2)多介质滤器:采用多种过滤介质,如石英砂、石英砾石、磁性颗粒等,能去除更小的颗粒和悬浮物。
(3)超滤器:采用高分子微孔膜进行过滤,能有效去除水中的胶体、微生物和有机物。
2.脱气器脱气器是用于去除冷却循环水中的氧气和二氧化碳的设备,既可以是物理脱气,也可以是化学脱气。
(1)空气式脱气器:通过将水与空气接触,气体从水中脱出,从而减少水中的氧气和二氧化碳含量。
(2)化学脱气器:利用化学药剂与水中的氧气和二氧化碳发生反应,将其转化为不易溶于水的化合物,再通过过滤器或沉淀池将其去除。
循环冷却水的结垢控制
12-6 循环冷却水处理字体[大][中][小]冷却水的循环使用过程中,通过冷却设备的传热与传质,循环水中的Ca2+、mg2+、 Cl-、SO42-等离子、溶解性固体、悬浮物相应增加,空气中的污染物等可进入循环水中,使微生物繁殖和循环冷却水系统的铜管产生结垢、腐蚀,造成凝汽器传热效果恶化和水流截面减少。
其后果主要表现为:(1) 铜管内水的阻力增加;(2) 在设备扬程相同的情况下,冷却水的流量减少;(3) 使凝汽器进出口的冷却水温差加大;(4) 以上均导致凝汽器凝结水温升高,凝汽器内的真空恶化。
当出现上述现象时,就应对循环冷却水予以判别。
一、水质判断在热电厂凝汽器循环冷却系统中形成的水垢,通常只有碳酸盐类,这是因为 Ca(HCO3)2易受热分解生成难溶的CaCO3,反应式如下Ca(HCO3)2→CaCO3↓+CO2+H2O(12-36)尤其在循环冷却系统中,它有蒸发和浓缩的作用,因此也容易生成水垢。
循环水中是否有CaCO3析出,都会从水质表现出来,因此要用水质来判断。
水质判断的主要方法有:1.饱和指数法[又称朗格里尔(Langlier)指数法]它是水的实测pH值减去同一种水的碳酸钙饱和平衡时的pH值之差数。
即IL=pH0-pH s(12-37)式中 I L——饱和指数;pH0——水的实测pH值;pH s——水在碳酸钙饱和平衡时的pH值。
当I L>0时,有结垢倾向,当I L=0时,不腐蚀不结垢,当I L<0时,有腐蚀倾向。
pH s可根据水的总碱度、钙硬度和总溶解固体的分析值和温度由表12-31查得相应常数代入下式,即可计算得出:pH s=+N s+N t)-(N H+N A)(12-38)饱和指数和稳定指数配合应用,将更有助于判断水质的倾向。
运用指数来判断水质问题有很大的局限性,因为它仅依单一碳酸钙的溶解平衡作为判断依据,没有考虑结晶和电化学过程,更未考虑水中胶体的影响,而且把碳酸钙既作为缓蚀剂又作为污垢来考虑。
循环水的问题及解决方案
循环水的问题及解决方案在我国的火力发电厂中,由于循环冷却水系统处理不当而引起的发电机组凝汽器腐蚀结垢问题屡见不鲜。
凝汽器腐蚀容易引起铜管穿孔、开裂,增加设备的检修时间和次数,缩短设备的使用寿命,减少发电量,增加发电成本;凝汽器结垢一方面导致垢下腐蚀,另一方面降低换热器的热交换效率(从而影响到生产效率),增加能源消耗。
在正常运行状况下,凝汽器的真空度下降为89%-92%。
如果所使用的缓蚀阻垢剂的性能不当,导致系统一定程度的结垢,使凝汽器的真空度下降为86%-89%,这将使发电热耗增大4.5%-7.5%,发电煤耗增高8%-14%/kW·H。
如果考虑停车清洗、设备腐蚀和增加维修频率等所引起的连带后果,其经济损失是异常惊人的。
总之,凝汽器腐蚀结垢所造成的直接后果真空度下降、蒸汽出力减小、正常生产处理不当而引起的发电机组凝汽器周期缩短、设备寿命降低、运行成本提高、生产效率下降,带来巨大的经济损失。
因此,采用经济的有效的手段防止循环冷却水系统的腐蚀和结垢是非常重要的。
【火力发电厂循环冷却水的处理方式】我国许多缺水地区的火力发电厂,普遍采用地下水作为循环冷却水系统的补充水。
一般而言,地下水普遍存在含盐量高和硬度、碱度高的特点。
随着系统谁的不断浓缩,硬度离子如(Ca2+,Mg2+,HCO3-等)和侵蚀性离子(如Cl-和SO42-等)的浓度不断升高,超过一定的容忍度后极易引起设备管道的腐蚀与结垢。
另外,在这些缺水地区,为了节水节能的需要,循环水的浓缩倍数一般控制较高,这就进一步加重了系统腐蚀和结垢的危险性。
对于有些以地表水作补充水的电厂循环水系统,虽然硬度离子和侵蚀性离子浓度较低,但如果浓缩倍数过高,再加上处理方式不合适,同样也会引起机组的腐蚀和结垢。
为了解决循环冷却水系统的腐蚀结垢问题,国内的火力发电厂常规的处理方法有以下几种。
1、利用软化水降低补水的硬度该方法通过离子交换去除补水中的Ca2+和Mg2+等硬度离子而达到预防无机垢沉积的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
循环冷却水结垢原理及处理方法
一、循环冷却水系统为什么会结垢
1.一般解释 冷却水中溶解有各种盐类,如碳酸盐、碳酸氢盐、硫酸盐、硅酸盐、磷酸盐和氯化物等,它们的一价金属盐的溶解度很大,一般难以从冷却水中结晶析出,但它们的两价金属盐(氯化物除外)的溶解度很小,并且是负的温度系数,随浓度和温度的升高很容易形成难溶性结晶从水中析出,附着在水冷器传热面上成为水垢。
如冷却水中的碳酸氢根离子浓度较高,当冷却水经过水冷器的换热面时,受热发生分解,发生如下反应:
Ca(HCO 3)2 CaCO 3 + H 2O + CO 2
当冷却水通过冷却塔时,溶解于水中的二氧化碳溢出,水的pH 值升高,碳酸氢钙在碱性条件下发生如下反应:
Ca(HCO3)2 + 2OH- CaCO 3 + 2H 2O + CO 32-
难溶性碳酸钙可以是无定型碳酸钙、六水碳酸钙、一水碳酸钙、六方碳酸钙、文石和方解石。
方解石属三方晶系,是热力学最稳定的碳酸钙晶型,也是各种碳酸钙晶型在水中转变的终态产物。
2.碳酸钙的溶解沉淀平衡。
碳酸钙的溶解度虽然很小,但还是有少量溶解在水里,而溶解的部分是完全电离的。
所以在溶液里也出现这样的平衡:
Ca2++CO3 2- CACO 3(固)
在一定条件下达到平衡状态时〔Ca2+〕与〔CO
3
2-〕的乘积为碳酸钙在此条件下的溶度
积K
SP
,为一定值。
若此条件下〔Ca2+〕×〔CO
32-〕> K
SP
时,平衡向右移,有晶体析出。
若此条件下〔Ca2+〕×〔CO
32-〕< K
SP
时,平衡向左移,晶体溶解。
注:实际情况下〔Ca2+〕×〔CO
32-〕值称为K
CP
二、抑制为结垢的方法
(一) 化学方法
1. 加酸:
目的:降低水的PH值,使水的碳酸盐硬度硬度转化重碳酸盐硬度.
优点:费用较小,效果比较明显
缺点:加酸量不易控制、过量会产生腐蚀的危险、投加过量有产生硫酸钙垢的危险.
2. 软化
目的:降低水中至垢阳离子的含量
优点:防止结垢效果好
缺点:操作复杂、软化后水腐蚀性增强.
3. 加阻垢剂:
目的:使碳酸钙的过饱和溶液保持稳定。
优点:防垢效果好、具有缓蚀作用、针对性强.
缺点:药剂一般含磷,对环境保护造成压力.
(二) 物理方法(电子防垢)
电子水处理仪中有静电水处理器(带电极),和电子感应水处理器(非接触)两大类。
静电水处理器通过法兰连接在供水管道上,通过释能器内阳极发射高压静电场来改变水垢的结晶形式,其电磁场频率单一,在常温下作用有效时间~2个小时。
它的实际防垢率跟水质关系很大,当用在高硬度水或高浊度水时,其防垢率明显降低。
早期产品的金属电极没有涂层,水中的悬浮物会吸附在电极表面,干扰了静电场的发射,防垢率随之降低,电极污染严重时防垢性能完全丧失,所以3个月到半年必须擦洗一次电极。
为减少维护电极的频率,现在的产品在电极表面覆有泰氟隆涂层,表面光滑,抗污染能力有所提高,但泰氟隆涂层耐磨性能差,水中杂质的冲刷会破坏泰氟隆涂层,一旦涂层破损,电极很快被污染,防垢率随之降低,若使用者不能及时知道,就会引起设备结垢严重,造成生产隐患。
静电水处理器则是一根稀有金属棒为阳极,亮体为阴极,由镀锌钢管制成。
被处理的水通过芯棒与亮体之间的环状空间流入用水设备。
静电场发生器,是向静电水处理器提供高频电场能量与控制的设备,静电场电压高达为 8500V 以上。
静电水处理器安装的数量及位置不合理时,会对系统产生腐蚀。
静电水处理器是利用电化学原理使水分子极化(磁化),极化的水分子具有极强的电负性,来吸引钙、镁离子,从而延缓其结垢时间,达到其防垢的目的。
具有极强的电负性的水分子也能侵蚀水垢和锈垢。
但是.如果电子水处理器的安装数量及位置不合理时,它会对水系统产生严重的腐蚀,它的这种负面作用远大于正面作用。
会对冷却器、水泵系统及设备造成严重的危害。
以蓝星化工的已二醇为例说明.在清理泵人口的时发现有成团成团的红色铁锈随水涌出,可见
水系统的腐蚀已经相当的严重。
为了解决腐蚀问题.操作人员将水系统的所有静电水处理器全部关掉.经过一段时间的观察,发现在清理泵入口过滤器时,水质明显变清.当再使用静电水处理器时,发现循环水系统的水质又开始变的浑浊,并经过反复的实验,发现使用静电水处理器是严重腐蚀水系统管道的根源,最后拆除了所有的静电水处理器。
最新一代广谱感应水理器:广谱感应水处理器的主机产生强度和频率都按一定规律变化的脉冲电流,通过缠绕在管道外壁的信号线形成感应电磁场作用到水中,使水中的钙镁离子与酸根离子结合生成大量的文石晶核,在水中的矿物质超过饱和溶解度时,钙镁离子与酸根离子在文石晶核上形成大量的文石晶体,该文石晶体呈惰性,粘附力弱,很容易被水流冲走。
广谱感应水处理器产生的感应电磁场其变频范围宽,可适用于多种水质,这就解决了以前多种电子水处理器频率单一只适合某种特定水质的问题,在油田原油集输系统的油水混合物防垢方面也有很好的应用效果。
广谱感应水处理器在常温下的作用有效时间是可达12小时。
在一般流速下作用距离可达几公里至十几公里,同一工况可减少设备的安装数量。
广谱感应水处理器没有任何与水接触的部件,不用担心电极被污染或磨损。
其实际防垢率高,可达90%以上,效果稳定,可用在高硬度水或高浊度水广谱感应水处理器能根据水质情况和水的流速调整对输出电流进行补偿,可适用于高流速系统,水质变化大的系统。
该产品免维护,是当今世界最先进的物理防垢技术。
- 中国门户发表于:2009-07-03 09:44:26。