高中数学公式大全(学考简化版)

合集下载

高中数学公式大全表

高中数学公式大全表

高中数学公式大全表1. 代数公式:方程的根:设方程ax² + bx + c = 0的根为x₁和x₂,则有:x₁ + x₂ = -b/ax₁ × x₂ = c/a二次方程的解:对于方程ax² + bx + c = 0,解可以用以下公式表示:x = (-b ± √(b² - 4ac)) / 2a二次函数的顶点坐标:设二次函数的表达式为y = ax² + bx + c,顶点坐标可以通过以下公式计算:x = -b / 2ay = c - b² / 4a二次函数的平移变换:设原二次函数的表达式为y = ax² + bx + c,经过平移变换后的函数的表达式为y = a(x - h)² + k。

其中(h, k)为平移的距离,代表二次函数的顶点坐标。

2. 几何公式:三角函数:常用的三角函数包括正弦函数(sin)、余弦函数(cos)和正切函数(tan)。

它们的定义如下:sinθ = 对边 / 斜边cosθ = 邻边 / 斜边tanθ = 对边 / 邻边勾股定理:对于一直角三角形,较长的边称为斜边,其余两边称为直角边。

勾股定理可以表示为:斜边² = 直角边₁² + 直角边₂²正弦定理:对于任意三角形ABC,边长的比值与角度的正弦的比值之间有以下关系:a / sinA =b / sinB =c / sinC余弦定理:对于任意三角形ABC,边长的平方与另外两条边长的乘积和它们的夹角的余弦的乘积之间有以下关系:a² = b² + c² - 2bc cosA3. 概率公式:事件概率的计算:对于一个随机试验,事件A发生的概率可以用以下公式表示:P(A) = n(A) / n(S)其中,n(A)表示事件A发生的次数,n(S)表示随机试验的总次数。

加法原理:如果A和B是两个互不相容的事件,即A和B不能同时发生,那么A或B发生的概率可以用以下公式计算:P(A或B) = P(A) + P(B)乘法原理:如果A和B是两个相互独立的事件,即事件A发生与否不会影响事件B发生的概率,那么A和B同时发生的概率可以用以下公式计算:P(A和B) = P(A) × P(B|A)条件概率:对于事件A和B,条件概率可以表示为:P(B|A) = P(A和B) / P(A)4. 统计学公式:均值:一组数据的均值可以用以下公式计算:mean = (x₁ + x₂ + ... + xn) / n其中,x₁、x₂、...、xn为每个数据点的值,n为数据点的个数。

高中数学公式大全

高中数学公式大全

高中数学公式大全高中数学公式大全数学是一门重要的学科,它在高中阶段占据着重要的位置。

数学公式是数学知识的核心,因此掌握数学公式对于学习和应用数学都具有重要意义。

下面是高中数学公式的大全,希望对大家的学习有所帮助。

1. 代数公式- 二次方程的求根公式:对于方程ax^2+bx+c=0,其中a≠0,其根可以通过公式x=(-b±√(b^2-4ac))/(2a)来求得。

- 平方差公式:(a-b)^2=a^2-2ab+b^2,(a+b)^2=a^2+2ab+b^2。

- 二次平均不等式:对于任意的正实数a和b,有(a+b)/2 ≥ √(ab)。

- 三角函数基本关系式:sin^2θ+cos^2θ=1,1+tan^2θ=sec^2θ,1+cot^2θ=csc^2θ。

2. 几何公式- 三角形面积公式:对于已知三角形的底和高,其面积可以通过公式A=(1/2)bh来计算。

- 三角形周长公式:对于已知三角形的三边长度a、b、c,其周长可以通过公式P=a+b+c来计算。

- 圆的周长和面积公式:对于给定半径r的圆,其周长可以通过公式C=2πr来计算,面积可以通过公式A=πr^2来计算。

- 直线与平面的关系:对于平面Ax+By+Cz+D=0和直线的方程lx+my+nz=0,两者垂直的条件是A·l + B·m + C·n = 0。

3. 微积分公式- 函数导数的四则运算:如果f(x)和g(x)都是可导函数,那么导数的和差法则为(d/f+g)(x)=f'(x)+g'(x),导数的常数倍法则为(d/c·f)(x)=c·f'(x)。

- 链式法则:对于复合函数f(g(x)),其导数可以通过链式法则求解,即(d/dx)f(g(x))=f'(g(x))·g'(x)。

- 定积分计算公式:定积分可以通过牛顿-莱布尼茨公式计算,即∫[a,b]f(x)dx=F(b)-F(a),其中F(x)是f(x)的一个原函数。

高中数学公式大全(完整版)

高中数学公式大全(完整版)

高中数学公式大全(完整版)高中数学公式大全(完整版)精选1、两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)2、乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3-b^3=(a-b(a^2+ab+b^2)3、三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|4、正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径。

5、余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角。

6、圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标。

7、圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0。

8、倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^29、半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))10、某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3高中数学的学习方法1、养成演算、校核的好习惯,提高计算能力。

高中数学必背数学公式(学业水平考试)

高中数学必背数学公式(学业水平考试)

老师寄语是花就要绽放,是树就要撑出绿荫,是水手就要搏击风浪,是雄鹰就要展翅飞翔. 很难说什么事情是难以办到的,昨天的梦想就是今天的希望和明天的辉煌。

我们要以坚定的信心托起昨天的梦想,以顽强的斗志,耕耘今天的希望,那我们一定能用我们的智慧和汗水书写明天的辉煌!高中学业水平考试复习必背数学公式必修一1.★元素与集合的关系如果a 是集合A 的元素,就说a 属于集合A ,记作:a A ∈; 如果a 不是集合A 的元素,就说a 不属于集合A ,记作:a A ∉。

2。

★集合的运算:{}AB x x A x B =∈∈且;{}A B x x A x B =∈∈或;{}UC A x x U x A =∈∉且。

3. 子集的个数问题:若集合A 有n 个元素,则集合A 有2n 个子集,有21n -个真子集. 4。

★函数定义域:①分母不为0;②开偶次方被开方数0≥;③对数真数0> 5.★奇偶性(1)奇函数的定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=-,那么函数 ()f x 叫奇函数.(2)偶函数的定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数 ()f x 叫偶函数.(3)奇(偶)函数图像的特点:奇函数图象关于原点对称;偶函数图象关于y 对称。

6。

★函数的单调性(1)增函数:设函数()f x 的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的 值12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数, 区间D 称为函数()f x 的单调增区间.(2)减函数:设函数()f x 的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的 值12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数, 区间D 称为函数()f x 的单调减区间. (3)一次函数()0y kx b k =+≠,当0k >时,y 随x 的增大而增大,当0k <时,y 随x 的增大而减小; (4)反比例函数()0ky k x=≠ , 当0k >时,在每个区间内y 随x 的增大而增大,当0k <时,在每个区间内y 随x 的增大而减小;(5)二次函数()20y ax bx c a =++≠,当0a >时,在对称轴的左侧,y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大. 当0a <时,在对称轴的左侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小。

高中数学学业水平考试必备公式

高中数学学业水平考试必备公式

一、1、定义域:〔1〕根号: 〔2〕分母: 〔3〕对数: 2、对数与指数互换:725log 8x a =⇔=⇔()a b a b a b x x x x x =÷==3、奇函数:f(x)与f(-x)_____ 偶函数:f(x)与f(-x)_____二、1、诱导公式:sin ()πα+= cos ()πα+= tan ()πα+=sin () πα-= cos () πα-= tan () πα-=sin ()2πα+= cos ()2πα+=sin ()2πα-= cos ()2πα-= sin 2) (πα+= cos 2) (πα+= tan 2) (πα+=sin (2)πα-= cos (2)πα-= tan (2)πα-= sin ( )α-= cos ( )α-= tan ( )α-= 2、两角和与差公式: Sin: Cos: Tan:3、二倍角: sin2α=cos2α= = = tan2α=4、正弦定理: 余弦定理:log log log log a a a a M N M N +=-=6、sin()y A x ωϕ=+的周期是: cos()y A x ωϕ=+的周期是:tan()y A x ωϕ=+的周期是:7、同角三角函数关系:〔1〕 〔2〕三、等差数列通项公式: 前n 项和公式: 等差中项:〔a,b,c 〕等比数列通项公式: 前n 项和公式: 等比中项:〔a,b,c 〕四、直线:1.〔k 与倾斜角〕k= 两点的斜率公式k=2.3.直线Ax+By+C=0的斜率:4.点到直线距离公式:5.平行线间的距离公式:6.圆的标准方程: 圆心: 半径:7.圆的一般方程: 〔方程表示圆的条件: 〕 圆心: 半径:8.直线与圆相切,则:9.直线与圆相交的弦长公式:12//l l ⇔12l l ⊥⇔220x yDx Ey F ++++=公式答案:一、1、定义域:〔1〕根号:大于或等于0 〔2〕分母:不等于0 〔3〕对数:真数>0 2、对数与指数互换:2725log 5log 878x ax a =⇔==⇔=()a b a b a b a b a b a bx x x x x x x x +-=÷== 3、奇函数:f(x)与f(-x)_相反____ 偶函数:f(x)与f(-x)__相同___二、1、诱导公式:sin ()πα+= —sin α cos ()πα+=—cos α tan ()πα+=tan αsin () πα-=sin α cos () πα-=—cos α tan () πα-=—tan αsin ()2πα+=cos α cos ()2πα+=—sin αsin ()2πα-= cos α cos ()2πα-= sin α sin 2) (πα+=sin α cos 2) (πα+=cos α tan 2) (πα+= tan αsin (2)πα-=sin α cos (2)πα-=cos α tan (2)πα-= tan α sin ( )α-= —sin α cos ( )α-=cos α tan ( )α-=—tan α 2、两角和与差公式:()()()sin sin cos cos sin cos cos cos sin sin tan tan tan 1tan tan αβαβαβαβαβαβαβαβαβ±=±±=±±=3、二倍角:22222sin 22sin cos cos 2cos sin 2cos 112sin 2tan tan 21tan ααααααααααα==-=-=-=-4、正弦定理:2sin sin sin a b cR A B C===〔R 为外接圆半径〕余弦定理:log log log ()log log log a a a a a aM N MN M M N N+=-=2222222222cos 2cos 2cos a b c bc A b a c ac Bc a b ab C=+-=+-=+-6、sin()y A x ωϕ=+的周期是:T ω=cos()y A x ωϕ=+的周期是:T ω=tan()y A x ωϕ=+的周期是:T πω=7、同角三角函数关系:〔1〕22sin cos 1αα+= 〔2〕sin tan cos ααα=三、等差数列通项公式: 前n 项和公式: 等差中项:〔a,b,c 〕 :2b=a+c等比数列通项公式: 前n 项和公式: 等比中项:〔a,b,c 〕:四、直线:1.〔k 与倾斜角〕k=两点的斜率公式k= 2.3.直线Ax+By+C=0的斜率:4.点到直线距离公式:5.平行线间的距离公式:6.圆的标准方程:圆心:〔a,b 〕 半径:r 7.圆的一般方程:圆心: 半径:8.直线与圆相切,则:d=r 〔d 为圆心到直线距离〕 9.直线与圆相交的弦长公式:2121y y x x --1(1)n a a n d =+-11()(1)22n n a a n n n d S na +-==+11n n a a q -=111,1(1),111n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩2b a c =tan α1212//l l k k ⇔=12121l l k k ⊥⇔=-d =Ay =-d =222()()x a y b r -+-=22220(40)x y Dx Ey F D E F ++++=+->(,)22D E --2r =AB =。

高中数学常用公式定理大全

高中数学常用公式定理大全

高中数学学考常用公式及结论必修1:一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性(2)集合的分类;有限集,无限集(3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意x A ∈,都有x B ∈,则称A 是B 的子集。

记作A B⊆真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集,记作A ≠⊂B集合相等:若:,A B B A ⊆⊆,则A B =3.元素与集合的关系:属于∈不属于:∉空集:φ4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为A B交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A5.集合12{,,,}n a a a 的子集个数共有2n个;真子集有2n –1个;非空子集有2n–1个;6.常用数集:自然数集:N 正整数集:*N整数集:Z 有理数集:Q 实数集:R二、函数的奇偶性1、定义:奇函数<=>f (–x )=–f (x ),偶函数<=>f (–x )=f (x )(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形;(2)偶函数的图象关于y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数;(4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.二、函数的单调性1、定义:对于定义域为D 的函数f (x ),若任意的x 1,x 2∈D ,且x 1<x 2①f (x 1)<f (x 2)<=>f (x 1)–f (x 2)<0<=>f (x )是增函数②f (x 1)>f (x 2)<=>f (x 1)–f (x 2)>0<=>f (x )是减函数2、复合函数的单调性:同增异减三、二次函数y =ax 2+bx +c (0a ≠)的性质1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛--ab ac a b 44,22,对称轴:a b x 2-=,最大(小)值:a b ac 442-2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)f x a x h k a =-+≠;(3)两根式12()()()(0)f x a x x x x a =--≠.四、指数与指数函数1、幂的运算法则:(1)a m •a n =a m +n ,(2)nm nmaa a -=÷,(3)(a m )n =a m n(4)(ab )n =a n •b n(5)nn nb a b a =⎪⎭⎫⎝⎛(6)a 0=1(a ≠0)(7)nna a 1=-(8)mnmn a a=(9)mnmn a a1=-2、根式的性质(1)na =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.4、指数函数y =a x (a >0且a ≠1)的性质:(1)定义域:R ;值域:(0,+∞)(2)图象过定点(0,1)5.指数式与对数式的互化:log ba Nb a N =⇔=(0,1,0)a a N >≠>.五、对数与对数函数1对数的运算法则:(1)a b =N <=>b =log a N (2)log a 1=0(3)log a a =1(4)log a a b =b (5)a log a N=N (6)log a (MN)=log a M +log a N (7)log a (NM)=log a M --log a N (8)log a N b =b log a N(9)换底公式:log a N =aN b b log log (10)推论log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠,0N >).(11)log a N =aN log 1(12)常用对数:lg N =log 10N (13)自然对数:ln A =log e A (其中e =2.71828…)2、对数函数y =log a x (a >0且a ≠1)的性质:(1)定义域:(0,+∞);值域:R(2)图象过定点(1,0)YX1a >1YX10<a <1Ya >1Y0<a <1六、幂函数y =x a 的图象:(1)根据a 的取值画出函数在第一象限的简图.例如:y =x 221xx y ==11-==x xy 七.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;规律:左加右减,上加下减八.平均增长率的问题如果原来产值的基础数为N,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+.九、函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。

高中数学公式大全(简化)

高中数学公式大全(简化)

高中数学常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B == .3.包含关系A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ U C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+ .5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M N f x +--<⇔()0()f x N M f x ->-⇔11()f x NM N>--.8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k ab k +<-<,或0)(2=k f 且22122k abk k <-<+.9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在ab x 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p ab x ,2∈-=,则{}m in m a x m ax ()(),()(),()2bf xf f xf p f q a=-=;[]q p ab x ,2∉-=,{}max max ()(),()f x f p f q =,{}min min()(),()f x f p f q =. (2)当a<0时,若[]q p ab x ,2∈-=,则{}m i n()m i n (),()f x fp f q =,若[]q p ab x ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩;(3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是m in (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()m an f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.13.14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么 []1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数; []1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b a x +=对称.21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称.(3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b fb a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x fk y -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数.28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==.29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f , 或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂(1)mn a =(0,,a m n N *>∈,且1n >). (2)1m nmnaa -=(0,,a m n N *>∈,且1n >).31.根式的性质(1)n a =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log ba Nb a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log mna a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a M N M N =+; (2) log log log aa a M M N N=-; (3)log log ()na a Mn M n R =∈.36.设函数)0)((log )(2≠++=a c bx axx f m,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广 若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx =(1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数. ,(2)当a b <时,在1(0,)a和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<.(2)2log log log 2a a a m n m n +<.38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ). 40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-.41.等比数列的通项公式1*11()n n n a a a q q n N q-==⋅∈;其前n 项的和公式为 11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为 1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111nn nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).44.常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s ()2(1)s i n ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩ 47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-. sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ=).48.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos 34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=.51.正弦定理2sin sin sin a b c R ABC===.52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-;2222cos c a b ab C =+-. 53.面积定理 (1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===.(3)O A B S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+.55. 简单的三角方程的通解sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()kk k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈.cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈. tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.。

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)一、代数1. 一元一次方程:ax + b = 0,其中a ≠ 0。

解为 x = b/a。

2. 一元二次方程:ax^2 + bx + c = 0,其中a ≠ 0。

解为 x =[b ± sqrt(b^2 4ac)] / 2a。

3. 一元三次方程:ax^3 + bx^2 + cx + d = 0,其中a ≠ 0。

解为x = [b ± sqrt(b^2 3ac)] / 3a。

4. 一元四次方程:ax^4 + bx^3 + cx^2 + dx + e = 0,其中 a≠ 0。

解为x = [b ± sqrt(b^2 4ac)] / 2a。

5. 分式方程:分子和分母均为多项式。

解法为将方程两边乘以分母的乘积,得到一个等价的整式方程,然后求解。

6. 二元一次方程组:由两个一元一次方程组成的方程组。

解法为消元法或代入法。

7. 二元二次方程组:由两个一元二次方程组成的方程组。

解法为消元法或代入法。

8. 三元一次方程组:由三个一元一次方程组成的方程组。

解法为消元法或代入法。

9. 等差数列:首项为 a1,公差为 d。

第 n 项为 an = a1 + (n 1)d。

前 n 项和为 Sn = n/2(a1 + an)。

10. 等比数列:首项为 a1,公比为 q。

第 n 项为 an = a1q^(n 1)。

前 n 项和为 Sn = a1 (1 q^n) / (1 q),其中q ≠ 1。

二、几何1. 平面几何(1)直线:两点确定一条直线,直线方程为 y = mx + b,其中m 是斜率,b 是截距。

(2)圆:圆心为 (a, b),半径为 r。

圆的方程为 (x a)^2 +(y b)^2 = r^2。

(3)椭圆:中心为 (a, b),长轴为 2a,短轴为 2b。

椭圆的方程为 (x a)^2 / a^2 + (y b)^2 / b^2 = 1。

(4)双曲线:中心为 (a, b),实轴为 2a,虚轴为 2b。

(完整版)高中数学学考公式大全

(完整版)高中数学学考公式大全

1高中数学学考常用公式及结论必修1:一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性(2)集合的分类;有限集,无限集(3)集合的表示法:列举法,描述法,图示法 2、集合间的关系:子集:对任意x A ∈,都有 x B ∈,则称A 是B 的子集。

记作A B ⊆ 真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集,记作A ≠⊂B集合相等:若:,A B B A ⊆⊆,则A B =3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为A B U 交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B I补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A 5.集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个; 6.常用数集:自然数集:常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R 二、函数的奇偶性1、定义: 奇函数 <=>f (– x ) = – f ( x ) , 偶函数 <=>f (–x ) = f ( x )(注意定义域) 2、性质:(1)奇函数的图象关于原点成中心对称图形;(2)偶函数的图象关于y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.二、函数的单调性1、定义:对于定义域为D 的函数f ( x ),若任意的x 1, x 2∈D ,且x 1 < x 2① f ( x 1 ) < f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) < 0 <=> f ( x )是增函数 ② f ( x 1 ) > f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) > 0 <=>f ( x )是减函数 2、复合函数的单调性: 同增异减 三、二次函数y = ax 2 +bx + c (0a ≠)的性质1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22, 对称轴:a b x 2-=,最大(小)值:a b ac 442- 2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠.四、指数与指数函数 1、幂的运算法则:(1)a m • a n = a m + n , (2)nm nmaa a -=÷,(3)( a m ) n = am n (4)( ab ) n = a n•b n (5) n nnb a b a =⎪⎭⎫⎝⎛ (6)a 0 = 1 ( a ≠0)(7)n naa 1=-(8)m nmna a=(9)mnmn aa1=-2、根式的性质(1)()nn a a =.(2)当n 为奇数时,n n a a =; 当n 为偶数时,,0||,0n n a a a a a a ≥⎧==⎨-<⎩.4、指数函数y = a x(a > 0且a ≠1)的性质: (1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)5.指数式与对数式的互化: log b a N b a N =⇔=(0,1,0)a a N >≠>. 五、对数与对数函数 1对数的运算法则:(1)a b = N <=> b = log a N(2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N = N(6)log a (MN) = log a M + log a N (7)log a (NM ) = log a M -- log a N(8)log a N b = b log a N (9)换底公式:log a N =aNb b log log(10)推论 loglogmnaa n bbm=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).(11)log a N =aN log 1(12)常用对数:lg N = log 10 N (13)自然对数:ln A = log e A (其中 e = 2.71828…)2、对数函数y = log a x (a > 0且a ≠1)的性质: (1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)YX1a > 1YX1 0 < a < 10 YX1a >1XY10 < a < 1六、幂函数y = x a 的图象:(1) 根据 a 的取值画出函数在第一象限的简图 .例如:y = x 221x x y ==11-==x xy七.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位, 得到函数b a x f y +-=)(的图象; 规律:左加右减,上加下减 八. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+. 九、函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。

高中学考数学公式总结

高中学考数学公式总结

高中学考数学公式总结
高中学考数学作为重要的学科之一,其中包含了大量的公式,掌握这些公式对于高中数学考试至关重要。

以下是一些常用的高中学考数学公式总结。

1. 三角函数公式:
sinx + cosx = 1
1 + tanx = secx
1 + cotx = cscx
sin2x = 2sinxcosx
cos2x = cosx - sinx
tan2x = (2tanx) / (1 - tanx)
2. 平面几何公式:
圆的面积:S = πr
圆的周长:C = 2πr
三角形面积:S = (1/2)bh
三角形周长:C = a + b + c
四边形面积:S = (1/2)(d1 + d2)
正方形面积:S = a
正方形周长:C = 4a
长方形面积:S = lw
长方形周长:C = 2(l + w)
3. 解方程公式:
一次方程:ax + b = 0 x = -b/a
二次方程:ax + bx + c = 0 x = (-b ±√(b - 4ac)) / 2a 4. 统计公式:
平均数:(x1 + x2 + … + xn) / n
中位数:将数据从小到大排序后,位于中间的数值(若n为奇数,则为(n+1)/2,若n为偶数,则为n/2和(n/2 + 1)的平均数)众数:出现最多的数值
标准差:√[(∑(xi-μ))/n]
以上仅是高中学考数学公式的一部分,掌握这些公式并能够熟练运用将有助于高中数学考试的顺利通过。

高中数学公式总结大全最全面、最易懂

高中数学公式总结大全最全面、最易懂

高中数学公式总结大全最全面、最易懂高中数学公式总结大全最全面、最易懂高中数学是一门非常重要的学科,它是后续学科的基础。

数学是一门理性的学科,但也需要掌握一些必要的公式来解决问题。

在准备数学考试时,熟练掌握公式是非常重要的。

本文将为大家总结最重要的高中数学公式,以帮助大家更好地备考。

1. 代数公式1.1 二次方程的解对于一元二次方程ax^2+bx+c=0,其解为x = {-b±√(b^2-4ac)} / 2a1.2 因式分解公式(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab + b^2(a+b)(a-b) = a^2 - b^21.3 平均数公式平均数=$\frac{\sum_{i=1}^{n}x_i}{n}$1.4 概率公式事件A发生的概率为P(A)=$\frac{A出现的次数}{总次数}$事件A和事件B同时发生的概率为P(A∩B)=P(A)×P(B|A)事件A和事件B至少发生一个的概率为P(A∪B)=P(A)+P(B)-P(A∩B)1.5 对数公式以a为底数的对数,log(a^n)=nlog(a)以e为底数的对数,ln(a)=log(e^a)1.6 复合函数的求导公式设f(x)和g(x)都可以求导,则(f(g(x)))' = f'(g(x))g'(x)1.7 三角函数公式sin(a+b)=sinacosb+cosasinbcos(a+b)=cosacosb-sinasinbtan(a+b)= $\frac{tana + tanb}{1-tanatanb}$sin2a=2sinacosbcos2a=cos^2a-sin^2atan2a= $\frac{2tana}{1-tan^2a}$2. 几何公式2.1 三角形的面积公式设三角形的三条边分别为a,b和c,p为半周长,则S= $\sqrt{p(p-a)(p-b)(p-c)}$2.2 勾股定理勾股定理:a^2+b^2=c^2其中,a和b为直角三角形斜边两侧的直角边,c为斜边。

高中数学公式表

高中数学公式表

高中数学公式表一、代数公式1. 四则运算公式:- 加法公式:a + b = b + a- 减法公式:a - b ≠ b - a- 乘法公式:a × b = b × a- 除法公式:a ÷ b ≠ b ÷ a2. 幂运算公式:- 正整数幂公式:aⁿ × aᵐ= aⁿ⁺ᵐ- 负整数幂公式:a⁻ⁿ = 1/aⁿ- 幂的乘法公式:(aⁿ)ᵐ= aⁿᵐ- 幂的除法公式:(aⁿ)÷(aᵐ) = aⁿ⁻ᵐ3. 因式分解公式:- 平方差公式:a² - b² = (a + b)(a - b)- 完全平方公式:a² + 2ab + b² = (a + b)² - 平方和公式:a² + 2ab + b² = (a + b)²4. 根式公式:- 同底数幂相乘取根公式:√(aⁿ × bⁿ) = √(aⁿ) × √(bⁿ) = a√(b) - 同底数幂相除取根公式:√(aⁿ÷ bⁿ) = √(aⁿ) ÷ √(bⁿ) = aⁿ√(b)二、几何公式1. 平面图形公式:- 长方形的面积公式:A = l × w- 正方形的面积公式:A = a²- 三角形的面积公式:A = 1/2 × b × h- 圆的面积公式:A = πr²2. 空间图形公式:- 立方体的体积公式:V = l × w × h- 正方体的体积公式:V = a³- 圆柱体的体积公式:V = πr²h- 圆锥体的体积公式:V = 1/3 × πr²h三、三角函数公式1. 基本三角函数公式:- 正弦函数的定义:sinθ = 对边/斜边- 余弦函数的定义:cosθ = 邻边/斜边- 正切函数的定义:tanθ = 对边/邻边2. 三角函数的基本关系:- 正弦函数与余弦函数的关系:sin²θ + cos²θ = 1- 正切函数与余切函数的关系:tanθ = 1/cotθ3. 三角函数的和差公式:- 正弦函数的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβ - 余弦函数的和差公式:cos(α ± β) = cosαcosβ ∓ sinαsinβ- 正切函数的和差公式:tan(α ± β) = (tanα ± tanβ)/(1 ∓tanαtanβ)四、概率与统计公式1. 概率公式:- 加法法则:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)- 乘法法则:P(A ∩ B) = P(A) × P(B|A) = P(B) × P(A|B)2. 统计公式:- 平均值公式:平均值 = (数据之和) ÷ (数据的个数)- 方差公式:方差 = [(每个数据与平均值之差的平方之和) ÷ (数据的个数)]五、数列与数学归纳法公式1. 等差数列公式:- 第n项公式:aₙ = a₁ + (n-1)d- 前n项和公式:Sₙ = n/2(a₁ + aₙ)2. 等比数列公式:- 第n项公式:bₙ = b₁ × rⁿ⁻¹- 前n项和公式:Sₙ = b₁ × (1 - rⁿ)/(1 - r)以上是高中数学公式表的一部分,这些公式涵盖了代数、几何、三角函数、概率与统计、数列与数学归纳法等各个方面。

高中必背88个数学公式

高中必背88个数学公式

高中必背88个数学公式数学公式是数学知识的重要组成部分,对于高中学生来说,掌握数学公式是提高数学能力和应对考试的重要手段。

下面是88个高中必背的数学公式,帮助学生系统地了解并掌握数学知识。

1.两点之间的距离公式:d=√((x2-x1)²+(y2-y1)²)2.两点之间的中点公式:((x1+x2)/2,(y1+y2)/2)3. 一元二次方程的根公式:x = (-b±√(b²-4ac))/2a4.直线的斜率公式:m=(y2-y1)/(x2-x1)5.直线的点斜式公式:y-y1=m(x-x1)6.直线的一般式公式:Ax+By+C=07. 平面直角坐标系中两直线的夹角公式:tanθ = ,(m1-m2)/(1+m1m2)8.点到直线的距离公式:d=,Ax+By+C,/√(A²+B²)9. 解三角形的余弦定理:c² = a² + b² - 2abcosC10. 解三角形的正弦定理:a/sinA = b/sinB = c/sinC11.正弦函数的周期:T=2π/ω12. 船头相对于岸的速度:v = vw + vb13.波速公式:v=λf14.频率公式:f=1/T15. 倍角公式:si n2θ = 2sinθcosθ16.三角形内角和公式:A+B+C=180°17.弧长公式:s=rθ18.扇形面积公式:A=1/2r²θ19.圆柱体积公式:V=πr²h20. 圆柱体表面积公式:S = 2πr² + 2πrh21.球体积公式:V=4/3πr³22.球体表面积公式:S=4πr²23.二次函数的顶点公式:(h,k)24.两个集合的交集公式:A∩B25.两个集合的并集公式:A∪B26.两个集合的补集公式:A'=U-A27.两个集合的差集公式:A-B=A∩B'28.同位角公式:∠a°=∠b°29.异位角公式:∠a°+∠b°=180°30.子午线长度公式:s=2πR31.等周角公式:∠A°=∠B°=∠C°=∠D°32.相邻角公式:∠a°+∠b°=180°33.平行线之间的角公式:∠1=∠234.对顶角公式:∠1=∠335.余角公式:∠a°=90°-∠b°36.同行角公式:∠a=∠b37.一个点关于原点的对称点公式:(-x,-y)38. 两圆相交面积公式:A = r²arccos((d²+r²-R²)/(2dr)) +R²arccos((d²+R²-r²)/(2dR)) - √(s(s-d)(s-r)(s-R))39.在方程中求极值的一般方法40.二项式展开公式:(a+b)ⁿ=Cⁿ₀aⁿb⁰+Cⁿ₁aⁿ⁻¹b¹+Cⁿ₂aⁿ⁻²b²+...+Cⁿⁿa⁰bⁿ41. 对数运算公式:(a^x)^y = a^(xy)42. 对数运算公式:log(a^m) = mloga43.指数函数的斜率公式:y=a^x44.速度的平均值公式:v=Δx/Δt45.加速度的平均值公式:a=Δv/Δt46. 速度的瞬时值公式:v = ds/dt47. 加速度的瞬时值公式:a = dv/dt48. 速度的平均值与瞬时值之间的关系:v = lim(Δt→0) Δs/Δt49. 加速度的平均值与瞬时值之间的关系:a = lim(Δt→0)Δv/Δt50. 一维随机运动的位移公式:x = v₀t + 1/2at²51. 一维随机运动的速度公式:v = v₀ + at52. 一维随机运动的加速度公式:v² = v₀² + 2ax53. 二维随机运动的位移公式:x = v₀xt + 1/2at²54. 二维随机运动的速度公式:v = v₀ + at55. 二维随机运动的加速度公式:v² = v₀² + 2ax56.匀速圆周运动的角度公式:θ=ωt57.匀速圆周运动的角速度公式:ω=Δθ/Δt58.匀速圆周运动的线速度公式:v=ωr59.匀速圆周运动的加速度公式:a=v²/r60.匀速圆周运动的周期公式:T=2π/ω61. 平抛运动的位移公式:x = v₀xt62. 平抛运动的速度公式:v = v₀ + gt63. 平抛运动的加速度公式:v² = v₀² + 2gx64.平抛运动的竖直上升时间公式:t=v₀/g65. 平抛运动的竖直上升高度公式:h = v₀t - 1/2gt²66. 平抛运动的最大高度公式:h_max = v₀²/2g67. 圆锥曲线的焦距公式:f = ae68.圆锥曲线的离心率公式:e=c/a69.圆锥曲线的短轴长度公式:b=a√(1-e²)70. 均匀变速运动的位移公式:s = v₀t + 1/2at²71. 均匀变速运动的速度公式:v = v₀ + at72. 均匀变速运动的加速度公式:v² = v₀² + 2as73.均匀变速运动的时间公式:t=(v-v₀)/a74. 斜抛运动的水平位移公式:x = v₀xt75.斜抛运动的水平速度公式:v_x=v₀x76. 斜抛运动的竖直位移公式:y = v₀yt - 1/2gt²77. 斜抛运动的竖直速度公式:v_y = v₀t - gt78. 斜抛运动的参数方程:x = v₀xt, y = v₀yt - 1/2gt²79. 阻力的特征速度公式:v = mg/k80. 阻力的质量与时间的关系:m = (v₀/g)(k - kv₀/g)81. 阻尼振动的运动方程公式:mx'' + bx' + kx = 082.声音强度的公式:I=P/A83. 声音强度的分贝公式:L = 10log(I/I₀)84. 牛顿第二定律公式:F = ma85.牛顿万有引力公式:F=G(m₁m₂/r²)86.功的计算公式:W=Fs87.功的机械功率公式:P=W/t88.功的势能转换公式:W=ΔPE+ΔKE以上是88个高中必背的数学公式,学生们可以通过反复背诵和练习,掌握这些公式,并应用于解题中,提高数学能力。

数学学考必考知识点高中公式

数学学考必考知识点高中公式

数学学考必考知识点高中公式高中数学学考必考知识点公式引言高中数学学考是学生们进入大学的重要关卡,掌握必考知识点公式对于顺利通过考试至关重要。

本文旨在为学生们整理和梳理高中数学学考必考知识点公式,帮助大家复习和备考。

知识点一:函数与极限•函数求导法则:(u±v)′=u′±v′,(uv)′=u′v+uv′,(k×u)′= k×u′•高中常用极限公式:lim x→0sinxx =1,lim x→∞(1+1x)x=e,lim x→0(1+x)1x=e知识点二:数列与级数•通项与前n项和:a n=a1+(n−1)d,S n=n2(a1+a n)•等差数列公式:a n=a1+(n−1)d,S n=n2(a1+a n)•等比数列公式:a n=a1⋅q n−1,S n=a1⋅q n−1q−1知识点三:解析几何•点到直线的距离公式:d=00√A2+B2•两点间的距离公式:d=√(x2−x1)2+(y2−y1)2•直线的斜率公式:k=y2−y1x2−x1•圆的标准方程:(x−a)2+(y−b)2=r2知识点四:概率与统计•排列组合公式:A n m=n!(n−m)!,C n m=n!m!(n−m)!•二项式定理:(a+b)n=C n0a n b0+C n1a n−1b1+...+C n n a0b n知识点五:三角函数•基本三角函数公式:sin2x+cos2x=1,tanx=sinxcosx•三角函数的周期性:sin(x+2π)=sinx,cos(x+2π)=cosx结语本文仅列举了高中数学学考中的一部分必考知识点公式,希望对大家的复习和备考有所帮助。

在复习过程中,建议结合习题进行练习,加深对知识点公式的理解和运用。

祝愿大家取得优异的成绩!。

高中数学所有公式汇总总结

高中数学所有公式汇总总结

高中数学所有公式汇总总结高中数学是学生学习的一门重要学科,其中涵盖了许多基本概念、定理和公式。

掌握并熟练运用这些公式是高中数学学习的关键。

在本文中,我们将对高中数学中的所有公式进行汇总总结,帮助学生更好地复习和掌握这些知识。

一、代数1. 二次函数的一般式:y=ax^2+bx+c2. 一元二次方程的解法:x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}3. 平方差公式:(a+b)^2=a^2+2ab+b^24. 定比分点公式:\frac{m}{n}=\frac{x_2-x}{x-x_1}5. 三角函数的基本关系:\sin^2\theta+\cos^2\theta=16. 余切的定义:\cot\theta=\frac{1}{\tan\theta}7. 对数运算规律:\log_ab=\frac{\log_cb}{\log_ca}8. 等比数列通项公式:a_n=a_1\cdot q^{n-1}9. 二项式定理:(a+b)^n=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k10. 质因数分解:n=p_1^{a_1}p_2^{a_2}...p_k^{a_k}二、几何1. 三角形的面积公式:S=\frac{1}{2}bh2. 圆的面积公式:S=\pi r^23. 圆锥的体积公式:V=\frac{1}{3}\pi r^2h4. 锥台的体积公式:V=\frac{1}{3}\pi(R^2+r^2+Rr)h5. 二面角余角关系:\alpha+\beta=180^\circ6. 直角三角形三边关系:a^2+b^2=c^27. 多边形内角和公式:S=(n-2)\cdot180^\circ8. 圆心角与弦的关系:\theta=\frac{1}{2}m\alpha9. 角平分线定理:\frac{a}{b}=\frac{c}{d}10. 高度定理:h=\frac{2S}{a}三、概率1. 概率加法:P(A\cup B)=P(A)+P(B)-P(A\cap B)2. 条件概率公式:P(A|B)=\frac{P(A\cap B)}{P(B)}3. 互斥事件概率:P(A\cap B)=04. 独立事件概率:P(A\cap B)=P(A)\cdot P(B)5. 全概率公式:P(A)=\sum_{i=1}^{n}P(A|B_i)P(B_i)6. 二项分布概率:P(X=k)=\binom{n}{k}p^k(1-p)^{n-k}7. 正态分布概率密度函数:f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}8. 期望的线性性质:E(aX+b)=aE(X)+b9. 二项分布的期望和方差:E(X)=np,Var(X)=np(1-p)10. 正态分布的期望和方差:E(X)=\mu,Var(X)=\sigma^2四、微积分1. 极限定义:\lim_{x\to a}f(x)=L2. 导数定义:f'(x)=\lim_{h\to0}\frac{f(x+h)-f(x)}{h}3. 导数基本法则:(Cf(x))'=Cf'(x)4. 高阶导数:f^{(n)}(x)5. 极大极小值判定法则:f'(x_0)=0\Rightarrow f(x_0)6. 不定积分线性性质:\int(kf(x)+g(x))dx=k\int f(x)dx+\int g(x)dx7. 分部积分法:\int u dv=uv-\int v du8. 定积分定义:\int_{a}^{b}f(x)dx=F(b)-F(a)9. 牛顿-莱布尼茨公式:\int_{a}^{b}f(x)dx=F(b)-F(a)10. 参数方程的曲线面积:S=\int_{\alpha}^{\beta}f(\theta)g'(\theta)d\theta五、线性代数1. 行列式定义:D=\begin{vmatrix}a & b\\c & d\end{vmatrix}=ad-bc2. 矩阵乘法:C=AB3. 矩阵转置:A^T4. 逆矩阵定义:AA^{-1}=A^{-1}A=I5. 矩阵行列式性质:|A^T|=|A|6. 向量叉乘定义:A\times B=|A|\cdot|B|\sin\theta n7. 点到直线距离公式:d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}8. 埃尔米特矩阵:A=A^*9. 特征值与特征向量:Ax=\lambda x10. 正交矩阵性质:A^TA=AA^T=I以上便是高中数学中所有公式的汇总总结,希朋对您有所帮助。

高中数学所有公式归纳

高中数学所有公式归纳

高中数学所有公式归纳
高中数学公式归纳
一、数列:
1、等差数列:若一个数列的首项为a,公差为d,则该数列的通项公式为an=a1+(n-1)d
2、等比数列: 若一个数列的首项为a,公比为q,则该数列的通项公式为an=a1q n-1
二、立体几何:
1、直角三角形斜边长:c2=a2+b2
2、平行四边形面积:S=ab
3、球的表面积:S=4πr2
4、球体体积:V=4/3πr3
三、几何转换:
1、极坐标转换为直角坐标:x=rcosθ,y=rsinθ
2、直角坐标转换为极坐标:r=√x2+y2,θ=tan-1(y/x)
四、圆的几何:
1、圆的圆心角:θ=2πr/C
2、极半径:r=√(a2+b2+2abcosC/2)
五、三角函数:
1、正弦定理:a/sinA=b/sinB=c/sinC
2、余弦定理:a2=b2+c2-2bc cosA
3、正切定理:tanA/a=tanB/b=tanC/c
六、向量:
1、两向量的叉积:A×B=|A| |B| Sinα
2、向量的模:|A|=√a12+a22+a32
3、向量的点积:A·B=|A| |B|cosα
七、二次函数:
1、二元一次方程的解: ax2 + bx + c = 0 的解为 x=(-b ± √b2 - 4ac)/2a
2、二元二次函数的最值:若二元二次函数为:y=ax2 +bx+c,则最值为y=ax2 +bx+c + d(a不等于0),其中d为函数最值。

八、概率论:
1、加法原理:P(A与B事件有联系)=P(A)+P(B)-P(A与B同时发生)
2、乘法原理:P(A与B同时发生)=P(A)*P(B|A)。

高中数学常用公式大全

高中数学常用公式大全

高中数学常用公式大全一、集合。

1. 集合的基本运算。

- 交集:A∩ B={xx∈ A且x∈ B}- 并集:A∪ B ={xx∈ A或x∈ B}- 补集:∁_U A={xx∈ U且x∉ A}(U为全集)2. 集合间的关系。

- 若A⊆ B,则A中的元素都在B中。

- n个元素的集合的子集个数为2^n个,真子集个数为2^n - 1个。

二、函数。

1. 函数的定义域。

- 分式函数y=(f(x))/(g(x)),g(x)≠0。

- 偶次根式函数y = √(f(x)),f(x)≥slant0。

2. 函数的单调性。

- 设x_1,x_2∈[a,b]且x_1 < x_2,对于函数y = f(x)。

- 若f(x_1),则y = f(x)在[a,b]上单调递增。

- 若f(x_1)>f(x_2),则y = f(x)在[a,b]上单调递减。

3. 函数的奇偶性。

- 对于函数y = f(x),定义域关于原点对称。

- 若f(-x)=f(x),则y = f(x)是偶函数。

- 若f(-x)= - f(x),则y = f(x)是奇函数。

4. 一次函数y=kx + b(k≠0)- 斜率k=(y_2 - y_1)/(x_2 - x_1)。

5. 二次函数y=ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a)。

- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})。

- 当a>0时,函数开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a < 0时,函数开口向下,在x=-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。

6. 指数函数y = a^x(a>0,a≠1)- 当a>1时,函数在R上单调递增;当0 < a < 1时,函数在R上单调递减。

7. 对数函数y=log_a x(a>0,a≠1,x>0)- 当a>1时,函数在(0,+∞)上单调递增;当0 < a < 1时,函数在(0,+∞)上单调递减。

数学学考必考知识点高中公式

数学学考必考知识点高中公式

数学学考必考知识点高中公式高中数学是中学阶段的重要学科之一,其中公式是数学学考必考的知识点之一。

公式是数学中的重要工具,可以帮助我们解决各种数学问题。

本文将介绍一些高中数学中常见的公式知识点。

一、数列与数列求和公式数列是数学中重要的概念,它是由一系列按照一定规律排列的数所组成的。

高中数学中常见的数列有等差数列和等比数列。

等差数列的通项公式为an=a1+(n-1)d,其中an表示第n个数,a1表示首项,d表示公差。

等比数列的通项公式为an=a1*r^(n-1),其中r为公比。

数列求和公式是求解数列前n项和的公式。

对于等差数列,其前n 项和公式为Sn=n/2*(a1+an),对于等比数列,其前n项和公式为Sn=a1*(1-r^n)/(1-r)。

二、二次函数与二次方程公式二次函数是高中数学中的重要内容,其一般式为f(x)=ax^2+bx+c,其中a、b、c为常数,且a≠0。

二次函数的顶点坐标为(-b/2a,f(-b/2a))。

二次方程是二次函数的零点问题,通常表示为ax^2+bx+c=0,其中a、b、c为常数,且a≠0。

二次方程的求解可以使用求根公式x=(-b±√(b^2-4ac))/2a。

三、三角函数与三角恒等式公式三角函数是高中数学中的重要内容,常见的三角函数有正弦函数、余弦函数和正切函数等。

在解决三角函数相关问题时,可以使用诸如sinθ、cosθ、tanθ等符号表示。

三角恒等式是三角函数中的重要性质,常见的三角恒等式有:和差化积公式、积化和差公式、平方和公式等。

这些恒等式在解决三角函数相关问题时非常有用。

四、立体几何与体积表面积公式立体几何是高中数学中的重要内容,常见的立体有球体、圆柱体、锥体和棱柱等。

这些立体的计算往往涉及到体积和表面积的计算。

球体的体积公式为V=4/3πr^3,表面积公式为S=4πr^2。

圆柱体的体积公式为V=πr^2h,表面积公式为S=2πr(r+h)。

锥体的体积公式为V=1/3πr^2h,表面积公式为S=πr(r+l)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学公式大全(学考简化版)1. 元素与集合的关系 U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.集合运算 全集U交集:}{B x A x x B A ∈∈=且I ,并集:}{B x A x x B A ∈∈=⋃或,补集:}{A x U x x A C U ∉∈=且3.集合关系 (可以数形结合---文氏图、数轴) 空集A ⊆φ;子集B A ⊆:任意B x A x ∈⇒∈ B A B B A BA AB A ⊆⇔=⊆⇔=Y I4. 包含关系A B A A B B =⇔=I U U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦI U C A B R⇔=U5.集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个。

6. 函数的单调性 设[]2121,,x x b a x x ≠∈⋅,012>-=∆x x x ,若0)()(12>-=∆x f x f y ⇔[]b a x f ,在)(上是增函数; 若0)()(12<-=∆x f x f y ⇔[]b a x f ,在)(上是减函数. 对于复合函数的单调性:()f g x ⎡⎤⎣⎦ 单调性满足:同增异减。

即:()f x 与()g x 的增减性相同,那么符合函数就是增函数(同增);()f x 与()g x 的增减性相反,那么符合函数就是减函数(异减))。

7.函数的奇偶性 判断奇偶性的前提是定义域关于原点对称。

f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:(1) f(x)奇函数,在x=0有定义⇒f(0)=0 (2)对于复合函数:()f g x ⎡⎤⎣⎦ :有偶则偶,两奇为奇 奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么, 这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 8.二次函数解析式的两种形式(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)f x a x h k a =-+≠;二次函数在闭区间上的的最值 二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a b x ,2∈-=,则{}min max max ()(),()(),()2bf x f f x f p f q a =-=; []q p a bx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a bx ,2∈-=,则{}min ()min (),()f x f p f q =, []q p a bx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 9. 指数函数与对数函数 y=a x与y=log a x注:y=a x与y=log a x 图象关于y=x 对称(互为反函数) 分数、指数、有理数幂m nnma a =0,,a m n N *>∈,且1n >);1mnm naa-=(0,,a m n N *>∈,且1n >).()n n a a =;当n n n a a =; 当n ,0||,0n n a a a a a a ≥⎧==⎨-<⎩. 有理指数幂的运算性质(0,,)rsr sa a aa r s Q +⋅=>∈. ()(0,,)r s rs a a a r s Q =>∈.()(0,0,)r r r ab a b a b r Q =>>∈.指数式与对数式的互化式 log b a N b a N =⇔=(0,1,0)a a N >≠>.对数的换底公式 log log log m a m NN a= , log log mna a nb b m=对数的四则运算法则 若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2)log log log a a a M M N N=-;(3)log log ()na a M n M n R =∈. 注:性质01log =a ,1log =a a ,b aba =log ,b a b a =log常用对数N N 10log lg=,15lg 2lg =+,自然对数NN e log ln =,1ln =e*10. 函数图像与方程(选) 图象变换 (1)平移:“左加右减,上正下负”(2)翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分,并将右边部分沿y 轴翻折到左边11.零点定理 若0)()(<b f a f ,则)(x f y =在),(b a 内有零点注:函数)(x f 的零点⇔方程0)(=x f 的根⇔函数)(x f 图像与x 轴焦点的横坐标。

12.特殊角的三角函数值13.弧长 r l ⋅=α 扇形面积lr S 2=14. 同角三角函数的基本关系式 22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 15. 正弦、余弦的诱导公式:(奇变偶不变,符号看象限);符号:“一正全、二正弦、三正切、四余弦” 16. 和差角公式 tan tan tan()1tan tan αβαβαβ±±=msin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=m ; 17. 二倍角公式 22tan tan 21tan ααα=- sin 2sin cos ααα=. 2222cos 2cos sin 2cos 112sin ααααα=-=-=-.18. 辅助角公式 sin cos a b αα+)αϕ+(其中tan baϕ=,a 要为正 ).19. 正弦定理2sin sin sin a b cR A B C===. 20. 余弦定理 2222cos a b c bc A =+-,(求边) ; bca cb A 2cos 222-+=(求角)21. 面积定理 111sin sin sin 222S ab C bc A ca B ===. 22.三角函数的图象性质y=sinxy=cosxy=tanx图象单调性: )2,2(ππ-增 ),0(π减)2,2(ππ-增t 值域 [-1,1] [-1,1] 无 奇偶 奇函数偶函数奇函数 周期 2π2ππ 对称轴2ππ+=k xπk x =无中心()0,πk⎪⎭⎫ ⎝⎛+0,2ππk ⎪⎭⎫⎝⎛0,2πk 23. 实数与向量的积的运算律,设λ、μ为实数,量那么结合律:λ(μa)=(λμ)a ; (λ+μ)a =λa +μa ; λ(a +b )=λa +λb . 24.平面向量的坐标运算(1)设a=11(,)x y ,b=22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a=11(,)x y ,b=22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--u u u r u u u r u u u r.(4)设a=(,),x y R λ∈,则λa=(,)x y λλ.(5)设a=11(,)x y ,b=22(,)x y ,则a ·b=1212()x x y y +.25. a 与b 的数量积(或内积) a ·b=|a ||b|cos θ.26. 对空间任意两个向量a 、b(b ≠0 ),a ∥b ⇔存在实数λ使a=λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB =u u u r u u u r ⇔(1)OP t OA tOB =-+u u u r u u u r u u u r. ||AB CD ⇔AB u u u r 、CD u u ur 共线且AB CD 、不共线⇔AB tCD =u u u r u u u r 且AB CD 、不共线.27.两向量的夹角公式cos θ=a =11(,)x y ,b=22(,)x y ).28. 向量的平行与垂直 设a=11(,)x y ,b=22(,)x y ,且b ≠0,则平行:⇔//b a λ=⇔1221y x y x =(0≠b );垂直:0=⋅⇔⊥02121=+⇔y y x x 29. 三角形的重心坐标公式 △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ), 则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 30. 等差数列定义:d a a n n =-+1 ,通项:d n a a n )1(1-+=,求和:2)(1n n a a n S += d n n na )1(211-+= 中项:2ca b +=(c b a ,,成等差)性质:若q p n m +=+,则qp n m a a a a +=+ 31. 等比数列定义:)0(1≠=+q q a a nn ,通项:11-=n n q a a 求和:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S n n中项:ac b =2(c b a ,,成等比) 性质:若q p n m +=+ 则q p n m a a a a ⋅=⋅ 32. 数列通项与前n 项和的关系⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn( 数列{}n a 的前n 项的和为12nn s a a a =+++L ).33. 数列求和常用方法 公式法、裂项法、 错位相减法34.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥当且仅当a =b 时取“=”号). (3)2)2(b a ab +≤(当且仅当a =b 时取“=”号). 备注:求最值条件是“一正、二定、三相等”35. 最值定理 已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 36. 一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,解不等式的步骤:(1)化正使得a>0,(2)用求根公式法求02=++c bx ax 的根,(3)写解集:大于取两边,小于取中间。

相关文档
最新文档