ETS电子膨胀阀

电子膨胀阀的工作原理及控制

电子膨胀阀的工作原理及控制 电子膨胀阀——吸气过热度控制吸气过热度控制系统由电子膨 胀阀、压力传感器、温度传感器、控制器组成,工作时,压力传感器将蒸发器出口压力 P1、温度传感器将压缩机吸气过热度传给控制器,控制器将信号处理后,随后输出指令作用于电子膨胀主阀的步进电机,将阀开到需要的位置。以保持蒸发器需要的供液量。电子膨胀阀的步进电机是根据蒸发器出口压力 P1变化、压缩机吸气过热度变化实时输出变化的动力,这个实时输出变化的动力能及时克服各种工况和各种负荷情况下主膨胀阀变化的弹簧力,使阀的开度满足蒸发器供液量的需求,进而蒸发器的供液量能实时与蒸发负荷相匹配,即电子膨胀阀可通过控制器人为设定,有效的控制过热度。另外,电子膨胀阀从全闭到全开状态其用时仅需几秒钟,反应和动作速度快,开闭特性和速度均可人为设定电子膨胀阀可在10--100的范围内进行精确调节,且调节范围可根据不同产品的特性进行设定。选用电子膨胀阀——吸气过热度控制,机组无论在标准工况下、变工况、满负荷、变负荷运行维持较高的 COP 值水平。电子膨胀阀——吸气过热度控制制冷系统原理图电子膨胀阀——液位控制液位控制系统由电子膨胀阀、液位传感器、液位控制器组成。当蒸发器内的液面上下变化时,蒸发器内的液位传感器将液位变动的比例关系用4-20mA 信号传给液位控制器液位控制器将信号处理后,随后输出指令作用于电子膨胀主阀的步进电机,使其开度增大、减小,以保持制冷剂液位在限定的范围内。电子膨胀阀的步进电机是根据制冷剂液位变化

实时输出变化的动力,这个实时输出变化的动力能及时克服各种工况和各种负荷情况下主膨胀阀变化的弹簧力,使阀的开度满足蒸发器供液量的需求,进而蒸发器的供液量能实时与蒸发负荷相匹配,即电子膨胀阀可通过控制器人为设定,有效的控制蒸发液位。选用电子膨胀阀——液位控制,机组无论在标准工况下、变工况、满负荷、变负荷运行均维持较高的 COP 值水平。电子膨胀阀——液位控制一般应用在吸气过热度低于2℃的制冷装置,而电子膨胀阀——吸气过热度一般应用在吸气过热度5℃左右的制冷装置,因此前者比后者更能有效的利用蒸发面积,提高蒸发负荷,获取更高的 COP 值。

美国艾默生公司压缩机应用技术讲座第二十三讲热气旁通阀的原理和.

技术讲座美国艾默生公司压缩机应用技术讲座第二十三讲热气旁通阀的原理和应用 A lMaier (美朱杨 (艾默生环境优化技术 (苏州 , 1原理 :①压缩机并联 -; ② -变频等 ; ③带有卸载装置的压缩机 ; ④热气旁通。对于自身没有能量调节装置的单压缩机制冷系统 , 使用热气旁通来进行系统的能量调节是非常经济的。 热气旁通阀是一种利用制冷剂压力和弹簧力的平衡原理来控制阀入口 /出口压力的机械装置。作为能量调节的热气旁通阀能提供一种手段 :通过旁通高压制冷剂至系统的低压侧 , 来保持系统能在给定的最低吸气压力下正常工作。 热气旁通阀的主要作用 :①提供一个虚拟的负荷 ; ②盘管化霜 ; ③把蒸发器作为一个混合腔。热气旁通阀的主要优点 :①防止压缩机短路循环 ; ②防止压缩机在非常低的吸气压力下工作 ; ③防止低负荷时蒸发器结冰 ; ④使得系统部件最少化 ; ⑤非常好的回油性能。 艾默生热气旁通阀的适用范围 :适用于 CFC, HCFC, HFC 及其他通用制冷剂 , 除了 R123, R410A , R406A 以及其他按 ASHRAE 标准 34-A2, A3, B2和 B3分类的制冷剂。 调整范围 :0~0155MPa (0~80p sig ; S W P -安全运行压力 -2175MPa (400p sig 。 作用力平衡图 :图 1为热气旁通阀工作时 , 内部作用力平衡图。 平衡力方式程式 :P2×Ad +F3=F1

其中 R1为可调节弹簧力 , F3为底部不可调节弹簧力 , P2为压缩机吸气压力(压缩强 , Ad 为 P2在阀内的作用面积。 F3和 Ad 为定值 , 只需调节 F1就能控制P2。 P2维持在设定点 : 图 1热气旁通阀内部作用力平衡图 2应用安装 两种普遍的应用和安装方法 :热气旁通至蒸发器 (图 3 ; 热气旁通至吸气管 (图4 。 具体的安装方法如下 :

艾默生TI系列ZZ系列T系列AB系列HF系列TX6系列TRAE系列膨胀阀及电子膨胀阀型号详细说明

TI系列热力膨胀阀 TI热力膨胀阀 简介 EmersonALCO公司有可以更换阀笼的TI(S)(E)热力膨胀阀是专门为制冷应用而设计的适用于超市的冷柜,冷库制造冰激凌的机器,储存牛奶的冷柜和运输冷却装置等 T(S)(E)热力膨胀阀可灵活选择制冷量,是在宽广负荷和蒸发温度范围内进行稳定和精确控制的结构紧凑的热力膨胀阀的理想选择。 特点 1、有八种基于R22的从0.5~19.5kw的不同制冷量大小的阀笼可供选择 2、附可清洗或可更换的进口滤网 3、大膜片使阀口的控制更顺滑和平稳 4、提供不同的充注以配合不同的用途 5、防锈的不锈钢动力头 6、黄铜阀体可更容易地外接喇叭口螺帽 7、内/外平衡式 8、静态过热度可适度调整

注:名义制冷量是在+38℃冷凝温度,+4℃蒸发温度和1K过冷度 ZZ系列超低温用热力膨胀阀 ZZ系列超低温用热力膨胀阀 简介 应用于超低温领域的ZZ系列热力膨胀阀适用于冷却环境气候实验室或实验柜的机械式制冷系统(特别是所需的蒸发温度低于-40℃)。也适用于高空和仿真室,低温冶金室,低温室和适用于工业产品和生物医学实验的实验柜

特点 可拆卸结构使维修方便 可更换式法兰体满足用户的接管需要 改良的内部结构延长阀的寿命 独有的阀笼波纹管在低温时消除摩擦 最低蒸发温度可达-120℃ 最大工作压力450PSIG 注:R22制冷量是基于-40℃蒸发温度-6℃制冷剂进阀温度R23制冷量是基于-40℃蒸发温度-17℃制冷剂进阀温度R404A制冷量是基于-40℃蒸发温度-6℃制冷剂进阀温度 T系列热力膨胀阀 T热力膨胀阀 简介 可拆卸式热力膨胀阀由三部分组成,能够方便的调节和维修 适用于多种制冷剂 特点 由动力头、阀芯、法兰三部分组成 过热度部可调 双向流通能力

室内电子膨胀阀开度控制规格书

室内电子膨胀阀开度控制规格书 4.1停止中 4.1.1开关OFF停止中 4.1.2冷房温控器OFF停止中4.1.3暖房温控器OFF停止中 4.2冷房运转中 4.2.1始动控制中 4.2.1.1温控器ON的机组 4.2.1.2温控器OFF的机组 4.2.1.3停止的机组 4.2.2正常运转中 4.2.2.1温控器ON的机组 4.2.2.2温控器OFF的机组 4.2.2.3停止的机组 4.2.3正常运转中(控制)4.2.3.1室数变化中 4.2.3.2压缩机台数增加时 4.3暖房运转中 4.3.1启动控制中 4.3.1.1温控器ON的机组 4.3.1.2温控器OFF的机组 4.3.1.3停止的机组 4.3.2始动控制中 4.3.2.1温控器ON的机组 4.3.2.2温控器OFF的机组 4.3.2.3停止的机组 4.3.3正常控制中 4.3.3.1温控器ON的机组 4.3.3.2温控器OFF的机组 4.3.3.3停止的机组 4.3.4正常控制中(控制)4.3.4.1室数变化时 4.4除霜运转中 4.4.1温控器ON的机组 4.4.2温控器OFF的机组 4.4.3停止的机组 4.5室内膨胀阀保护控制 4.5.1Ps保护控制

4.5.2回油控制 4.5.3膨胀阀开度防止控制 4.1停止中 4.1.1开关OFF停止中 冷房时:零点控制后 EVI=40 pls 暖房时: (1)四通阀OFF前 EVI(n)=105 pls (2)四通阀OFF后 EVI(n)=40 pls 4.1.2 冷房温控器OFF停止中 零点控制后 EVI=40 pls 4.1.3暖房温控器OFF停止中 EVI= 4.2冷房运转中 4.2.1始动控制中 4.2.1.1温控器ON的机组 EVIstart=EVIHP×(1/2)×(kmto+2)×KEVI (130≤EVIstart≤2000) (1)合计室内机运转容量∑K HP_on(k)<2HP时 ●室数增加时 kmto=0 KEVI=1 ●冷启动时 kmto=0 KEVI=3.0/室外HP×Ft/{∑K HP_on(k)×15} (1≤KEVI≤1.3)●热启动时 kmto=(1/20)×(25-To)(0≤kmto≤a)

艾默生精密空调系统

艾默生精密空调系统 为确保机房内计算机系统的安全可靠、正常运行,在机房建设中为机房提供符合要求的场地环境,我们推荐采用恒温恒湿的机房专用空调机-艾默生Liebert.PEX系列机房专用空调。 机房专用空调采用下送风、上回风的送风方式。我们为您选择的机房专用空调是模块化设计的,可根据需要增加或减少模块;也可根据机房布局及几何图形的不同任意组合或拆分模块,且模块与模块之间可联动或集中或分开控制等。 1、Liebert.PEX系列描述 (1)Liebert.PEX机组是基于艾默生全球研发与设计平台的高端机组,针对全球销售,全球同步上市 (2)高可靠性、高灵活性、全寿命成本 (3)产品系列完备,具有风冷、乙二醇冷、水冷和冷冻水等机型 (4)制冷量范围宽,风冷、水冷、乙二醇冷机组20kW~100kW,冷冻水机组28~151kW 2、设备特点: (1)高可靠性、高灵活性、全寿命低成本 (2)可拆卸搬运的结构,100%全正面维护,节省机房占地空间 (3)双Copeland高效涡旋式压缩机,适合环保制冷剂 (4)自张力调节式风机,满足不同机外余压需求 (5)大面积V型蒸发器,快速除湿设计,确保节能 (6)独特的高效远红外加湿系统,加湿速度快,适应恶劣水质,低维护量 (7)超大屏幕全中文图形显示屏 (8)iCOM强大的联控与通讯功能 (9)风冷全调速冷凝器,噪声低 3、高适应性: (1)多项节能设计 (2)多种送风方式,满足不同气流组织需求 (3)多种冷却方式,包括风冷、水冷、乙二醇冷却及冷冻水等,有利于适应现场的实际条件 (4)适应R22、R407C等不同冷媒 (5)多种监控方式 (6)风冷冷凝器提供适合不同温度环境(包括低温启动)的配置 (7)风冷方式提供超远安装距离和超高落差的方案 4、Liebert.PEX机组的设计 Liebert.PEX风冷系统的室内机由压缩机、蒸发器、加热器、风机、控制器、远红外加湿器、热力膨胀阀、视液镜、干燥过滤器等主要部件组成。 水冷系列还包括高效板式换热器、水流量调节阀。 室内侧制冷系统和水系统中可能涉及维护、更换的器件全部采用易拆卸的Rotalock连接方式,使维护更方便。 (1)PEX风冷机组整机性能体现了高可靠性、高灵活性、高节能率、全寿命低成本。 (2)PEX可靠性充分体现在:iCOM智能控制系统;Copeland涡旋压缩机;自适应风机系统;远红外加湿系统;全调速低噪声冷凝器等(3)PEX高灵活性、高节能率充分体现在:iCOM智能控制系统;自适应风机系统;远红外加湿系统;全调速低噪声冷凝器;占地面积小;可拆卸搬运,全正面维护;可直接应用环保制冷剂等 (4)PEX全寿命成本充分体现在:iCOM智能控制系统;Copeland涡旋压缩机;自适应风机系统;V型蒸发器;快速除湿系统;远红外加湿系统;全调速低噪声冷凝器等

电子膨胀阀设计与选型指导书

电子膨胀阀设计指导书 编制: 审核: 会签: 审定: 批准:

目录 一、总述 (3) 1、用途 (3) 2、参考资料及参考标准 (3) 二、设计步骤 (3) 1、基本原理及性能指标 (3) 2、产品选型 (4) 3、电子膨胀阀设计、安装注意事项 (13) 三、设计雷区及规避措施 (16) 附:电子膨胀阀的故障分析 (17)

一、总述 1、用途 这份电子膨胀阀设计指导书,涉及到所有电子膨胀阀的分类、电子膨胀阀的选型、使用设计标准、使用安装工艺及检验标准,在使用过程中出现的问题,可以保证今后在电子膨胀阀的设计过程中起到指导作用,保证系统的可靠性。 2、参考资料及标准 2.1参考资料 (1)、目前电子膨胀阀供应商提供的相关技术资料; (2)、与电子膨胀阀供应商进行的技术交流资料; (3)、多年的电子膨胀阀使用过程中积累的经验及问题剖析; 二、设计步骤 1、电子膨胀阀基本原理及性能指标 1.1电子膨胀阀基本原理(图示) 电子膨胀阀根据电机的驱动方式分为减速型电子膨胀阀和直动型电子膨胀阀两大类。 减速型电子膨胀阀,电子膨胀阀线圈和阀体为一体,当脉冲电机通过减速齿轮组传递动力,与波纹管一起对阀针升程进行调节。由于齿轮的减速作用,大大增加了输出转矩,使得较小的电磁力获得足够大的输出力矩。它的全开脉冲数为2000脉冲,调节极为精确。 直动型电子膨胀阀,电子膨胀阀线圈和阀体分离,当控制电路的脉冲电压按一定的逻辑顺序输入到电子膨胀阀电机各相线圈上时,电机转子受磁力矩作用产生旋转运动,通过减速齿轮组传递动力,并通过传递机构,带动阀针作直线移动,改变阀口开启大小,从而实现自动调节工质流量,使制冷系统保持最佳状态。它的全开脉冲数为500脉冲,调节精确。

艾默生机房空调PEX空调介绍

北京宇亮坤彤科技有限公司 一、Liebert.PEX系列描述

二、Liebert.PEX系列数据 下送风风冷机组技术参数 北京宇亮坤彤科技有限公司 2

上送风风冷机组技术参数 北京宇亮坤彤科技有限公司 3

三、Liebert.PEX机组的特点 ●高可靠性、高节能性、全寿命低成本 ●同等制冷量条件下,占地面积最小。侧面及背面不需要维护空间,前面只需 要600mm维护空间 ●可拆卸后搬运,保证重新组装与整机无差别,适合特殊场地搬运(如利用小 电梯或狭小通道) ●艾默生Copeland高效涡旋式压缩机,直接适合环保制冷剂(R407C)。 ●自适应风机系统,满足不同机外余压需求 ●大面积V型蒸发器,快速除湿设计,确保节能 ●独特的高效远红外加湿系统,加湿速度快,适应恶劣水质,低维护量 ●全中文图形显示屏 ●iCOM强大的群控与通讯功能

四、Liebert.PEX机组的设计 Liebert.PEX风冷系统的室内机由压缩机、蒸发器、加热器、风机、控制器、远红外加湿器、热力膨胀阀、视液镜、干燥过滤器等主要部件组成。 水冷系列还包括高效板式换热器、水流量调节阀。 室内侧制冷系统和水系统中可能涉及维护、更换的器件全部采用易拆卸的Rotalock连接方式,使维护更方便。 ?PEX风冷机组整机性能体现了高可靠性、高灵活性、高节能率、全寿命低成 本。 ?PEX可靠性充分体现在:iCOM智能控制系统;Copeland涡旋压缩机;自 适应风机系统;远红外加湿系统;全调速低噪声冷凝器等 ?PEX高灵活性、高节能率充分体现在:iCOM智能控制系统;自适应风机系 统;远红外加湿系统;全调速低噪声冷凝器;占地面积小;可拆卸搬运,全正面维护;可直接应用环保制冷剂等 ?PEX全寿命成本充分体现在:iCOM智能控制系统;Copeland涡旋压缩机; 自适应风机系统;V型蒸发器;快速除湿系统;远红外加湿系统;全调速低噪声冷凝器等 ?采用真正的模块化设计思路。生产的单制冷回路和双制冷回路PEX系列精 密空调,可以提供单机的制冷量为20KW至100KW,并可组合在一起。即能满足现阶段的使用,又能适应未来发展的需求,具有非常广泛的应用范围。 它采用了先进的微处理器控制技术,完全满足机房对环境的精密控制要求。 并且机组控制器可完成各机组间的定时切换及故障切换,同时便于空调系统的集中管理。PEX 机组标配加湿系统为远红外加湿器。 ?应用高能效比的谷轮(Copeland,艾默生子公司,世界上最大的涡旋式压 缩机生产厂)公司涡旋式( SCROLL )压缩机。涡旋压缩机的活动部件的 减少使机组的噪声及震动降低很多;压缩机的压缩过程连续、平稳; 压缩机的排气过程旋转角度超过540度;在吸气及压缩过程中没有热 量交换;在压缩过程中制冷剂气流方向没有改变;减少了气流损失; 涡旋式压缩机无需高、低压阀门;减少了阀门损失,防止产生液击;启动电流低。

电子膨胀阀与热力膨胀阀比较

热力膨胀阀与电子膨胀阀的控制原理 1. 概述 节能和环保是人类亟待解决的两大问题。2002年8月26日至9月4日在南非约翰内斯堡举行了可持续发展世界峰会。在该次会议上国际制冷学会发表了《制冷业对于可持续发展和减缓大气变化的承诺》,在此文件中阐明制冷业主要的挑战来自全球气候变暖。造成制冷业影响全球气候变暖的80%的原因是二氧化碳的排放。这些间接的排放是部分是由制冷装置运行所需能量的生产引起的。制冷、空调和热泵这些设备所消耗的电能约占全世界生产电能的15%,这表明间接排放的影响是非常的严重。此文件还提出在下一个20年制冷业必须树立雄心去达到目标之一:每个制冷设备耗能减少30~50%。制冷业者为保护环境,应把节能贯穿到制冷设备的使用周期中去。作为制冷循环的四大部件之一,节流装置在系统中起着非常关键的作用,通过选择应用合适的节流机构与制冷系统匹配是整个制冷设备降低能耗的重要一环。本文将对节流机构的工作原理和运行能量匹配进行分析,重点对电子膨胀阀的工作原理进行分析。 2. 传统节流机构的工作原理及匹配 节流的工作原理是制冷工质流过阀门时流动截面突然收缩,流体流速加快,压力下降,压力下降的大小取决于流动截面收缩的比例。节流机构的作用: 1、节流降压。当常温高压的制冷剂饱和液体流过节流阀,变成低温低压的制冷剂液体并产生少许闪发气体。进而实现向外界吸热的目的。 2、调节流量:节流阀通过感温包感受蒸发器出口处制冷剂过热度的变化来控制阀的开度,调节进入蒸发器的制冷剂流量,使其流量与蒸发器的热负荷相匹配。当蒸发器热负荷增加时阀开度也增大,制冷剂流量随之增加,反之,制冷剂流量减少。 3、控制过热度:节流机构具有控制蒸发器出口制冷剂过热度的功能,既保持蒸发器传热面积的充分利用,又防止吸气带液损坏压缩机的事故发生。 4、控制蒸发液位:带液位控制的节流机构具有控制蒸发器液位的功能,既保持蒸发器传热面积的充分利用,又防止吸气带液降低吸气过热度。 若节流机构向蒸发器的供液量与蒸发负荷相比过大,部分液态制冷剂一起进入压缩机,引起湿压缩或冲缸事故。相反若供液量与蒸发器负荷相比太少,则蒸发器部分传热面积未能充分发挥其效能,甚至会造成蒸发压力降低,而且使制冷系统的制冷量降低,制冷系数减小,制冷装置能耗增大。节流机构流量的调节对制冷装置节能降耗起着非常重要的作用。大型中央空调冷水机组常用的节流机构有手动节流阀、孔板、热力膨胀阀、浮球+主节流阀。

艾默生30K精密空调系统

目录 目录 -------------------------------------------------------------------------------------------------------------- 1第一章LIEBERT.PEX 系列空调------------------------------------------------------------------------- 2 1前言 --------------------------------------------------------------------------------------------------------- 2 1.1机房环境的特殊要求 ------------------------------------------------------------------------------ 2 1.2L IEBERT.PEX系列空调——机房的专业空调 ------------------------------------------------- 2 2产品介绍 --------------------------------------------------------------------------------------------------- 4 2.1外观介绍 ---------------------------------------------------------------------------------------------- 4 2.2型号说明------------------------------------------------------------------------------------------------ 5 2.3主要特点 ---------------------------------------------------------------------------------------------- 5 2.4标准部件 ---------------------------------------------------------------------------------------------- 6 3简易操作手册 ------------------------------------------------------------------------------------------ 12 3.1空气开关位臵介绍 ------------------------------------------------------------------------------- 12 3.2开机界面 -------------------------------------------------------------------------------------------- 15 3.3主界面 ----------------------------------------------------------------------------------------------- 15 3.4用户菜单 -------------------------------------------------------------------------------------------- 16 3.4.1开机 ------------------------------------------------------------------------------------------------ 17 3.4.2关机 ------------------------------------------------------------------------------------------------ 17 3.5维护检查核对表 ---------------------------------------------------------------------------------- 20

艾默生空调 维保方案

维修、维护服务(CRAC) 1.维修服务: 1)提供保修期内在系统正常使用情况下出现故障所需的维修服务。 2)乙方接到甲方设备故障通知后应迅速作出反应,在指导甲方作简单的应急处理的同时,4小时内到达现场进行故障处理。 3)乙方为甲方提供全天候二十四小时365天(7×24)服务,节假日和业余时间不加收服务费。乙方应设立全天候二十四小时365天热线服务电话,并指定 专人负责处理和联系(24小时值班电话:) 2.维护服务: 乙方应按下述要求为甲方的设备提供维护服务,并对发现的问题做及时处理。 1)月度巡检 乙方每季度为甲方设备提供一次巡检,巡检工作内容包括: 过滤器 A.检测空气滤网气流是否畅通 B.检查过滤器开关 主风机 A.检查并调整皮带轮和电机的装配,检查是否牢固和正确 B.检查并调整皮带松紧程度和状况 C.检查风机轴承 D.检查风机电机和风机电流 压缩机 A.检查是否有漏油及油位 B.检查压缩机电流 C.检查压缩机运转声音和机身温度(运转中)是否正常 D.检测压缩机高低压传感器的工作参数 加湿器 A.检查水盘排水管是否被堵赛 B.检查加湿器灯管工作状态工作是否正常 C.检查加湿器是否有水垢

D.检查进水流量是否适当 E.检查近排水阀和电极的工作状态 制冷循环部分 A.检查制冷管路是否有泄漏 B.通过视镜,检查系统是否有水汽 C.检查吸气压力 D.检查压头 E.检查排气压力 F.检查热气旁通 电气装置 A.所有电器外观和动作情况 B.检查和紧固所有导线连接 C.检查校验运行状态显示 2)季度保养: 乙方每季度为甲方的设备提供一次例行维护保养,维护保养工作(由厂家工程师 组织实施) 内容包括: A.检查控制器设置,压缩机吸、排气压力;压缩机工作电流;高低压力报警值; 风机噪声及运行电流;加热器过热保护;冷凝器散热情况;制冷循环管路各 部件的运行情况;过滤网、加湿器和供排水管路及电气系统等部分的情节情 况。 B.对检查中发现的故障进行处理 C.提交检查报告和建议 D.更换空气过滤网(每3个月更换1次) E.情节加湿器和进排水管路 3.技术档案、交流及培训: 1)乙方应为甲方的设备建立维修维护技术档案。每次维修维护工作结束时,乙方工程师要详细填写维护维修报告,并由甲方填写意见和签字确认2)乙方每季度为甲方提供一份维修维护报告,报告应包括如下内容;

艾默生公司压缩机应用技术讲座

技 术讲 座美国艾默生公司压缩机应用技术讲座第二十三讲 热气旁通阀的原理和应用 A lMaier(美) 朱 霖 杨 汉 (艾默生环境优化技术(苏州)有限公司上海办事处,上海200010) 1 原理 制冷系统的能量调节一般由以下几种方式构成:①压缩机并联-多级控制;②变转速压缩机-变频等;③带有卸载装置的压缩机;④热气旁通。对于自身没有能量调节装置的单压缩机制冷系统,使用热气旁通来进行系统的能量调节是非常经济的。 热气旁通阀是一种利用制冷剂压力和弹簧力的平衡原理来控制阀入口/出口压力的机械装置。作为能量调节的热气旁通阀能提供一种手段:通过旁通高压制冷剂至系统的低压侧,来保持系统能在给定的最低吸气压力下正常工作。 热气旁通阀的主要作用:①提供一个虚拟的负荷;②盘管化霜;③把蒸发器作为一个混合腔。 热气旁通阀的主要优点:①防止压缩机短路循环;②防止压缩机在非常低的吸气压力下工作;③防止低负荷时蒸发器结冰;④使得系统部件最少化;⑤非常好的回油性能。 艾默生热气旁通阀的适用范围:适用于CFC, HCFC,HFC及其他通用制冷剂,除了R123,R410A, R406A以及其他按ASHRAE标准34-A2,A3,B2和B3分类的制冷剂。 调整范围:0~0155MPa(0~80p sig);S W P-安全运行压力-2175MPa(400p sig)。 作用力平衡图:图1为热气旁通阀工作时,内部作用力平衡图。 平衡力方式程式:P2×Ad+F3=F1 其中R1为可调节弹簧力,F3为底部不可调节弹簧力,P2为压缩机吸气压力(压缩强),Ad为P2在阀内的作用面积。F3和Ad为定值,只需调节F1就能控制P2。调节阀调整信号使P2维持在设定点 : 图1 热气旁通阀内部作用力平衡图 2 应用安装 两种普遍的应用和安装方法:热气旁通至蒸发器(图3);热气旁通至吸气管(图4)。 具体的安装方法如下: (1)切开压缩机排气管并安装一个T形接头。 ①对于热气旁通至蒸发器的系统,切开热力膨胀阀与蒸发器之间的管路并安装一个T形接头。如果蒸发器入口处安装有分布器(必须是文丘里-流孔式的分布器),T形接头应安装于热力膨胀阀与分布器中间。对于热气旁通至蒸发器的系统,为了达到最小的管路压降,尽可能的压缩管路的长度。 ②对于热气旁通至吸气管的系统,切开吸气管并安装一个旁路通道。此旁路通道应与吸气管中流体的方向呈45°角(见图4),目的使旁通气体与吸气管内的气体能充分混合。由于热气直接旁通至吸气管会造成半封闭或全封闭压缩机的吸气过热,从而引起电机过热。因此建议在热气旁通至吸气管的系统中安装一路喷液装置,用来冷却旁通热气。 (2)切割适当长度的旁通管来安装热气旁通阀。 ①对于旁通至蒸发器的系统,如果热气旁通阀安装在靠近蒸发器T形接应附近时,需保证热气旁通阀的出口管路朝压缩机方向自由穿流。如果热气 74 2007年第3期 制冷技术

电子膨胀阀设计与选型指导书

. 电子膨胀阀设计指导书 编制: 审核: 会签: 审定: 批准:

目录 一、总述 (3) 1、用途 (3) 2、参考资料及参考标准 (3) 二、设计步骤 (3) 1、基本原理及性能指标 (3) 2、产品选型 (4) 3、电子膨胀阀设计、安装注意事项 (13) 三、设计雷区及规避措施 (16) 附:电子膨胀阀的故障分析 (17)

一、总述 1、用途 这份电子膨胀阀设计指导书,涉及到所有电子膨胀阀的分类、电子膨胀阀的选型、使用设计标准、使用安装工艺及检验标准,在使用过程中出现的问题,可以保证今后在电子膨胀阀的设计过程中起到指导作用,保证系统的可靠性。 2、参考资料及标准 2.1参考资料 (1)、目前电子膨胀阀供应商提供的相关技术资料;

(2)、与电子膨胀阀供应商进行的技术交流资料; (3)、多年的电子膨胀阀使用过程中积累的经验及问题剖析; 2.2参考标准 二、设计步骤 1、电子膨胀阀基本原理及性能指标 1.1电子膨胀阀基本原理(图示) 电子膨胀阀根据电机的驱动方式分为减速型电子膨胀阀和直动型电子膨胀阀两大类。 减速型电子膨胀阀,电子膨胀阀线圈和阀体为一体,当脉冲电机通过减速齿轮组传递动力,与波纹管一起对阀针升程进行调节。由于齿轮的减速作用,大大增加了输出转矩,使得较小的电磁力获得足够大的输出力矩。它的全开脉冲数为2000脉冲,调节极为精确。 直动型电子膨胀阀,电子膨胀阀线圈和阀体分离,当控制电路的脉冲电压按一定的逻辑顺序输入到电子膨胀阀电机各相线圈上时,电机转子受磁力矩作用产生旋转运动,通过减速齿轮组传递动力,并通过传递机构,带动阀针作直线移动,改变阀口开启大小,从而实现自动调节工质流量,使制冷系统保持最佳状态。它的全开脉冲数为500脉冲,调节精确。 直动型电子膨胀阀由PM型步进电机线圈1和带有磁性转子2的阀体部件3组成,转子部件4封闭在阀体外罩5。电子控制器控制步进电机转子的旋转,通过螺纹的传动,带动阀针6作轴向移动,从而调节阀口的通流面积,调节制冷剂的流量。

关于电子膨胀阀的焊接规范

关于电子膨胀阀的焊接规范 电子膨胀阀管组是空调系统的关键部件,关系到整个机组的运行状态。电子膨胀阀的不良会给整个空调系统造成致命的危害,如压缩机回液、室内机结冰漏水、室内机没有效果等等。而电子膨胀阀是一种十分精密的零部件,其内部的步进电机等部件在高温的情况下极易受到损坏。因此,对电子膨胀阀的焊接要做好足够的保护措施,保证电子膨胀阀阀体的温度不超过规定要求(一般要求不超过120度)。 电子膨胀阀焊接方法: 通常电子膨胀阀焊接时的保护措施是对阀体用水进行降温,以往的做法是在阀体上包一块湿布,这种做法有明显的缺陷,因为铜管的导热性能极好,仅靠包块湿布是无法保证阀体的温度不超过规定要求的,这样会导致电子膨胀阀管组不良率非常的高。 下面冷却方法可以很大程度上保障电子膨胀阀在焊接时不会被烧坏,降低电子膨胀阀管组的不良率。 在焊接电子膨胀阀管组时,可以用一个矿泉水瓶子,罐满水,在盖子上打一个孔.焊接时将瓶里的水挤出来,连续均匀的喷在阀体上,为了使水喷到阀上更加均匀,可以先用湿布把阀体包起来,焊接时直接把水喷到湿布上,水流量必须合适,必须保证湿布持续处于湿润的状态,绝对注意水不能喷到阀体内部;焊接时也必须进行充氮保护。必须注意,为了防止充入的氮气被加热成高温气体从阀芯经过损坏电子膨胀阀,焊接时必须从膨胀阀的进出口分别充氮气进行保护。要尽量避免焊接高温对阀体的影响。具操作如下: 喷水头 电子膨胀阀焊接冷却方法2 如上图中所示,焊接左端接管时,如图示意位置“充入氮气保护A”充入氮气,防止焊接时对部件造成氧化,同时也保证了加热的高温氮气不从阀芯通过;同样焊接右端接管时,如图示意位置“充入氮气保护B”充入氮气保证被加热的高温氮气不从阀芯通过。

电子膨胀阀在制冷系统中的应用

电子膨胀阀在制冷系统中的应用 电子膨胀阀作为电子控制元件,因其精度高,动作快速、准确、节能效果明显等优点,并与其它智能控制方法相结合,在制冷系统中的运用,以实现系统的优化控制,在制冷空调中有广阔的应用前景。 随着电子及微机控制技术的飞速发展,计算机也得到了快速发展,计算及控制技术在制冷空调行业中得以渗透,一些适用于制冷系统微机控制的执行部件也得以开发,电子膨胀阀便是在这样一个大背景下开发出来的。电子膨胀阀具有许多的优点,特别是它能与其它智能控制方法相结合,具有可以实现系统的优化控制,节能效果明显。因此迅速得以推广和发展。 对于电子膨胀阀的研究早在70年代末期日本就已经开始对其进行研究,当时它是靠施加不同的电压(0~12V)对双金属片加热量的不同,造成双金属片膨胀不同而带动阀针的升降。这种膨胀阀有较大的缺陷,后来已不大使用。除日本外其它国家在80年代也进行了电子膨胀阀的研究和开发工作,其主要针对电磁式和电动式(步进电机驱动)电子膨胀阀。电磁式膨胀阀在电磁线圈通电前,阀针处于开的位置,阀针的开度取决于线圈上施加的控制电压,从而调节膨胀阀的流量。该阀动作响应快,但在制冷系统中工作时一直需要供电。电动膨胀阀是一种以步进电机驱动的电子膨胀阀,它通过给步进电机施加一定逻辑关系的数字信号,使步进电机通过螺纹驱动阀针的向前或向后运动,从而改变阀口的流量面积来达到控制流量的目的。这种电子膨胀阀又可分为直动型和减速型两种。直动型是步进电机直接带动阀针,减速型是步进电机将动力通过减速齿轮组来推动阀针的动作。通过减速齿轮组可以产生较大的推力,所以目前许多步进电机驱动的电子膨胀阀都是采用的这一种驱动方式。电子膨胀阀的形式有多种,但都需要有电信号来控制,为在制冷循环中实施现代微机控制提供了可能。同时因系统、控制方法不同,每种形式的电子膨胀阀都有自己的优势。但步进电机驱动的电子膨胀阀因其更适用微机控制、并有较好的稳定性,而为更多的制冷系统所采用。 由于电子膨胀阀采样速度快、精度高等特点,易于实现先进的控制以达到舒适、节能等控制目标,因而在中小型制冷设备中应用越来越广泛;特别是在家用空调系统中的应用。因家用空调在制热工况下室外蒸发器常常会结霜,而传统的化霜是将四通阀换向,采用逆循环除霜,除霜时间约为11分钟,室内温度波动较大;而电子膨胀阀在除霜期间阀口置全开的位置,并配以室内风机开关占空比为0.5,室外风机全关控制,除霜时室内温度波动小,除霜时间减少到以前的一半,且室内换热器的送风温度也不会降得太多,从而节约了除霜能耗及提高了室内的舒适度。

电子膨胀阀原理

电子膨胀阀与热力膨胀阀的比较 1 热力膨胀阀 目前氟利昂冷藏库中采用的节流装置是热力膨胀阀,热力膨胀阀的工作原理是通过感受蒸发器出口制冷剂蒸气过热度的大小,来调节制冷剂的流量,以维持恒定的过热度,在控制原理上属于比例调节器。虽然热力膨胀阀可以自动调节制冷剂的流量,但是它的缺点也是很显著的:(1)对过热度响应的延迟时间长,特别是容积延迟。蒸发器出口处的过热蒸气先把热量传给感温包外壳,感温包外壳本身就具有较大的热惰性,造成了一定的容积延迟,感温包外壳把热量传给感温介质,这又产生了进一步的延迟。延迟的结果会导致热力膨胀阀交替地开大或关小,即产生振荡现象。当膨胀阀开得过大时,蒸发器出口过热度偏低,吸气压力上升;当阀开得过小时,蒸发器供液不足,吸气压力降低。这对整个系统的经济性和安全性都会产生不利影响。实验表明,热力膨胀阀调节效果对小型装置要十几分钟,大型装置要30 min~40 min 才稳定。 (2)调节范围有限。因为与阀针连接的膜片的变形量有限,使得阀针的运动位移较小,故流量调节范围小。这对于负荷变化较大的冷藏库或者采用变频压缩机的系统,热力膨胀阀便无法满足要求。 (3)调节精度低。热力膨胀阀的执行机构膜片由于加工精度和安装等因素,会产生的变形及影响变形灵敏度,故难以达到较高的调节精度。

为了克服上述缺点,制冷系统中热力膨胀阀的替代问题越来越引起了人们的关注。 2 电子膨胀阀 电子膨胀阀是按照预设程序调节蒸发器供液量,因属于电子式调节模式,故称为电子膨胀阀。它适应了制冷机电一体化的发展要求,具有热力膨胀阀无法比拟的优良特性,为制冷系统的智能化控制提供了条件,是一种很有发展前途的自控节能元件。电子膨胀阀与热膨胀阀的基本用途相同,结构上多种多样,但在性能上,两者却存在较大的差异。 从控制实现的角度来看,电子膨胀阀由控制器、执行器和传感器 3 部分构成,通常所说的电子膨胀阀大多仅指执行器,即可控驱动装置和阀体,实际上仅有这一部分是无法完成控制功能的。电子膨胀阀控制器的核心硬件为单片机,如控制器同时要完成压缩机及风机的变频等控制功能,一般采用多机级连的形式。电子膨胀阀的传感器通常采用热电偶或热电阻。 电子膨胀阀作为一种新型的控制元件,早已经突破了节流机构的概念,它是制冷系统智能化的重要环节,也是制冷系统优化得以真正实现的重要手段和保证,也是制冷系统机电一体的象征,已经被应用在越来越多的领域中。由于电子膨胀阀的采用,突破了以前在空调机组设计过程中存在的某种系统屈从热力膨胀阀的观念,进入膨胀阀为系统优化服务的新境界,对于制冷行业的发展起着重要的作用。 与热力膨胀阀相比电子膨胀阀在以下方面有显著的优势:

电子膨胀阀的作用是什么_电子膨胀阀安装方法

电子膨胀阀的作用是什么_电子膨胀阀安装方法 电子膨胀阀的控制原理电子膨胀阀的形式有多种,但都需要电子信号来控制,为在制冷循环中实施计算机控制提供了可能。同时因系统、控制方法不同,每种形式的电子膨胀阀都具有其独特的优势。由于步进电机驱动的电子膨胀阀更适于用计算机控制,并具有良好的稳定性,而被更多的制冷系统所采用。 电子膨胀阀的控制原理优势优势一:因家用空调在制热工况下室外蒸发器常常会结霜,而传统的化霜是将四通阀换向,采用逆循环除霜,除霜时间约为11分钟,且室内温度波动较大。 优势二:采用电子膨胀阀来控制压缩机排气温度,可以防止因排气温度的升高对系统性能产生的不利影响,同时可省去专设的安全保护器,节约成本,提高工作效率。 优势三:电子膨胀阀在除霜期间阀口置全开的位置,并配以室内风机开关占空比为0.5,室外风机全关控制,除霜时室内温度波动小,除霜时间减少到以前的一半,且室内换热器的送风温度也不会降得太多,从而节约了除霜能耗并提高了室内的舒适度。 优势四:制冷系统中采用电子膨胀阀,开机前,将膨胀阀全开,这样在开机后,既可实现压缩机的轻载启动,又减少了压缩机启、停造成的热损失,可节省约6%的电费;停机时,将膨胀阀全关,防止冷凝器的高温液体流入蒸发器,造成再次启动时的能量损失。 中央空调电子膨胀阀的作用电子膨胀阀利用被调节参数产生的电信号,控制施加于膨胀阀上的电压或电流,进而达到调节供液量的目的。无级变容量制冷系统制冷供液量调节范围宽,要求调节反应快,传统的节流装置(如热力膨胀阀)难以良好胜任,而电子膨胀阀可以很好地满足要求。 1、调节流量 中央空调电子膨胀阀有什么作用?中央空调电子膨胀阀通过感温包感受蒸发器出口处制冷剂过热度的变化来控制阀门的开度,从而调节进入蒸发器的制冷剂流量,使其铜管里面的冷媒流量与蒸发器的热负荷相匹配。当蒸发器热负荷增加时,中央空调电子膨胀阀的开

电子膨胀阀

电子膨胀阀的工作原理及其优点 1、制冷装置的理想运转(最有效运转方式) 为了理解蒸发器的有效使用,本文将以过热度(过热度等于蒸发器出口温度同蒸发器入口温度之差)为例,加以说明。 文中将按照手动膨胀阀、热力膨胀阀、电子膨胀阀的顺序分别解释各种现象。从而理解电子膨胀阀的优点。 1)手动膨胀阀开度合适,蒸发器得到最有效利用, 这时蒸发器用得最理想(最有效)。 2)手动膨胀阀开度不足(节流过小),蒸发器未能得到有效利用。这时,蒸发器得不到有效利用,由于制冷剂不足,与膨胀阀开度合适相比,压缩机的低压降低,蒸发器内制冷剂气体变得过热,导致压缩机吸入温度升高。 3)手动膨胀阀开度过大; 这时,因为吸入管绝热,几乎没有热负荷,因此,过多的制冷剂液体或雾达到压缩机的吸入口,进而进入压缩机曲轴箱,这就是所谓的“液击”状态,造成压缩机故障。 若制冷装置按第一状态运转,这时能够最大限度的利用制冷装置的能力,所以运转情况比较理想。可是,在实际运转中,随着负荷的变化,蒸发压力也变化,于是出现后者两个状态。即使在蒸发器的出口和入口装上温度计和压力表,操作工经常进行观察(监视)和调整,也不能使制冷装置始终在第一种工况下运转。对任何一个蒸发器,使蒸发器得到最有效的利用,对蒸发器而言

此时有一个最合适的过热度,将其称之为最小稳定过热,其值根据蒸发器而定。 如果过热大于最小稳定过热,那么蒸发器有效面积减小,相反,如果小于最小稳定过热,则将引起液击,总之,制冷装置在最小稳定过热下运转,便可最大限度的发挥装置的能力,这点非常重要。 2、热力膨胀阀的工作方式 先介绍下热力膨胀阀的结构和工作原理,然后说明热力膨胀阀的工作过热和存在的问题。 1)结构和工作原理 各部名称及其功能 ①隔膜:根据上侧和下侧之压差,主要是温包的压力变化而上 下弯曲。 ②弹簧:给隔膜下侧施加相当于静止过热的压力。 ③过热调节螺钉:使弹簧伸缩,设定静止过热。 ④阀:向上方(关闭)和下方(开启)移动,便可调节制冷剂 流量。 ⑤温包:把蒸发器出口温度的变化转换为压力变化 ⑥毛细管:把温包内压传递到隔膜上侧。 ⑦均压口:把蒸发压力传递到隔膜下侧。 现在来考虑阀开度是怎样决定的,首先,加到隔膜上下侧的压力:加在上侧的压力P b:温包压力(方向↓)

电子膨胀阀[1]

1.概述 节能和环保是人类亟待解决的两大问题。2002年8月26日至9月4日在南非约翰内斯堡举行了可持续发展世界峰会。在该次会议上国际制冷学会发表了《制冷业对于可持续发展和减缓大气变化的承诺》,在此文件中阐明制冷业主要的挑战来自全球气候变暖。造成制冷业影响全球气候变暖的80%的原因是二氧化碳的排放。这些间接的排放是部分是由制冷装置运行所需能量的生产引起的。制冷、空调和热泵这些设备所消耗的电能约占全世界生产电能的15%,这表明间接排放的影响是非常的严重。此文件还提出在下一个20年制冷业必须树立雄心去达到目标之一:每个制冷设备耗能减少30~50%。制冷业者为保护环境,应把节能贯穿到制冷设备的使用周期中去。作为制冷循环的四大部件之一,节流装置在系统中起着非常关键的作用,通过选择应用合适的节流机构与制冷系统匹配是整个制冷设备降低能耗的重要一环。本文将对节流机构的工作原理和运行能量匹配进行分析,重点对电子膨胀阀的工作原理进行分析。 2. 传统节流机构的工作原理及匹配 节流的工作原理是制冷工质流过阀门时流动截面突然收缩,流体流速加快,压力下降,压力下降的大小取决于流动截面收缩的比例。节流机构的作用: 1、节流降压。当常温高压的制冷剂饱和液体流过节流阀,变成低温低压的制冷剂液体 并产生少许闪发气体。进而实现向外界吸热的目的。 2、调节流量:节流阀通过感温包感受蒸发器出口处制冷剂过热度的变化来控制阀的开 度,调节进入蒸发器的制冷剂流量,使其流量与蒸发器的热负荷相匹配。当蒸发器 热负荷增加时阀开度也增大,制冷剂流量随之增加,反之,制冷剂流量减少。 3、控制过热度:节流机构具有控制蒸发器出口制冷剂过热度的功能,既保持蒸发器传 热面积的充分利用,又防止吸气带液损坏压缩机的事故发生。 4、控制蒸发液位:带液位控制的节流机构具有控制蒸发器液位的功能,既保持蒸发器 传热面积的充分利用,又防止吸气带液降低吸气过热度。 若节流机构向蒸发器的供液量与蒸发负荷相比过大,部分液态制冷剂一起进入压缩机,引起湿压缩或冲缸事故。相反若供液量与蒸发器负荷相比太少,则蒸发器部分传热面积未能充分发挥其效能,甚至会造成蒸发压力降低,而且使制冷系统的制冷量降低,制冷系数减小,制冷装置能耗增大。节流机构流量的调节对制冷装置节能降耗起着非常重要的作用。大型中央空调冷水机组常用的节流机构有手动节流阀、孔板、热力膨胀阀、浮球+主节流阀。 2.1手动节流阀 手动节流阀是最老式的节流阀,其外形与普通截止阀相似。它由阀体、阀芯、阀杆、填料压盖、上盖、手轮和螺栓等零件组成。与截止阀不同之处在于它的阀芯为针型或具有V 形缺口的锥体,而且阀杆采用细牙螺纹。当旋转手轮时,可使阀门的开启度缓慢地增大或减小,以保证良好的调节性能。手动节流阀开启的大小,需要操作人员频繁地调节,以适应负荷的变化。通常开启度为1/8~1/4圈,一般不超过一圈,开启度过大就起不到节流(膨胀)的作用。这种节流阀现在已被自动节流机构取代。 2.2孔板

相关文档
最新文档