一次不定方程及方程的整数解问题-1(优选.)

合集下载

求不定方程的整数解(含答案)-

求不定方程的整数解(含答案)-

求不定方程整数解有三对夫妻一同上商店买东西.男的分别姓孙、姓陈、姓金,女的分别姓李、•姓赵、姓尹。

他们每人只买一种商品,并且每人所买商品的件数正好等于那种商品的单价(元数).现在知道每一个丈夫都比他的妻子多花63元,并且孙先生所买的商品比赵女士多23件,金先生所买的商品比李女士多11件,问孙先生、陈先生、金先生的爱人各是谁?例1.若b a ,都是正整数,且2001500143=+b a ,求b a +的值.(2001年北京市初中数学竞赛)例2 设m 为正整数,且方程组⎩⎨⎧-==+17001113mx y y x ()()21 有整数解,求m 的值。

(“希望杯”数学竞赛试题)例3 已知自然数y x ,满足789=+yx ,求y x +的值.(五羊杯数学竞赛试题) 【例1】若关于x 的方程054)15117()9)(6(2=+----x k x k k 的解都是整数,则符合条件的整数k 的值有 个.思路点拨 用因式分解法可得到根的简单表达式,因方程的类型未指明,故须按一次方程、二次方程两种情形讨论,这样确定是的值才能全面而准确.注:系数含参数的方程问题,在没有指明是二次方程时,要注意有可能是一次方程,根据问题的题设条件,看是否要分类讨论.【例2】 已知a 、b 为质数且是方程0132=+-c x x 的根,那么ba ab +的值是( ) A .22127 B .22125 C .22123 D .22121 思路点拨 由韦达定理a 、b 的关系式,结合整数性质求出a 、b 、c 的值.【例4】 当m 为整数时,关于x 的方程01)12()12(2=++--x m x m 是否有有理根?如果有,求出m 的值;如果没有,请说明理由.思路点拨 整系数方程有有理根的条件是△为完全平方数.设△=22224)12(544)12(4)12(n m m m m m =+-=+-=--+(n 为整数)解不定方程,讨论m 的存在性. 注:一元二次方程02=++c bx ax (a ≠0)而言,方程的根为整数必为有理数,而△=ac b 42-为完全平方数是方程的根为有理数的充要条件.【例5】 若关于x 的方程0)13()3(22=-+--a x a ax 至少有一个整数根,求非负整数a 的值. 思路点拨 因根的表示式复杂,从韦达定理得出的a 的两个关系式中消去a 也较困难,又因a 的次数低于x 的次数,故可将原方程变形为关于a 的一次方程.1.已知关于x 的方程012)1(2=--+-a x x a 的根都是整数,那么符合条件的整数a 有 .2.已知方程019992=+-m x x 有两个质数解,则m = .3.给出四个命题:①整系数方程02=++c bx ax (a ≠0)中,若△为一个完全平方数,则方程必有有理根;②整系数方程02=++c bx ax (a ≠0)中,若方程有有理数根,则△为完全平方数;③无理数系数方程02=++c bx ax (a ≠0)的根只能是无理数;④若a 、b 、c 均为奇数,则方程02=++c bx ax 没有有理数根,其中真命题是 .4.已知关于x 的一元二次方程0)12(22=+-+a x a x (a 为整数)的两个实数根是1x 、2x ,则21x x -= . 5.设rn 为整数,且4<m<40,方程08144)32(222=+-+--m m x m x 有两个整数根,求m 的值及方程的根1.已知实数x,y,z 适合x+y=6,z 2=xy -9,则z 等于( )A.±1B.0C.1D.-12.方程组44,23.ab bc ac bc +=⎧⎨+=⎩的正整数解(a,b,c)的组数是( ) A.4 B.3 C.2 D.13.方程xy=x+y 的整数解有_____组.4.设x,y 都是正整数,且使,则y=+的最大值为________.5.求满足1116x y -=的所有正整数x,y.1.( )A.不存在B.仅有1组C.有2组D.至少有4组2.设a 、b 、c 为有理数,且等式则2a+999b+1 001c 的值是( )A.1 999B.2 000C.2 001D.2 0033.满足方程11x 2+2xy+9y 2+8x -12y+6=0的实数对(x,y)的个数等于_____.4.实数x,y 满足x ≥y ≥1和2x 2-xy -5x+y+4=0,则x+y=_________.5.a 、b 、c 都是正整数,且满足ab+bc=3 984,ac+bc=1 993,则abc•的最大值是______.6.象棋比赛共有奇数个选手参加,每位选手都同其他选手比赛一盘,记分办法是胜一盘得1分,平一盘各得0.5分,输一盘得0分,已知其中两名选手共得8分,其他人的平均分为整数,求参加此次比赛共有多少人?、。

一次不定方程的解法

一次不定方程的解法

精心整理一次不定方程的解我们现在就这个问题,先给出一个定理定理如是互质的正整数是整数,且方,①cby?ax?有一组整数解则此方程的一切整数解可以表示为yx,00其中…3,??1,?2,t?0,证因为是方程①的整数解,当然满足y,x00②c?ax?by00因此.cby?at)?ax?ba(x?bt)?(y?0000这表明,也是方程①的解.at?y??x?xbty00设是方程①的任一整数解,则有??y,x③??caxby???②得④③??)y(?)x(ax??by?00精心整理.精心整理t是整数.将,其中代入④,即得由于,所以,即???atyy?y?at??y ya?y1)?,(ab000.因此可以表示成,的形式,所以,???y?y?atx?x?x?x?btyy?x??x?btatbty,x00000表示方程①的一切整数解,命题得证.有了上述定理,求解二元一次不定方程的关键是求它的一组特殊解. 例1求的整数解.715y?11x?将方程变形得1解是这个方程的的倍数.由观察是整数,所应是因211组整数解,所以方程的解先考,通过观察易得解11114所以(7711,,从而可取21?x??28,y00可见,二元一次不定方程在无约束条件的情况下,通常有无数组整数解,由于求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是 t一样的.将解中的参数做适当代换,就可化为同一形式.求方程的非负整数解.2例9022y??6x得因为,所以方程两边同除以解2?(6,22)2①45?3x?11y由观察知,是方程1??yx?4,11②1?11y?x3的一组整数解,从而方程①的一组整数解为由定理,可得方程①的一切整数解为精心整理.精心整理因为要求的是原方程的非负整数解,所以必有180?11t?0?③??45?3t?0?由于是整数,由③得,所以只有两种可能.16?t?15,tt16t?15?当;当.所以原方程的非负整数解是3??4,yy?0?t16,xt?15,x?15,x?415x???,??y?3y?0??求方的所有正整数解211?分析这个方程的系数较大,用观察法去求其特殊解比较困难,碰到这种情况们可用逐步缩小系数的方法使系数变小,最后再用观察法求得其解解用方211?的最小系除方程①的各项,并移项211y②?30?2y?x?77y?53.化简得到是整数,故因为也是整数,于是?u yx,3?7u5y?7③3??7u5y3?2u(整数),由此得令?v5④35v?2u?u??1u??1??是方程④的一组解.将代入③得,再将由观察知代入②得2?2y?y??v?1v?1??x?25x?25?19t??t为整数,所以它的一切解为.于是方程①有一组解025x???y?2y?2?7t??0由于要求方程的正整数解,所以解不等式,得只能取.因此得原方程的正整数解为0,1t精心整理.精心整理x?25x?6??,??y?2y?9??当方程的系数较大时,我们还可以用辗转相除法求其特解,其解法结合例题说明.求方程的整数解.4例25??107y37x解为表示,我们把上述辗转相除过程回代,1031由此可是方的一组整数解.于2610322652?x22600是方的一组整数解23107所以原方程的一切整数解某国硬币分分两种,问用这两种硬币支分货款,有多少种不例14的方法解设需枚分,枚分恰好支付分,于是x y57142①1425?y?7x所以由于,所以,并且由上式知.因为,所以,从而1xx?1)5?52(12)?(5,20x?x7?142,所以①的非负整数解为1,6,11,16?x x?1x?6x?11x?16????,,,????y?27y?20y?13y?6????所以,共有4种不同的支付方式.说明当方程的系数较小时,而且是求非负整数解或者是实际问题时,这时候的解的组数往往较少,可以用整除的性质加上枚举,也能较容易地解出方程.多元一次不定方程可以化为二元一次不定方程.精心整理.精心整理求方程的整数解.6例1000?y?5z9x?24解设,即,于是.于是原方程可化为t8y?3t?3x?9x?24y1000??5z3t3x?8y?t?①?3t?5z?1000?用前面的方法可以求得①的解为x?3t?8?(是整数)②u?y??t?3u②的解为200是整数)100,得消去1600都是整数200100年以前,我国古代数学家张丘建在他编写的《张丘建算经》里,曾1500 大约提出并解决了“百钱买百鸡”这个有名的数学问题,通俗地讲就是下例.只个钱买小鸡每个钱三只.用母鸡每只三个钱,今有公鸡每只五个钱,7 例100100鸡,问公鸡、母鸡、小鸡各买了多少只?只,由题意列方程组解设公鸡、母鸡、小鸡各买z,x,y①②化简得③300?z?15x?9y②得③?200y?14x?8得,解即1?100x7?4y?4x7?y的一个特解为于是1004x7?y?精心整理.精心整理由定理知的所有整数解为100?x?4y7由题意知,,所以100?y,z0?x,4?25?t?28??7解得?24?28??t14?77?4∴28t?25?7只公鸡只母鸡8811精心整理.。

二元一次不定方程的解法总结与例题

二元一次不定方程的解法总结与例题

探究二元一次不定方程(Inquires into the dual indefinite equation)冯晓梁(XiaoLiang Feng)(江西科技师范学院数计学院数一班 330031)【摘要】:二元一次不定方程是最简单的不定方程, 一些复杂的不定方程常常化为二元一次不定方程问题加以解决。

我们讨论二元一次方程的整数解。

The dual indefinite equation is the simple the indefinite equation, some complex indefinite equations change into the dual indefinite equation question to solve frequently. We discuss the dual linear equation the integer solution.【关键字】:二元一次不定方程初等数论整数解(Dual indefinite equation Primary theory of numbers Integer solution)二元一次方程的概念:含有两个未知数,并且未知项的次数是1的方程叫做二元一次方程。

一个方程是二元一次方程必须同时满足下列条件;①等号两边的代数式是整式;②具有两个未知数;③未知项的次数是1。

如:2x-3y=7是二元一次方程,而方程4xy-3=0中含有两个未知数,且两个未知数的次数都是1,但是未知项4xy的次数是2,所以,它是二元二次方程,而不是二元一次方程。

定理1.形如(不同时为零)的方程称为二元一次不定方程。

[1]二元一次方程的解和解二元一次方程:能使一个二元一次方程两边的值相等的未知数的一组值叫做这个方程的一个解,但若对未知数的取值附加某些限制,方程的解可能只有有限个。

通常求一个二元一次方程的解的方法是用一个未知数的代数式表示另一个未知数,如x-2y=3变形为x=3+2y,然后给出一个y的值就能求出x的一个对应值,这样得到的x、y的每对对应值,都是x-2y=3的一个解。

初一奥赛培训17:二元一次不定方程的解法(1)

初一奥赛培训17:二元一次不定方程的解法(1)

初一奥赛培训17:二元一次不定方程的解法一、解答题(共15小题,满分150分)1、小张带了5角钱去买橡皮和铅笔,橡皮每块3分,铅笔每支1角1分,问5角钱刚好买几块橡皮和几支铅笔?2、求不定方程x﹣y=2的正整数解.3、求证:如果a,b是互质的正整数,c是整数,且方程ax+by=c ①,有一组整数解x0,y0,则此方程的一切整数解可以表示为,其中t=0,±1,±2,±3,….4、求11x+15y=7的整数解.5、求方程6x+22y=90的非负整数解.6、求方程7x+19y=213的所有正整数解.7、求方程37x+107y=25的整数解.8、某国硬币有5分和7分两种,问用这两种硬币支付142分货款,有多少种不同的方法?9、求方程9x+24y﹣5z=1000的整数解.10、今有公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只.用100个钱买100只鸡,问公鸡、母鸡、小鸡各买了多少只?11、求下列不定方程的整数解:(1)72x+157y=1;(2)9x+21y=144;(3)103x﹣91y=5.12、求下列不定方程的正整数解:(1)3x﹣5y=19;(2)12x+5y=125.13、求下列不定方程的整数解:(1)5x+8y+19z=50;(2)39x﹣24y+9z=78.14、求不定方程2x+5y+7z+3t=10的整数解.15、求不定方程组的正整数解.答案与评分标准初一奥赛培训17:二元一次不定方程的解法一、解答题(共15小题,满分150分)1、小张带了5角钱去买橡皮和铅笔,橡皮每块3分,铅笔每支1角1分,问5角钱刚好买几块橡皮和几支铅笔?考点:二元一次方程的应用。

分析:通过理解题意,我们可以知道本题中存在一个等量关系,即钱数和买橡皮铅笔花去的数目是相等的,根据这一等量关系,可以列出方程求解作答.解答:解:设小张买了x块橡皮,y支铅笔,则根据题意得方程:3x+11y=50.这个问题要求的是买橡皮的块数和铅笔的支数,橡皮的块数与铅笔的支数只能是正整数或零,所以从这个问题的要求来说,我们只要求这个方程的非负整数解.因为铅笔每支1角(1分),所以5角钱最多只能买到4支铅笔,因此,小张买铅笔的支数只能是0,1,2,3,4支,即y的取值只能是0,1,2,3,4这五个.若y=0,则x=,不是整数,不合题意;若y=1,则x=13,是整数,符合题意;若y=2,则x=,不是整数,不合题意;若y=3,则x=,不是整数,不合题意;若y=4,则x=2,符合题意.所以,这个方程有两组正整数解,即或;答:5角钱刚好能买2块橡皮与4支铅笔,或者13块橡皮与1支铅笔.故答案为:2块橡皮与4支铅笔,或者13块橡皮与1支铅笔.点评:本题解题的关键在于,找到题目中所给的等量关系,再根据这一等量关系,列出方程求解作答,另外应特别注意,实际问题实际分析.2、求不定方程x﹣y=2的正整数解.考点:解二元一次方程。

第1讲 不定方程的整数解

第1讲 不定方程的整数解

第一讲 不定方程的整数解一、公式法不定方程解的通解定理:对于整数(),,,,1a b c a b =,设()00,x y 是方程ax by c +=的一组整数解,那么它的一切整数解为:()()00,,x y x bk y ak =+-,其中k 为任意整数.例1 求不定方程231x y +=的一切整数解.例2 求不定方程41022x y +=的一切整数解.二、变量代换法例3 求4521x y +=的一切整数解.例4 求74100x y +=的正整数解.例5 求不定方程12836100x y z ++=的一切整数解.例6、求方程2x y +=的正整数解.例7、一批参观者决定分乘几辆车,要使每车有同样的人数,每辆汽车至多乘32人. 起先每车乘22人,这时有1人坐不上汽车;开走一辆空车,那么所有的参观者刚好平均分乘余下的汽车. 问原有多少辆汽车,这批参观者有多少人?三、不等式法.例8、已知蟋蟀有6只脚,蜘蛛有8只脚,若干只蟋蟀和蜘蛛共有46只脚,问蟋蟀和蜘蛛各有多少只?例9、求26551x y +=的正整数解.例10、某国硬币有5分和7分两种,问用这两种硬币支付142分货款,有多少种不同的方法例11、求方程n x y z ++=的正整数解,其中n 是正整数,,,x y z 各不相同.例12、证明:不可能有正整数,x y ,使得221111x xy y ++=四、因式分解法例13、证明:方程33311x y +=没有正整数解.例14、求方程26522xy x y +-=的整数解.五、奇偶性分析例15、2006能写成两个整数的四次方的和吗?如能,请举出实例,否则说明理由.例16、求方程1y x z +=的质数解.练习:1.用公式法与变量代换法两种方法求5713x y +=的整数解.2.用不等式控制法求3220x y +=的正整数解.3.求23220x y +=的正整数解.4.求满足不等式2210x xy y ++≤的正整数解(),x y .5.求不定方程2345x y z ++=的一切整数解.6.求不定方程7543x y z -+=的一切整数解.7、 求,,x y z ,使xyz zyx xzyyz ⋅=. 1、求满足11112x y -=且使y 最大的正整数解x . 8、 求()4419870xy x y -++=的正整数解.9、 求满足2243a ab b ++=的正整数,a b .10、 求方程()27x y xy +=+的整数解.11、 求方程()120x x y z +=+的质数解.12、 求方程1111n x y z u+++=的正整数解,其中n 是正整数,且x y z u >>>.。

求不定方程的整数解

求不定方程的整数解
求不定方程的整数解
不定方程的整数解是指在给定的方程中,寻找满足整数条件的解。一般来说,求解不定方 程的整数解可以使用数学方法,如贝祖定理、模运算等。以下是一些常见的不定方程及其整 数解的求解方法:
1. 一元一次方程:形如ax + by = c的一元一次方程,可以使用贝祖定理求解。贝祖定理 告诉我们,如果a和b互质,那么方程有整数解。具体的求解方法是使用扩展欧几里得算法, 找到满足ax + by = gcd(a, b)的整数解x和y。
3. 二元二次方程:形如ax^2 + bxy + cy^2 = d的二元二次方程,可以使用整数平方根 的性质求解。首先,将方程转化为完全平方形式,即将方程两边同时乘以4ac,得到(2ax + by)^2 - (4ac - b^2)y^2 = 4acd - b^2y^2。然后,使用整数平方根的性质,找到满足该等 式的整数解。
求不定方程的整数解
4. Diophantine方程:Diophantine方程是一类更一般的不定方程,形如ax + by = c的 方程,其中a、b、c为整数。求解Diophantine方程的整数解可以使用模运算和数学归纳法。 具体的求解方法可以根据方程的特点和形式进行推导和求解。
需要注意的是,不定方程的整数解可能有多个或无解,具体的解个数和形式取决于方程的 特点和系数的取值。在实际求解时,可以根据具体的方程形式选择合适的方法和工具进行求 解。
求不定方程的整数解ቤተ መጻሕፍቲ ባይዱ
2. 二元一次方程:形如ax + by = c的二元一次方程,可以使用扩展欧几里得算法求解。 首先,使用欧几里得算法找到a和b的最大公约数d,如果c是d的倍数,那么方程有整数解。 然后,使用扩展欧几里得算法找到满足ax + by = d的整数解x和y。最后,将x和y分别乘以 c/d,得到方程的整数解。

一次不定方程的解法

一次不定方程的解法

一次不定方程的解法我们现在就这个问题,先给出一个定理.定理 如果,a b 是互质的正整数,c 是整数,且方程ax by c += ①有一组整数解00,x y 则此方程的一切整数解可以表示为00x x bty y at =-⎧⎨=+⎩其中0,1,2,3,t =±±±…证 因为00,x y 是方程①的整数解,当然满足00ax by c += ②因此0000()()a x bt b y at ax by c -++=+=.这表明0x x bt =-,0y y at =+也是方程①的解. 设,x y ''是方程①的任一整数解,则有ax by c ''+= ③③-②得 00()()a x x b y y ''-=-- ④由于(,)1a b =,所以0a y y '-,即0y y at '=+,其中t 是整数.将0y y at '=+代入④,即得0x x bt '=-.因此,x y ''可以表示成0x x bt =-,0y y at =+的形式,所以0x x bt =-,0y y at =+表示方程①的一切整数解,命题得证.有了上述定理,求解二元一次不定方程的关键是求它的一组特殊解.例1 求11157x y +=的整数解.解法1 将方程变形得71511y x -=因为x 是整数,所以715y -应是11的倍数.由观察得002,1x y ==-是这个方程的一组整数解,所以方程的解为215111x t y t=-⎧⎨=-+⎩ t 为整数解法2 先考察11151x y +=,通过观察易得11(4)1531⨯-+⨯=,所以11(47)15(37)7⨯-⨯+⨯⨯=,可取0028,21x y =-=,从而28152111x ty t=--⎧⎨=+⎩ t 为整数 可见,二元一次不定方程在无约束条件的情况下,通常有无数组整数解,由于求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是一样的.将解中的参数t 做适当代换,就可化为同一形式.例2 求方程62290x y +=的非负整数解. 解 因为(6,22)2=,所以方程两边同除以2得31145x y += ①由观察知,114,1x y ==-是方程3111x y += ②的一组整数解,从而方程①的一组整数解为0045418045(1)45x y =⨯=⎧⎨=⨯-=-⎩ 由定理,可得方程①的一切整数解为18011453x ty t=-⎧⎨=-+⎩ 因为要求的是原方程的非负整数解,所以必有1801104530t t -≥⎧⎨-+≥⎩③ 由于t 是整数,由③得1516t ≤≤,所以只有15,16t t ==两种可能.当15,15,0t x y ===;当16,4,3t x y ===.所以原方程的非负整数解是150x y =⎧⎨=⎩ ,43x y =⎧⎨=⎩ 例3 求方程719213x y +=的所有正整数解.分析 这个方程的系数较大,用观察法去求其特殊解比较困难,碰到这种情况我们可用逐步缩小系数的方法使系数变小,最后再用观察法求得其解. 解 用方程719213x y += ①的最小系数7除方程①的各项,并移项得213193530277y yx y --==-+② 因为,x y 是整数,故357yu -=也是整数,于是573y u +=.化简得到573y u += ③令325uv -=(整数),由此得 253u v += ④由观察知11u v =-⎧⎨=⎩是方程④的一组解.将11u v =-⎧⎨=⎩代入③得2y =,再将2y =代入②得25x =.于是方程①有一组解00252x y =⎧⎨=⎩,所以它的一切解为251927x t y t =-⎧⎨=+⎩t 为整数由于要求方程的正整数解,所以25190270t t ->⎧⎨+>⎩解不等式,得t 只能取0,1.因此得原方程的正整数解为252x y =⎧⎨=⎩ ,69x y =⎧⎨=⎩ 当方程的系数较大时,我们还可以用辗转相除法求其特解,其解法结合例题说明. 例4 求方程3710725x y +=的整数解.解1072373337133433841=⨯+=⨯+=⨯+ 为用37和107表示1,我们把上述辗转相除过程回代,得13384=-⨯37484=--⨯ 3794=-⨯ 379(3733)=-⨯- 933837=⨯-⨯9(107237)837=⨯-⨯-⨯ 91072637=⨯-⨯ 37(26)1079=⨯-+⨯由此可知1126,9x y =-=是方程371071x y +=的一组整数解.于是025(26)650x =⨯-=-,0259225y =⨯=是方程3710725x y +=的一组整数解. 所以原方程的一切整数解为65010722537x t y t=--⎧⎨=+⎩ t 为整数例5 某国硬币有5分和7分两种,问用这两种硬币支付142分货款,有多少种不同的方法?解 设需x 枚7分,y 枚5分恰好支付142分,于是75142x y += ①所以142722222828555x x x y x x ---==-+=--由于7142x ≤,所以20x ≤,并且由上式知52(1)x -.因为(5,2)1=,所以51x -,从而1,6,11,16x =,所以①的非负整数解为127x y =⎧⎨=⎩ ,620x y =⎧⎨=⎩ ,1113x y =⎧⎨=⎩ ,166x y =⎧⎨=⎩所以,共有4种不同的支付方式.说明 当方程的系数较小时,而且是求非负整数解或者是实际问题时,这时候的解的组数往往较少,可以用整除的性质加上枚举,也能较容易地解出方程.多元一次不定方程可以化为二元一次不定方程. 例6 求方程92451000x y z +-=的整数解.解 设9243x y t +=,即38x y t +=,于是351000t z -=.于是原方程可化为38351000x y tt z +=⎧⎨-=⎩ ① 用前面的方法可以求得①的解为383x t y t u =-⎧⎨=-+⎩(u 是整数) ② ②的解为2000510003t vz v=+⎧⎨=+⎩ (v 是整数) ③ 消去t ,得600081520003510003x u v y u v z v =-+⎧⎪=-+-⎨⎪=+⎩(,u v 都是整数) 大约1500年以前,我国古代数学家张丘建在他编写的《张丘建算经》里,曾经提出并解决了“百钱买百鸡”这个有名的数学问题,通俗地讲就是下例.例7 今有公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只.用100个钱买100只鸡,问公鸡、母鸡、小鸡各买了多少只?解 设公鸡、母鸡、小鸡各买,,x y z 只,由题意列方程组 ①②化简得159300x y z ++= ③ ③-②得148200x y +=即74100x y +=,解741x y +=得12x y =-⎧⎨=⎩于是74100x y +=的一个特解为⎧⎪⎨⎪⎩1531003x y z ++=100x y z ++=00100200x y =-⎧⎨=⎩ 由定理知74100x y +=的所有整数解为10042007x t y t =-+⎧⎨=-⎩t 为整数由题意知,0,,100x y z <<,所以0100410002007100t t <-+<⎧⎨<-<⎩t 为整数解得42528724142877t t ⎧<<⎪⎪⎨⎪<<⎪⎩∴ 425287t <<由于t 是整数,故t 只能取26,27,28,而且,,x y z 还应满足100x y z ++=.即可能有三种情况:4只公鸡,18只母鸡,78只小鸡;或8只公鸡,11只母鸡,81只小鸡;或12只公鸡,4只母鸡,84只小鸡.。

求不定方程整数解的常用方法

求不定方程整数解的常用方法

求不定方程整数解的常用方法一、分情形讨论法分情形讨论法根据不同的系数情况进行分类,找出整数解的条件。

1.一次齐次不定方程Ax+By=C的整数解求法当A和B不互质时,可通过A和B的最大公约数(gcd(A,B))来判断是否存在整数解。

如果C是gcd(A,B)的倍数,则有整数解,否则无整数解。

当A和B互质时,可通过贝祖等式(Bézout's identity)来求解。

贝祖等式表示为gcd(A,B) = Ax + By,其中x和y是整数解。

由贝祖等式可得到一组整数解。

然后根据一组特殊解,得到通解(general solution)。

2. 二次齐次不定方程Ax^2 + Bxy + Cy^2 = 0的整数解求法当A、B和C不全为0时,可通过判别式(discriminant)来判断是否存在整数解。

当判别式为完全平方数时,存在整数解;否则不存在整数解。

3.一次非齐次不定方程Ax+By=C的整数解求法当A和B不互质时,可通过A和B的最大公约数(gcd(A,B))来判断是否存在整数解。

如果C是gcd(A,B)的倍数,则有整数解,否则无整数解。

当A和B互质时,可通过扩展的欧几里得算法(extended Euclidean algorithm)求解。

首先利用一次齐次方程的解法得到一组特殊解,然后根据一组特殊解,得到通解。

二、裴蜀定理裴蜀定理是数论中的一个重要定理,也是求不定方程整数解的常用方法。

裴蜀定理的全称是裴蜀等式(Bézout's identity),它表明对任意两个整数a和b,存在整数x和y,使得ax + by = gcd(a,b)。

1.判断是否存在整数解的条件当C是gcd(A,B)的倍数时,一次齐次不定方程Ax + By = C存在整数解;否则不存在整数解。

2.求解整数解的方法通过扩展的欧几里得算法(extended Euclidean algorithm),可以求出一组特殊解x0和y0。

初中数学竞赛中定方程的整数解问题定方程的整数解问题

初中数学竞赛中定方程的整数解问题定方程的整数解问题

初中数学竞赛中不定方程的整数解问题1.利用整数分离在解决不定方程问题时,首先逆用分式的加减法,将分式拆分成一个整数与一个分子为常数的分式的和或差的形式,然后利用整数整除的性质通过对简单分式的分析来解决问题。

这种方法是处理含有分式不定方程的整数解问题的一种有效途径。

例1. 方程301x y x +-=+的整数解共有几组?2.因式分解法当不定方程的一边容易化为两个一次因式的乘积,另一边是一个整数时,通常用分解因式法解决不定方程的整数解问题。

例2.方程222522007x xy y ++=的所有不同的整数解共有几组?例3. 设直角三角形的两条直角边长分别为a, b,斜边长为 c. 若a,b,c 均为正整数,且1()3c ab a b =-+,求满足条件的直角三角形的个数?在一个二元不定方程中,若把其中一个未知数当作参数后,该方程变为关于另一个未知数的一元二次方程,于是,可利用△≥0,求出参数的范围,然后求解。

例4. 关于x,y 的方程22229x xy y ++=的整数解(x,y )有几组?4.放缩法是指根据已知条件将不定方程中某些未知数放大或缩小,从而确定某个未知数的取值范围,进而确定该未知数的整数解,然后将其代入原方程求其他未知数的整数解一种解题方法。

例5 当x y z ≤≤时,求方程11178x y z ++=的正整数解。

5.利用整除和同余例6. 关于x,y 的方程22208()x y x y +=-的所有正整数解为多少?在一个二元不定方程中,若把其中一个未知数当作参数后,该方程变为关于另一个未知数的一元二次方程,则可利用设参数法,即设△=2k ,然后求出方程的解,再利用数论的相关知识求解,或通过因式分解,直接从△=2k 求解例7.设a 为质数,b 为正整数,且29(2)509(4511)a b a b +=+。

求a,b 的值。

练习题1. 求方程6xy x y ++=的整数解。

2. 求满足方程2242011x y -=的整数对(x,y )的组数有多少?3. 方程22332x xy y x y ++=-的非负整数解(x,y )的组数为几组?4. 求方程11156x y z ++=的正整数解。

关于不定方程的整数解及其解数的讨论

关于不定方程的整数解及其解数的讨论

关于不定方程的整数解及其解数的讨论
不定方程是一类方程,其解可能是无限多个或是无法求解。

求解不定方程时,需要了解不定方程的几大解法,熟悉其解数和整数解的概念。

一、不定方程的概念
不定方程是表达式未知量的一次方程,如果一个方程的解集不是一组数,只包含一个x,那么这个方程称为不定方程,其解可能是无限多个。

二、解不定方程的方法
1. 分解因式法:将不定方程拆分成简单的一元一次方程的组合,然后利用一元一次方程的求解方法来求解不定方程。

2. 集合求解法:使用集合求解法可以在不定方程中求出方程的多个解,通过把所有满足方程给出条件的值都组在一起,求出集合的全部元素来求解不定方程。

3. 对比法:也叫移项法,通过将方程的另一边的各项和原方程中的未知数的系数进行比较,合并相同项,然后生成一个新的一元一次方程,最后求出未知数的值来求解不定方程。

三、解数与整数解
1. 解数:一个不定方程通常包含有无限多个解,这些解就是不定方程的解数。

2. 整数解:如果不定方程的解含有整数,那么这个数就叫做不定方程的整数解。

求出不定方程的整数解,可以采取先求出不定方程的解,然后再从中求出整数解的方法。

四、总结
不定方程是一类方程,其解可能是无限多个或是无法求解。

求解不定方程时,需要了解不定方程的几大解法,熟悉其解数和整数解的概念。

不定方程的解数即为
解,而整数解是从解数中求出的整数,是不定方程的特殊解。

只有掌握了解不定方程的解法和求整数解的方法,才能够有效地求解不定方程。

不定方程及整数解

不定方程及整数解

我们曾经学过一元一次方程,例如个或更多个,就变成为二元一次方程或多元一次方程,0⎩0⎩满足上式的整数解.这表明,满足方程的整数解有无穷组,并且在0ab >时,可选择x 为正(负)数,此时y 为相应的为负(正)数.这个结论可以通过把这组解直接代入已知方程进行证明.由这个定理,只要能够观察出二元一次方程的一组整数解,就可以得到它的全部整数解.例如,方程4521x y +=的一组解为41x y =⎧⎨=⎩,则此方程的所有整数解可表示为:4514x ky k =+⎧⎨=-⎩.板块一 不定方程的整数解中考要求不定方程及整数解【巩固】求3710725x y+=的整数解.【巩固】求方程的整数解:⑴721571x y+=;⑵103905x y-=.【例2】求719213x y+=的所有正整数解.【巩固】求方程5322x y+=的所有正整数解.【巩固】求62290x y+=的非负整数解.【例3】求23734x y z++=的整数解.【巩固】求92451000x y z+-=的整数解.【例4】求方程组5795235736x y zx y z++=⎧⎨++=⎩的正整数解.【例5】求不定方程2()7x y xy+=+的整数解. 【例6】求方程22x y x xy y+=-+的整数解.【例7】 第35届美国中学数学竞赛题)满足联立方程4423ab bc ac bc +=⎧⎨+=⎩ 的正整数(,,)a b c 的组数是( ).(A )0 (B )1 (C )2 (D )3 (E )4【例8】 (第33届美国数学竞赛题)满足方程223x y x +=的正整数对(,)x y 的个数是( ).(A )0 (B )1(C )2(D )无限个(E )上述结论都不对【例9】 求不定方程()2mn nr mr m n r ++=++的正整数解(),,m n r 的组数.【例10】 求方程2245169x xy y -+=的整数解.【例11】 (原民主德国1982年中学生竞赛题)已知两个自然数b 和c 及素数a 满足方程222a b c +=.证明:这时有a b <及1b c +=.板块二 证明不定方程无整数解【例12】 下列不定方程(组)中,没有整数解的是( )A.3150x y +=B.9111x y -=C.23423x y y z -=⎧⎨+=⎩D.231223x y z x y z ++=⎧⎨-+=⎩【例13】证明方程22x y-=无整数解.257【例14】(第14届美国数学邀请赛题)不存在整数,x y使方程22+-=成立。

不定方程的整数解修改稿

不定方程的整数解修改稿

一次不定方程的整数解讲稿序言 什么是不定方程我们知道在方程(方程组)里,如果未知数的个数多于方程的个数,那么,一般来说,它的解往往是不确定的。

例如2x -y -1=0,则:y =2x -1.分别令x =1,2,3,4,5,…,就可以求出对应的n 值. 我们可以列表说明:∴它的解有无穷多组:⎩⎨⎧==11y x ,⎩⎨⎧==32y x ,⎩⎨⎧==53y x ,⎩⎨⎧==74y x ,⎩⎨⎧==95y x ,……. 也就是说:2x -y -1=0的所有的解(称为通解)为:y =2x -1. 注意:上面只列出了它的正整数解.如果用k 代替x ,用n 代替y ,并且k 和n 只代表正整数,得到的答案是: 2k -n -1=0的所有的解(称为通解)为:n =2k -1.n =1,3,5,7,9,….这个结论表明:如果k 取一切正整数1,2,3,…,那么n 表示所有的奇数(1,3,5,7,9…).请记住这个结论:n =2k -1表示所有的奇数. 又如 x -2y =300的解是:x =2y +300,每给出一个y 的值,就有一个x 的值与之对应.例如y =0,1,2,3,4,5,…,就可以求出对应的x 值, 我们可以列表说明:∴它的解有无穷多个.又如方程组⎩⎨⎧=++=++)2....(18023)1........(100z y x z y x ,(2)-(1) 消去一个未知数y 之后,就变形为一个二元一次方程:2y -z =80所以它的解也是不确定的.像这类方程或方程组就叫不定方程或不定方程组.例1 有一堆鹅卵石,不知总个数.但知道:每次取3个,最后余2个;每次取5个,最后也是余2个;每次取7个,最后还是余2个;问这堆鹅卵石共多少个?…余…余…余分析与解:实际上这个问题转化为数学问题就是:有一个正整数,无论被3除,被5除或者被7除,都余2;求这个数. 如果列方程组就是:求个正整数M :⎪⎩⎪⎨⎧+=+=+=)3...(27)2...(25)1...(23z M y M x M 我们不妨这样来解:因为这个整数不论被3除,被5除或者被7除,总是余2;我们先求出它的一个特解:∵3×5×7=105可以被3、5、7整除,∴3×5×7+2被3、5、7除余数都是2,∴105+2=107就是这个问题的一个特解;∵3×5×7 ×n 也可以被3、5、7整除,∴这个问题的特解107加上105n 之后,被3、5、7除,余数也是2;∴其通解是107+105n .例2 现在把上一个问题改为:每次取3个,最后余2个;每次取5个,最后余3个;每次取7个,最后余2个;问这堆鹅卵石共多少个?…余…余…余分析与解:我们不妨凑凑看,因为这个数被3和7余数都是2, 这个数可能是3和7的最小公倍数21的k 倍+2,即21k +2:23,44,65,86,107,…中哪一个能被5除余3,就是它的特解.太巧了,第一个23被5除余3,就是它的一个特解,根据上例的分析,其通解是3×5×7n +23=105n +23.【说明】先求出它的一个特解是问题的关键.这就是《子算经》中的“物不知数”问题.原题是:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?答曰:二十三”意思就是,有一些物品,如果三个、三个的数,最后剩2个;如果五个、五个的数,最后剩3个;如果七个、七个的数,最后剩2个;求这些物品一共有多少?注:《子算经》是南北朝时一部重要的数学著作。

第十二讲:不定方程的整数解

第十二讲:不定方程的整数解

上海市中学生数学业余学校讲义第十二讲 不定方程的整数解【例题】例1、求方程5x -9y =18整数解的通解.例2、求方程90226=+y x 非负整数解.例3、求方程213197=+y x 的所有正整数解.(练习:求方程2510737=+y x 的整数解)例4、将所有分母不大于99的最简分数从小到大排列,求与7617相邻且排在7617之前的一个数.例5、求方程 162852100=++z y x 的整数解.例6、某校举行数学竞赛,优胜者分一、二、三等奖三种,奖品为数学课外读物。

如果一等奖每人奖5本,二等奖每人奖3本,三等奖每人奖2本,就共奖了34本。

如果一等奖每人奖6本,二等奖每人奖4本,三等奖每人奖1本,就共奖了28本,求获得各奖的人数.例7、求不定方程2196313029=++c b a 正整数解的组数.【练习】1、下列方程中没有整数解的是哪几个?答: (填编号)① 4x +2y =11, ②10x -5y =70, ③9x +3y =111,④18x -9y =98, ⑤91x -13y =169, ⑥120x +121y =324.2、求方程5x +6y =100的正整数解.3、甲种书每本3元,乙种书每本5元,38元可买两种书各几本?4、一张试巻有20道选择题,选对每题得5分,选错每题反扣2分,不答得0分,小军同学得48分,他最多答对几道题?(答案:最多答对12题)5、第五世纪末,我国古代数学家张丘建在他编写的《算经》里提出了一个世界数学史上有名的“百鸡问题”.(答案:⎪⎩⎪⎨⎧===75250z y x 或⎪⎩⎪⎨⎧===78184z y x 或 ⎪⎩⎪⎨⎧===81118z y x 或 ⎪⎩⎪⎨⎧===84412z y x )上海市中学生数学业余学校讲义第十二讲 不定方程的整数解(教师用)我们知道,如果未知数的个数多于方程的个数,那么,一般来说,它的解往往是不确定的。

例如方程32=+y x ,或 方程组⎩⎨⎧=+-=-+235432z y x z y x ,它们的解都是不确定的。

不定方程的整数解公式

不定方程的整数解公式

不定方程的整数解公式不定方程,听起来是不是有点让人摸不着头脑?其实呀,它在数学世界里可是个很有趣的存在呢!咱们先来说说啥是不定方程。

简单来讲,不定方程就是未知数的个数多于方程个数的方程。

比如说,3x + 4y = 10 ,这里有两个未知数 x 和 y ,但只有一个方程,这就是不定方程。

那不定方程的整数解公式是啥呢?这可得好好琢磨琢磨。

就拿一个例子来说吧,假设咱们有不定方程 5x + 7y = 20 ,咱们想找到它的整数解。

首先,咱们对这个方程进行变形。

5x = 20 - 7y ,然后 x = (20 - 7y) / 5 。

这时候,为了找到整数解,咱们就得想想啦。

因为 x 要是整数,20 - 7y 就得是 5 的倍数。

那怎么才能是 5 的倍数呢?咱们可以一个个去试。

假设 y = 1 ,那么 20 - 7×1 = 13 ,不是 5 的倍数;再假设 y = 2 ,20 - 7×2 = 6 ,也不是5 的倍数;当 y = 3 时,20 - 7×3 = -1 ,还不是 5 的倍数。

一直试到 y = 5 时,20 - 7×5 = -15 ,是 5 的倍数啦,这时候 x = (-15) / 5 = -3 。

但是呢,咱们通常想要的是正整数解或者零解。

那继续往下试,当y = 0 时,x = 4 ,这就是一组整数解啦。

在找不定方程整数解的过程中,有时候可不容易,得有耐心,就像我之前教学生的时候,有个小家伙怎么都弄不明白,急得直挠头。

我就耐心地跟他一点点分析,引导他去尝试不同的数值,最后他终于搞懂了,那高兴的样子,让我也觉得特别有成就感。

再比如说不定方程 2x + 3y = 12 ,咱们同样可以通过变形和尝试来找到整数解。

2x = 12 - 3y ,x = (12 - 3y) / 2 。

假设 y = 0 ,x = 6 ;y = 1 ,x = 4.5 ,不是整数;y = 2 ,x = 3 ;y = 3 ,x = 1.5 ,不是整数;y = 4 ,x = 0 。

浅谈不定方程整数解的求解方法

浅谈不定方程整数解的求解方法

浅谈不定方程整数解的求解方法摘要:不定方程是数论的一个分支,它有着悠久的历史与丰富的内容,所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等等)的方程或方程组.古希腊数学家丢番图于三世纪初就研究过若干这类方程,所以不定方程又称丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一.不定方程解的范围可以是有理数域,整数环,或某一代数域上的代数整数环,本文讨论的是不定方程的整数解的求解方法.) .对于一般的不定方程(组),除个别情况外,没有统一的解法,因此必须就所给的不定方程(组)的具体形式进行分析,以便确定解题方向.本文具体的从二元一次不定方程,三元一次不定方程,二次不定方程,三次不定方程的求整数解的方法进行探讨并举例说明不定方程的整数解的方法二元一次不定方程整数解的求解方法怎么判断整系数方程有无整数解.用定理1来判断。

定理1 若整系数方程()有整数解,则必有,反之若,则整系数()有整数解.其中表示的最大公约数;表示整除c。

若整系数方程有整数解,怎么求出它的整数解时就用以下方法来求解。

1通法:若整系数方程()满足,,且,是它的一个特解,则方程()的所有整数解(通解)可以表示为2观察法在二元一次不定方程中,当系数a、b以及c的绝对值比较小时,可以用观察法求它的一个特解,从而得到其通解。

例1.求二元一次不定方程2x + 5y=45的一切整数解。

解:因为(2|5)=1,得(2,5) |45,所以原方程有整数解又因为5|45,所以得到方程的一个特解为并且, .故原方程的一切整数解为:3辗转相除法两个整数的最大公约数是能够同时整除它们的最大的正整数。

辗转相除法基于原理:两个整数的最大公约数等于其中较小的数和两数的相除余数的最大公约数。

由辗转相除法也可以得出,两数的最大公约数可以用两数的整数倍相加来表示,这个重要的等式叫贝祖等式。

例2.求方程的一切整数解。

利用初等变换求一次不定方程的整数解

利用初等变换求一次不定方程的整数解
.
:
对m
x
n
阶矩 阵施 行 行 的 初
等变换
,
相当 于 在矩 阵 左 边 乘上 一个 m 阶可 逆 矩 阵
,
同样
,
我 们可 以 在 整 数 环 上 类 似 地
:
定 义 初 等矩 阵
由 初 等 矩 阵 与 初 等 变换 的 关 系
,
,
可 类似 证 得 如 下 定 理
,
定理
1
在整 数 环 上


m
X
n
阶 矩 阵施 行 行 的 初 等 变换 相 当于 在 此 矩 阵 左 边乘 上
a
,
b
t
,

由 (a
。,
b 。)

1且
a

!
a ,
b 知
a
z
`

a 。
}
a
;
.

a :
=
a
o
代入 (带 ) 式
.
,
得b
:


o b t
.

.
气a
l
,
0 2
)
=
1

、l
,
.
= 二
r
1
5

叭 l用 a

,


a
5
0
1
b
= 一
二厂 a

,

1止


2
二 元 一 次 不 定 方程
定理
3
给定 二 元 一 次 不 定 方 程
二 =

7 一次方程与一次不等式-不定方程及整数解-单墫

7 一次方程与一次不等式-不定方程及整数解-单墫

7.不定方程及整数解如果方程(组)中,未知数的个数多于方程的个数,那么方程往往有无穷多个解,不能唯一确定,这样的方程‘组)称为不定方程.对于不定方程,我们常常限定只求整数解,甚至只求正整数解,加上这些限制条件后,解可能只有有限个,甚至可能唯一确定,当然,特殊情况下,也可能发生无解的情形.形如c b a c by ax 、、<=+均为常数,a 、b 均不为0)的不定方程叫做二元一次不定方程,它是研究其他不定方程的基础,常用的结论:如果⎪⎩⎪⎨⎧==00,y y x x 是二元一次不定方程a c by ax (=+的绝对值与b 的绝对值互质)的一组整数解,那么⎩⎨⎧+=-=at y y bt x x 00,(t 是任意整数)是c by ax =+的一切整数解,称为原方程的通解,而⎪⎩⎪⎨⎧==00,y y x x称为是原方程的一组特解.例1 是否存在整数k ,使得关于x 的方程x x k 516)5(-=+-在整数范围内有解,并求出各个解,解 ,516)5(x x k -=+-移项后得 ,615)5(-=+-x x k 化简后得 .5-=kx因为原方程有整数解,所以,0=/k 则⋅-=kx 5因为x 是整数,5是质数,正的约数只有1和5,再考虑负整数,所以.51±±=、k当1=k 时,方程的解为;5-=x当1-=k 时,方程的解为;5=x 当5=k 时,方程的解为;1-=x 当5-=k 时,方程的解为.1=x例2 求方程9854=+y x 的所有正整数解.分析 解不定方程主要是根据一个未知数的取值进行讨论,如果抓住方程自身的特点,可以大量减少讨论的次数.解 由题意可知⋅-=5498xy 根据x 498-是5的倍数,所以它的尾数只能是O 或5,因为x 498-是偶数,所以它的尾数只能是0,则4x 的尾数只能是8;因此x 的尾数是2或7;因为,984<x 所以整数,24≤x 所以x 可取2、7、12、17、22.当2=x 时,;18=y当7=x 时,;14=y 当12=x 时,;10=y当17=x 时,;6=y 当22=x 时,.2=y 所以原方程的正整数解有⎩⎨⎧==;18,2y x ⎩⎨⎧==;14,7y x ⎩⎨⎧==;10,12y x ⎩⎨⎧==;6,17y x ⎩⎨⎧==.2,22y x 例3 求不定方程7)(2+=+xy y x 的整数解, 方法一 利用整除性质, 解 原方程可以化为⋅--=---=--=2322342272y y y y y x 由于x 是整数,所以23-y 必是整数,即3能被.2-y 整除,所以=-2y .31±±、 当12=-y 时,,3=y 解得;1-=x 当12-=-y 时,,1=y 解得;5=x 当32=-y 时,,5=y 解得;1.=x当32-=-y 时,,1-=y 解得.3=x 从而解得原方程的整数解为⎩⎨⎧=-=;3,1y x ⎩⎨⎧==;1,5y x ⎩⎨⎧==;5,1y x ⎩⎨⎧-=.1,31y x 方法二 分解因式,解 由题意可知,7)(2-=+-y x xy ,3422-=+--y x xy .3)2)(2(-=--y x因为x 、y 都是整数,所以22--y x 、都是整数,因为-3在整数范围内可以写成13⨯-或,31⨯-则原方程可以转化为⎩⎨⎧-=-=-;32,12y x ⎩⎨⎧=--=-;12,32y x ⎩⎨⎧=--=-;32,12y x ⎩⎨⎧-=-=-.12,32y x解得⎩⎨⎧-==;1,3y x ⎩⎨⎧=-=;3,1y x ⎩⎨⎧==;5,1y x ⎩⎨⎧==.1,5y x例4 某工程队有两个组共76人,当第一组调6人到第二组以后,第一组人数比第二组人数的k 倍(k 为大于1的整数)少16人,那么原来第一组有多少人?(第14届迎春杯)分析 设原来第一组有x 人,第二组有y 人,根据工程队有两个组共76人,可 以列出方程;76=+y x 然后根据第一组人数比第二组人数的k 倍少16人,可以列出第二个方程;16)6(6-+=-y k x 方程中又涉及到待定的整数k ,根据题目的实际意义,可知x 是大于等于6的正整数,y 是正整数,加上k 是大于1的正整数,可以求出这个不定方程的正整数解.解 设原来第一组有x 人,第二组有y 人,依题意可得⎩⎨⎧-+=-=+②①.16)6(6,76y k x y x ②式可以整理成 ,1666-+=-k ky x③.106-=-k ky x由①一③得 ,866)1(+-=+k y kkk y ++-=1866k k ++--=19662⋅++-=k1926因为21>+k 且k +1是92的约数,而且保证,0192>+k则;41=+k 可得 ;176492=-=y .591776=-=x答:原来第一组有59人, 例5 已知m 是整数,且方程组⎩⎨⎧=+=-266,634my x y x 有整数解,则m 的取值为分析 通过解方程组,利用含m 的代数式表示x 、y ;然后利用整除的性质来确定m 的取值.解 解方程组得 ⎪⎪⎩⎪⎪⎨⎧⋅+=++=9234,92339m y m m x因为这个方程组的解是整数,所以9234+m 是整数,则92+m 是34的约数,注意92+m 是奇数,⋅±±=+.17192、m所以.13454---=、、、m将13454---=、、、m 分别代人到92339++=m mx 中,可知x 的值也都是整数.综上所述,例6 设a 是任意给定的正整数,试判断关于x 、y 的方程322a y x =-整数解存在的情况.解 根据))((22y x y x y x -+=-可得,))((3a y x y x =-+则对于任何整数a ,方程组⎩⎨⎧=-=+a y x a y x ,2的解一定是原方程的解; 则这个方程组解为⎪⎪⎩⎪⎪⎨⎧⋅-=+=2)1(,2)1(a a y a a x由于1-a 与a ,a 与1+a 都是连续整数,所以由数的奇偶性可知它们的乘积一定是偶数,即x 、y都是整数.即对于任意的整数a ,不定方程322a y x =-都存在整数解,例7 已知两个长方形的边长都是整数,第一个长方形的长是y ,宽为b ;第二个长方形的长为c ,宽为d .如果:(1)第一个长方形的面积是第二个长方形的面积的3倍; (2)第二个长方形的周长是第一个长方形的周长的3倍;.1)3(=d那么所有满足条件的a 为 .(第17届迎春杯)分析 根据问题的实际情况列出方程组,然后求出这个不定方程组的整数解. 解 根据题意有⎩⎨⎧+=+=).(31,3b a c c ab 把第一个方程代入到第二个方程得),(93b a ab +=+ ,03)(9=++-b a ab ,7881)(9=++-b a ab 78)9)(9(=--b a因为,b a >所以.99->-b a 因为a 、b 都是正整数,所以⎩⎨⎧=-=-19,789b a 或⎩⎨⎧=-=-29,399b a 或⎩⎨⎧=-=-39,269b a 或⎩⎨⎧=-=-.69,139b a 则⎩⎨⎧==10,87b a 或⎩⎨⎧==11,48b a 或⎩⎨⎧==12,35b a 或⎩⎨⎧==.51,22 b a所以,所有满足条件的a 为22或35或48或87.例8若长方形的长与宽都是整数,且周长与面积的数值相等,则长方形的面积等于 .(第10届初一希望杯)解 设长方形的长与宽分别是x 、y ,由题意可知⋅+=y x xy 22(其中x 、y 为正整数)故 22-=x xy 24)2(2-+-=x x ⋅-+=242x由此可知2-x 是4的正约数,即12=-x 或2或4,所以3=x 或4或6;相应y 的值为6或4或3.因此该长方形的面积是16或18.例9 图中,C 是线段AB 上的一点,D 是线段BC 上中点.已知图中所有线段的长度之和是23,线段Ac 的长度与CB 的长度都是正整数,则线段AC 的长度为 .(第11届初一希望杯)解 设AC 的长度为x ,BC 的长度为y ,则图中所有线段及其长度如下:,2,yx AD x AC +== =+=CD y x AB ,,2,,2yDB y CB y ==所以列得方程 .23273=+y x (*)式中x 、y 均为正整数.由(*)式可知,y 是偶数,当6≥y 时,,23273>+y x 所以y 只能取2或4;当 2=y 时,316,2373==+x x 不是整数,所以,2=/y 因此,4=y 进而,3=x 即线段AC 的长度为3. 例10 已知m 是整数,且,3060-<<-m 关于x 、y 的二元一次方程组⎩⎨⎧=---=-my x y x 73,532有整数解,则=m ,=+y x 2 (第13届初一希望杯)解 ⎩⎨⎧=---=-②①.73,532m y x y x由①×3+②×2得,15223-=-m y解得 ⋅-=23215my 因为m 、x 、y 都是整数,且m 215-是奇数,所以m 215-是23的奇数倍.又因为,3060-<<-m 即,13521575<⋅-<m 故.115215=-m 解得,523115,50==-=y m 于是.5)53(21=-=y x 因此.302=+y x例11 有一项工程,甲单独做a 天完成,乙单独做6天完成(a 、b 都是正整数),现在由甲先做4天,余下的由甲、乙合做3天完成,求a 、b 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次不定方程(组)及方程的整数解问题【写在前面】不定方程(组)是数论中的一个重要课题,不仅是数学竞赛,甚至在中考试卷中也常常出现. 对于不定方程(组),我们往往只求整数解,甚至是只求正整数解,加上条件限制后,解就可确定.有时还可以解决计数、求最值等方面的问题.二元一次不定方程是最简单的不定方程,一些复杂的不定方程(组)常常要转化为二元一次不定方程问题加以解决.【本讲重点】求一次不定方程(组)的整数解【知识梳理】不定方程(组)是指未知数的个数多于方程的个数的方程(组),其特点是往往有无穷多个解,不能唯一确定.重要定理:设a 、b 、c 、d 为整数,则不定方程c by ax =+有:定理1 若,),(d b a =且d 不能整除c ,则不定方程c by ax =+没有整数解;定理2 若),(00y x 是不定方程c by ax =+且的一组整数解(称为特解),则⎩⎨⎧-=+=aty y bt x x 00,(t 为整数)是方程的全部整数解(称为通解). (其中d b a =),(,且d 能整除c ).定理3 若),(00y x 是不定方程1=+by ax ,1),(=b a 的特解,则),(00cy cx 是方程c by ax =+的一个特解. (其中d b a =),(,且d 能整除c ).求整系数不定方程c by ax =+的正整数解,通常有以下步骤: (1) 判断有无整数解; (2) 求出一个特解; (3) 写出通解;(4) 有整数t 同时要满足的条件(不等式组),代入命题(2)中的表达式,写出不定方程的正整数解. 解不定方程(组),需要依据方程(组)的特点,并灵活运用以下知识和方法:(1)分离整系数法; (2)穷举法; (3)因式分解法; (4)配方法; (5)整数的整除性; (6)奇偶分析; (7)不等式分析; (8)乘法公式.【学法指导】【例1】求下列不定方程的整数解(1)862=+y x ; (2)13105=+y x . 【分析】根据定理1、定理2确定方程的整数解. 【解答】(1)原方程变形为:43=+y x , 观察得到⎩⎨⎧==1,1y x 是43=+y x 的一组整数解(特解), 根据定理2 ,)(1,31是整数t ty t x ⎩⎨⎧-=+=是原方程的所有整数解.(2)∵(5,10)=5,但5不能整除13,∴根据定理1,原方程的无整数解.【点评】先判断方程是否有整数解,多于系数不大的题目优先选用观察法寻找特解. 求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是一样的.【实践】求下列不定方程的整数解(1)211147=+y x ; (2)11145=-y x . 答案:(1)无整数解;(2))(51,145是整数t ty t x ⎩⎨⎧-=-= 【例2】求方程213197=+y x 的所有正整数解.【分析】此方程的系数较大,不易用观察法得出特解.根据方程用y 来表示x ,再将含y 的代数式分离出整系数部分,然后对分数系数部分进行讨论,赋予y 不同的整数,寻找一个使分数系数部分成为正整数的y 0,然后再求x 0,写出通解,再解不等式组确定方程的正整数解. 【解答】∵(7,19)=1,根据定理2,原方程有整数解.由原方程可得75323075314210719213yy y y y x -+-=-+-=-=, 由此可观察出一组特解为x 0=25,y 0=2.∴方程的通解为)(72,1925是整数t ty t x ⎩⎨⎧-=+=.其中⎩⎨⎧>->+072,01925t t ∴⎪⎪⎩⎪⎪⎨⎧<->72,1925t t ∴721925<<-t ∴0,1-=t 代入通解可得原方程的正整数解为⎩⎨⎧==⎩⎨⎧==.2,25.9,6y x y x 或 【点评】根据定理2解这类方程,若未知数的系数较大不容易观察出一组整数解时,可用一个未知数去表示另一个未知数,再利用整数的知识,这是解二元一次不定方程基本的方法,称为分离整系数法. 这样就容易找出一组整数解来.【实践】求方程2654731=+y 的正整数解. 答案: x=4,y=3.【例3】大客车能容纳54人,小客车能容纳36人,现有378人要乘车,问需要大、小客车各几辆才能使每个人都能上车且各车都正好坐满.【分析】本题是不定方程的应用,根据题意列出方程并求出非负整数解即可.【解答】设需要大客车x 辆,小客车y 辆,根据题意可列方程 3783654=+y x ,即2123=+y x .又(3,2)=1,根据定理2,原方程有整数解. 易知⎩⎨⎧==9,1y x 是一个特解,通解为)(99,21是整数t t y t x ⎩⎨⎧-=+=由题意可知⎩⎨⎧≥-≥+099,021t t 解得.3,2,1,0=t 相应地⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==.0,7.3,5.6,3.9,1y x y x y x y x 答:需要大客1车辆,小客车9辆;或需要大客车3辆,小客车6辆;或需要大客车5辆,小客车3辆;也可以只要大客车7辆,不要小客车.【点评】一般来说实际问题通常取正整数解或者非负整数解.【实践】某次考试共需做20道小题,对1道得8分,错一道扣5分,不做不得分.某生共得13分,他没做的题目有几道? 答案:7【例4】某人的生日月份数乘以31,生日的日期数乘以12,相加后得347,求此人的生日. 【分析】本题的隐含条件是:月份的取值[1,12],日期的取值[1,31].【解答】设此人生日的月份数为x ,日期数y. 根据题意可列方程 31x+12y=347.〈方法一〉 〈方法二〉特解:)(3116125165是整数通解:t ty t x y x ⎩⎨⎧-=+=⎩⎨⎧== )31347(|123134712x x y -∴-=答:此人的生日为5月16日.【点评】求出通解后,要利用隐含条件求出符合题意的解. 其中方法二是利用了同余的知识.1655125121121)(512)12(mod 711)12(mod 31347===∴=∴≤+≤∴≤≤+=∴≡∴≡∴y x x t t x t t x x x 代入原方程得:把是整数 .16503131161121251311121是符合题意解解得⎩⎨⎧==∴=∴⎩⎨⎧≤-≤≤+≤∴⎩⎨⎧≤≤≤≤y x t t t y x【实践】已知有一个三位数,如果它本身增加3,那么新的三位数的各位数字和就减少到原来的31,求一切这样三位数的和. 答案:432【例5】(新加坡数学竞赛题)设正整数m,n 满足698+=+mn n m ,则m 的最大值为 .【分析】把m 用含有n 的代数式表示,用分离整系数法,再结合整除的知识,求出m 的最大值. 【解答】∵698+=+mn n m ,∴n mn m 968-=-,n m n 96)8(-=- 由题意可得,n ≠8,∴8669866729869896-+=-+-=--=--=n n n n n n n m , ∵m,n 为正整数, ∴ 当n=9时,m 有最大值为75.【点评】此题是求最值的问题,利用分离整系数法是一种典型的常用方法.【实践】(北京市数学竞赛题)有8个连续的正整数,其和可以表示成7个连续的正整数的和,但不能3个连续的正整数的和,那么这8个连续的正整数中最大数的最小值是 . 答案:28【例6】我国古代数学家张建丘所著《算经》中的“百钱买百鸡”问题:鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一,百钱买百鸡,问鸡翁,鸡母,鸡雏各几何?【分析】分析:用x,y,z 来表示鸡翁,鸡母,鸡雏的只数,则可列方程组:⎪⎩⎪⎨⎧=++=++1001003135z y x z y x如何解这个不定方程组?消元转化为不定方程.【解答】解:设鸡翁,鸡母,鸡雏的只数分别为x,y,z.⎪⎩⎪⎨⎧=++=++)2(1003135)1(100z y x z y x (2)×3-(1)得:14x +8y =200,即7x +4y =100.〈方法一〉)(71844.184是整数通解:,特解:t t y t x y x ⎩⎨⎧-=+=⎩⎨⎧== .2,1,07181071804400=∴⎪⎩⎪⎨⎧<->⎩⎨⎧>->+∴⎩⎨⎧>>t t t t t y x 解得 ⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===844128111878184,z y x z y x z y x 原方程有三组解:相应地 〈方法二〉〉下面的方法同〈方法一为整数)(通解:的特解是其特解为令.75004300.1004750030053,147t t y tx y x y x y x y x ⎩⎨⎧--=+==+⎩⎨⎧-==∴⎩⎨⎧-===+〈方法三〉下面方法同〈一〉是整数得:代入把是整数,即,,).(71844718)3(44).(44)4(mod 30:)4(mod 7100)7100(|4)3(71004t ty tx ty t x t t x x x x x y ⎩⎨⎧-=+=∴-=+=+=∴≡≡∴-∴-= 【点评】充分挖掘题目的隐含条件,进而求整数解.【实践】如果1只兔可换2只鸡,2只兔可换3只鸭,5只兔可换7只鹅.某人用20只兔换得鸡、鸭、鹅共30只.问:其中的鸡、鸭、鹅各多少只? 答案:(2,21,7)、(4,12,14)、(6,3,21)【例7】求方程23732=++z y x 的整数解.【分析】对于三元一次不定方程,可以另外引进一个未知数,将其转化为方程组,然后分别解方程组中的各个方程,从而得到原方程的解.【解答】设t y x =+32,则原方程可看作⎩⎨⎧=+=+)2(.237)1(,32z t t y x 对于方程(1)x =-t ,y =t 是一个特解, 从而(1)的整数解是)()4(.2)3(,3-是整数u u t y u t x ⎩⎨⎧+=-= 又t =2,z =3是方程(2)的一个特解,于是(2)的整数解是)()6(.72)5(,3是整数v v t v z ⎩⎨⎧+=-= 将(6)代入(3)、(4)消去t 得到原方程的所有整数解为:)(.3,272,372是整数、v u v z u v y u v x ⎪⎩⎪⎨⎧-=++=---=【点评】一次不定方程在无约束条件的情况下,通常有无数组整数解,由于求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是一样的,将解中的参数作适当代换,就可以化为同一形式. 【实践】求方程7892439=+-z y x 的整数解. 答案:)(.83213,3,238是整数、v u v u z v y u v x ⎪⎩⎪⎨⎧--=-=+-=【例8】(海峡两岸友谊赛试题)甲组同学每人有28个核桃,乙组同学每人有30个核桃,丙组同学没人有31个核桃,三组共有核桃总数是365个.问:三个小组共有多少名同学?【分析】设甲组同学a 人,乙组同学b 人,丙组同学c 人,由题意得365313028=++c b a . 要求c b a ++,可以运用放缩法从确定c b a ++的取值范围入手.【解答】设甲组同学a 人,乙组同学b 人,丙组同学c 人,则365313028=++c b a .∵)(31365313028)(28c b a c b a c b a ++<=++<++,∴2836531365<++<c b a .∵c b a ++是整数,∴c b a ++=12或13.但当c b a ++=13时,得132=+c b ,无正整数解. 答:三个小组共有12名同学.【点评】整体考虑和的问题,巧妙运用放缩法.【实践】Alice wants to buy some radios, pens and bags. If she buys 3 radios,6 pens,2 bags,she will pay ¥302. If shebuys 5 radios,11 pens,3 bags,she will pay ¥508. Question: How much will Alice pay for 1 radio,1 pen and 1 bag? 答案:96【例9】一个布袋里有红、黄、蓝三种颜色大小相同的木球.红球上标有数字1,黄球上标有数字2,蓝球上标有数字3.小明从布袋中摸出10个球,它们上面所标的数字和等于21.(1) 小明摸出的球中,红球的个数最多不超过几个? (2) 若摸出的球中三种颜色都有,有多少种不同的摸法?【分析】由于知道三种球的个数和,因此可设二元.第(2)问计数问题的实质是就是求正整数解的组数. 【解答】(1)设小明摸的红球有x 个,黄球有y 个,蓝球有)(y x --10个,则21)10(32=--++y x y x , 整理,得x y 29-=,因为x 、y 均为正整数,可知x 的最大值为4.即红球最多不超过4个.(2)由(1)知蓝球的个数是1)29(1010+=---=--=x x x y x z ,又∵.290.01,029,0,0,0,0<<⎪⎩⎪⎨⎧>+>->∴⎪⎩⎪⎨⎧>>>x x x x z y x 解得 ∴.4,3,2,1=x因此共有4种不同的摸法,如下:(1,7,2),(2,5,3),(3,3,4),(4,1,5).【点评】此题求的是未知数的范围及可能取值的个数,因此不需要求出方程的通解,而是根据题意对未知数的限制利用不等式分析出未知数的取值范围,以及整数解的个数.【实践】已知有两堆水泥,若从第一堆中取出100袋放进第二堆,则第二堆比第一堆多一倍;相反,若从第二堆中取出一些放进第一堆,则第一堆比第二堆多5倍.问第一堆中可能的最少水泥袋数是多少?并在这种情况下求出第二堆水泥的袋数. 答案:170,40.【例10】设非负整数n ,满足方程n z y x =++2的非负整数(x,y,z )的组数记为n a . (1)求3a 的值;(2)求2001a 的值.【分析】审清题中n a 的n 与方程n z y x =++2是同一个非负整数,3a 的含义是方程32=++z y x 的非负整数解的(x,y,z )的组数.【解答】(1)当n=3时,原方程为32=++z y x ,由于.10,0,0≤≤≥≥z y x 得 当z=1时,方程为x+y=1,其解(x,y )=(0,1),(1,0) 有2组;当z=0时,方程为x+y=3,其解(x,y )=(0,3),(1,2),(2,1),(3,0) 有4组. 综上,3a =6.(2)当n=2001时,原方程为20012=++z y x ,由于.10000,0,0≤≤≥≥z y x 得当z=1000时,方程为x+y=1,其解有2组;当z=999时,方程为x+y=3,其解有4组; 当z=998时,方程为x+y=5,其解(x,y )=(0,5),(1,4),(2,3),(3,2),(4,1),(5,0)有6组;…; 当z=0时,方程为x+y=2001,其解(x,y )=(0,2001),(1,2000),…,(2001,0) 有2002组. 综上,2001a =2+4+6+…+2002=1003002.【点评】此题综合较强,涉及解不定方程、分类讨论、计数等方面的知识,需要灵活运用所学只是解决问题. 【实践】一次不定方程x+y+z=1999的非负整数解有( )个 CA.20001999B.19992000C.2001000D.2001999【总结反思】以上介绍了初中数学竞赛中一次不定方程的基本解法、各种解题技巧以及应用. 解不定方程的基本方法是分离整系数法,要熟练掌握. 在具体应用问题上,能将实际问题转化为不定方程的问题,并根据题意挖掘题目的隐含条件,也就是未知数的取值范围.【题海拾贝】1.(2000年希望杯竞赛题)若a 、b 均为正整数,且2a>b ,2a+b=10,则b 的值为( ) A. 一切偶数 B.2、4、6、8 C.2、4、6 D.2、42. 若正整数x,y 满足2004a=15y ,则 x+y 的最小值为 .3. 如果三个既约真分数6,432b a ,的分子都加上b ,这时得到的三个分数之和为6. 求这三个既约真分数的和. 4. (重庆市竞赛题)一个盒子里装有不多于200粒棋子,如果每次2粒、3粒、4粒或6粒地取出,最终盒内都剩余1粒棋子;如果每次11粒地取出,那么正好取完.问:盒子里装有多少粒棋子? 5. (2006年国际城市竞赛题)一辆汽车下坡的速度是72km/h ,在平地上的速度是63km/h ,上坡的速度是56km/h.汽车从A 地到B 地用了4h ,而返程用了4小时40分,求AB 两地的距离. 答案:1.D2.6733. 125 4.121 5.273最新文件---------------- 仅供参考--------------------已改成word文本--------------------- 方便更改。

相关文档
最新文档