冶金热工基础推钢式加热炉课程设计
开题报告模板(推钢式加热炉)
保障条件
在设计条件方面准备比较充分。配置了个人电脑,可以保证能够查阅资料、编写论文以及使用CAD绘制加热炉设计图纸。实验方面,学校的实验室已经对学生开放,如果有需要进行实验的地方可以和实验室老师沟通,安排时间进行实验。
毕业设计(论文)开题报告(参考表样)
学生姓名
专业班级
指导教师
课题来源
校企联合
课题类型
工程设计性
课题名称
推钢式加热炉
研究目的
意义
推钢式连续加热炉的历史悠久,应用广泛,也是最典型的连续加热炉。虽然新型的步进式、环行式等加热炉越来越多的被应用到钢铁冶金企业中、技术也越发成熟,但凭借着结构简单、投资少等优点,推钢式加热炉仍在冶金行业中扮演着重要的角色,尤其是中小型轧钢企业中更是有很大的使用数量。
设计时间
上机时数
实验时数
实习时间
实习地点
指导教师
意见
指导教师:
年月日
审查小组意见
审查组组长:
年月日
院系意见
教学院长(主任):
年月日
填表说明:课题来源是指科研、生产、教学、校企联合、其它;题目类型是指工程设计性(真题、假题)、论文性、综述性、其它。
3.选定机器设备后,用AutoCAD绘制加热炉总图;
4.完成翻译3000字左右的外文资料;
5.编写毕业设计说明书
研究计划
第1-3周 查阅资料;毕业实习;
第4-11周 进行加热炉热力计算;
第12-15周 绘制加热炉总图;
第16-18周 编写毕业设计指导书;
加热炉推料机课程设计
加热炉推料机课程设计
课程设计:加热炉推料机
课程名称:加热炉推料机课程设计
课程类型:必修课
课程学时:30学时
课程目标:
1. 熟悉加热炉推料机的结构和工作原理;
2. 掌握加热炉推料机的操作和维护方法;
3. 培养学生对加热炉推料机进行故障排除和维修的能力;
4. 提高学生的安全意识和责任心。
教学内容:
1. 加热炉推料机的技术要求和性能指标;
2. 加热炉推料机的结构和工作原理;
3. 加热炉推料机的操作规程和安全注意事项;
4. 加热炉推料机的日常维护和保养;
5. 加热炉推料机故障排除的常见方法;
6. 加热炉推料机的维修和更换零部件;
7. 加热炉推料机的安全管理和事故应急处理。
教学方法:
1. 理论授课:通过教师讲授加热炉推料机的相关理论知识,介
绍结构和工作原理。
2. 实验演示:通过实际操作加热炉推料机的演示,让学生了解操作流程和注意事项。
3. 实践训练:组织学生进行加热炉推料机的实际操作和维护维修,提高实际应用能力。
评估方式:
1. 平时成绩:包括课堂表现、实验报告和作业完成情况等。
2. 实践操作考核:通过对学生进行加热炉推料机的实际操作和故障排除的考核,评估学生的应用能力。
3. 综合考试:进行理论知识和操作技能的综合考核,测试学生的综合能力。
教材教具:
1. 《加热炉推料机原理与应用》
2. 加热炉推料机实物模型和演示设备
3. 相关维修工具和设备
备注:以上课程设计仅供参考,具体的课程内容和教学方法可以根据实际情况进行调整和更改。
加热炉课程设计说明书
⑨计算金属热焓值
当t1均=610℃时,查表得cp= 0.5887 kJ/(kg.℃)
所以,i预=610×0.5887 = 359kJ/kg;Δi预=359-20×0.4773=349.6kJ/kg
注:与假设所得Δi预相差很小,故计算正确,不必重新校核,i预=610×0.5887 = 359kJ/kg。
4总加热时间
5单位加热时间
符合连续加热炉加热中碳钢时间要求。
2.4
1.炉子长度计算
①有效炉长:
②预热段长度:
③加热段双面加热长度:
④加热段单面加热长度:
⑤炉子总长:L总=L效+A=28517+1600=30117mm
2.炉门数量和尺寸确定
①进料炉门:炉门宽度B进= B=3.132m;炉门高度H进=3×0.11=0.330m;进料炉门数量:1个(炉尾端部)。
3.耐火材料和尺寸确定
本炉采用砌砖结构:拱顶(60度拱顶):加热段用一级硅砖300mm+硅藻土砖120mm;预热段用一级粘土砖300mm+硅藻土砖120mm;炉墙用一级粘土砖348mm+硅藻土砖120mm;
4.炉底水管布置及规格确定
①纵水管:最大中心距 ,取a实=1600mm;根数n=3132/1600=1.96,取n=2根;纵水管规格Ф121×20mm(横水管中心距b=2320mm条件下)。
②由k=0.977可计算天然气湿成分,计算结果列入下表
成分
CH4
C2H6
C3H8
H2
CO
CO2
N2
H2O
总和
天然气(%)
88.55
1.57
115th燃焦炉煤气推钢式连续加热炉毕业设计
115th燃焦炉煤气推钢式连续加热炉的设计1.文献综述1.1 加热炉的概述[1]加热炉是将物料或工件加热的设备。
按热源划分有燃料加热炉、电阻加热炉、感应加热炉、微波加热炉等。
应用遍及石油、化工、冶金、机械、热处理、表面处理、建材、电子、材料、轻工、日化、制药等诸多行业领域。
在冶金工业中,加热炉习惯上是指把金属加热到轧制成锻造温度的工业炉,包括有连续加热炉和室式加热炉等。
金属热处理用的加热炉另称为热处理炉。
初轧前加热钢锭或使钢锭部温度均匀的炉子称为均热炉。
广义而言,加热炉也包括均热炉和热处理炉。
1.2 加热炉的一般组成部分[6]加热炉是一个复杂的热工设备,它一般由炉子热工工艺系统、装出料系统、热工检测及自动控制系统等部分组成。
三个系统相互配合,使炉子正常运转。
其中炉子的工作室(炉膛)、供热系统(风机、油泵、管道、燃烧装置等)、排烟系统(烟道、烟闸、换热器、余热锅炉、烟囱、排烟机等)以及冷却系统等构成了炉子的热工工艺系统,它是加热炉最基本的组成部分。
故以下仅对热工工艺系统中的主要组成部分加以介绍。
1.2.1 炉膛(工作室)炉膛(工作室)是炉子的核心,主要的热工及工艺过程都在工作室完成。
炉膛一般是由炉墙、炉顶和炉底构成的一个近乎六面体的空间,是对金属工件进行加热的地方。
因工艺和用途不同,炉膛形状是各式各样的。
在加热炉的运行过程中,不仅要求炉膛能够在高温和荷载条件下保持足够的强度和稳定性,要求能够耐受炉气、炉尘和炉渣的侵蚀和冲刷,而且要求有足够的绝热保温和气密性能。
因此,要求构成炉墙、炉顶和炉底等所用的材料、结构型式和尺寸等都必须具备以上性能,以保证炉子能够正常工作。
1) 炉墙炉子四周的围墙称为炉墙。
加热炉都采用直立的炉墙,分为侧墙和端墙。
沿炉子长度方向上的炉墙称为侧墙;炉子两端的炉墙称为端墙。
为保证炉墙结构的稳定性,炉墙必须有一定的厚度,并应炉子尺寸的增大和炉膛温度的升高而增厚。
为了减少散热和蓄热损失,炉墙应设有绝热层。
推钢式二段连续加热炉设计
推钢式二段连续加热炉设计
(课程设计)
级能源与动力工程专业学生姓名:
1设计条件
1.1炉子生产率P=t/h。
1.2被加热金属参数
(1)材质;
(2)尺寸mm;
(3)加热开始入炉时的温度℃。
(4)加热终了出炉时的温度℃。
(5)热终了出炉时允许断面温差℃。
1.3燃料
(1)类别
(2)预热温度℃;
(3)成分组成(见下表)。
序号12345678
∑成分
%100 %100 %100 1.4助燃空气预热温度℃。
1.5烟气出炉膛温度℃。
2设计内容
2.1炉型方案选择
(1)采用几面加热;
(2)炉料排数及出料方式;
(3)燃烧装置类型选择及其布置方式;
(4)预热装置类型及排烟方式;
(5)炉子局部结构的选择等。
2.2炉子热工计算内容及炉用部件的确定
(1)燃料燃烧计算;
(2)炉膛热交换计算;
(3)炉膛热平衡计算;
(4)金属加热计算及炉子主要尺寸的确定;
(5)助燃系统空气预热装置计算;
(6)排烟系统气体力学计算及烟囱尺寸的确定;
(7)助燃空气供给系统气体力学计算及风机类型的确定。
2.3图纸及说明书
(1)图纸--三投影图纸1张(0#或1#);
(2)说明书1份。
加热炉的设计应用课程设计
1.1意义及研究背景
在工业中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。其中温度控制也也越来越重要。在工业生产的很多领域中,人们都需要对环境中的温度进行控制。在石油工业中,加热炉尤为重要,加热炉应用非常明显。而对加热炉进行温度控制在整个工艺生产中的重要性尤为突出。
加热炉被广泛应用于工业生产和科学研究中。由于这类对象使用方便,可以通过调节输出功率来控制温度,进而得到较好的控制性能,故在冶金、机械、化工等领域中得到了广泛的应用。
3.2温度检测及变送电路
温度检测电路是本次设计的主要内容,是整个单片机温度控制系统设计中不角儿缺少的一部分。本系统要求对加热炉内温度进行实时采集与检测,在充分保证安全的情况下对代加工器件进行热处理。
根据要求,本系统的温度检查电路主要有传感器、运算放大器及A/D转换器组成。经固定周期对加热炉内温度进行检测,实现加热功能,并是系统安全稳定。
由于热电偶温度传感器的材料一般都比较贵重,而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把温度传感器热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶温度传感器补偿导线的作用只起延伸热电极,是温度传感器热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需要用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。
P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。P3口也可作为AT89C51的一些特殊功能口,如下表所示:口管脚备选功能:P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 /INT0(外部中断0)P3.3 /INT1(外部中断1)P3.4 T0(记时器0外部输入)P3.5 T1(记时器1外部输入)P3.6 /WR(外部数据存储器写选通)P3.7 /RD(外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。
段推钢式连续加热炉说明书
3.1设计计算基本技术数据以碳素钢标准坯尺寸,20C冷装,天然气不预热为标准计算3.1.1加热金属料坯种类:普碳钢(20#钢)尺寸规格:金属开始加热(入炉时)平均温度:金属加热终了(出炉时)表面温度:金属加热终了(出炉时)横断面温差:3.1.2炉子生产率:P=22t/h3.1.3燃料燃料种类:天然气;成分(干):表3.1天然气干成分(%)天然气预热温度:燃。
3.1.4出炉膛烟气温度:烟气3.1.5助燃空气预热温度(烧嘴前):空3.2燃料燃烧计算3.2.1天然气的干、湿成分换算根据热发生炉煤气温度混C时,干查表得干干气体,干湿煤气的转换系数为:干把,代入湿干,结果见下表:表3.2 天然气湿成分(%)322计算天然气湿成分计算天然气低位发热值湿湿湿湿湿低3.2.3理论空气需要量L0:湿湿湿湿湿湿3.2.4实际空气需要量L n:取n=1.05,有:湿(+ )3.2.5计算燃烧产物生成量及成分' 湿湿湿湿( + )表3.3 天然气燃烧产物生成量(Nm/Nrn?)及成分(%)326计算天然气燃烧产物密度44CO218H2O' 28N23202烟= 22.4 10044 8.47 18 21.02 28 69.67 32 0.8422.4 1003=1.22 kg / Nm3.2.7计算燃料理论燃烧温度由空,查表得:空查表得:产()=Q低+ L n C空t空+ c燃t燃一Q分33500.39.81 1.296 30011.1^1.672= 20020C。
因此,可以满足连续加热炉加热工艺要求。
328计算结果1.实际空气需要量:2.燃烧产物生成量:3.燃烧产物重度:烟。
第四章金属的加热计算金属加热是连续加热炉全部热工计算的核心,其主要目的是确定金属在炉内的加热时间。
4.1炉膛热交换计算计算目的是确定炉气经过炉壁对金属的导来辐射系数4.1.1预确定炉膛主要尺寸1)炉膛宽度本加热炉中,料坯厚度,料坯长度时,米用两段连续加热炉。
冶金热工基础推钢式加热炉课程设计
目录前言 (2)设计任务书 (4)内容摘要 (5)第一部分:推钢式加热炉的概述二、换热器设计计算………………………………………第四部分:主要参考文献及附表………………………………第五部分:总结…………………………………………………前言本学期我们进行了冶金本专业的一些设计,特别是在我们的冶金热工基础,也有一门设计,这无疑让我们学习了一些在我们的课堂上学不到的知识,这让我们很高兴。
时间虽不是那么长,只有两个星期的时间,但是这两个星期却对我们的学习有了很大的帮助,让我们认识到学习是从一步一步开始的,没有一个很好的基础,是不可能把我们想要的东西得到的。
以下是我的个人学习和设计的全部内容。
加热炉是我们冶金行业里的一个不能少的机械设备,所以我们这次的主要设计炉体各部砌砖图以及各种装置的零件分图,并要完成土建基础,各种机械附属装置及安装、热工和自动自动调节系统及其安装的设计。
在此,由于时间关系只完成炉子的技术设计内容和换热器的设计。
所以我们在设计加热炉时一定的遵守以下设计原则:1.加热炉设计必须符合国家有关的技术政策,炉子的技术性能应满足生产工艺的要求,保证机器在工作之中有一定的安全性。
2.运用不断发展的热工及机械理论(如燃料燃烧、流体力学、传热学、机械原理等)指导炉子的设计工作;引进并吸收国外炉子的先进技术,不断完善和提高炉子的技术性能及机械化程度。
3.设计新的炉型结构时,应注意提高炉子生产率,提高产品质量,降低燃料消耗,4.5.生钢断面误差:25C︒烟气与炉膛温度:780C︒炉子生产能力:P=50t/h燃料:混合燃气成分(%):CO2(9.65)、H2(9.92)、CH4(12.77)、CO(21.56)、O2(0.13)、C2H6(0.59)、N2(45.30)、C3H8(0.13)空气预热温度:t a=250C︒采用二段式加热制度:高温段1300C︒;预热段温度1000C︒上升到1300C︒摘要近几年随着节能降耗意识的提高,节能挖潜越来越引起人们的重视。
毕业设计---加热炉推料结构设计
XX学院毕业设计说明书课题加热炉推料机构设计子课题同课题学生专业姓名班级学号指导教师完成日期摘要:在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。
其中,温度控制也越来越重要。
在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。
采用单片机对温度进行控制不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。
加热炉是工业炉窑的一大类别,是指被加热的物料在炉内基本不发生物态变化和化学反应的炉子。
对于冶金行业来说,加热炉是指金属压力加工前的加热和金属制成品及半成品的热处理等用炉。
小型加热炉是科研院所及厂矿常用的热处理或加热设备。
随着科学技术的不断发展,加热炉的理论和实践在不断深化和日趋完善,加热炉的结构型式也在不断演进。
优质、高产、低消耗的新式炉型不断涌现,加热炉的结构目前仍处在不断变革之中,以满足生产工艺对炉子的技术经济要求,即经济、高产、低消耗、炉子寿命长、劳动条件好。
目录绪论: (1)第1章加热炉推料机构设计思路 (2)第2章加热炉的分类 (3)2.1推钢式连续加热炉 (3)2.2进式连续加热炉 (3)2.3底式加热炉 (3)2.4分室式快速加热炉 (3)第3章加热炉的结构 (5)3.1辐射室 (5)3.2对流室 (5)3.3余热回收系统 (5)3.4通风系统 (5)3.5加热炉结构特点 (5)第4章加热炉的工作原理 (7)第5章加热炉控制技术的发展方向 (8)5.1国内外燃烧控制发展情况 (8)5.2串级并联双交叉限幅控制燃烧 (8)5.3氧化锆残氧分析法 (9)5.4用热值分析仪测煤气的热值 (9)5.5利用高焦混合煤气成分理论推测空燃比 (9)第6章我国蓄热式加热炉的发展 (11)6.1概述 (11)6.2蓄热式燃烧技术 (11)6.3烧嘴式蓄热式加热炉 (12)第7章推料机构离心机的概述 (15)第8章加热炉推料机构基本工作过程 (16)第9章加热炉安全操作规程 (17)9.1总则 (17)9.2煤气着火事故处理 (17)9.3煤气爆炸事故的处理 (17)9.4送高炉煤气的操作程序 (17)9.5煤气泄露、中毒的处理 (18)9.6汽化冷却系统故障 (18)结束语: (22)致谢: (23)参考文献 (24)绪论:随着现代工业的逐步发展,在工业生产中,温度、压力、流量和液位是四种最常见的过程变量。
加热炉教学大纲
加热炉教学大纲《加热炉》教学大纲一、课程性质和任务加热炉是材料工程专业的专业的一门重要的主干技术专业课,通过课堂教学、实验,使学生掌握热工基础的基本概念、基本理论及其运算方法;熟悉热力设备、装置和循环等实际应用知识,为今后从事工程实践、解决生产实际问题及学习新的科学技术奠定坚实的基础。
加热炉是一门实践性应用性较强的技术基础课,随着科学技术的发展,加热炉技术已得到了快速的完善和发展。
二、教学基本要求本课程的目标和任务,是使考生通过学习对加热炉有比较全面的了解,能够初步分析和解决加热炉热工方面的理论和实践问题,掌握加热炉的基本操作、维护、检修技能和常见事故处理方法。
课程基本要求如下:(l)掌握加热炉的基本组成及其各部分的作用:熟悉燃料供应系统、供风系统、排烟系统及冷却系统的组成及结构;了解加热炉余热利用设备的工作原理。
(2)了解金属压力加工企业常用燃料的主要性能和用途;掌握燃烧计算的基本方法;初步掌握对燃料燃烧过程的操作控制及燃烧方法的应用。
(3)了解有关加热炉气体力学的基本概念、基本原理和计算方法;掌握炉内外测点的选择方法及常用温度、压力、流量测量仪器的使用和维护。
(4)能够正确分析炉内的传热过程,理解三种传热方式的基本概念及基本定律,了解传热量的计算方法。
(5)了解金属的加热工艺制度;熟悉炉子热平衡表的编制目的与根据;了解编制炉子热平衡表的方法,能提出降低炉子燃耗、提高炉子热效率的途径。
(6)熟悉耐火材料的分类及常用耐火材料的组成、基本性能及应用领域。
(7)熟悉常用加热炉的炉型特点以及使用、维护与维修知识。
三、教学内容第一章加热炉的基本结构教学目标:通过本章的学习,学生应掌握加热炉的基本组成及其各部分的作用:熟悉燃料供应系统、供风系统、排烟系统及冷却系统的组成及结构;了解加热炉余热利用设备的工作原理。
具有使用和维护加热炉的主要设备及使用和维护加热炉的烧嘴和阀门的能力。
教学重点与难点:(一)炉膛与炉衬(次重点)理解:加热炉的炉墙、炉顶、炉底、炉子基础、钢结构、炉门、观察孔及出渣们的结构及组成。
加热炉课程设计.doc
第一章设计原始条件及表格汇总1.1原始条件炉子产量140000kg G h =,钢坯规格为22022012000mm ⨯⨯,单重为4530㎏,加热温度201250C C ,许加热终了时钢坯断面温度差30C ,钢种为普碳钢。
用发热量为2150千卡/时的高焦炉煤气为燃料。
确定炉子的尺寸和燃料消耗量。
1.2计算结果表格汇总1. 燃烧计算kcal kcalkcal5.热平衡计算及燃料消耗量的决定第二章设计计算2.1炉子结构计算2.1.1空气量及燃烧生成量计算解:采用上下加热步进梁式加热炉,钢坯中心距取320mm ,炉宽定为12800mm 。
按三段式温度制度。
炉膛高度在预热段为1800mm ,加热段为2200mm ,均热锻为1500mm 。
用平焰烧嘴, 1.1α=。
高焦炉煤气的成分:完全燃烧时理论空气量 024 4.84(0.520.5 3.5)100m n L H CH CO C H =+++4.84(0.50.09297.10.50.01 3.50.54)100=⨯+⨯+⨯+⨯⨯ 2.12=过量空气系数 1.1α=实际供给空气量 0 1.1 2.02 1.122n L L α=⨯=⨯=烟气生成量 2221.9n c o N O V V V V =++=烟气中生成量 224(2)0.010.288CO m n V CO CO CH C H =+++⨯=烟气中生成量 22(78)0.012.183N n V N L =+⨯= 烟气中生成量烟气中生成量 24222(230.0128)0.010.484H O m n n V CH C H H H S H OL =+++++⨯=烟气中生成量 200.2067(1)0.2O V L α=-=由以上得: 20.048CO P = 20.17H O P = 2.1.2炉高的确定钢坯出炉的表面温度=1250C钢坯入炉的表面温度=20C经过预热段以后钢坯的表面温度=650C进入均热锻时钢坯的表面温度=1350C烟气出炉的温度=850C烟气进入预热段的温度=1400C烟气在均热中的最高温度=1350C烟气在均热锻中的平均温度=1275CH 效=3(0.05)10A B t +⨯气 H 效—炉子的有效长度B —炉宽t 气—炉气温度A —系数(1)预热段高度311(0.50.0512.8)14001015961796H H mm δ=+⨯⨯⨯=+=取 1800mm (2)加热段3322(0.05)10(0.680.0512.8)145010191419142002214H A B t mm H δ=+⨯=+⨯⨯⨯=+=+=气取 2200mm (3)均热锻333(0.05)10(0.50.0512.8)1275101453.5H A B t mm =+⨯=+⨯⨯⨯=气取1500mm2.1.3、炉内各段面积 1.炉膛的内表面积2()y F H B L =+(1)预热段2()2(1.812.8)29.2y y y y F H B L L L =+=⨯+=(2)加热段2()2(2.212.8)30.0j j j j F H B L L L =+=⨯+=(3)均热锻2()2(1.512.8)28.6jr jr jr jr F H B L L L =+=⨯+=2.气层的有效厚度1( 3.6)HBLS F = (1)预热段1.812.83.62.8429.2yy yL S m L ⨯==(2)加热段2.212.83.63.3830.0jj jL S m L ⨯==(3)均热锻1.512.83.62.4228.6jrjr jrL S m L ⨯==2.1.4炉气黑度 220CO H O e e e β=+ 预热段20.12 2.840.341CO y P S =⨯= 20.16 2.840.454H O y P S =⨯=加热段20.12 3.380.4056CO j P S =⨯= 20.16 3.380.5408H O j P S =⨯=均热锻20.12 2.420.2904CO jr P S =⨯= 20.16 2.420.3872H O jr P S =⨯=预热段温度800C 00.15 1.080.250.42e =+⨯=预热段温度1280C 00.141.080.1560.308e =+⨯= 加热段温度1280C 00.141.080.210.363e =+⨯= 加热段温度1330C 00.13 1.080.190.33e =+⨯=均热锻温度1330C 00.121.080.170.31e =+⨯= 均热锻温度1270C 00.141.080.180.336e =+⨯=2.1.5综合辐射系数()0201201204.881e e c e r e =+-砌体对钢坯的角度系数 预热段()1210.819F a r F +==金壁( 取0.45α=) 加热锻()1210.80F a r F +==金壁( 取 0.45α=) 均热锻()1210.837F a r F +==金壁( 取 0.45α=)钢坯黑度20.8e = 预热段温度800C()012 4.880.420.81.830.420.81910.42C ⨯⨯==+-预热段温度1280C()012 4.880.3080.81.370.3080.81910.308C ⨯⨯==+-加热段温度 1280C()012 4.880.3630.81.620.3630.8010.0.363C ⨯⨯==+-加热段温度 1330C()012 4.880.330.81.490.330.8010.33C ⨯⨯==+-均热锻温度 1330C()012 4.880.310.81.360.310.83710.31C ⨯⨯==+-均热锻温度 1270C()012 4.880.3360.81.430.3360.83710.336C ⨯⨯==+-预热段和加热段交界处取平均值0120.5(1.37 1.62) 1.49C =+=加热段和均热锻交界处取平均值0120.5(1.49 1.36) 1.43C =+=2.1.6炉长炉宽的确定 最大生产率: 220000kg G h = 预选炉底强度: 395P =2kg m h⋅加热面积:2220000557395xi G f m P ===又12.81xi xi f l =⨯⨯ 有55743.612.8xi f m == 有效长度44m =炉宽的确定:B =钢坯的长度2C + 即有1220.412.8B m =+⨯= 取 12.8m 求炉长及加热时间要求每小时加热的钢坯的钢坯数为30.9根,炉内放置的钢坯数为44000320137=根,则钢坯加热的时间131730.9 4.43t h == 2.1.7计算炉温制度和燃料消耗量将方坯看成截面积与之相等的圆坯,则圆坯的计算半径:0.1242r m ==在加热段完了时钢坯的温差为20C ,则加热段终了时钢坯的平均温度为:12500.5201240z jp t C =-⨯=。
冶金热工基础课程设计
1)额定产量:(120t、h140 t/h、160 t/h、180 t/h、200 t/h、220 t/h、240 t/h、260 t/h)(八组)
2.1.5燃料
2.1.6装出料方式:端部装钢机装料,端部出钢机出料
三、设计要求及成果
每组按选定数据进行设计计算;设计说明书按设计说明书格式规范写,做到说明理由充足,计算详细,依据明确可查;设计施工绘图按参考图样进行绘制,要求手工绘图,做到层次分明、线型合理;每组成员设计时要求协调有序,合理分工协作;设计任务按时间安排完成并上交设计说明书。
课程名称
冶金热工基础课程设计
设计题目
燃烧混合煤气燃气的步进式连续式加热炉炉体设计
指导教师
吴复忠
时间
20011/2012第二学19-20周
一、教学要求
要求同学们认真理解课堂教授的有关冶金热工知识知识,认真阅读设计任务书内容,认真阅读设计参考资料。进行设计工作,有问题及时向指导教师请教。
要求独立完成计算和绘图任务,计算书和图纸内容必须与任务书相符合。
五、评分标准
课程设计成绩评定依据包括以下几点:1)工作态度(占10%);2)基本技能的掌握程度(占20%);3)方案的设计是否可行和优化(40%);4)课程设计技术设计书编写水平和图纸质量(占30%)。分为优、良、中、合格、不合格五个等级。
考核方式:设计期间教师现场检查;评阅设计报告。
六、建议参考资料
1.《加热炉设计实例》武文斐主编,化学工业出版社;
2.《加热炉》蔡乔方主编冶金工业出版社;
3.《工业炉设计手册》第一机械工业部第一设计院主编,机械工业出版社;
4.《工业炉设计参考手册》(上、下册),机械工业出版社;
【设计】推钢式连续加热炉设计毕业设计说明书
【关键字】设计前言高产、优质、低耗、低成本、低污染反映了轧钢加热炉的综合技术经济指标,用少投入实现产能的最大化,是企业和热工工作者的追求目标,亦是轧钢加热炉的发展趋向。
目前,国内的连续式加热炉正在经历从推钢式到步进式的转变过程,虽然步进式加热炉有其优点,但是推钢式加热炉也有很多可取之处,推钢式炉和步进式炉有同等的效果,并且推钢式加热炉一次性投资少,维护运行费用低。
本文对加热炉的结构,附件的技术概况进行分析,借此找到改进的方案。
1.1.工业炉的发展史工业炉是在工业生产中,利用燃料燃烧或电能转化的热量,将物料或工件加热的热工设备。
中国在商代出现了较为完善的炼铜炉,在春秋战国时期,人们在熔铜炉的根底上进一步掌握了提高炉温的技术,从而生产出了铸铁。
1794年,世界上出现了熔炼铸铁的直筒形冲天炉。
后到1864年,法国人马丁运用英国人西门子的蓄热式炉原理,建造了用气体燃料加热的第一台炼钢平炉。
他利用蓄热室对空气和煤气进行高温预热,从而保证了炼钢所需的1600℃以上的温度。
1900年前后,电能供应逐渐充足,开始使用各种电阻炉、电弧炉和有芯感应炉。
20世纪20年代后又出现了能够提高炉子生产率和改善劳动条件的各种机械化、自动化炉型。
工业炉的燃料也随着燃料资源的开发和燃料转换技术的进步,而由采用块煤、焦炭、煤粉等固体燃料逐步改用发生炉煤气、城市煤气、天然气、柴油、燃料油等气体和液体燃料,并且研制出了与所用燃料相适应的各种燃烧装置。
二十世纪50年代,无芯感应炉得到迅速发展。
后来又出现了电子束炉,利用电子束来冲击固态燃料,能强化表面加热和熔化高熔点的材料。
为便于加热大型工件,又出现了适于加热钢锭和大钢坯的台车式炉,为了加热长形杆件还出现了井式炉。
随着现代化管理水平的提高,计算机控制系统的不断完善,现代连续加热炉也应运而生. 现代连续加热炉炉型可以归入两大类:推钢式炉和步进式炉。
两类炉型的根本区别,仅在于炉内的输料方式。
加热炉推料机课程设计
机械设计课程设计设计者:班级:学号:指导老师:1总体设计1、传动方案的拟定(1)原动机的选择设计要求:动力源为三相交流电380/22ov,所以选择电动机(2)传动装置选择A、减速器电动机输出转速比较高,而且输出不稳定,同时在运转故障或者严重过载时,可能烧坏电动机,所以一定要有过载保护装置。
可选用:带传动、链传动、齿轮传动、蜗杆涡轮链传动与齿轮传动虽然传动效率高,但是会引起一定的震动,而且缓冲减震能力差,也没有过载保护。
带传动平稳性号,噪音小,有缓冲减震和过载保护能力,精度要求不高,制造、安装、维护都比较方便,成本也较低,但是传动效率较低,传动比不恒定,寿命短。
蜗杆传动虽然效率较低,没有缓冲减震和过载保护能力,制造要求精度高,但是比较符合设计需要,而且现实中都是用涡轮,所以我也选用涡轮传动。
B、传动机构连杆机构可以选择有对心曲柄滑块机构、正切和多杆机构。
根据设计要求,工作机应该带动推料机,且结构应该尽量简单,所以选择六杆机构。
如下图滑块运动行程H(mm) 250滑块运动频率n(次/min) 60滑块工作行程最大压力角30机构行程速比系数K 1.5构件DC长度(mm) 380构件CE长度(mm) 1502、六连杆的设计计算(上期是乱算的)(传动方案)(a)图是机构的运动简图示意图,现将其分解为曲柄摇杆机构(b)和滑块机构(c)来计算已知CD=380、CE=150、F左右移动距离为60,根据查资料假设AB=130、BC=220、AD=320、DE=530,现在求EF长度?对于(b)cos∠C2AD=AC2²+AD²−C2²2∗AC2∗AD =90²+360²−320²2∗90∗360∠C2AD=57°cos∠AC2D=AC2²+C2D²−AD²2∗AC2∗AD =90²+320²−360²2∗220∗140∠AC2D=107°则∠ADC2=30°cos∠ADC1=C1D²+AD²−AC1²2∗DC1∗AD =320²+360²−350²2∗250∗140∠ADC1=62°则∠C2DC1=32°对于(c)cos∠E2DH=DHE2DDH=cos∠E1DH×E1D=510mm F1G1²=GF2²+E1G²=100²+(125-60)²E2F2=120mm即EF为120mm六连杆机构仿真图2电机选择1、 电机类型选择:按工作要求和条件选取Y 系列一般用途全封闭鼠笼型三相异步电动机即可2、 电机功率的选择: 1) 工作机所需的功率:P w =FV1000=3000×0.5×6060⁄1000=1.5(kw)2) 电动机功率计算:传动效率:一对轴承:η0=0.99齿式联轴器 : η1=0.99 涡轮蜗杆:η2=0.84一对圆柱齿轮:8级精度 η3=0.97 滑轮摩擦: η4=0.90总效率:η=η03η1η2η3η4=0.994×0.992×0.84×0.97×0.90=0.690所以总传动功率为P d =Pw ηa =1.50.690⁄=2.17kw参照选取电动机额定功率为3kw3、电机转速确定:根据已知条件计算出工作机滚筒的工作转速为:n=60r/min根据电机功率3kw 和同步转速1500r/min 确定用Y100L2-4型鼠笼式电动机,电机数据如下:4、分配减速器各级传动比假设齿轮的传动比i 34=2,则蜗杆涡轮的传动比为i12=23.82=11.9 5、确定转速、转矩、功率1)计算各轴转速电机轴:n M=1430r/minⅠ轴:n1=n M=1430r/minⅡ轴:n2=n1i12=1430r/min11.9=120.17r/minⅢ轴:n3=n2=120.17r/minⅣ轴:n4=n3i34=120.172=60.08r/min2) 计算各轴输入功率电机轴:P d=3kwⅠ轴: P1=P d*η1*η0=3kw×0.99×0.99=2.94kwⅡ轴: P2=P1×η2×η0=2.94kw×0.84×0.99=2.44kwⅢ轴: P3=P1×η1=2.44kw×0.99=2.41kwⅣ轴: P4=P3×η0×η3=2.41kw×0.99×0.97=2.31kw推杆: P出=P3×η4=2.31kw×0.90=2.08kw3)计算各轴输入转矩电动机输出转矩:T d=9550×PdnM=9550×31430⁄=20.03N.mⅠ轴: T1=Td.η1=20.03N.m×0.99=19.83N.mⅡ轴: T2=T1.η0.η2.i12=19.83N.m×0.84×0.99×11.9=196.24N.mⅢ轴: T3=T2.η1=196.24N.m×0.99=194.28N.mⅣ轴: T4=T3.η0.η3.i34=194.08N.m×0.99×0.97×2=373.13N.m将上述计算结果列表,如下3 蜗杆涡轮减速器的设计3.1 蜗杆传动设计1.选择涡轮蜗杆的传递类型根据GB/T10085-1988的推荐,采用渐开线蜗杆ZI 。
加热炉 (1)
目录一设计原始资料 (1)二加热炉炉型的选择 (1)三燃料燃烧计算 (1)3.1查取燃料成份 (1)3.2空气需要量和燃烧产物量及其成分的计算 (2)3.2.1理论空气需要量 (2)3.2.2实际空气需要量 (2)3.2.3燃烧产物量 (2)3.2.4燃烧产物成分 (2)3.3燃烧产物密度计算 (3)3.4理论燃烧温度的计算 (3)3.4.1燃烧产物的热含量 (4)3.4.2燃烧产物中的空气含量 (4)3.4.3理论燃烧温度的确定 (4)四钢坯加热时间的计算 (5)4.1预热段加热时间的计算 (6)4.1.1求平均温度 (6)4.1.2炉气黑度的计算 (6)4.1.3辐射传热系数的计算 (7)4.1.4对流传热系数 (8)4.1.5总传热系数 (8)4.1.6确定加热时间 (8)4.1.7确定经过预热段之后钢坯表面与中心的温度差 (9)4.2加热段加热时间的计算 (9)4.2.1传热系数的计算 (9)4.2.2确定加热时间 (11)4.2.3 确定加热段终了时钢坯的中心温度及表面与中心的温度差 (11)4.3确定均热时间 (11)五炉子基本尺寸的决定及有关的几个指标 (12)5.1炉子宽度(有效宽度) (12)5.2炉膛高度 (12)5.2.1预热段炉膛高度 (12)5.2.2 加热段炉膛高度 (13)5.2.3 均热段炉膛高度 (13)5.3炉长计算 (13)5.4炉底有效面积及总炉底面积 (13)5.5炉底面积有效利用率 (14)5.6炉底强度 (14)5.7出钢间隔时间 (14)5.8炉墙砌砖内表面温度计算 (14)5.8.1预热段的炉墙内表面温度 (14)5.8.2加热段的炉墙内表面温度 (15)5.8.3均热段的炉墙内表面温度 (15)六热平衡计算及燃料消耗量的计算 (15)6.1热量收入项 (15)6.2热量支出项目 (16)七参考文献 (19)八设计体会 (20)一 设计原始资料设计题目:120 t h 燃烧高焦炉混合煤气的推钢式加热炉的炉体设计; 钢种:普碳钢;加热炉的额定产量:120t h ,最大产量:200 t h ;钢坯单重3.74t ; 钢坯尺寸:200mm ×200mm ×12000mm ; 装料温度:室温(20 0C ); 出料温度:1250 0C ; 预热空气温度:4500C二 加热炉炉型的选择轧钢生产连续性较大,加热钢坯的品种也比较稳定,并且数量也比较大,故采用连续推钢式加热炉。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冶金热工基础推钢式加热炉课程设计公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-目录前言 (2)设计任务书 (4)内容摘要 (5)第一部分 : 推钢式加热炉的概述一、加热炉的应用及其优越性 (7)二、推钢式加热炉的分类……………………………………三、推钢式加热炉的工作原理及工艺 (10)四、推钢式加热炉的主要结构 (11)五、联想近几年我国轧制技术的发展 (12)第二部分 : 推钢式加热炉的相关计算一、炉膛内的辐射的计算……………………………………二、炉子的基本尺寸的设计及相关计算……………………三、金属加热的计算…………………………………………四、燃料燃烧的相关计算……………………………………五、炉子热平衡的计算………………………………………第三部分 : 换热器设计…………………………………………一、换热器的介绍…………………………………………二、换热器设计计算………………………………………第四部分:主要参考文献及附表………………………………第五部分 : 总结…………………………………………………前言本学期我们进行了冶金本专业的一些设计,特别是在我们的冶金热工基础,也有一门设计,这无疑让我们学习了一些在我们的课堂上学不到的知识,这让我们很高兴。
时间虽不是那么长,只有两个星期的时间,但是这两个星期却对我们的学习有了很大的帮助,让我们认识到学习是从一步一步开始的,没有一个很好的基础,是不可能把我们想要的东西得到的。
以下是我的个人学习和设计的全部内容。
加热炉是我们冶金行业里的一个不能少的机械设备,所以我们这次的主要设计就是设计加热炉。
通过设计可以使我们初步掌握炉子设计的步骤、原则与方法,并进而了解一般工业炉设计的基本规律,可以使我们将各专业知识进行综合应用的能力,理论联系实际、解决实际问题的能力,读图、制图及查阅资料的能力得到锻炼并加以提高。
在国民经济的很多生产部门中,工业炉作为一个重要设备而存在,要使炉子达到优质高产、低耗的要求,有一个合理的炉体结构是必不可少的条件之一;工业炉是工业原材料的冶炼、加工或成员的精制过程中,为实现预期的物理变化或化学变化所需要的加热装置。
因此,对于我们这些将来有可能成为一个热工工作者的学生来说,应具备有设计先进、结构完善的工业炉的能力。
工业炉设计的一般程序是:初步设计;技术设计;施工设计。
炉子的初步设计是按提出的任务,初步选定炉子的结构,热源和各种重要辅助装置及其在炉子上的布置等。
在综合考虑炉子的技术经济指标和生产规模及特点的基础上,确定炉子应采用的机械化和自动化程度。
炉子的技术设计是在初步设计的基础上,作全面的热工计算和炉体总图的绘制,以及某些重要辅助装置图。
炉子的施工设计是要求详细绘制炉体各部砌砖图以及各种装置的零件分图,并要完成土建基础,各种机械附属装置及安装、热工和自动自动调节系统及其安装的设计。
在此,由于时间关系只完成炉子的技术设计内容和换热器的设计。
所以我们在设计加热炉时一定的遵守以下设计原则:1.加热炉设计必须符合国家有关的技术政策,炉子的技术性能应满足生产工艺的要求,保证机器在工作之中有一定的安全性。
2.运用不断发展的热工及机械理论(如燃料燃烧、流体力学、传热学、机械原理等)指导炉子的设计工作;引进并吸收国外炉子的先进技术,不断完善和提高炉子的技术性能及机械化程度。
3.设计新的炉型结构时,应注意提高炉子生产率,提高产品质量,降低燃料消耗,改善操作条件和提高炉子的使用寿命。
4.设计炉子时,对材料选用、设备选型、通用构件的规格尺寸等,应尽可能全厂或全车间通用,以使维修方便。
5.在设计炉子时,应尽量改善工人的操作环境,减轻工人的劳动强度,要采取保护环境和防止污染的必要措施。
设计任务书题目:推钢式加热炉的设计炉子用途:用于加热扁钢坯被加热的钢坯尺寸(m):厚度s = ;宽度b = ;长度L =金属材质:20#碳素结构钢钢材入炉温度:20 C生钢温度:1210 C︒生钢断面误差:25 C︒烟气与炉膛温度:780 C︒炉子生产能力:P = 50 t/h 燃料:混合燃气成分(%):CO2、H2、CH4、CO、O2、C2H6、N2、C3H8空气预热温度:ta= 250C︒采用二段式加热制度:高温段1300 C︒;预热段温度1000C︒上升到1300C︒摘要近几年随着节能降耗意识的提高,节能挖潜越来越引起人们的重视。
在轧钢生产过程中,加热炉作为最大的耗能设备,同时也是整个工艺流程中最关键的设备之一。
运行的稳定与否将影响后面轧钢生产质量。
如何解决加热炉合理燃烧的问题,如何保证加热炉的最佳状况,是当今一直在研究的课题。
推钢式加热炉由于可以很好的处理上述问题而适时推出。
但大多数冶金厂的轧钢机都没有推钢式加热炉,因而有必要设计推钢式加热炉。
其设计过程基于冶金炉热工理论。
包括:燃料燃烧计算钢的加热制度的确定炉子基本尺寸的确定炉膛内辐射的计算金属的加热计算炉子热平衡的计算以及换热器的设计计算。
【关键词】节能降耗、推钢式加热炉、冶金厂、轧钢机、燃料燃烧、钢的加热制度、炉子基本尺寸、炉膛内辐射、金属加热、炉子热平衡、换热器。
AbstractIn the rensent years, more and more people become aware of the important of saving sources. So as a intending engineer, we must creat a equipment which will live up to the situation of our country and the require of whole world.Today there is not a push the steel type heating furnace in the most of roll mills in the metallurgic plan. Therefore, designing a push the type heating furnace is imperative under the situation. The procedures and cor-relative calculation is list as follows:The calculation of radiation in the burner hearth.The caculation of basic size of the stove.The caculation of burning fuel.The caculation of thermal balance.The caculation of heated metal.[Key words]Energy saving、Push the steel type heating、 furnaceMetal--lurgical factory、Rolling mill、Radiation in the burner hearth、Basicsize of the stove、The metal is heated、The burning fuel、Sectional view.[第一部分]推钢式加热炉概述工业炉在冶金、建材、机械、石化、轻工、电子工业等生产部门被用于各种加热目的,成为不可缺少的重要热工设备。
加热炉是用来把初轧坯或连俦坯等热轧到热到所需温度的热工设备。
一、加热炉的应用及其优越性加热炉是将物料或工件加热的设备。
按热源划分有燃料加热炉、电阻加热炉、感应加热炉、微波加热炉等。
应用遍及石油、化工、冶金、机械、热处理、表面处理、建材、电子、材料、轻工、日化、制药等诸多行业领域。
以下便是加热炉在冶金行业中几种常见的应用。
在冶金工业中,加热炉习惯上是指把金属加热到轧制成锻造温度的工业炉,包括有连续加热炉和室式加热炉等。
金属热处理用的加热炉另称为热处理炉。
初轧前加热钢锭或使钢锭内部温度均匀的炉子称为均热炉。
广义而言,加热炉也包括均热炉和热处理炉。
连续加热炉广义来说,包括推钢式炉、步进式炉、转底式炉、分室式炉等连续加热炉,但习惯上常指推钢式炉。
连续加热炉多数用于轧制前加热金属料坯,少数用于锻造和热处理。
主要特点是:料坯在炉内依轧制的节奏连续运动,炉气在炉内也连续流动;一般情况,在炉料的断面尺寸、品种和产量不变的情况下,炉子各部分的温度和炉中金属料的温度基本上不随时间变化而仅沿炉子长度变化。
按炉温分布,炉膛沿长度方向分为预热段、加热段和均热段;进料端炉温较低为预热段,其作用在于利用炉气热量,以提高炉子的热效率。
加热段为主要供热段,炉气温度较高,以利于实现快速加热。
均热段位于出料端,炉气温度与金属料温度差别很小,保证出炉料坯的断面温度均匀。
用于加热小断面料坯的炉子只有预热段和加热段。
习惯上还按炉内安装烧嘴的供热带划分炉段,依供热带的数目把炉子称为一段式、二段式,以至五段式、六段式等。
50~60年代,由于轧机能力加大,而推钢式炉的长度受到推钢长度的限制不能太长,所以开始在进料端增加供热带,取消不供热的预热段,以提高单位炉底面积的生产率。
用这种炉子加热板坯,炉底的单位面积产量达900~1000公斤/(米2·时),热耗约为~×106千卡/吨。
70年代以来,由于节能需要,又由于新兴的步进式炉允许增加炉子长度,所以又增设不供热的预热段,最佳的炉底单位面积产量在600~650公斤/(米2·时),热耗约为~×106千卡/吨。
连续加热炉是轧制车间应用最普遍的炉子。
通常使用气体燃料、重油或粉煤,有的烧块煤。
为了有效地利用废气热量,在烟道内安装预热空气和煤气的换热器,或安装余热锅炉。
在锻造和轧制生产中,钢坯一般在完全燃烧火焰的氧化气氛中加热。
采用不完全燃烧的还原性火焰(即“自身保护气氛”)来直接加热金属,可以达到无氧化或少氧化的目的。
这种加热方式称为明火式或敞焰式无氧化加热,成功地应用于转底式加热炉和室式加热炉。
推钢式连续加热炉:靠推钢机完成炉内运料任务的连续加热炉。
料坯在炉底或在用水冷管支撑的滑轨上滑动,在后一种情况下可对料坯实行上下两面加热。
炉底水管通常用隔热材料包覆,以减少热损失。
为减小水冷滑轨造成的料坯下部的“黑印”,近年来采用了使料坯与水管之间具有隔热作用的“热滑轨”。
有的小型连续加热炉采用了由特殊陶质材料制成的无水冷滑轨,支撑在由耐火材料砌筑的基墙上,这种炉子叫“无水冷炉”。
步进式连续加热炉靠炉底或水冷金属梁的上升、前进、下降、后退的动作把料坯一步一步地移送前进的连续加热炉。
炉子有固定炉底和步进炉底,或者有固定梁和步进梁。